trans-zeatin riboside (BioDeep_00000003491)
Secondary id: BioDeep_00000017699, BioDeep_00000018619, BioDeep_00000398275, BioDeep_00000616275
natural product human metabolite PANOMIX_OTCML-2023 BioNovoGene_Lab2019
代谢物信息卡片
化学式: C15H21N5O5 (351.1543)
中文名称: 玉米素核苷, 玉米素核糖甙, 反式玉米素核苷(tZR)
谱图信息:
最多检出来源 Homo sapiens(plant) 17.01%
分子结构信息
SMILES: C/C(=C\CNc1c2c(ncn1)n(cn2)[C@H]1[C@@H]([C@@H]([C@@H](CO)O1)O)O)/CO
InChI: InChI=1S/C15H21N5O5/c1-8(4-21)2-3-16-13-10-14(18-6-17-13)20(7-19-10)15-12(24)11(23)9(5-22)25-15/h2,6-7,9,11-12,15,21-24H,3-5H2,1H3,(H,16,17,18)/b8-2+/t9-,11-,12-,15-/m1/s1
描述信息
Trans-zeatin riboside, also known as (E)-N-(4-hydroxy-3-methyl-2-butenyl)adenosine or 9-beta-D-ribofuranosyl-trans-zeatin, is a member of the class of compounds known as purine nucleosides. Purine nucleosides are compounds comprising a purine base attached to a ribosyl or deoxyribosyl moiety. Trans-zeatin riboside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Trans-zeatin riboside can be found in a number of food items such as winter squash, plains prickly pear, dill, and common buckwheat, which makes trans-zeatin riboside a potential biomarker for the consumption of these food products.
D006133 - Growth Substances > D010937 - Plant Growth Regulators > D003583 - Cytokinins
Acquisition and generation of the data is financially supported in part by CREST/JST.
trans-Zeatinriboside is a type of cytokinin precursor, acts as a major long-distance signalling form in xylem vessels, regulates leaf size and meristem activity-related traits.
trans-Zeatinriboside is a type of cytokinin precursor, acts as a major long-distance signalling form in xylem vessels, regulates leaf size and meristem activity-related traits.
trans-Zeatinriboside is a type of cytokinin precursor, acts as a major long-distance signalling form in xylem vessels, regulates leaf size and meristem activity-related traits.
同义名列表
36 个代谢物同义名
(2R,3R,4S,5R)-2-(6-{[(2E)-4-hydroxy-3-methylbut-2-en-1-yl]amino}-9H-purin-9-yl)-5-(hydroxymethyl)oxolane-3,4-diol; 6-(4-Hydroxy-3-methyl-trans-2-butenylamino)-9-beta-D-ribofuranosylpurine; 6-(4-Hydroxy-3-methyl-trans-2-butenylamino)-9-β-D-ribofuranosylpurine; N-[(2E)-4-Hydroxy-3-methyl-2-buten-1-yl]adenosine; N6-(4-Hydroxy-3-methylbut-2-trans-enyl)adenosine; N6-(trans-4-Hydroxy-3-methylbut-2-enyl)adenosine; (E)-N-(4-Hydroxy-3-methyl-2-butenyl)adenosine; N-(4-hydroxy-3-methyl-2-butenyl)adenosine; trans-zeatin 9-beta-D-ribofuranoside; 9-beta-D-ribofuranosyl-trans-zeatin; trans-Zeatin 9-b-D-ribofuranoside; trans-Zeatin 9-β-D-ribofuranoside; zeatin riboside, (cis-(Z))-isomer; 9-Β-D-ribofuranosyl-trans-zeatin; 9-b-D-Ribofuranosyl-trans-zeatin; Zeatin-9-beta-D-ribofuranoside; 9-beta-D-ribosyl-trans-zeatin; 9-beta-D-Ribofuranosylzeatin; Zeatin 9-beta-ribonucleoside; Zeatin-9-β-D-ribofuranoside; zeatin riboside, (E)-isomer; 9-Β-D-ribosyl-trans-zeatin; 9-b-D-Ribosyl-trans-zeatin; Zeatin 9-β-ribonucleoside; 9-β-D-Ribofuranosylzeatin; trans-Zeatin 9-riboside; 9-Ribosyl-trans-zeatin; Trans-zeatin riboside; Zeatin ribonucleoside; trans-Zeatin-riboside; Ribosyl-trans-zeatin; Zeatin 9-riboside; Zeatin riboside; 9-ribosylzeatin; ribosylzeatin; trans-Zeatinriboside
数据库引用编号
26 个数据库交叉引用编号
- ChEBI: CHEBI:71693
- KEGG: C16431
- PubChem: 6440982
- HMDB: HMDB0304506
- Metlin: METLIN64077
- MetaCyc: CPD-4208
- KNApSAcK: C00000096
- foodb: FDB031214
- chemspider: 4945213
- CAS: 28542-78-1
- CAS: 6025-53-2
- MoNA: PS036301
- MoNA: PS036305
- MoNA: PS036302
- MoNA: PS036306
- MoNA: PR100209
- MoNA: PR100614
- MoNA: PS036303
- MoNA: PS036304
- PubChem: 47205728
- PDB-CCD: Q3V
- NIKKAJI: J120.777F
- RefMet: trans-Zeatin riboside
- medchemexpress: HY-W011151
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-860
- LOTUS: LTS0254495
分类词条
相关代谢途径
Reactome(0)
代谢反应
128 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(2)
- cytokinins degradation:
N6-dimethylallyladenine + FAD + H+ + H2O ⟶ 3-methyl-2-butenal + FADH2 + adenine
- cytokinins degradation:
N6-dimethylallyladenine + FAD + H+ + H2O ⟶ 3-methyl-2-butenal + FADH2 + adenine
WikiPathways(0)
Plant Reactome(9)
- Responses to stimuli: abiotic stimuli and stresses:
Al3+ + CIT ⟶ Al:citrate
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Hormone signaling, transport, and metabolism:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-octanoate + Oxygen ⟶ CH3COO- + jasmonic acid
- Trans-zeatin biosynthesis:
AMP + DMAPP ⟶ PPi + isopentenyladenosine-5'-monophosphate
- Growth and developmental processes:
AMP + DMAPP ⟶ PPi + isopentenyladenosine-5'-monophosphate
- Vegetative structure development:
AMP + DMAPP ⟶ PPi + isopentenyladenosine-5'-monophosphate
- Regulation of leaf development:
AMP + DMAPP ⟶ PPi + isopentenyladenosine-5'-monophosphate
- Gravitropism under normal or artificial gravity environments:
FAD + H+ + H2O + isopentenyladenine ⟶ 3-methyl-2-butenal + Adenine + FADH2(2-)
- Regulation of lemma joints development and leaf angle by cytokinin:
FAD + H+ + H2O + isopentenyladenine ⟶ 3-methyl-2-butenal + Adenine + FADH2(2-)
INOH(0)
PlantCyc(116)
- cytokinins degradation:
N6-dimethylallyladenine + FAD + H+ + H2O ⟶ 3-methyl-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
N6-dimethylallyladenine + FAD + H+ + H2O ⟶ 3-methyl-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
N6-dimethylallyladenine + FAD + H+ + H2O ⟶ 3-methyl-2-butenal + FADH2 + adenine
- cytokinins degradation:
N6-dimethylallyladenine + FAD + H+ + H2O ⟶ 3-methyl-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
N6-dimethylallyladenine + FAD + H+ + H2O ⟶ 3-methyl-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
N6-dimethylallyladenine + FAD + H+ + H2O ⟶ 3-methyl-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
N6-dimethylallyladenine + FAD + H+ + H2O ⟶ 3-methyl-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
N6-dimethylallyladenine + FAD + H+ + H2O ⟶ 3-methyl-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
N6-dimethylallyladenine + FAD + H+ + H2O ⟶ 3-methyl-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
N6-dimethylallyladenine + FAD + H+ + H2O ⟶ 3-methyl-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
N6-dimethylallyladenine + FAD + H+ + H2O ⟶ 3-methyl-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
N6-dimethylallyladenine + FAD + H+ + H2O ⟶ 3-methyl-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
N6-dimethylallyladenine + FAD + H+ + H2O ⟶ 3-methyl-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
N6-dimethylallyladenine + FAD + H+ + H2O ⟶ 3-methyl-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
N6-dimethylallyladenine + FAD + H+ + H2O ⟶ 3-methyl-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
N6-dimethylallyladenine + FAD + H+ + H2O ⟶ 3-methyl-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
N6-dimethylallyladenine + FAD + H+ + H2O ⟶ 3-methyl-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
N6-dimethylallyladenine + FAD + H+ + H2O ⟶ 3-methyl-2-butenal + FADH2 + adenine
- cytokinins degradation:
N6-dimethylallyladenine + FAD + H+ + H2O ⟶ 3-methyl-2-butenal + FADH2 + adenine
- cytokinins degradation:
N6--prenyladenine + FAD + H+ + H2O ⟶ 3-methylbut-2-enal + FADH2 + adenine
COVID-19 Disease Map(0)
PathBank(1)
- Cytokinins Degradation:
FAD + Hydrogen Ion + N6-dimethylallyladenine + Water ⟶ 3-Methyl-2-butenal + Adenine + FADH
PharmGKB(0)
103 个相关的物种来源信息
- 3319 - Abies: LTS0254495
- 90345 - Abies balsamea: 10.1016/0031-9422(79)80139-9
- 90345 - Abies balsamea: LTS0254495
- 155619 - Agaricomycetes: LTS0254495
- 28211 - Alphaproteobacteria: LTS0254495
- 3701 - Arabidopsis: LTS0254495
- 3702 - Arabidopsis thaliana:
- 3702 - Arabidopsis thaliana: 10.1002/(SICI)1096-9888(199809)33:9<892::AID-JMS701>3.0.CO;2-N
- 3702 - Arabidopsis thaliana: 10.1074/JBC.M314195200
- 3702 - Arabidopsis thaliana: LTS0254495
- 2 - Bacteria: LTS0254495
- 5204 - Basidiomycota: LTS0254495
- 374 - Bradyrhizobium: LTS0254495
- 375 - Bradyrhizobium japonicum: 10.1104/PP.89.4.1247
- 375 - Bradyrhizobium japonicum: LTS0254495
- 3705 - Brassica: LTS0254495
- 3708 - Brassica napus: 10.1016/0031-9422(92)80412-8
- 3708 - Brassica napus: LTS0254495
- 3711 - Brassica rapa: 10.1111/J.1399-3054.1980.TB02647.X
- 3711 - Brassica rapa: LTS0254495
- 145471 - Brassica rapa subsp. oleifera: 10.1111/J.1399-3054.1980.TB02647.X
- 145471 - Brassica rapa subsp. oleifera: LTS0254495
- 3700 - Brassicaceae: LTS0254495
- 136419 - Cercozoa: LTS0254495
- 3041 - Chlorophyta: LTS0254495
- 4118 - Convolvulaceae: LTS0254495
- 3650 - Cucurbitaceae: LTS0254495
- 2604748 - Endomyxa: LTS0254495
- 2759 - Eukaryota: LTS0254495
- 3803 - Fabaceae: LTS0254495
- 4751 - Fungi: LTS0254495
- 1236 - Gammaproteobacteria: LTS0254495
- 9606 - Homo sapiens: -
- 4119 - Ipomoea: LTS0254495
- 4120 - Ipomoea batatas:
- 4120 - Ipomoea batatas: 10.1626/JCS.60.322
- 4120 - Ipomoea batatas: 10.1626/JCS.60.91
- 4120 - Ipomoea batatas: LTS0254495
- 271790 - Lablab: LTS0254495
- 35936 - Lablab purpureus: LTS0254495
- 4447 - Liliopsida: LTS0254495
- 3398 - Magnoliopsida: LTS0254495
- 3877 - Medicago: LTS0254495
- 3879 - Medicago sativa: 10.1271/BBB1961.49.3481
- 3879 - Medicago sativa: LTS0254495
- 85025 - Nocardiaceae: LTS0254495
- 3883 - Phaseolus: LTS0254495
- 3885 - Phaseolus vulgaris: 10.1104/PP.79.1.296
- 3885 - Phaseolus vulgaris: LTS0254495
- 2779609 - Phytomyxea: LTS0254495
- 3328 - Picea: LTS0254495
- 3332 - Picea sitchensis: 10.1016/S0015-3796(17)30130-0
- 3332 - Picea sitchensis: LTS0254495
- 3318 - Pinaceae: LTS0254495
- 58019 - Pinopsida: LTS0254495
- 3337 - Pinus: LTS0254495
- 3347 - Pinus radiata: 10.1104/PP.74.3.626
- 3347 - Pinus radiata: LTS0254495
- 3887 - Pisum: LTS0254495
- 3888 - Pisum sativum: 10.1104/PP.49.5.848
- 3888 - Pisum sativum: LTS0254495
- 33090 - Plants: -
- 37359 - Plasmodiophora: LTS0254495
- 37360 - Plasmodiophora brassicae: 10.1111/J.1399-3054.1980.TB02647.X
- 37360 - Plasmodiophora brassicae: LTS0254495
- 37358 - Plasmodiophoridae: LTS0254495
- 4479 - Poaceae: LTS0254495
- 135621 - Pseudomonadaceae: LTS0254495
- 286 - Pseudomonas: LTS0254495
- 317 - Pseudomonas syringae: 10.1016/S0031-9422(00)81053-5
- 317 - Pseudomonas syringae: LTS0254495
- 3356 - Pseudotsuga: LTS0254495
- 3357 - Pseudotsuga menziesii: 10.1104/PP.93.1.67
- 3357 - Pseudotsuga menziesii: LTS0254495
- 5375 - Rhizopogon: LTS0254495
- 90004 - Rhizopogon roseolus: 10.1126/SCIENCE.157.3792.1055
- 90004 - Rhizopogon roseolus: LTS0254495
- 48595 - Rhizopogonaceae: LTS0254495
- 1827 - Rhodococcus: LTS0254495
- 1828 - Rhodococcus fascians: 10.1104/PP.58.6.749
- 1828 - Rhodococcus fascians: LTS0254495
- 184139 - Sechium: LTS0254495
- 184140 - Sechium edule: 10.1016/S0168-9452(97)00186-6
- 184140 - Sechium edule: 10.1016/S0176-1617(88)80206-2
- 184140 - Sicyos edulis:
- 4070 - Solanaceae: LTS0254495
- 4107 - Solanum: LTS0254495
- 4081 - Solanum lycopersicum:
- 4081 - Solanum lycopersicum: LTS0254495
- 35493 - Streptophyta: LTS0254495
- 58023 - Tracheophyta: LTS0254495
- 4564 - Triticum: LTS0254495
- 4565 - Triticum aestivum: 10.1007/BF02024680
- 4565 - Triticum aestivum: LTS0254495
- 170436 - Udotea: LTS0254495
- 35435 - Udoteaceae: LTS0254495
- 33103 - Ulvophyceae: LTS0254495
- 3915 - Vigna mungo: 10.1007/BF02877410
- 33090 - Viridiplantae: LTS0254495
- 4575 - Zea: LTS0254495
- 4577 - Zea mays: -
- 4577 - Zea mays: 10.1016/0031-9422(73)80453-4
- 4577 - Zea mays: LTS0254495
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Muhammad Saqlain Zaheer, Hafiz Haider Ali, Kehinde O Erinle, Shabir Hussain Wani, Okon Godwin Okon, Muhammad Azhar Nadeem, Muhammad Nawaz, Muhammad Adnan Bodlah, Muhammad Mohsin Waqas, Javaid Iqbal, Ali Raza. Inoculation of Azospirillum brasilense and exogenous application of trans-zeatin riboside alleviates arsenic induced physiological damages in wheat (Triticum aestivum).
Environmental science and pollution research international.
2022 May; 29(23):33909-33919. doi:
10.1007/s11356-021-18106-w
. [PMID: 35031990] - Shaohuan Li, Muhammad Mobeen Tahir, Tong Wu, Lingling Xie, Xiaoyun Zhang, Jiangping Mao, Anam Ayyoub, Libo Xing, Dong Zhang, Yun Shao. Transcriptome Analysis Reveals Multiple Genes and Complex Hormonal-Mediated Interactions with PEG during Adventitious Root Formation in Apple.
International journal of molecular sciences.
2022 Jan; 23(2):. doi:
10.3390/ijms23020976
. [PMID: 35055162] - Juanjuan Ma, Lingling Xie, Qian Zhao, Yiting Sun, Dong Zhang. Cyclanilide Induces Lateral Bud Outgrowth by Modulating Cytokinin Biosynthesis and Signalling Pathways in Apple Identified via Transcriptome Analysis.
International journal of molecular sciences.
2022 Jan; 23(2):. doi:
10.3390/ijms23020581
. [PMID: 35054767] - Minqiang Tang, Chaobo Tong, Longbin Liang, Caifu Du, Jixian Zhao, Langtao Xiao, Jianhua Tong, Xianglai Dai, Mmu Helal, Wendong Dai, Yang Xiang. A recessive high-density pod mutant resource of Brassica napus.
Plant science : an international journal of experimental plant biology.
2020 Apr; 293(?):110411. doi:
10.1016/j.plantsci.2020.110411
. [PMID: 32081260] - Muhammad Jawaad Atif, Mohammad Abass Ahanger, Bakht Amin, Muhammad Imran Ghani, Muhammad Ali, Zhihui Cheng. Mechanism of Allium Crops Bulb Enlargement in Response to Photoperiod: A Review.
International journal of molecular sciences.
2020 Feb; 21(4):. doi:
10.3390/ijms21041325
. [PMID: 32079095] - Edgar García-Fortea, Agustín Lluch-Ruiz, Benito José Pineda-Chaza, Ana García-Pérez, Juan Pablo Bracho-Gil, Mariola Plazas, Pietro Gramazio, Santiago Vilanova, Vicente Moreno, Jaime Prohens. A highly efficient organogenesis protocol based on zeatin riboside for in vitro regeneration of eggplant.
BMC plant biology.
2020 Jan; 20(1):6. doi:
10.1186/s12870-019-2215-y
. [PMID: 31906864] - Zhan Shen, Yan-Hua Zhang, Lei Zhang, Yuan Li, Ya-Dong Sun, Zu-Yao Li. Changes in the distribution of endogenous hormones in Phyllostachys edulis 'Pachyloen' during bamboo shooting.
PloS one.
2020; 15(12):e0241806. doi:
10.1371/journal.pone.0241806
. [PMID: 33306692] - Y Wang, R L Yao. Increased endogenous indole-3-acetic acid:abscisic acid ratio is a reliable marker of Pinus massoniana rejuvenation.
Biotechnic & histochemistry : official publication of the Biological Stain Commission.
2019 Oct; 94(7):546-553. doi:
10.1080/10520295.2019.1608468
. [PMID: 31045451] - Jianning He, Yu Shi, Junye Zhao, Zhenwen Yu. Strip rotary tillage with a two-year subsoiling interval enhances root growth and yield in wheat.
Scientific reports.
2019 08; 9(1):11678. doi:
10.1038/s41598-019-48159-4
. [PMID: 31406270] - Jia Gao, Jianguo Shi, Shuting Dong, Peng Liu, Bin Zhao, Jiwang Zhang. Grain development and endogenous hormones in summer maize (Zea mays L.) submitted to different light conditions.
International journal of biometeorology.
2018 Dec; 62(12):2131-2138. doi:
10.1007/s00484-018-1613-4
. [PMID: 30244320] - Zuzana Gelová, Petra Ten Hoopen, Ondrej Novák, Václav Motyka, Markéta Pernisová, Siarhei Dabravolski, Vojtech Didi, Isolde Tillack, Jana Okleštková, Miroslav Strnad, Bettina Hause, Danka Haruštiaková, Udo Conrad, Lubomír Janda, Jan Hejátko. Antibody-mediated modulation of cytokinins in tobacco: organ-specific changes in cytokinin homeostasis.
Journal of experimental botany.
2018 01; 69(3):441-454. doi:
10.1093/jxb/erx426
. [PMID: 29294075] - Li Zhang, Xu-Hui Li, Zhen Gao, Si Shen, Xiao-Gui Liang, Xue Zhao, Shan Lin, Shun-Li Zhou. Regulation of maize kernel weight and carbohydrate metabolism by abscisic acid applied at the early and middle post-pollination stages in vitro.
Journal of plant physiology.
2017 Sep; 216(?):1-10. doi:
10.1016/j.jplph.2017.05.005
. [PMID: 28544894] - Asami Osugi, Mikiko Kojima, Yumiko Takebayashi, Nanae Ueda, Takatoshi Kiba, Hitoshi Sakakibara. Systemic transport of trans-zeatin and its precursor have differing roles in Arabidopsis shoots.
Nature plants.
2017 Jul; 3(?):17112. doi:
10.1038/nplants.2017.112
. [PMID: 28737742] - Imrul Mosaddek Ahmed, Umme Aktari Nadira, Fangbin Cao, Xiaoyan He, Guoping Zhang, Feibo Wu. Physiological and molecular analysis on root growth associated with the tolerance to aluminum and drought individual and combined in Tibetan wild and cultivated barley.
Planta.
2016 Apr; 243(4):973-85. doi:
10.1007/s00425-015-2442-x
. [PMID: 26748913] - Xiangqiang Kong, Zhen Luo, Hezhong Dong, A Egrinya Eneji, Weijiang Li. H2O2 and ABA signaling are responsible for the increased Na+ efflux and water uptake in Gossypium hirsutum L. roots in the non-saline side under non-uniform root zone salinity.
Journal of experimental botany.
2016 Apr; 67(8):2247-61. doi:
10.1093/jxb/erw026
. [PMID: 26862153] - Dongqing Yang, Yong Li, Yuhua Shi, Zhengyong Cui, Yongli Luo, Mengjing Zheng, Jin Chen, Yanxia Li, Yanping Yin, Zhenlin Wang. Exogenous Cytokinins Increase Grain Yield of Winter Wheat Cultivars by Improving Stay-Green Characteristics under Heat Stress.
PloS one.
2016; 11(5):e0155437. doi:
10.1371/journal.pone.0155437
. [PMID: 27203573] - Zi-chang Zhang, Yong-feng Li, Xia Yang, Tao Gu, Gui Li. [Effects of different barnyardgrass species on grain yield of rice and their physiological characteristics under alternate wetting and drying irrigation].
Ying yong sheng tai xue bao = The journal of applied ecology.
2015 Nov; 26(11):3389-97. doi:
. [PMID: 26915195]
- Fengxia Wang, Yan-Ge Xu, Shuai Wang, Weiwei Shi, Ranran Liu, Gu Feng, Jie Song. Salinity affects production and salt tolerance of dimorphic seeds of Suaeda salsa.
Plant physiology and biochemistry : PPB.
2015 Oct; 95(?):41-8. doi:
10.1016/j.plaphy.2015.07.005
. [PMID: 26184090] - H Y Wang, K Cui, C Y He, Y F Zeng, S X Liao, J G Zhang. Endogenous hormonal equilibrium linked to bamboo culm development.
Genetics and molecular research : GMR.
2015 Sep; 14(3):11312-23. doi:
10.4238/2015.september.22.25
. [PMID: 26400362] - Chun-yan Li, Wen Xu, Li-wei Liu, Jing Yang, Xin-kai Zhu, Wen-shan Guo. [Changes of endogenous hormone contents and antioxidative enzyme activities in wheat leaves under low temperature stress at jointing stage].
Ying yong sheng tai xue bao = The journal of applied ecology.
2015 Jul; 26(7):2015-22. doi:
. [PMID: 26710627]
- Ren-hua Huang, Hi-ling Yang, Wei Huang, Yun-mei Lu, Ke Chen. [Effects of Funneliformis mosseae on endogenous hormones and photosynthesis of Sorghum haipense under Cs stress].
Ying yong sheng tai xue bao = The journal of applied ecology.
2015 Jul; 26(7):2146-50. doi:
"
. [PMID: 26710644] - Qingfen Li, Shougong Zhang, Junhui Wang. Transcriptomic and proteomic analyses of embryogenic tissues in Picea balfouriana treated with 6-benzylaminopurine.
Physiologia plantarum.
2015 May; 154(1):95-113. doi:
10.1111/ppl.12276
. [PMID: 25200684] - Courtney M Lappas. The plant hormone zeatin riboside inhibits T lymphocyte activity via adenosine A2A receptor activation.
Cellular & molecular immunology.
2015 Jan; 12(1):107-12. doi:
10.1038/cmi.2014.33
. [PMID: 24813229] - Margarita Pérez-Jiménez, Elena Cantero-Navarro, Francisco Pérez-Alfocea, José Cos-Terrer. Endogenous hormones response to cytokinins with regard to organogenesis in explants of peach (Prunus persica L. Batsch) cultivars and rootstocks (P. persica × Prunus dulcis).
Plant physiology and biochemistry : PPB.
2014 Nov; 84(?):197-202. doi:
10.1016/j.plaphy.2014.09.014
. [PMID: 25289519] - Yan Li, Jilin Xu, Liyang Zheng, Min Li, Xiaojun Yan, Qijun Luo. [Simultaneous determination of ten phytohormones in five parts of Sargasum fusiforme (Hary.) Seichell by high performance liquid chromatography-triple quadrupole mass spectrometry].
Se pu = Chinese journal of chromatography.
2014 Aug; 32(8):861-6. doi:
10.3724/sp.j.1123.2014.03049
. [PMID: 25434123] - Grolamys Castillo, Alejandro Torrecillas, Clara Nogueiras, Georgina Michelena, José Sánchez-Bravo, Manuel Acosta. Simultaneous quantification of phytohormones in fermentation extracts of Botryodiplodia theobromae by liquid chromatography-electrospray tandem mass spectrometry.
World journal of microbiology & biotechnology.
2014 Jul; 30(7):1937-46. doi:
10.1007/s11274-014-1612-5
. [PMID: 24510403] - Qin Guo, Bin Wu, Weixin Chen, Yuli Zhang, Jide Wang, Xueping Li. Effects of nitric oxide treatment on the cell wall softening related enzymes and several hormones of papaya fruit during storage.
Food science and technology international = Ciencia y tecnologia de los alimentos internacional.
2014 Jun; 20(4):309-17. doi:
10.1177/1082013213484919
. [PMID: 23744122] - María Ángeles Agulló-Antón, Almudena Ferrández-Ayela, Nieves Fernández-García, Carlos Nicolás, Alfonso Albacete, Francisco Pérez-Alfocea, José Sánchez-Bravo, José Manuel Pérez-Pérez, Manuel Acosta. Early steps of adventitious rooting: morphology, hormonal profiling and carbohydrate turnover in carnation stem cuttings.
Physiologia plantarum.
2014 Mar; 150(3):446-62. doi:
10.1111/ppl.12114
. [PMID: 24117983] - Sneha Bhogale, Ameya S Mahajan, Bhavani Natarajan, Mohit Rajabhoj, Hirekodathakallu V Thulasiram, Anjan K Banerjee. MicroRNA156: a potential graft-transmissible microRNA that modulates plant architecture and tuberization in Solanum tuberosum ssp. andigena.
Plant physiology.
2014 Feb; 164(2):1011-27. doi:
10.1104/pp.113.230714
. [PMID: 24351688] - L B Vysotskaia, G P Akhiiarova, G V Sharapova, M A Dedova, S Iu Veselov, D Iu Zaĭtsev, G P Kudoiarova. [Effects of local induction of ipt-gene in roots on cytokinins content in leaf cells tobacco plants].
Tsitologiia.
2014; 56(11):816-21. doi:
"
. [PMID: 25707208] - Zvjezdana Marković, Philippe Chatelet, Darko Preiner, Isabelle Sylvestre, Jasminka Karoglan Kontić, Florent Engelmann. Effect of shooting medium and source of material on grapevine (Vitis vinifera L.) shoot tip recovery after cryopreservation.
Cryo letters.
2014 Jan; 35(1):40-7. doi:
"
. [PMID: 24872156] - F Della Rovere, L Fattorini, S D'Angeli, A Veloccia, G Falasca, M M Altamura. Auxin and cytokinin control formation of the quiescent centre in the adventitious root apex of Arabidopsis.
Annals of botany.
2013 Nov; 112(7):1395-407. doi:
10.1093/aob/mct215
. [PMID: 24061489] - Hiroki Yamaguchi, Hiroki Tanaka, Morifumi Hasegawa, Makoto Tokuda, Tadao Asami, Yoshihito Suzuki. Phytohormones and willow gall induction by a gall-inducing sawfly.
The New phytologist.
2012 Oct; 196(2):586-595. doi:
10.1111/j.1469-8137.2012.04264.x
. [PMID: 22913630] - Michael Behr, Václav Motyka, Fabian Weihmann, Jiří Malbeck, Holger B Deising, Stefan G R Wirsel. Remodeling of cytokinin metabolism at infection sites of Colletotrichum graminicola on maize leaves.
Molecular plant-microbe interactions : MPMI.
2012 Aug; 25(8):1073-82. doi:
10.1094/mpmi-01-12-0012-r
. [PMID: 22746825] - Xinhua Zhang, Jaime A Teixeira da Silva, Jun Duan, Rufang Deng, Xinlan Xu, Guohua Ma. Endogenous hormone levels and anatomical characters of haustoria in Santalum album L. seedlings before and after attachment to the host.
Journal of plant physiology.
2012 Jun; 169(9):859-66. doi:
10.1016/j.jplph.2012.02.010
. [PMID: 22475499] - Zhong-Bao Yang, Dejene Eticha, Alfonso Albacete, Idupulapati Madhusudana Rao, Thomas Roitsch, Walter Johannes Horst. Physiological and molecular analysis of the interaction between aluminium toxicity and drought stress in common bean (Phaseolus vulgaris).
Journal of experimental botany.
2012 May; 63(8):3109-25. doi:
10.1093/jxb/ers038
. [PMID: 22371077] - Xiao-Ling Wang, Dan Liu, Zhen-Qing Li. Effects of the coordination mechanism between roots and leaves induced by root-breaking and exogenous cytokinin spraying on the grazing tolerance of ryegrass.
Journal of plant research.
2012 May; 125(3):407-16. doi:
10.1007/s10265-011-0442-x
. [PMID: 21748489] - N De Diego, F Pérez-Alfocea, E Cantero, M Lacuesta, P Moncaleán. Physiological response to drought in radiata pine: phytohormone implication at leaf level.
Tree physiology.
2012 Apr; 32(4):435-49. doi:
10.1093/treephys/tps029
. [PMID: 22499594] - Gemma A Chope, Katherine Cools, John P Hammond, Andrew J Thompson, Leon A Terry. Physiological, biochemical and transcriptional analysis of onion bulbs during storage.
Annals of botany.
2012 Mar; 109(4):819-31. doi:
10.1093/aob/mcr318
. [PMID: 22234560] - Rajash Pallai, Russell K Hynes, Brij Verma, Louise M Nelson. Phytohormone production and colonization of canola (Brassica napus L.) roots by Pseudomonas fluorescens 6-8 under gnotobiotic conditions.
Canadian journal of microbiology.
2012 Feb; 58(2):170-8. doi:
10.1139/w11-120
. [PMID: 22292926] - Yuan Liang, Xiaocui Zhu, Meiping Zhao, Huwei Liu. Sensitive quantification of isoprenoid cytokinins in plants by selective immunoaffinity purification and high performance liquid chromatography-quadrupole-time of flight mass spectrometry.
Methods (San Diego, Calif.).
2012 Feb; 56(2):174-9. doi:
10.1016/j.ymeth.2011.08.006
. [PMID: 21867755] - Nils Braun, Alexandre de Saint Germain, Jean-Paul Pillot, Stéphanie Boutet-Mercey, Marion Dalmais, Ioanna Antoniadi, Xin Li, Alessandra Maia-Grondard, Christine Le Signor, Nathalie Bouteiller, Da Luo, Abdelhafid Bendahmane, Colin Turnbull, Catherine Rameau. The pea TCP transcription factor PsBRC1 acts downstream of Strigolactones to control shoot branching.
Plant physiology.
2012 Jan; 158(1):225-38. doi:
10.1104/pp.111.182725
. [PMID: 22045922] - Xue-Mei Li, Li-Hong Zhang, Lian-Ju Ma, Yue-Ying Li. Elevated carbon dioxide and/or ozone concentrations induce hormonal changes in Pinus tabulaeformis.
Journal of chemical ecology.
2011 Jul; 37(7):779-84. doi:
10.1007/s10886-011-9975-7
. [PMID: 21611809] - Kun Wu, Jinyan Wang, Zhongxin Kong, Zheng-Qiang Ma. Characterization of a single recessive yield trait mutant with elevated endogenous ABA concentration and deformed grains, spikelets and leaves.
Plant science : an international journal of experimental plant biology.
2011 Feb; 180(2):306-12. doi:
10.1016/j.plantsci.2010.10.001
. [PMID: 21421375] - Li Chang, Jianping Xue, Yunxian Song, Wei Sheng, Conghui Xiong. [Variation of endogenous hormones in formation of microtuber of Dioscorea opposite in vitro].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2010 Nov; 35(21):2818-21. doi:
"
. [PMID: 21322938] - Lydia B Vysotskaya, Stanislav Yu Veselov, Guzel R Kudoyarova. Effect on shoot water relations, and cytokinin and abscisic acid levels of inducing expression of a gene coding for isopentenyltransferase in roots of transgenic tobacco plants.
Journal of experimental botany.
2010 Aug; 61(13):3709-17. doi:
10.1093/jxb/erq182
. [PMID: 20643808] - Jirí Voller, Marek Zatloukal, René Lenobel, Karel Dolezal, Tibor Béres, Vladimír Krystof, Lukás Spíchal, Percy Niemann, Petr Dzubák, Marián Hajdúch, Miroslav Strnad. Anticancer activity of natural cytokinins: a structure-activity relationship study.
Phytochemistry.
2010 Aug; 71(11-12):1350-9. doi:
10.1016/j.phytochem.2010.04.018
. [PMID: 20553699] - Marta Oñate, Sergi Munné-Bosch. Influence of plant maturity, shoot reproduction and sex on vegetative growth in the dioecious plant Urtica dioica.
Annals of botany.
2009 Oct; 104(5):945-56. doi:
10.1093/aob/mcp176
. [PMID: 19633309] - Masaru Tanaka, Nakao Kato, Hiroki Nakayama, Makoto Nakatani, Yasuhiro Takahata. Expression of class I knotted1-like homeobox genes in the storage roots of sweetpotato (Ipomoea batatas).
Journal of plant physiology.
2008 Nov; 165(16):1726-35. doi:
10.1016/j.jplph.2007.11.009
. [PMID: 18242774] - Jian-Ping Xue, Ai-Min Zhang, Jian Yang, Li Chang, Yue-Qin Huang. [Change of endogenous hormone around sprout tumble of Pinellia ternata under high temperature stress].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2007 Dec; 32(23):2489-91. doi:
"
. [PMID: 18330239] - Xue-Mei Li, Xing-Yuan He, Wei Chen, Shi-Lei Fu, Li-Hong Zhang. [Effects of elevated atmospheric CO2 concentration on endogenous hormones in gingko leaves].
Ying yong sheng tai xue bao = The journal of applied ecology.
2007 Jul; 18(7):1420-4. doi:
"
. [PMID: 17886629] - Eloise Foo, Suzanne E Morris, Kathy Parmenter, Naomi Young, Huiting Wang, Alun Jones, Catherine Rameau, Colin G N Turnbull, Christine A Beveridge. Feedback regulation of xylem cytokinin content is conserved in pea and Arabidopsis.
Plant physiology.
2007 Mar; 143(3):1418-28. doi:
10.1104/pp.106.093708
. [PMID: 17277096] - Wagner de Melo Ferreira, Gilberto Barbante Kerbauy, Jane Elizabeth Kraus, Rosete Pescador, Rogério Mamoru Suzuki. Thidiazuron influences the endogenous levels of cytokinins and IAA during the flowering of isolated shoots of Dendrobium.
Journal of plant physiology.
2006 Nov; 163(11):1126-34. doi:
10.1016/j.jplph.2005.07.012
. [PMID: 17032618] - Ding Huang, Kun Wang. [Dynamics of soluble sugar and endogenous hormone contents in several steppe grass species during their germination period in spring].
Ying yong sheng tai xue bao = The journal of applied ecology.
2006 Feb; 17(2):210-4. doi:
. [PMID: 16706040]
- Takeshi Kuroha, Masato Sakurai, Shinobu Satoh. Squash xylem sap has activities that inhibit proliferation and promote the elongation of tobacco BY-2 cell protoplasts.
Plant physiology and biochemistry : PPB.
2005 May; 43(5):465-71. doi:
10.1016/j.plaphy.2005.03.011
. [PMID: 15890518] - Jin-Cai Wu, Zheng-Hua Qiu, Jian-Li Ying, Bo Dong, Hai-Nan Gu. Changes of zeatin riboside content in rice plants due to infestation by Nilaparvata lugens (Homoptera: Delphacidae).
Journal of economic entomology.
2004 Dec; 97(6):1917-22. doi:
10.1093/jee/97.6.1917
. [PMID: 15666745] - M A Gusakovskaya, A N Blintsov. Hormonal regulation of the onset of endosperm development in amphimictic Triticum aestivum L. and apomictic Taraxacum officinale Web. species.
Doklady. Biochemistry and biophysics.
2003 May; 390(?):174-9. doi:
10.1023/a:1024424609921
. [PMID: 12959073] - Yan Li, Hai-chun Pan, De-quan Li. Responses of ABA and CTK to soil drought in leafless and leafy apple tree.
Journal of Zhejiang University. Science.
2003 Jan; 4(1):101-8. doi:
10.1631/jzus.2003.0101
. [PMID: 12656351] - Yutaka Miyazawa, Hisashi Kato, Toshiya Muranaka, Shigeo Yoshida. Amyloplast formation in cultured tobacco BY-2 cells requires a high cytokinin content.
Plant & cell physiology.
2002 Dec; 43(12):1534-41. doi:
10.1093/pcp/pcf173
. [PMID: 12514251] - Naoko Ohkama, Kentaro Takei, Hitoshi Sakakibara, Hiroaki Hayashi, Tadakatsu Yoneyama, Toru Fujiwara. Regulation of sulfur-responsive gene expression by exogenously applied cytokinins in Arabidopsis thaliana.
Plant & cell physiology.
2002 Dec; 43(12):1493-501. doi:
10.1093/pcp/pcf183
. [PMID: 12514246] - Takeshi Kuroha, Hisashi Kato, Tadao Asami, Shigeo Yoshida, Hiroshi Kamada, Shinobu Satoh. A trans-zeatin riboside in root xylem sap negatively regulates adventitious root formation on cucumber hypocotyls.
Journal of experimental botany.
2002 Nov; 53(378):2193-200. doi:
10.1093/jxb/erf077
. [PMID: 12379786] - Jianchang Yang, Jianhua Zhang, Zhiqing Wang, Qingsen Zhu, Lijun Liu. Abscisic acid and cytokinins in the root exudates and leaves and their relationship to senescence and remobilization of carbon reserves in rice subjected to water stress during grain filling.
Planta.
2002 Aug; 215(4):645-52. doi:
10.1007/s00425-002-0789-2
. [PMID: 12172848] - Ren Zhang, David S Letham, David A Willcocks. Movement to bark and metabolism of xylem cytokinins in stems of Lupinus angustifolius.
Phytochemistry.
2002 Jul; 60(5):483-8. doi:
10.1016/s0031-9422(02)00085-7
. [PMID: 12052514] - Patrick von Aderkas, Philippe Label, Marie-Anne Lelu. Charcoal affects early development and hormonal concentrations of somatic embryos of hybrid larch.
Tree physiology.
2002 Apr; 22(6):431-4. doi:
10.1093/treephys/22.6.431
. [PMID: 11960768] - Kentaro Takei, Toru Takahashi, Tatsuo Sugiyama, Tomoyuki Yamaya, Hitoshi Sakakibara. Multiple routes communicating nitrogen availability from roots to shoots: a signal transduction pathway mediated by cytokinin.
Journal of experimental botany.
2002 Apr; 53(370):971-7. doi:
10.1093/jexbot/53.370.971
. [PMID: 11912239] - M A Gusakovskaya, A N Blintsov. Dynamics of the cytokinin content in different regions of the ovary in Triticum aestivum L. and Taraxacum officinale Web. during the preparation of the ovicell for division.
Doklady. Biochemistry and biophysics.
2001 Nov; 381(?):395-8. doi:
10.1023/a:1013311512899
. [PMID: 11813552] - J Yang, J Zhang, Z Wang, Q Zhu, W Wang. Hormonal changes in the grains of rice subjected to water stress during grain filling.
Plant physiology.
2001 Sep; 127(1):315-23. doi:
10.1104/pp.127.1.315
. [PMID: 11553759] - T Kakimoto. Identification of plant cytokinin biosynthetic enzymes as dimethylallyl diphosphate:ATP/ADP isopentenyltransferases.
Plant & cell physiology.
2001 Jul; 42(7):677-85. doi:
10.1093/pcp/pce112
. [PMID: 11479373] - A N Blintsov, M A Gusakovskaia, I P Ermakov. [A new micromethod for differential quantitative assay of zeatin and zeatin riboside].
Prikladnaia biokhimiia i mikrobiologiia.
2001 Jul; 37(4):494-9. doi:
"
. [PMID: 11530676] - E Zdunek, S H Lips. Transport and accumulation rates of abscisic acid and aldehyde oxidase activity in Pisum sativum L. in response to suboptimal growth conditions.
Journal of experimental botany.
2001 Jun; 52(359):1269-76. doi:
. [PMID: 11432945]
- I E García de Salamone, R K Hynes, L M Nelson. Cytokinin production by plant growth promoting rhizobacteria and selected mutants.
Canadian journal of microbiology.
2001 May; 47(5):404-11. doi:
10.1139/w01-029
. [PMID: 11400730] - K Takei, H Sakakibara, M Taniguchi, T Sugiyama. Nitrogen-dependent accumulation of cytokinins in root and the translocation to leaf: implication of cytokinin species that induces gene expression of maize response regulator.
Plant & cell physiology.
2001 Jan; 42(1):85-93. doi:
10.1093/pcp/pce009
. [PMID: 11158447] - M A Gusakovskaya, A N Blintsov, I P Ermakov, A F Bobkova. Hormonal regulation of early embryogenesis in amphimicts and apomicts.
Doklady biochemistry : proceedings of the Academy of Sciences of the USSR, Biochemistry section.
2000 Nov; 375(?):221-3. doi:
10.1023/a:1026667721913
. [PMID: 11296475] - S Eklöf, C Astot, F Sitbon, T Moritz, O Olsson, G Sandberg. Transgenic tobacco plants co-expressing Agrobacterium iaa and ipt genes have wild-type hormone levels but display both auxin- and cytokinin-overproducing phenotypes.
The Plant journal : for cell and molecular biology.
2000 Jul; 23(2):279-84. doi:
10.1046/j.1365-313x.2000.00762.x
. [PMID: 10929121] - A N Blintsov, M A Gussakovskaya, I P Yermakov. Changes in the hormonal status of the Taraxacum officinale Web. ovary at early stages of embryogenesis.
Biochemistry. Biokhimiia.
2000 Feb; 65(2):192-7. doi:
"
. [PMID: 10713546] - J Zhang, C Wang, S Guo, J Chen, P Xiao. [Studies on the plant hormones produced by 5 species of endophytic fungi isolated from medicinal plants (Orchidacea)].
Zhongguo yi xue ke xue yuan xue bao. Acta Academiae Medicinae Sinicae.
1999 Dec; 21(6):460-5. doi:
"
. [PMID: 12567494] - M Brault, O Caiveau, J Pédron, R Maldiney, B Sotta, E Miginiac. Detection of membrane-bound cytokinin-binding proteins in Arabidopsis thaliana cells.
European journal of biochemistry.
1999 Mar; 260(2):512-9. doi:
10.1046/j.1432-1327.1999.00190.x
. [PMID: 10095789] - R V Manju, P S Abida, L Sudarshana, K N Nataraja, V R Sashidhar. Unusual discrimination against carrier protein antibodies during partial purification of hapten-protein polyclonal antibodies to plant stress hormones.
Indian journal of experimental biology.
1995 Jan; 33(1):1-5. doi:
NULL
. [PMID: 9135667] - A Hewelt, E Prinsen, J Schell, H Van Onckelen, T Schmülling. Promoter tagging with a promoterless ipt gene leads to cytokinin-induced phenotypic variability in transgenic tobacco plants:implications of gene dosage effects.
The Plant journal : for cell and molecular biology.
1994 Dec; 6(6):879-91. doi:
10.1046/j.1365-313x.1994.6060879.x
. [PMID: 7849758] - G M Banowetz. Monoclonal antibodies against the plant cytokinin, cis-zeatin riboside.
Hybridoma.
1993 Dec; 12(6):729-36. doi:
10.1089/hyb.1993.12.729
. [PMID: 8288272] - W M Ainley, K J McNeil, J W Hill, W L Lingle, R B Simpson, M L Brenner, R T Nagao, J L Key. Regulatable endogenous production of cytokinins up to 'toxic' levels in transgenic plants and plant tissues.
Plant molecular biology.
1993 Apr; 22(1):13-23. doi:
10.1007/bf00038992
. [PMID: 8499612] - A C Smigocki. Cytokinin content and tissue distribution in plants transformed by a reconstructed isopentenyl transferase gene.
Plant molecular biology.
1991 Jan; 16(1):105-15. doi:
10.1007/bf00017921
. [PMID: 1888890] - E J Trione, G M Banowetz, B B Krygier, J M Kathrein, L Sayavedra-Soto. A quantitative fluorescence enzyme immunoassay for plant cytokinins.
Analytical biochemistry.
1987 Apr; 162(1):301-8. doi:
10.1016/0003-2697(87)90041-8
. [PMID: 3605594] - E Strzelczyk, M Kampert, L Michalski. Production of cytokinin-like substances by mycorrhizal fungi of pine (Pinus sylvestris L.) in cultures with and without metabolites of actinomycetes.
Acta microbiologica Polonica.
1985; 34(2):177-85. doi:
"
. [PMID: 2412406] - H Takahashi, M Handa, K Watanabe, Y Ando, R Nagayama, A Hattori, A Shibata, A B Federici, Z M Ruggeri, T S Zimmerman. Further characterization of platelet-type von Willebrand's disease in Japan.
Blood.
1984 Dec; 64(6):1254-62. doi:
NULL
. [PMID: 6333901] - S Sonoki, Y Ohno, N Kijima, T Hishiyama, H Saito, T Sugiyama, T Hashizume. Relationship between adenylate cytokinin production and Ti plasmid of Agrobacterium tumefaciens.
Nucleic acids symposium series.
1983; ?(12):111-4. doi:
. [PMID: 6664842]
- H N Wood, M E Rennekamp, D V Bowen, F H Field, A C Braun. A comparative study of cytokinesins I and II and zeatin riboside: a reply to Carlos Miller.
Proceedings of the National Academy of Sciences of the United States of America.
1974 Oct; 71(10):4140-3. doi:
10.1073/pnas.71.10.4140
. [PMID: 4530291] - A J Playtis, N J Leonard. The synthesis of ribosyl-cis-zeatin and thin layer chromatographic separation of the cis and trans isomers of ribosylzeatin.
Biochemical and biophysical research communications.
1971 Oct; 45(1):1-5. doi:
10.1016/0006-291x(71)90041-6
. [PMID: 5139923]