CERCOSPORIN (BioDeep_00000003926)
Volatile Flavor Compounds natural product
代谢物信息卡片
化学式: C29H26O10 (534.1525896)
中文名称:
谱图信息:
最多检出来源 Viridiplantae(plant) 94.74%
分子结构信息
SMILES: CC(CC1=C2C3=C(C(=C(C4=C3C5=C6C2=C(C(=O)C=C6OCOC5=CC4=O)C(=C1OC)O)O)OC)CC(C)O)O
InChI: InChI=1S/C29H26O10/c1-10(30)5-12-18-19-13(6-11(2)31)29(37-4)27(35)21-15(33)8-17-23(25(19)21)22-16(38-9-39-17)7-14(32)20(24(18)22)26(34)28(12)36-3/h7-8,10-11,30-31,34-35H,5-6,9H2,1-4H3
描述信息
An organic heterohexacyclic compound that is perylo[1,12-def][1,3]dioxepine-6,11-dione substituted by hydroxy groups at positions 5 and 12, by methoxy groups at positions 7 and 10, and by 2-hydroxypropyl groups at positions 8 and 9 (the R,R-stereoisomer). It is a phytotoxin which was first isolated from the pathogenic soybean fungus, Cercospora kikuchii and later found in multiple members of the genus Cercospora.
CONFIDENCE isolated standard
同义名列表
3 个代谢物同义名
数据库引用编号
28 个数据库交叉引用编号
- ChEBI: CHEBI:3556
- ChEBI: CHEBI:91878
- KEGG: C10309
- PubChem: 91617
- PubChem: 2674
- Metlin: METLIN68237
- ChEMBL: CHEMBL2047182
- ChEMBL: CHEMBL1080283
- KNApSAcK: C00002801
- CAS: 35082-49-6
- CAS: 127094-74-0
- CAS: 40501-77-7
- MoNA: AC000544
- MoNA: AC000543
- MoNA: AC000542
- MoNA: AC000541
- MoNA: AC000540
- PMhub: MS000074141
- PMhub: MS000033018
- PMhub: MS000013646
- MetaboLights: MTBLC3556
- PubChem: 12495
- 3DMET: B03729
- NIKKAJI: J18.014I
- NIKKAJI: J423.406E
- RefMet: Cercosporin
- KNApSAcK: 3556
- LOTUS: LTS0047109
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
0 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
10 个相关的物种来源信息
- 4890 - Ascomycota: LTS0047109
- 29002 - Cercospora: LTS0047109
- 84275 - Cercospora kikuchii: 10.1021/JA01578A039
- 84275 - Cercospora kikuchii: LTS0047109
- 348901 - Cercospora zeina: 10.1094/MPMI-03-17-0054-R
- 147541 - Dothideomycetes: LTS0047109
- 2759 - Eukaryota: LTS0047109
- 4751 - Fungi: LTS0047109
- 2059853 - Graminopassalora graminis:
- 93133 - Mycosphaerellaceae: LTS0047109
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Eugene Koh, Amit Kumar Chaturvedi, Gabriel Javitt, Alexander Brandis, Robert Fluhr. Multiple paths of plant host toxicity are associated with the fungal toxin cercosporin.
Plant, cell & environment.
2023 May; ?(?):. doi:
10.1111/pce.14613
. [PMID: 37212197] - Meiling Liu, Yan Zhang, Zhenbo Yuan, Liushen Lu, Xuanzhong Liu, Xiaonan Zhu, Lingling Wang, Changmei Liu, Yijian Rao. Cercosporin-bioinspired photoinactivation of harmful cyanobacteria under natural sunlight via bifunctional mechanisms.
Water research.
2022 May; 215(?):118242. doi:
10.1016/j.watres.2022.118242
. [PMID: 35259559] - Marija Zivanovic, Zhi-Yuan Chen. In Vitro Screening of Various Bacterially Produced Double-Stranded RNAs for Silencing Cercospora cf. flagellaris Target Genes and Suppressing Cercosporin Production.
Phytopathology.
2021 Jul; 111(7):1228-1237. doi:
10.1094/phyto-09-20-0409-r
. [PMID: 33289403] - Tingan Zhou, Shiyu Yu, Yifan Hu, Yan Zhang, Yuechen Song, Jieyu Chu, Changmei Liu, Yijian Rao. Enhanced cercosporin production by co-culturing Cercospora sp. JNU001 with leaf-spot-disease-related endophytic bacteria.
Microbial cell factories.
2021 May; 20(1):100. doi:
10.1186/s12934-021-01587-2
. [PMID: 33992112] - Malaika K Ebert, Lorena I Rangel, Rebecca E Spanner, Demetris Taliadoros, Xiaoyun Wang, Timothy L Friesen, Ronnie de Jonge, Jonathan D Neubauer, Gary A Secor, Bart P H J Thomma, Eva H Stukenbrock, Melvin D Bolton. Identification and characterization of Cercospora beticola necrosis-inducing effector CbNip1.
Molecular plant pathology.
2021 03; 22(3):301-316. doi:
10.1111/mpp.13026
. [PMID: 33369055] - Josielle Santos Rezende, Marija Zivanovic, Maria Izabel Costa de Novaes, Zhi-Yuan Chen. The AVR4 effector is involved in cercosporin biosynthesis and likely affects the virulence of Cercospora cf. flagellaris on soybean.
Molecular plant pathology.
2020 01; 21(1):53-65. doi:
10.1111/mpp.12879
. [PMID: 31642594] - Elizabeth Thomas, Sonia Herrero, Hayde Eng, Nafisa Gomaa, Jeff Gillikin, Roslyn Noar, Aydin Beseli, Margaret E Daub. Engineering Cercospora disease resistance via expression of Cercospora nicotianae cercosporin-resistance genes and silencing of cercosporin production in tobacco.
PloS one.
2020; 15(3):e0230362. doi:
10.1371/journal.pone.0230362
. [PMID: 32176712] - Malaika K Ebert, Rebecca E Spanner, Ronnie de Jonge, David J Smith, Jason Holthusen, Gary A Secor, Bart P H J Thomma, Melvin D Bolton. Gene cluster conservation identifies melanin and perylenequinone biosynthesis pathways in multiple plant pathogenic fungi.
Environmental microbiology.
2019 03; 21(3):913-927. doi:
10.1111/1462-2920.14475
. [PMID: 30421572] - Ronnie de Jonge, Malaika K Ebert, Callie R Huitt-Roehl, Paramita Pal, Jeffrey C Suttle, Rebecca E Spanner, Jonathan D Neubauer, Wayne M Jurick, Karina A Stott, Gary A Secor, Bart P H J Thomma, Yves Van de Peer, Craig A Townsend, Melvin D Bolton. Gene cluster conservation provides insight into cercosporin biosynthesis and extends production to the genus Colletotrichum.
Proceedings of the National Academy of Sciences of the United States of America.
2018 06; 115(24):E5459-E5466. doi:
10.1073/pnas.1712798115
. [PMID: 29844193] - Rodrigo A C Sussmann, Wesley L Fotoran, Emilia A Kimura, Alejandro M Katzin. Plasmodium falciparum uses vitamin E to avoid oxidative stress.
Parasites & vectors.
2017 Oct; 10(1):461. doi:
10.1186/s13071-017-2402-3
. [PMID: 29017543] - Velushka Swart, Bridget G Crampton, John B Ridenour, Burt H Bluhm, Nicholas A Olivier, J J Marion Meyer, Dave K Berger. Complementation of CTB7 in the Maize Pathogen Cercospora zeina Overcomes the Lack of In Vitro Cercosporin Production.
Molecular plant-microbe interactions : MPMI.
2017 09; 30(9):710-724. doi:
10.1094/mpmi-03-17-0054-r
. [PMID: 28535078] - Yit-Heng Chooi, Guozhi Zhang, Jinyu Hu, Mariano Jordi Muria-Gonzalez, Phuong N Tran, Amber Pettitt, Alexander G Maier, Russell A Barrow, Peter S Solomon. Functional genomics-guided discovery of a light-activated phytotoxin in the wheat pathogen Parastagonospora nodorum via pathway activation.
Environmental microbiology.
2017 05; 19(5):1975-1986. doi:
10.1111/1462-2920.13711
. [PMID: 28251756] - Prabhat Kumar, Ramesh Chand, Vineeta Singh, Chhattar Pal. In vitro screening of calli of mungbean to cercosporin, a photoactivated toxin.
Indian journal of experimental biology.
2017 Feb; 55(2):113-21. doi:
. [PMID: 30184412]
- Adam G Newman, Craig A Townsend. Molecular Characterization of the Cercosporin Biosynthetic Pathway in the Fungal Plant Pathogen Cercospora nicotianae.
Journal of the American Chemical Society.
2016 Mar; 138(12):4219-28. doi:
10.1021/jacs.6b00633
. [PMID: 26938470] - Aydin Beseli, Alongkorn Amnuaykanjanasin, Sonia Herrero, Elizabeth Thomas, Margaret E Daub. Membrane transporters in self resistance of Cercospora nicotianae to the photoactivated toxin cercosporin.
Current genetics.
2015 Nov; 61(4):601-20. doi:
10.1007/s00294-015-0486-x
. [PMID: 25862648] - Jacqueline M Benson, Jesse A Poland, Brent M Benson, Erik L Stromberg, Rebecca J Nelson. Resistance to gray leaf spot of maize: genetic architecture and mechanisms elucidated through nested association mapping and near-isogenic line analysis.
PLoS genetics.
2015 Mar; 11(3):e1005045. doi:
10.1371/journal.pgen.1005045
. [PMID: 25764179] - Aydin Beseli, Roslyn Noar, Margaret E Daub. Characterization of Cercospora nicotianae Hypothetical Proteins in Cercosporin Resistance.
PloS one.
2015; 10(10):e0140676. doi:
10.1371/journal.pone.0140676
. [PMID: 26474162] - Aydin Beseli, Marilia Goulart da Silva, Margaret E Daub. The role of Cercospora zeae-maydis homologs of Rhodobacter sphaeroides 1O2-resistance genes in resistance to the photoactivated toxin cercosporin.
FEMS microbiology letters.
2015 Jan; 362(2):1-7. doi:
10.1093/femsle/fnu036
. [PMID: 25670706] - Margaret E Daub, Sonia Herrero, Kuang-Ren Chung. Reactive oxygen species in plant pathogenesis: the role of perylenequinone photosensitizers.
Antioxidants & redox signaling.
2013 Sep; 19(9):970-89. doi:
10.1089/ars.2012.5080
. [PMID: 23259634] - Cornelia Staerkel, Marike J Boenisch, Cathrin Kröger, Jörg Bormann, Wilhelm Schäfer, Dietmar Stahl. CbCTB2, an O-methyltransferase is essential for biosynthesis of the phytotoxin cercosporin and infection of sugar beet by Cercospora beticola.
BMC plant biology.
2013 Mar; 13(?):50. doi:
10.1186/1471-2229-13-50
. [PMID: 23517289] - Mallika Kumarihamy, Shabana I Khan, Melissa Jacob, Babu L Tekwani, Stephen O Duke, Daneel Ferreira, N P Dhammika Nanayakkara. Antiprotozoal and antimicrobial compounds from the plant pathogen Septoria pistaciarum.
Journal of natural products.
2012 May; 75(5):883-9. doi:
10.1021/np200940b
. [PMID: 22530813] - Julia Kjer, Victor Wray, RuAngelie Edrada-Ebel, Rainer Ebel, Alexander Pretsch, Wenhan Lin, Peter Proksch. Xanalteric acids I and II and related phenolic compounds from an endophytic Alternaria sp. isolated from the mangrove plant Sonneratia alba.
Journal of natural products.
2009 Nov; 72(11):2053-7. doi:
10.1021/np900417g
. [PMID: 19835393] - Alongkorn Amnuaykanjanasin, Margaret E Daub. The ABC transporter ATR1 is necessary for efflux of the toxin cercosporin in the fungus Cercospora nicotianae.
Fungal genetics and biology : FG & B.
2009 Feb; 46(2):146-58. doi:
10.1016/j.fgb.2008.11.007
. [PMID: 19095071] - Ana María González, Ludmila Turino, María Gabriela Latorre Rapela, María Cristina Lurá. [Cercospora kikuchii isolated from Province of Santa Fe (Argentina): genetic variability and cercosporin production].
Revista iberoamericana de micologia.
2008 Dec; 25(4):237-41. doi:
10.1016/s1130-1406(08)70056-1
. [PMID: 19071893] - B H Bluhm, L D Dunkle. PHL1 of Cercospora zeae-maydis encodes a member of the photolyase/cryptochrome family involved in UV protection and fungal development.
Fungal genetics and biology : FG & B.
2008 Oct; 45(10):1364-72. doi:
10.1016/j.fgb.2008.07.005
. [PMID: 18682297] - Bang-Jau You, Miin-Hui Lee, Kuang-Ren Chung. Production of cercosporin toxin by the phytopathogenic Cercospora fungi is affected by diverse environmental signals.
Canadian journal of microbiology.
2008 Apr; 54(4):259-69. doi:
10.1139/w08-002
. [PMID: 18388998] - Sonia Herrero, Alongkorn Amnuaykanjanasin, Margaret E Daub. Identification of genes differentially expressed in the phytopathogenic fungus Cercospora nicotianae between cercosporin toxin-resistant and -susceptible strains.
FEMS microbiology letters.
2007 Oct; 275(2):326-37. doi:
10.1111/j.1574-6968.2007.00903.x
. [PMID: 17850326] - Hui-Qin Chen, Miin-Huey Lee, Kuang-Ren Chung. Functional characterization of three genes encoding putative oxidoreductases required for cercosporin toxin biosynthesis in the fungus Cercospora nicotianae.
Microbiology (Reading, England).
2007 Aug; 153(Pt 8):2781-2790. doi:
10.1099/mic.0.2007/007294-0
. [PMID: 17660442] - Madesis Panagiotis, Kalantidis Kritonas, Nianiou Obeidat Irini, Chatzidimitriou Kiriaki, Panopoulos Nicolaos, Tsaftaris Athanasios. Expression of the yeast cpd1 gene in tobacco confers resistance to the fungal toxin cercosporin.
Biomolecular engineering.
2007 Jun; 24(2):245-51. doi:
10.1016/j.bioeng.2006.12.003
. [PMID: 17317309] - Katherine L Dekkers, Bang-Jau You, Vivek S Gowda, Hui-Ling Liao, Miin-Huey Lee, Huey-Jiunn Bau, Peter P Ueng, Kuang-Ren Chung. The Cercospora nicotianae gene encoding dual O-methyltransferase and FAD-dependent monooxygenase domains mediates cercosporin toxin biosynthesis.
Fungal genetics and biology : FG & B.
2007 May; 44(5):444-54. doi:
10.1016/j.fgb.2006.08.005
. [PMID: 17074519] - Mathias Choquer, Miin-Huey Lee, Huey-Jiunn Bau, Kuang-Ren Chung. Deletion of a MFS transporter-like gene in Cercospora nicotianae reduces cercosporin toxin accumulation and fungal virulence.
FEBS letters.
2007 Feb; 581(3):489-94. doi:
10.1016/j.febslet.2007.01.011
. [PMID: 17250832] - Tanya V Taylor, Thomas K Mitchell, Margaret E Daub. An oxidoreductase is involved in cercosporin degradation by the bacterium Xanthomonas campestris pv. zinniae.
Applied and environmental microbiology.
2006 Sep; 72(9):6070-8. doi:
10.1128/aem.00483-06
. [PMID: 16957231] - Margaret E Daub, Sonia Herrero, Kuang-Ren Chung. Photoactivated perylenequinone toxins in fungal pathogenesis of plants.
FEMS microbiology letters.
2005 Nov; 252(2):197-206. doi:
10.1016/j.femsle.2005.08.033
. [PMID: 16165316] - Mathias Choquer, Katherine L Dekkers, Hui-Qin Chen, Lihua Cao, Peter P Ueng, Margaret E Daub, Kuang-Ren Chung. The CTB1 gene encoding a fungal polyketide synthase is required for cercosporin biosynthesis and fungal virulence of Cercospora nicotianae.
Molecular plant-microbe interactions : MPMI.
2005 May; 18(5):468-76. doi:
10.1094/mpmi-18-0468
. [PMID: 15915645] - Konstantinos Tertivanidis, Catherine Goudoula, Christos Vasilikiotis, Efthymia Hassiotou, Rafael Perl-Treves, Athanasios Tsaftaris. Superoxide dismutase transgenes in sugarbeets confer resistance to oxidative agents and the fungus C. beticola.
Transgenic research.
2004 Jun; 13(3):225-33. doi:
10.1023/b:trag.0000034610.35724.04
. [PMID: 15359600] - K-R Chung, M Ehrenshaft, D K Wetzel, M E Daub. Cercosporin-deficient mutants by plasmid tagging in the asexual fungus Cercospora nicotianae.
Molecular genetics and genomics : MGG.
2003 Nov; 270(2):103-13. doi:
10.1007/s00438-003-0902-7
. [PMID: 12937958] - Won-Bo Shim, Larry D Dunkle. CZK3, a MAP kinase kinase kinase homolog in Cercospora zeae-maydis, regulates cercosporin biosynthesis, fungal development, and pathogenesis.
Molecular plant-microbe interactions : MPMI.
2003 Sep; 16(9):760-8. doi:
10.1094/mpmi.2003.16.9.760
. [PMID: 12971599] - Kuang-Ren Chung, Margaret E Daub, Marilyn Ehrenshaft. Expression of the cercosporin toxin resistance gene ( CRG1) as a dicistronic mRNA in the filamentous fungus Cercospora nicotianae.
Current genetics.
2003 Sep; 43(6):415-24. doi:
10.1007/s00294-003-0414-3
. [PMID: 12802507] - L David Kuykendall, Tammy M Stockett, Joseph W Saunders. Rhizobium radiobacter conjugation and callus-independent shoot regeneration used to introduce the cercosporin export gene cfp from Cercospora into sugar beet (Beta vulgaris L.).
Biotechnology letters.
2003 May; 25(9):739-44. doi:
10.1023/a:1023419000749
. [PMID: 12882176] - Kuang-Ren Chung, Margaret E Daub, Karl Kuchler, Christoph Schüller. The CRG1 gene required for resistance to the singlet oxygen-generating cercosporin toxin in Cercospora nicotianae encodes a putative fungal transcription factor.
Biochemical and biophysical research communications.
2003 Mar; 302(2):302-10. doi:
10.1016/s0006-291x(03)00171-2
. [PMID: 12604346] - Thomas K Mitchell, Fatima Alejos-Gonzalez, Hanna S Gracz, David A Danehower, Margaret E Daub, William Scott Chilton. Xanosporic acid, an intermediate in bacterial degradation of the fungal phototoxin cercosporin.
Phytochemistry.
2003 Mar; 62(5):723-32. doi:
10.1016/s0031-9422(02)00517-4
. [PMID: 12620324] - Keisuke Hayashi, Henk-Jan Schoonbeek, Maarten A De Waard. Bcmfs1, a novel major facilitator superfamily transporter from Botrytis cinerea, provides tolerance towards the natural toxic compounds camptothecin and cercosporin and towards fungicides.
Applied and environmental microbiology.
2002 Oct; 68(10):4996-5004. doi:
10.1128/aem.68.10.4996-5004.2002
. [PMID: 12324349] - Thomas K Mitchell, William Scott Chilton, Margaret E Daub. Biodegradation of the polyketide toxin cercosporin.
Applied and environmental microbiology.
2002 Sep; 68(9):4173-81. doi:
10.1128/aem.68.9.4173-4181.2002
. [PMID: 12200262] - Kuang-Ren Chung, Marilyn Ehrenshaft, Margaret E Daub. Functional expression and cellular localization of cercosporin-resistance proteins fused with the GFP in Cercospora nicotianae.
Current genetics.
2002 Jun; 41(3):159-67. doi:
10.1007/s00294-002-0289-8
. [PMID: 12111097] - Robert G Upchurch, Mark S Rose, Mohamed Eweida, Terrence M Callahan. Transgenic assessment of CFP-mediated cercosporin export and resistance in a cercosporin-sensitive fungus.
Current genetics.
2002 Apr; 41(1):25-30. doi:
10.1007/s00294-002-0280-4
. [PMID: 12073097] - P Ververidis, F Davrazou, G Diallinas, D Georgakopoulos, A K Kanellis, N Panopoulos. A novel putative reductase (Cpd1p) and the multidrug exporter Snq2p are involved in resistance to cercosporin and other singlet oxygen-generating photosensitizers in Saccharomyces cerevisiae.
Current genetics.
2001 May; 39(3):127-36. doi:
10.1007/s002940100189
. [PMID: 11409174] - M E Daub, M Li, P Bilski, C F Chignell. Dihydrocercosporin singlet oxygen production and subcellular localization: a possible defense against cercosporin phototoxicity in Cercospora.
Photochemistry and photobiology.
2000 Feb; 71(2):135-40. doi:
10.1562/0031-8655(2000)071<0135:sipdso>2.0.co;2
. [PMID: 10687385] - T M Callahan, M S Rose, M J Meade, M Ehrenshaft, R G Upchurch. CFP, the putative cercosporin transporter of Cercospora kikuchii, is required for wild type cercosporin production, resistance, and virulence on soybean.
Molecular plant-microbe interactions : MPMI.
1999 Oct; 12(10):901-10. doi:
10.1094/mpmi.1999.12.10.901
. [PMID: 10517030] - K R Chung, A E Jenns, M Ehrenshaft, M E Daub. A novel gene required for cercosporin toxin resistance in the fungus Cercospora nicotianae.
Molecular & general genetics : MGG.
1999 Sep; 262(2):382-9. doi:
10.1007/pl00008642
. [PMID: 10517336] - M Ehrenshaft, K R Chung, A E Jenns, M E Daub. Functional characterization of SOR1, a gene required for resistance to photosensitizing toxins in the fungus Cercospora nicotianae.
Current genetics.
1999 Jan; 34(6):478-85. doi:
10.1007/s002940050423
. [PMID: 9933360] - M Ehrenshaft, A E Jenns, K R Chung, M E Daub. SOR1, a gene required for photosensitizer and singlet oxygen resistance in Cercospora fungi, is highly conserved in divergent organisms.
Molecular cell.
1998 Mar; 1(4):603-9. doi:
10.1016/s1097-2765(00)80060-x
. [PMID: 9660944] - J D Williamson, J G Scandalios. Plant antioxidant gene responses to fungal pathogens.
Trends in microbiology.
1993 Sep; 1(6):239-45. doi:
10.1016/0966-842x(93)90140-m
. [PMID: 8137123] - M E Daub, G B Leisman, R A Clark, E F Bowden. Reductive detoxification as a mechanism of fungal resistance to singlet oxygen-generating photosensitizers.
Proceedings of the National Academy of Sciences of the United States of America.
1992 Oct; 89(20):9588-92. doi:
10.1073/pnas.89.20.9588
. [PMID: 1409670] - J D Williamson, J G Scandalios. Differential response of maize catalases and superoxide dismutases to the photoactivated fungal toxin cercosporin.
The Plant journal : for cell and molecular biology.
1992 May; 2(3):351-8. doi:
10.1111/j.1365-313x.1992.00351.x
. [PMID: 1284657] - C C Sollod, A E Jenns, M E Daub. Cell surface redox potential as a mechanism of defense against photosensitizers in fungi.
Applied and environmental microbiology.
1992 Feb; 58(2):444-9. doi:
10.1128/aem.58.2.444-449.1992
. [PMID: 1610167] - L Cavallini, A Bindoli, F Macrì, A Vianello. Lipid peroxidation induced by cercosporin as a possible determinant of its toxicity.
Chemico-biological interactions.
1979 Dec; 28(2-3):139-46. doi:
10.1016/0009-2797(79)90156-x
. [PMID: 549738]