Gene Association: AGER

UniProt Search: AGER (PROTEIN_CODING)
Function Description: advanced glycosylation end-product specific receptor

found 75 associated metabolites with current gene based on the text mining result from the pubmed database.

Vincamine

Methyl (41S,12S,13aS)-13a-ethyl-12-hydroxy-2,3,41,5,6,12,13,13a-octahydro-1H-indolo[3,2,1-de]pyrido[3,2,1-ij][1,5]naphthyridine-12-carboxylate

C21H26N2O3 (354.1943)


Vincamine is a vinca alkaloid, an alkaloid ester, an organic heteropentacyclic compound, a methyl ester and a hemiaminal. It has a role as an antihypertensive agent, a vasodilator agent and a metabolite. It is functionally related to an eburnamenine. Vincamine is a monoterpenoid indole alkaloid obtained from the leaves of *Vinca minor* with a vasodilatory property. Studies indicate that vincamine increases the regional cerebral blood flow. Vincamine is a natural product found in Vinca difformis, Vinca major, and other organisms with data available. A major alkaloid of Vinca minor L., Apocynaceae. It has been used therapeutically as a vasodilator and antihypertensive agent, particularly in cerebrovascular disorders. Vincamine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=1617-90-9 (retrieved 2024-07-01) (CAS RN: 1617-90-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Vincamine?is a monoterpenoid indole alkaloid extracted from the?Madagascar periwinkle. Vincamine?is a peripheral?vasodilator?and exerts a selective vasoregulator action on the brain microcapilar circulation[1]. Vincamine?is a?GPR40?agonist and acts as a β-cell protector by ameliorating β-cell dysfunction and promoting glucose-stimulated insulin secretion (GSIS).?Vincamine?improves glucose homeostasis?in vivo, and has the potential for the type 2 diabetes mellitus (T2DM) research[2]. Vincamine?is a monoterpenoid indole alkaloid extracted from the?Madagascar periwinkle. Vincamine?is a peripheral?vasodilator?and exerts a selective vasoregulator action on the brain microcapilar circulation[1]. Vincamine?is a?GPR40?agonist and acts as a β-cell protector by ameliorating β-cell dysfunction and promoting glucose-stimulated insulin secretion (GSIS).?Vincamine?improves glucose homeostasis?in vivo, and has the potential for the type 2 diabetes mellitus (T2DM) research[2].

   

Pinocembrin

4H-1-Benzopyran-4-one, 2,3-dihydro-5,7-dihydroxy-2-phenyl-, (S)-(-)-

C15H12O4 (256.0736)


Pinocembrin is a dihydroxyflavanone in which the two hydroxy groups are located at positions 5 and 7. A natural product found in Piper sarmentosum and Cryptocarya chartacea. It has a role as an antioxidant, an antineoplastic agent, a vasodilator agent, a neuroprotective agent and a metabolite. It is a dihydroxyflavanone and a (2S)-flavan-4-one. Pinocembrin is a natural product found in Prunus leveilleana, Alpinia rafflesiana, and other organisms with data available. Pinocembrin is found in mexican oregano and is isolated from many plants including food plants. Pinocembrin belongs to the family of flavanones. These are compounds containing a flavan-3-one moiety, which structure is characterized by a 2-phenyl-3,4-dihydro-2H-1-benzopyran bearing a ketone at the carbon C3. A dihydroxyflavanone in which the two hydroxy groups are located at positions 5 and 7. A natural product found in Piper sarmentosum and Cryptocarya chartacea. Isolated from many plants including food plants. (S)-Pinocembrin is found in mexican oregano and pine nut. (±)-Pinocembrin ((±)-5,7-Dihydroxyflavanone) is a GPR120 ligand able to promote wound healing in HaCaT cell line[1]. (±)-Pinocembrin ((±)-5,7-Dihydroxyflavanone) is a GPR120 ligand able to promote wound healing in HaCaT cell line[1]. Pinocembrin ((+)-Pinocoembrin) is a flavonoid found in propolis, acts as a competitive inhibitor of histidine decarboxylase, and is an effective anti-allergic agent, with antioxidant, antimicrobial and anti-inflammatory properties[1]. Pinocembrin ((+)-Pinocoembrin) is a flavonoid found in propolis, acts as a competitive inhibitor of histidine decarboxylase, and is an effective anti-allergic agent, with antioxidant, antimicrobial and anti-inflammatory properties[1].

   

Swertiamarin

(3S,4R,4aR)-4a-hydroxy-3-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]oxy-4-vinyl-3,4,5,6-tetrahydropyrano[3,4-c]pyran-8-one;Swertiamarine

C16H22O10 (374.1213)


Swertiamarin is a glycoside. Swertiamarin is a natural product found in Lonicera japonica, Fontanesia philliraeoides, and other organisms with data available. See also: Centaurium erythraea whole (part of). Swertiamarin, a secoiridoid glycoside found in genera of Enicostemma littorale, confers anti-hyperglycemic and anti-hyperlipidemic effects[1]. Swertiamarin, a secoiridoid glycoside found in genera of Enicostemma littorale, confers anti-hyperglycemic and anti-hyperlipidemic effects[1].

   

Morroniside

Methyl (1S,3R,4aS,8S,8aS)-3-hydroxy-1-methyl-8-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-4,4a,8,8a-tetrahydro-1H,3H-pyrano[3,4-c]pyran-5-carboxylate

C17H26O11 (406.1475)


Morroniside is a glycoside. Morroniside is a natural product found in Lonicera japonica, Tripterospermum japonicum, and other organisms with data available. Morroniside has neuroprotective effect by inhibiting neuron apoptosis and MMP2/9 expression. Morroniside has neuroprotective effect by inhibiting neuron apoptosis and MMP2/9 expression.

   

Ajmalicine

methyl (1S,15R,16S,20S)-16-methyl-17-oxa-3,13-diazapentacyclo[11.8.0.0^{2,10}.0^{4,9}.0^{15,20}]henicosa-2(10),4(9),5,7,18-pentaene-19-carboxylate

C21H24N2O3 (352.1787)


Ajmalicine is a monoterpenoid indole alkaloid with formula C21H24N2O3, isolated from several Rauvolfia and Catharanthus species. It is a selective alpha1-adrenoceptor antagonist used for the treatment of high blood pressure. It has a role as an antihypertensive agent, an alpha-adrenergic antagonist and a vasodilator agent. It is a monoterpenoid indole alkaloid, a methyl ester and an organic heteropentacyclic compound. It is a conjugate base of an ajmalicine(1+). Ajmalicine is a natural product found in Crossosoma bigelovii, Rauvolfia yunnanensis, and other organisms with data available. A monoterpenoid indole alkaloid with formula C21H24N2O3, isolated from several Rauvolfia and Catharanthus species. It is a selective alpha1-adrenoceptor antagonist used for the treatment of high blood pressure. D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents INTERNAL_ID 2326; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2326 [Raw Data] CB001_Ajmalicine_pos_40eV_CB000004.txt [Raw Data] CB001_Ajmalicine_pos_10eV_CB000004.txt [Raw Data] CB001_Ajmalicine_pos_50eV_CB000004.txt [Raw Data] CB001_Ajmalicine_pos_20eV_CB000004.txt [Raw Data] CB001_Ajmalicine_pos_30eV_CB000004.txt Ajmalicine (Raubasine) is a potent adrenolytic agent which preferentially blocks α1-adrenoceptor. Ajmalicine is an reversible but non-competitive nicotine receptor full inhibitor, with an IC50 of 72.3 μM. Ajmalicine also can be used as anti-hypertensive, and serpentine, with sedative activity[1][2]. Ajmalicine (Raubasine) is a potent adrenolytic agent which preferentially blocks α1-adrenoceptor. Ajmalicine is an reversible but non-competitive nicotine receptor full inhibitor, with an IC50 of 72.3 μM. Ajmalicine also can be used as anti-hypertensive, and serpentine, with sedative activity[1][2]. Ajmalicine (Raubasine) is a potent adrenolytic agent which preferentially blocks α1-adrenoceptor. Ajmalicine is an reversible but non-competitive nicotine receptor full inhibitor, with an IC50 of 72.3 μM. Ajmalicine also can be used as anti-hypertensive, and serpentine, with sedative activity[1][2].

   

Isofucosterol

(3S,8S,9S,10R,13R,14S,17R)-17-((R,E)-5-Isopropylhept-5-en-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.3705)


Isofucosterol, also known as delta5-avenasterol, is a phytosterol. Phytosterols, or plant sterols, are compounds that occur naturally and bear a close structural resemblance to cholesterol but have different side-chain configurations. Phytosterols are relevant in pharmaceuticals (production of therapeutic steroids), nutrition (anti-cholesterol additives in functional foods, anti-cancer properties), and cosmetics (creams, lipstick). Phytosterols can be obtained from vegetable oils or from industrial wastes, which gives an added value to the latter. Considerable efforts have been recently dedicated to the development of efficient processes for phytosterol isolation from natural sources. The present work aims to summarize information on the applications of phytosterols and to review recent approaches, mainly from the industry, for the large-scale recovery of phytosterols (PMID: 17123816, 16481154). Isofucosterol is found to be associated with phytosterolemia, which is an inborn error of metabolism. Isofucosterol, also known as (24z)-stigmasta-5,24(28)-dien-3-ol or delta5-avenasterol, belongs to stigmastanes and derivatives class of compounds. Those are sterol lipids with a structure based on the stigmastane skeleton, which consists of a cholestane moiety bearing an ethyl group at the carbon atom C24. Thus, isofucosterol is considered to be a sterol lipid molecule. Isofucosterol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Isofucosterol can be found in a number of food items such as globe artichoke, gooseberry, deerberry, and ucuhuba, which makes isofucosterol a potential biomarker for the consumption of these food products. Isofucosterol can be found primarily in blood. Moreover, isofucosterol is found to be associated with sitosterolemia. Isofucosterol is a 3beta-sterol consisting of stigmastan-3beta-ol with double bonds at positions 5 and 24(28). The double bond at postion 24(28) adopts a Z-configuration. It has a role as an animal metabolite, a plant metabolite, an algal metabolite and a marine metabolite. It is a 3beta-sterol, a 3beta-hydroxy-Delta(5)-steroid, a C29-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Fucosterol is a natural product found in Echinometra lucunter, Ulva fasciata, and other organisms with data available. A 3beta-sterol consisting of stigmastan-3beta-ol with double bonds at positions 5 and 24(28). The double bond at postion 24(28) adopts a Z-configuration. Fucosterol is a sterol isolated from algae, seaweed or diatoms.?Fucosterol exhibits various biological activities, including antioxidant, anti-adipogenic, blood cholesterol reducing, anti-diabetic and anti-cancer activities[1][2]. Fucosterol regulates adipogenesis via inhibition of?PPARα?and?C/EBPα?expression and can be used for anti-obesity agents development research. Isofucosterol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=481-14-1 (retrieved 2024-10-08) (CAS RN: 481-14-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Petunidin

1-Benzopyrylium, 2-(3,4-dihydroxy-5-methoxyphenyl)-3,5,7-trihydroxy-, chloride

C16H13ClO7 (352.035)


Petunidin chloride is an anthocyanidin chloride that has petunidin as the cationic component. It has a role as a metabolite. An anthocyanidin chloride that has petunidin as the cationic component.

   

Harmine

InChI=1/C13H12N2O/c1-8-13-11(5-6-14-8)10-4-3-9(16-2)7-12(10)15-13/h3-7,15H,1-2H

C13H12N2O (212.095)


Harmine is a harmala alkaloid in which the harman skeleton is methoxy-substituted at C-7. It has a role as a metabolite, an anti-HIV agent and an EC 1.4.3.4 (monoamine oxidase) inhibitor. It derives from a hydride of a harman. Harmine is a natural product found in Thalictrum foetidum, Acraea andromacha, and other organisms with data available. Alkaloid isolated from seeds of PEGANUM HARMALA; ZYGOPHYLLACEAE. It is identical to banisterine, or telepathine, from Banisteria caapi and is one of the active ingredients of hallucinogenic drinks made in the western Amazon region from related plants. It has no therapeutic use, but (as banisterine) was hailed as a cure for postencephalitic PARKINSON DISEASE in the 1920s. D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D006213 - Hallucinogens Harmine is found in fruits. Harmine is an alkaloid from Passiflora edulis (passionfruit A harmala alkaloid in which the harman skeleton is methoxy-substituted at C-7. D004791 - Enzyme Inhibitors > D008996 - Monoamine Oxidase Inhibitors C471 - Enzyme Inhibitor > C667 - Monoamine Oxidase Inhibitor CONFIDENCE Reference Standard (Level 1); NaToxAq - Natural Toxins and Drinking Water Quality - From Source to Tap (https://natoxaq.ku.dk) [Raw Data] CB043_Harmine_pos_40eV_CB000020.txt [Raw Data] CB043_Harmine_pos_50eV_CB000020.txt [Raw Data] CB043_Harmine_pos_10eV_CB000020.txt [Raw Data] CB043_Harmine_pos_30eV_CB000020.txt [Raw Data] CB043_Harmine_pos_20eV_CB000020.txt CONFIDENCE standard compound; INTERNAL_ID 2884 [Raw Data] CB043_Harmine_neg_50eV_000013.txt [Raw Data] CB043_Harmine_neg_30eV_000013.txt [Raw Data] CB043_Harmine_neg_10eV_000013.txt [Raw Data] CB043_Harmine_neg_20eV_000013.txt [Raw Data] CB043_Harmine_neg_40eV_000013.txt Harmine is a natural dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) inhibitor with anticancer and anti-inflammatory activities. Harmine has a high affinity of 5-HT2A serotonin receptor, with an Ki of 397 nM[1]. Harmine is a natural dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) inhibitor with anticancer and anti-inflammatory activities. Harmine has a high affinity of 5-HT2A serotonin receptor, with an Ki of 397 nM[1]. Harmine is a natural dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) inhibitor with anticancer and anti-inflammatory activities. Harmine has a high affinity of 5-HT2A serotonin receptor, with an Ki of 397 nM[1].

   

21-Deoxycortisol

(1S,2R,10S,11S,14R,15S,17R)-14-acetyl-14,17-dihydroxy-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-6-en-5-one

C21H30O4 (346.2144)


Plasma 21-deoxycortisol (21DF) is an excellent marker of 21-hydroxylase deficiency. Currently, it is the only marker able to detect heterozygous carriers with 21-hydroxylase deficiency after Adrenocorticotropic Hormone (ACTH) stimulation. The syndrome of congenital adrenal hyperplasia (CAH) comprises the spectrum of autosomal recessive enzymatic disorders that impair cortisol biosynthesis. The hormonal pattern and clinical manifestations result from hyperstimulation of the adrenal cortex by excessive production of ACTH, untied from the negative feedback exerted by reduced cortisol levels, and the ultimate accumulation of F precursors and androgens. These abnormalities predispose the female newborn to ambiguous genitalia (female pseudohermaphroditism) and precocious puberty that may occur in both sexes. CAH due to 21-hydroxylase deficiency (21OHD) comprises nearly 90\\% of all cases, with an estimated worldwide incidence of 1 in 14,000 live births. Because 21-deoxycortisol (21DF) is an 11b-hydroxylase (11bOH) derivative of 17-hydroxyprogesterone (17OHP), its serum levels are parallel and proportionally elevated in patients with 21OHD but decreased or undetectable in those with 11b-hydroxylase deficiency (11bOHD), another genetic disorder. Due to the marked buildup of 17OHP in 21OHD, this precursor steroid can proceed directly to 11-hydroxylation, producing distinct elevations of 21DF (PMID: 16551734, 10731638). Plasma 21-deoxycortisol (21DF) is an excellent marker of 21-hydroxylase deficiency. Currently, it is the only marker able to detect heterozygous carriers with 21-hydroxylase deficiency after Adrenocorticotropic Hormone (ACTH) stimulation. The syndrome of congenital adrenal hyperplasia (CAH) comprises the spectrum of autosomal recessive enzymatic disorders that impair cortisol biosynthesis. The hormonal pattern and clinical manifestations result from hyperstimulation of the adrenal cortex by excessive production of ACTH, untied from the negative feedback exerted by reduced cortisol levels, and the ultimate accumulation of F precursors and androgens. These abnormalities predispose the female newborn to ambiguous genitalia (female pseudohermaphroditism) and precocious puberty that may occur in both sexes. CAH due to 21-hydroxylase deficiency (21OHD) comprises nearly 90\\% of all cases, with an estimated worldwide incidence of 1 in 14,000 live births. Because 21-deoxycortisol (21DF) is an 11b-hydroxylase (11bOH) derivative of 17-hydroxyprogesterone (17OHP), its serum levels are parallel and proportionally elevated in patients with 21OHD but decreased or undetectable in those with 11b-hydroxylase deficiency (11bOHD). Due to the marked buildup of 17OHP in 21OHD, this precursor steroid can proceed directly to 11-hydroxylation, producing distinct elevations of 21DF. (PMID: 16551734, 10731638) [HMDB] D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

N8-Acetylspermidine

N-[4-[(3-Aminopropyl)amino]butyl]-acetamide

C9H21N3O (187.1685)


N8-Acetylspermidine is a polyamine. The polyamines, found in virtually all living organisms, are a ubiquitous group of compounds that appear to play a vital role in many cellular processes involving nucleic acids including cell growth and differentiation. The polyamines, found in virtually all living organisms, are a ubiquitous group of compounds that appear to play a vital role in many cellular processes involving nucleic acids including cell growth and differentiation. Acetylation on the terminal nitrogen adjacent to the 4-carbon chain produces N8-acetylspermidine. This reaction is catalyzed by spermidine N8-acetyltransferase and does not result in the conversion of spermidine to putrescine but, instead, the product undergoes deacetylation. This acetyltransferase appears to be associated with chromatin in the cell nucleus and has been reported to be the same as (or related to) the enzyme(s) responsible for histone acetylation. N8-Acetylspermidine does not accumulate in tissues but rather appears to be rapidly deacetylated back to spermidine by a relatively specific cytosolic deacetylase, N8-acetylspermidine deacetylase. The function of this N8-acetylation/deacetylation pathway in cellular processes is not understood clearly, but several observations have suggested a role in cell growth and differentiation. (PMID: 12093478) [HMDB] N8-Acetylspermidine is a polyamine. The polyamines, found in virtually all living organisms, are a ubiquitous group of compounds that appear to play a vital role in many cellular processes involving nucleic acids including cell growth and differentiation. Acetylation on the terminal nitrogen adjacent to the 4-carbon chain produces N8-acetylspermidine. This reaction is catalyzed by spermidine N8-acetyltransferase and does not result in the conversion of spermidine to putrescine. Instead, the product undergoes deacetylation. This acetyltransferase appears to be associated with chromatin in the cell nucleus and has been reported to be the same as (or related to) the enzyme(s) responsible for histone acetylation. N8-Acetylspermidine does not accumulate in tissues but rather appears to be rapidly deacetylated back to spermidine by a relatively specific cytosolic deacetylase, N8-acetylspermidine deacetylase. The function of this N8-acetylation/deacetylation pathway in cellular processes is not understood clearly, but several observations have suggested a role in cell growth and differentiation (PMID: 12093478). KEIO_ID A112

   

Pyridoxamine

4-(AMINOMETHYL)-5-(hydroxymethyl)-2-methylpyridin-3-ol

C8H12N2O2 (168.0899)


Pyridoxamine is one form of vitamin B6. Chemically it is based on a pyridine ring structure, with hydroxyl, methyl, aminomethyl, and hydroxymethyl substituents. It differs from pyridoxine by the substituent at the 4-position. The hydroxyl at position 3 and aminomethyl group at position 4 of its ring endow pyridoxamine with a variety of chemical properties, including the scavenging of free radical species and carbonyl species formed in sugar and lipid degradation and chelation of metal ions that catalyze Amadori reactions. Pyridoxamine, also known as PM, belongs to the class of organic compounds known as pyridoxamine 5-phosphates. These are heterocyclic aromatic compounds containing a pyridoxamine that carries a phosphate group at the 5-position. Within humans, pyridoxamine participates in a number of enzymatic reactions. In particular, pyridoxamine can be converted into pyridoxal; which is mediated by the enzyme pyridoxine-5-phosphate oxidase. In addition, pyridoxamine can be converted into pyridoxamine 5-phosphate; which is catalyzed by the enzyme pyridoxal kinase. Pyridoxamine also inhibits the formation of advanced lipoxidation endproducts during lipid peroxidation reactions by reaction with dicarbonyl intermediates. In humans, pyridoxamine is involved in vitamin B6 metabolism. Outside of the human body, pyridoxamine has been detected, but not quantified in several different foods, such as nutmegs, sparkleberries, fennels, turmerics, and swiss chards. Pyridoxamine inhibits the Maillard reaction and can block the formation of advanced glycation endproducts, which are associated with medical complications of diabetes. Pyridoxamine is hypothesized to trap intermediates in the formation of Amadori products released from glycated proteins, possibly preventing the breakdown of glycated proteins by disrupting the catalysis of this process through disruptive interactions with the metal ions crucial to the redox reaction. One research study found that pyridoxamine specifically reacts with the carbonyl group in Amadori products, but inhibition of post-Amadori reactions (that can lead to advanced glycation endproducts) is due in much greater part to the metal chelation effects of pyridoxamine. The 4-aminomethyl form of vitamin B6. During transamination of amino acids, pyridoxal phosphate is transiently converted into pyridoxamine phosphate. -- Pubchem; Pyridoxamine is one of the compounds that can be called vitamin B6, along with Pyridoxal and Pyridoxine. -- Wikipedia [HMDB]. Pyridoxamine is found in many foods, some of which are cucumber, fox grape, millet, and teff. Acquisition and generation of the data is financially supported in part by CREST/JST. D018977 - Micronutrients > D014815 - Vitamins KEIO_ID P116 Pyridoxylamine is an advanced glycation end production (AGEs) and lipoxidation end products (ALEs) inhibitor, to protect against diabetes-induced retinal vascular lesions.

   

4-tert-Butylphenol

2-(4-Hydroxyphenyl)-2-methylpropane

C10H14O (150.1045)


4-tert-Butylphenol, also known as butylphen or PTBP, belongs to the class of organic compounds known as phenylpropanes. These are organic compounds containing a phenylpropane moiety. 4-tert-Butylphenol is a leather and oakmoss tasting compound. 4-tert-Butylphenol has been detected, but not quantified, in herbs and spices. 4-Tert-butylphenol is structurally similar to the melanin precursor tyrosine, and acts as a substrate for tyrosinase. 4-tert-Butylphenol is a potentially toxic compound. Tyrosinase oxidizes 4-tert-butylphenol to a quinone (4-tert-butylcyclohexa-3,5-diene-1,2-dione) which in turn rapidly reacts with glutathione (GSH). A depletion of the GSH defence system may allow the quinone to generate reactive oxygen species that damage melanocytes and induce apoptosis, leading to leukoderma/vitiligo.

   

Iproniazid

N-(propan-2-yl)pyridine-4-carbohydrazide

C9H13N3O (179.1059)


N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AF - Monoamine oxidase inhibitors, non-selective D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D004791 - Enzyme Inhibitors > D008996 - Monoamine Oxidase Inhibitors C471 - Enzyme Inhibitor > C667 - Monoamine Oxidase Inhibitor

   

Nornicotine

Nornicotine tartrate, (S)-(R-(r*,r*))-isomer

C9H12N2 (148.1)


Nornicotine is an alkaloid extracted from tobacco and related to nicotine but having a lower toxicity: used as an agricultural and horticultural insecticide. An alkaloid extracted from tobacco and related to nicotine but having a lower toxicity: used as an agricultural and horticultural insecticide. [HMDB] CONFIDENCE standard compound; EAWAG_UCHEM_ID 3280 CONFIDENCE standard compound; INTERNAL_ID 2228 D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

Candesartan cilexetil

1-{[(cyclohexyloxy)carbonyl]oxy}ethyl 2-ethoxy-1-{[2-(2H-1,2,3,4-tetrazol-5-yl)-[1,1-biphenyl]-4-yl]methyl}-1H-1,3-benzodiazole-7-carboxylic acid

C33H34N6O6 (610.254)


C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C66930 - Angiotensin II Receptor Antagonist D057911 - Angiotensin Receptor Antagonists > D047228 - Angiotensin II Type 1 Receptor Blockers COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Candesartan Cilexetil (TCV-116) is an angiotensin II receptor inhibitor. Candesartan Cilexetil ameliorates the pulmonary fibrosis and has antiviral and skin wound healing effect. Candesartan Cilexetil can be used for the research of high blood pressure[1][2][3][4][5][6].

   

Papaverine

1-[(3,4-dimethoxyphenyl)methyl]-6,7-dimethoxy isoquinoline

C20H21NO4 (339.1471)


Papaverine is an alkaloid found in opium but not closely related to the other opium alkaloids in its structure or pharmacological actions. It is a direct-acting smooth muscle relaxant used in the treatment of impotence and as a vasodilator, especially for cerebral vasodilation. The mechanism of its pharmacological actions is not clear, but it apparently can inhibit phosphodiesterases and it may have direct actions on calcium channels. [PubChem]. A - Alimentary tract and metabolism > A03 - Drugs for functional gastrointestinal disorders > A03A - Drugs for functional gastrointestinal disorders > A03AD - Papaverine and derivatives G - Genito urinary system and sex hormones > G04 - Urologicals > G04B - Urologicals > G04BE - Drugs used in erectile dysfunction D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids C78274 - Agent Affecting Cardiovascular System > C29707 - Vasodilating Agent D004791 - Enzyme Inhibitors > D010726 - Phosphodiesterase Inhibitors D000089162 - Genitourinary Agents > D064804 - Urological Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents C471 - Enzyme Inhibitor > C744 - Phosphodiesterase Inhibitor CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2252 Alkaloid from Papaver somniferum (opium poppy)

   

Glyoxylic acid

2-oxoacetic acid

C2H2O3 (74.0004)


Glyoxylic acid or oxoacetic acid is an organic compound that is both an aldehyde and a carboxylic acid. Glyoxylic acid is a liquid with a melting point of -93°C and a boiling point of 111°C. It is an intermediate of the glyoxylate cycle, which enables certain organisms to convert fatty acids into carbohydrates. The conjugate base of glyoxylic acid is known as glyoxylate (PMID: 16396466). In humans, glyoxylate is produced via two pathways: (1) through the oxidation of glycolate in peroxisomes and (2) through the catabolism of hydroxyproline in mitochondria. In the peroxisomes, glyoxylate is converted into glycine by glyoxylate aminotransferase (AGT1) or into oxalate by glycolate oxidase. In the mitochondria, glyoxylate is converted into glycine by mitochondrial glyoxylate aminotransferase AGT2 or into glycolate by glycolate reductase. A small amount of glyoxylate is converted into oxalate by cytoplasmic lactate dehydrogenase. Glyoxylic acid is found to be associated with primary hyperoxaluria I, which is an inborn error of metabolism. Under certain circumstances, glyoxylate can be a nephrotoxin and a metabotoxin. A nephrotoxin is a compound that causes damage to the kidney and kidney tissues. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. High levels of glyoxylate are involved in the development of hyperoxaluria, a key cause of nephrolithiasis (commonly known as kidney stones). Glyoxylate is both a substrate and inductor of sulfate anion transporter-1 (SAT-1), a gene responsible for oxalate transportation, allowing it to increase SAT-1 mRNA expression, and as a result oxalate efflux from the cell. The increased oxalate release allows the buildup of calcium oxalate in the urine, and thus the eventual formation of kidney stones. As an aldehyde, glyoxylate is also highly reactive and will modify proteins to form advanced glycation products (AGEs). Glyoxylic acid, also known as alpha-ketoacetic acid or glyoxylate, is a member of the class of compounds known as carboxylic acids. Carboxylic acids are compounds containing a carboxylic acid group with the formula -C(=O)OH. Glyoxylic acid is soluble (in water) and a moderately acidic compound (based on its pKa). Glyoxylic acid can be found in a number of food items such as european chestnut, cowpea, wheat, and common thyme, which makes glyoxylic acid a potential biomarker for the consumption of these food products. Glyoxylic acid can be found primarily in blood, cerebrospinal fluid (CSF), feces, and urine, as well as throughout all human tissues. Glyoxylic acid exists in all living species, ranging from bacteria to humans. In humans, glyoxylic acid is involved in a couple of metabolic pathways, which include alanine metabolism and glycine and serine metabolism. Glyoxylic acid is also involved in several metabolic disorders, some of which include lactic acidemia, pyruvate carboxylase deficiency, 3-phosphoglycerate dehydrogenase deficiency, and hyperglycinemia, non-ketotic. Moreover, glyoxylic acid is found to be associated with transurethral resection of the prostate and primary hyperoxaluria I. Glyoxylic acid or oxoacetic acid is an organic compound. Together with acetic acid, glycolic acid, and oxalic acid, glyoxylic acid is one of the C2 carboxylic acids. It is a colourless solid that occurs naturally and is useful industrially . KEIO_ID G013

   

3,4-Dihydroxybenzaldehyde

protocatechualdehyde, formyl-14C-labeled

C7H6O3 (138.0317)


Protocatechualdehyde, also known as rancinamycin iv or 1,2-dihydroxy-4-formylbenzene, is a member of the class of compounds known as hydroxybenzaldehydes. Hydroxybenzaldehydes are organic aromatic compounds containing a benzene ring carrying an aldehyde group and a hydroxyl group. Protocatechualdehyde is soluble (in water) and a very weakly acidic compound (based on its pKa). Protocatechualdehyde is an almond, bitter, and dry tasting compound and can be found in a number of food items such as plains prickly pear, mugwort, silver linden, and cardamom, which makes protocatechualdehyde a potential biomarker for the consumption of these food products. Protocatechualdehyde can be found primarily in urine. This molecule can be used as a precursor in the vanillin synthesis by biotransformation by cell cultures of Capsicum frutescens, a type of Chili pepper. It is also found in the mushroom Phellinus linteus . 3,4-Dihydroxybenzaldehyde, also known as protocatechuic aldehyde, is a phenolic aldehyde, a compound released from cork stoppers into wine. This molecule can be used as a precursor in vanillin synthesis via biotransformation by cell cultures of Capsicum frutescens, a type of chili pepper. It is also found in the mushroom Phellinus linteus (Wikipedia). D006401 - Hematologic Agents > D000925 - Anticoagulants Protocatechualdehyde (Catechaldehyde), a natural polyphenol compound isolated from the roots of radix Salviae Miltiorrhizae, is associated with a wide variety of biological activities and has been widely used in medicine as an antioxidant, anti-aging, an antibacterial and anti-inflammatory agent[1]. Protocatechualdehyde (Catechaldehyde), a natural polyphenol compound isolated from the roots of radix Salviae Miltiorrhizae, is associated with a wide variety of biological activities and has been widely used in medicine as an antioxidant, anti-aging, an antibacterial and anti-inflammatory agent[1].

   

N2-acetyllysine

6-Amino-2-[(1-hydroxyethylidene)amino]hexanoate

C8H16N2O3 (188.1161)


N-alpha-Acetyl-L-lysine also known as Nalpha-Acetyllysine, belongs to the class of organic compounds known as N-acyl-alpha amino acids. N-acyl-alpha amino acids are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. N-alpha-Acetyl-L-lysine can also be classified as an alpha amino acid or a derivatized alpha amino acid. Technically, N-alpha-Acetyl-L-lysine is a biologically available N-terminal capped form of the proteinogenic alpha amino acid L-lysine. Unlike L-lysine, acetylated lysine derivatives such as N-alpha-Acetyl-L-lysine are zwitterionic compounds. These are molecules that contains an equal number of positively- and negatively-charged functional groups. N-alpha-Acetyl-L-lysine is found naturally in eukaryotes ranging from yeast to plants to humans. N-acetyl amino acids can be produced either via direct synthesis of specific N-acetyltransferases or via the proteolytic degradation of N-acetylated proteins by specific hydrolases. N-terminal acetylation of proteins is a widespread and highly conserved process in eukaryotes that is involved in protection and stability of proteins (PMID: 16465618). About 85\\\% of all human proteins and 68\\\% of all yeast proteins are acetylated at their N-terminus (PMID: 21750686). Several proteins from prokaryotes and archaea are also modified by N-terminal acetylation. The majority of eukaryotic N-terminal-acetylation reactions occur through N-acetyltransferase enzymes or NAT’s (PMID: 30054468). These enzymes consist of three main oligomeric complexes NatA, NatB, and NatC, which are composed of at least a unique catalytic subunit and one unique ribosomal anchor. The substrate specificities of different NAT enzymes are mainly determined by the identities of the first two N-terminal residues of the target protein. The human NatA complex co-translationally acetylates N-termini that bear a small amino acid (A, S, T, C, and occasionally V and G) (PMID: 30054468). NatA also exists in a monomeric state and can post-translationally acetylate acidic N-termini residues (D-, E-). NatB and NatC acetylate N-terminal methionine with further specificity determined by the identity of the second amino acid. N-acetylated amino acids, such as N-alpha-Acetyl-L-lysine can be released by an N-acylpeptide hydrolase from peptides generated by proteolytic degradation (PMID: 16465618). In addition to the NAT enzymes and protein-based acetylation, N-acetylation of free lysine can also occur. In particular, N-alpha-Acetyl-L-lysine can be biosynthesized from L-lysine and acetyl-CoA via the enzyme known as Lysine N-acetyltransferase. Individuals with hyperlysinaemia due to L-lysine alpha-ketoglutarate reductase deficiency will excrete high levels of N-alpha-Acetyl-L-lysine in their urine (PMID: 116084). L-lysine alpha-ketoglutarate reductase deficiency, if untreated, can lead to neurological and behavioral deficits (PMID: 116084). Many N-acetylamino acids are classified as uremic toxins if present in high abundance in the serum or plasma (PMID: 26317986; PMID: 20613759). Uremic toxins are a diverse group of endogenously produced molecules that, if not properly cleared or eliminated by the kidneys, can cause kidney damage, cardiovascular disease and neurological deficits (PMID: 18287557). Acetyl-L-lysine is an endogenous metabolite.

   

Phosphoserine

(S)-2-Amino-3-hydroxypropanoic acid 3-phosphoric acid

C3H8NO6P (185.0089)


The phosphoric acid ester of serine. As a constituent (residue) of proteins, its side chain can undergo O-linked glycosylation. This might be important in explaining some of the devastating consequences of diabetes. It is one of three amino acid residues that are commonly phosphorylated by kinases during cell signalling in eukaryotes. Phosphorylated serine residues are often referred to as phosphoserine. Serine proteases are a common type of protease. Serine, organic compound, one of the 20 amino acids commonly found in animal proteins. Only the L-stereoisomer appears in mammalian protein. It is not essential to the human diet, since it can be synthesized in the body from other metabolites, including glycine. Serine was first obtained from silk protein, a particularly rich source, in 1865. Its name is derived from the Latin for silk, sericum. Serines structure was established in 1902. [HMDB] Phosphoserine is the phosphoric acid ester of the amino acid serine. It is found in essentially all living organisms ranging from microbes to plants to mammals. Phosphoserine is a component of many proteins as the result of posttranslational modifications to the native protein’s serine residue(s). The phosphorylation of the hydroxyl functional group in serine to produce phosphoserine is catalyzed by various types of kinases. Serine is one of three amino acid residues that are commonly phosphorylated by kinases during cell signalling in eukaryotes. Free phosphoserine is found in many biofluids and likely arises from the proteolysis of proteins containing phosphoserine residues (PMID: 7693088). Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID P060 DL-O-Phosphoserine, a normal metabolite in human biofluid, is an ester of serine and phosphoric acid.

   

Glyceraldehyde

(2R)-2,3-dihydroxypropanal

C3H6O3 (90.0317)


DL-Glyceraldehyde is a monosaccharide. DL-Glyceraldehyde is the simplest aldose. DL-Glyceraldehyde can be used for various biochemical studies[1].

   

Glycyrrhizin

5-[(6-carboxy-3,4,5-trihydroxyoxan-2-yl)oxy]-6-[(11-carboxy-4,4,6a,6b,8a,11,14b-heptamethyl-14-oxo-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-yl)oxy]-3,4-dihydroxyoxane-2-carboxylic acid

C42H62O16 (822.4038)


Licoricesaponin H2 is found in herbs and spices. Licoricesaponin H2 is a constituent of Glycyrrhiza uralensis (Chinese licorice). A - Alimentary tract and metabolism > A05 - Bile and liver therapy > A05B - Liver therapy, lipotropics > A05BA - Liver therapy C1907 - Drug, Natural Product > C28269 - Phytochemical > C1905 - Triterpenoid Compound Acquisition and generation of the data is financially supported in part by CREST/JST. Isolated from Glycyrrhiza glabra (liquorice). Nutriceutical with anticancer props. C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product D000893 - Anti-Inflammatory Agents KEIO_ID G057 Glycyrrhizic acid is a triterpenoid saponinl, acting as a direct HMGB1 antagonist, with anti-tumor, anti-diabetic activities. Glycyrrhizic acid is a triterpenoid saponinl, acting as a direct HMGB1 antagonist, with anti-tumor, anti-diabetic activities.

   

Cromoglicic acid

5-{3-[(2-carboxy-4-oxo-4H-chromen-5-yl)oxy]-2-hydroxypropoxy}-4-oxo-4H-chromene-2-carboxylic acid

C23H16O11 (468.0693)


Cromoglicic acid is only found in individuals that have used or taken this drug. It is a chromone complex that acts by inhibiting the release of chemical mediators from sensitized mast cells. It is used in the prophylactic treatment of both allergic and exercise-induced asthma, but does not affect an established asthmatic attack. [PubChem]Cromoglicate inhibits degranulation of mast cells, subsequently preventing the release of histamine and slow-reacting substance of anaphylaxis (SRS-A), mediators of type I allergic reactions. Cromoglicate also may reduce the release of inflammatory leukotrienes. Cromoglicate may act by inhibiting calcium influx. A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07E - Intestinal antiinflammatory agents > A07EB - Antiallergic agents, excl. corticosteroids R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03B - Other drugs for obstructive airway diseases, inhalants > R03BC - Antiallergic agents, excl. corticosteroids R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AC - Antiallergic agents, excl. corticosteroids D - Dermatologicals > D11 - Other dermatological preparations > D11A - Other dermatological preparations > D11AH - Agents for dermatitis, excluding corticosteroids C78273 - Agent Affecting Respiratory System > C29712 - Anti-asthmatic Agent > C29714 - Mast Cell Stabilizer S - Sensory organs > S01 - Ophthalmologicals > S01G - Decongestants and antiallergics D000893 - Anti-Inflammatory Agents > D000082142 - Mast Cell Stabilizers D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents D018926 - Anti-Allergic Agents D007155 - Immunologic Factors

   

Lampranthin II

3-{[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-5,7-dihydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one

C27H30O16 (610.1534)


Panasenoside, also known as lilyn, is a member of the class of compounds known as flavonoid-3-o-glycosides. Flavonoid-3-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. Panasenoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Panasenoside can be found in tea, which makes panasenoside a potential biomarker for the consumption of this food product. Kaempferol 3-O-sophoroside, a derivative of Kaempferol, is isolated from the leaves of cultivated mountain ginseng (Panax ginseng) with anti-inflammatory effects[1]. Kaempferol 3-O-sophoroside, a derivative of Kaempferol, is isolated from the leaves of cultivated mountain ginseng (Panax ginseng) with anti-inflammatory effects[1].

   

Galloyl glucose

(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 3,4,5-trihydroxybenzoate

C13H16O10 (332.0743)


Galloyl glucose, also known as 1-galloyl-beta-D-glucose or beta-glucogallin, is a member of the class of compounds known as tannins. Tannins are naturally occurring polyphenols which be categorized into four main classes: hydrolyzable tannin (based on ellagic acid or gallic acid), condensed tannins (made of oligomeric or polymeric proanthocyanidins), complex tannins (made of a catechin bound to a gallotannin or elagitannin), and phlorotannins (oligomers of phloroglucinol). Galloyl glucose is soluble (in water) and a very weakly acidic compound (based on its pKa). Galloyl glucose can be found in a number of food items such as pomegranate, strawberry, redcurrant, and rubus (blackberry, raspberry), which makes galloyl glucose a potential biomarker for the consumption of these food products. Galloyl glucose is formed by a gallate 1-beta-glucosyltransferase (UDP-glucose: gallate glucosyltransferase), an enzyme performing the esterification of two substrates, UDP-glucose and gallate to yield two products, UDP and glucogallin. This enzyme can be found in oak leaf preparations .

   

Glycolaldehyde

Monomethylolformaldehyde

C2H4O2 (60.0211)


Glycolaldehyde, also known as hydroxyacetaldehyde or methylol formaldehyde, is a member of the class of compounds known as short-chain aldehydes. Short-chain aldehydes are an aldehyde with a chain length containing between 2 and 5 carbon atoms. Glycolaldehyde is soluble (in water) and a very weakly acidic compound (based on its pKa). Glycolaldehyde can be found in a number of food items such as acorn, elderberry, dandelion, and conch, which makes glycolaldehyde a potential biomarker for the consumption of these food products. Glycolaldehyde can be found primarily in human neuron tissue. Glycolaldehyde exists in all living organisms, ranging from bacteria to humans. In humans, glycolaldehyde is involved in the vitamin B6 metabolism. Glycolaldehyde is also involved in hypophosphatasia, which is a metabolic disorder. Glycolaldehyde is the organic compound with the formula HOCH2-CHO. It is the smallest possible molecule that contains both an aldehyde group and a hydroxyl group. It is a highly reactive molecule that occurs both in the biosphere and in the interstellar medium. It is normally supplied as a white solid. Although it conforms to the general formula for carbohydrates, Cn(H2O)n, it is not generally considered to be a saccharide . Glycolaldehyde (HOCH2-CH=O, IUPAC name 2-hydroxyethanal) is a type of diose (2-carbon monosaccharide). Glycolaldehyde is readily converted to acetyl coenzyme A. It has an aldehyde and a hydroxyl group. However, it is not actually a sugar, because there is only one hydroxyl group. Glycolaldehyde is formed from many sources, including the amino acid glycine and from purone catabolism. It can form by action of ketolase on fructose 1,6-bisphosphate in an alternate glycolysis pathway. This compound is transferred by thiamin pyrophosphate during the pentose phosphate shunt.

   

Pyruvaldehyde

alpha-Ketopropionaldehyde

C3H4O2 (72.0211)


Methylglyoxal, also known as 2-ketopropionaldehyde or 2-oxopropanal, is a member of the class of compounds known as alpha ketoaldehydes. Alpha ketoaldehydes are organic compounds containing an aldehyde substituted with a keto group on the adjacent carbon. Methylglyoxal is soluble (in water) and an extremely weak acidic compound (based on its pKa). Methylglyoxal can be found in a number of food items such as shiitake, yellow zucchini, roman camomile, and carob, which makes methylglyoxal a potential biomarker for the consumption of these food products. Methylglyoxal can be found primarily in blood and urine, as well as throughout most human tissues. Methylglyoxal exists in all living species, ranging from bacteria to humans. In humans, methylglyoxal is involved in few metabolic pathways, which include glycine and serine metabolism, pyruvaldehyde degradation, pyruvate metabolism, and spermidine and spermine biosynthesis. Methylglyoxal is also involved in several metabolic disorders, some of which include hyperglycinemia, non-ketotic, pyruvate kinase deficiency, non ketotic hyperglycinemia, and pyruvate decarboxylase E1 component deficiency (PDHE1 deficiency). Moreover, methylglyoxal is found to be associated with diabetes mellitus type 2. Methylglyoxal, also called pyruvaldehyde or 2-oxopropanal, is the organic compound with the formula CH3C(O)CHO. Gaseous methylglyoxal has two carbonyl groups, an aldehyde and a ketone but in the presence of water, it exists as hydrates and oligomers. It is a reduced derivative of pyruvic acid . Pyruvaldehyde is an organic compound used often as a reagent in organic synthesis, as a flavoring agent, and in tanning. It has been demonstrated as an intermediate in the metabolism of acetone and its derivatives in isolated cell preparations, in various culture media, and in vivo in certain animals.

   

Lactaldehyde

alpha-Hydroxypropionaldehyde

C3H6O2 (74.0368)


L-lactaldehyde is an intermediate metabolite in the pyruvate metabolism pathway. L-lactaldehyde is irreversibly produced from pyruvaldehyde via the enzyme aldehyde reductase (EC:1.1.1.21) which is then irreversibly converted to propylene glycol via aldehyde reductase (EC:1.1.1.21). [HMDB] L-lactaldehyde is an intermediate metabolite in the pyruvate metabolism pathway. L-lactaldehyde is irreversibly produced from pyruvaldehyde via the enzyme aldehyde reductase (EC:1.1.1.21) which is then irreversibly converted to propylene glycol via aldehyde reductase (EC:1.1.1.21).

   

N-Methylpyridinium

1-Methylpyridinium mu-iodotetraiododimercurate (1-)

C6H8N+ (94.0657)


   

3,4-Dihydroxymandelaldehyde

2-(3,4-dihydroxyphenyl)-2-hydroxyacetaldehyde

C8H8O4 (168.0423)


3,4-Dihydroxymandelaldehyde is the monoamine oxidase (MAO) aldehyde metabolite of both norepinephrine and epinephrine. 3,4- dihydroxymandelaldehyde generates a free radical and activates mitochondrial permeability transition, a mechanism implicated in neuron death. There is an increasing body of evidence suggesting that these compounds are neurotoxic, and it has been recently hypothesized that neurodegenerative disorders may be associated with increased levels of this biogenic aldehyde. It is possible to speculate that reduced detoxification of 3,4- dihydroxymandelaldehyde from impaired or deficient aldehyde dehydrogenase function may be a contributing factor in the suggested neurotoxicity of these compounds. Aldehyde dehydrogenases are a group of NAD(P)+ -dependent enzymes that catalyze the oxidation of aldehydes, such as those derived from catecholamines, to their corresponding carboxylic acids. To date, 19 aldehyde dehydrogenase genes have been identified in the human genome. Mutations in these genes and subsequent inborn errors in aldehyde metabolism are the molecular basis of several diseases. Several pharmaceutical agents and environmental toxins are also known to disrupt or inhibit aldehyde dehydrogenase function. (PMID: 17379813, 14697885, 11164826). 3,4-dihydroxymandelaldehyde, also known as alpha,3,4-trihydroxybenzeneacetaldehyde or dhmal, is a member of the class of compounds known as phenylacetaldehydes. Phenylacetaldehydes are compounds containing a phenylacetaldehyde moiety, which consists of a phenyl group substituted at the second position by an acetalydehyde. 3,4-dihydroxymandelaldehyde is soluble (in water) and a very weakly acidic compound (based on its pKa). 3,4-dihydroxymandelaldehyde can be found in a number of food items such as canola, lentils, grass pea, and moth bean, which makes 3,4-dihydroxymandelaldehyde a potential biomarker for the consumption of these food products. In humans, 3,4-dihydroxymandelaldehyde is involved in a couple of metabolic pathways, which include disulfiram action pathway and tyrosine metabolism. 3,4-dihydroxymandelaldehyde is also involved in several metabolic disorders, some of which include dopamine beta-hydroxylase deficiency, alkaptonuria, hawkinsinuria, and tyrosinemia, transient, of the newborn. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

11-Dehydro-thromboxane B2

(5E)-7-[(2R,3S,4S)-4-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-6-oxooxan-3-yl]hept-5-enoic acid

C20H32O6 (368.2199)


11-Dehydro-thromboxane B2, a stable thromboxane metabolite, is a full agonist of chemoattractant receptor-homologous molecule expressed on TH2 cells (CRTH2) in human eosinophils and basophils. Given its production in the allergic lung, antagonism of the 11-dehydro- thromboxane B2/CRTH2axis may be of therapeutic relevance. (PMID 14668348)Thromboxanes are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. 11-Dehydro-thromboxane B2, a stable thromboxane metabolite, is a full agonist of chemoattractant receptor-homologous molecule expressed on TH2 cells (CRTH2) in human eosinophils and basophils. Given its production in the allergic lung, antagonism of the 11-dehydro- thromboxane B2/CRTH2axis may be of therapeutic relevance. (PMID 14668348)

   

Streptozocin

3-methyl-3-nitroso-1-[(2S,3R,4R,5S,6R)-2,4,5-trihydroxy-6-(hydroxymethyl)oxan-3-yl]urea

C8H15N3O7 (265.091)


Streptozocin is only found in individuals that have used or taken this drug.It is an antibiotic that is produced by Stretomyces achromogenes. It is used as an antineoplastic agent and to induce diabetes in experimental animals. [PubChem]Although its mechanism of action is not completely clear, streptozocin is known to inhibit DNA synthesis, interfere with biochemical reactions of NAD and NADH, and inhibit some enzymes involved in gluconeogenesis. Its activity appears to occur as a result of formation of methylcarbonium ions, which alkylate or bind with many intracellular molecular structures including nucleic acids. Its cytotoxic action is probably due to cross-linking of strands of DNA, resulting in inhibition of DNA synthesis. L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01A - Alkylating agents > L01AD - Nitrosoureas D000970 - Antineoplastic Agents

   

Fucosterol

(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-[(E,2R)-5-propan-2-ylhept-5-en-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.3705)


Characteristic sterol of seaweeds; isolated from bladderwrack Fucus vesiculosus. Fucosterol is found in lemon grass and coconut. Fucosterol is found in coconut. Characteristic sterol of seaweeds; isolated from bladderwrack Fucus vesiculosu Fucosterol is a sterol isolated from algae, seaweed or diatoms.?Fucosterol exhibits various biological activities, including antioxidant, anti-adipogenic, blood cholesterol reducing, anti-diabetic and anti-cancer activities[1][2]. Fucosterol regulates adipogenesis via inhibition of?PPARα?and?C/EBPα?expression and can be used for anti-obesity agents development research[1]. Fucosterol is a sterol isolated from algae, seaweed or diatoms.?Fucosterol exhibits various biological activities, including antioxidant, anti-adipogenic, blood cholesterol reducing, anti-diabetic and anti-cancer activities[1][2]. Fucosterol regulates adipogenesis via inhibition of?PPARα?and?C/EBPα?expression and can be used for anti-obesity agents development research[1].

   

Peimine

(3S,4aS,5S,6aS,6bS,8aS,9S,9aS,12S,15aS,15bR,16aS,16bR)-9,12,16b-Trimethyltetracosahydrobenzo[4,5]indeno[1,2-h]pyrido[1,2-b]isoquinoline-3,5,9-triol

C27H45NO3 (431.3399)


Verticine is an alkaloid. Peimine is a natural product found in Fritillaria anhuiensis, Fritillaria cirrhosa, and other organisms with data available. D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents > D014704 - Veratrum Alkaloids Peimine (Verticine) is a natural compound with excellent anti-inflammatory activity. Peimine (Verticine) is a natural compound with excellent anti-inflammatory activity.

   

Glyoxal

Glyoxal aldehyde

C2H2O2 (58.0055)


Glyoxal, also known as 1,2-ethanedione or oxalaldehyde, is a member of the class of compounds known as short-chain aldehydes. Short-chain aldehydes are an aldehyde with a chain length containing between 2 and 5 carbon atoms. Glyoxal is soluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Glyoxal can be found in garden tomato (variety), ginger, and sesame, which makes glyoxal a potential biomarker for the consumption of these food products. Glyoxal is an organic compound with the chemical formula OCHCHO. It is a yellow-colored Liquid that evaporates to give a green-colored gas. Glyoxal is the smallest dialdehyde (two aldehyde groups). Its structure is more complicated than typically represented because the molecule hydrates and oligomerizes. It is produced industrially as a precursor to many products .

   

Schidigerasaponin D5

2-[4,5-dihydroxy-6-(hydroxymethyl)-2-(5,7,9,13-tetramethylspiro[5-oxapentacyclo[10.8.0.02,9.04,8.013,18]icosane-6,2-oxane]-16-yl)oxyoxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

C39H64O13 (740.4347)


Schidigerasaponin D5 is a natural product found in Yucca gloriosa and Asparagus gobicus with data available. Melongoside E is found in fruits. Melongoside E is a constituent of aubergine (Solanum melongena). Constituent of aubergine (Solanum melongena). Melongoside E is found in fruits and eggplant. Timosaponin AIII could inhibit acetylcholinesterase (AChE) activity, with an IC50 of 35.4 μM. Timosaponin AIII could inhibit acetylcholinesterase (AChE) activity, with an IC50 of 35.4 μM.

   

Glyceraldehyde

alpha,beta-Dihydroxypropionaldehyde

C3H6O3 (90.0317)


Glyceraldehyde is a triose monosaccharide with chemical formula C3H6O3. It is the simplest of all common aldoses. It is a sweet, colourless crystalline solid that is an intermediate compound in carbohydrate metabolism. The word "glyceraldehyde" comes from combining glycerine and aldehyde, as glyceraldehyde is merely glycerine with one hydroxide changed to an aldehyde. Glyceraldehyde is produced from the action of the enzyme glyceraldehyde dehydrogenase, which converts glycerol to glyceraldehyde using NADP as a cofactor. When present at sufficiently high levels, glyceraldehyde can be a cytotoxin and a mutagen. A cytotoxin is a compound that kills cells. A mutagen is a compound that causes mutations in DNA. Glyceraldehyde is a highly reactive compound that can modify and cross-link proteins. Glyceraldehyde-modified proteins appear to be cytotoxic, depress intracellular glutathione levels, and induce reactive oxygen species (ROS) production (PMID:14981296). Glyceraldehyde has been shown to cause chromosome damage to human cells in culture and is mutagenic in the Ames bacterial test. Glyceraldehyde is a triose monosaccharide with chemical formula C3H6O3. It is the simplest of all common aldoses. It is a sweet colorless crystalline solid that is an intermediate compound in carbohydrate metabolism. The word comes from combining glycerine and aldehyde, as glyceraldehyde is merely glycerine with one hydroxide changed to an aldehyde. [HMDB] DL-Glyceraldehyde is a monosaccharide. DL-Glyceraldehyde is the simplest aldose. DL-Glyceraldehyde can be used for various biochemical studies[1].

   

lactaldehyde

lactaldehyde

C3H6O2 (74.0368)


A member of the class of propanals obtained by the reduction of the carboxylic group of lactic acid (2-hydroxypropanoic acid).

   

beta-Glucogallin

3,4,5-Trihydroxy-6-(hydroxymethyl)oxan-2-yl 3,4,5-trihydroxybenzoic acid

C13H16O10 (332.0743)


beta-Glucogallin is found in green vegetables. beta-Glucogallin is isolated from various plants, e.g. Rheum officinale (Chinese rhubarb), Eucalyptus species. Isolated from various plants, e.g. Rheum officinale (Chinese rhubarb), Eucalyptus subspecies 1-Glucosyl gallate is found in tea and green vegetables.

   

DL-O-Phosphoserine

DL-Serine, dihydrogen phosphoric acid (ester)

C3H8NO6P (185.0089)


DL-O-Phosphoserine, also known as DL-O-phosphorylserine or DL-O-serine phosphate, belongs to the class of organic compounds known as alpha amino acids. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Serine proteases are a common type of protease. DL-O-Phosphoserine exists in all living species, ranging from bacteria to humans. Serine is one of three amino acid residues that are commonly phosphorylated by kinases during cell signalling in eukaryotes. It is a normal metabolite found in human biofluids. (PMID 7693088, 7688003) DL-O-Phosphoserine, a normal metabolite in human biofluid, is an ester of serine and phosphoric acid.

   

3,4-Dihydroxybenzaldehyde

3,4-Dihydroxybenzaldehyde, Vetec(TM) reagent grade, 97\\%

C7H6O3 (138.0317)


Protocatechualdehyde, also known as rancinamycin iv or 1,2-dihydroxy-4-formylbenzene, is a member of the class of compounds known as hydroxybenzaldehydes. Hydroxybenzaldehydes are organic aromatic compounds containing a benzene ring carrying an aldehyde group and a hydroxyl group. Protocatechualdehyde is soluble (in water) and a very weakly acidic compound (based on its pKa). Protocatechualdehyde is an almond, bitter, and dry tasting compound and can be found in a number of food items such as plains prickly pear, mugwort, silver linden, and cardamom, which makes protocatechualdehyde a potential biomarker for the consumption of these food products. Protocatechualdehyde can be found primarily in urine. This molecule can be used as a precursor in the vanillin synthesis by biotransformation by cell cultures of Capsicum frutescens, a type of Chili pepper. It is also found in the mushroom Phellinus linteus . 3,4-dihydroxybenzaldehyde is a dihydroxybenzaldehyde. Also known as protocatechuic aldehyde, protocatechualdehyde is a naturally-occuring phenolic aldehyde that is found in barley, green cavendish bananas, grapevine leaves and root of the herb S. miltiorrhiza. Protocatechualdehyde possesses antiproliferative and pro-apoptotic properties against human breast cancer cells and colorectal cancer cells by reducing the expression of pro-oncogenes β-catenin and cyclin D1. 3,4-Dihydroxybenzaldehyde is a natural product found in Visnea mocanera, Amomum subulatum, and other organisms with data available. See also: Black Cohosh (part of). 3,4-Dihydroxybenzaldehyde, also known as protocatechuic aldehyde, is a phenolic aldehyde, a compound released from cork stoppers into wine. This molecule can be used as a precursor in vanillin synthesis via biotransformation by cell cultures of Capsicum frutescens, a type of chili pepper. It is also found in the mushroom Phellinus linteus (Wikipedia). D006401 - Hematologic Agents > D000925 - Anticoagulants Protocatechualdehyde (Catechaldehyde), a natural polyphenol compound isolated from the roots of radix Salviae Miltiorrhizae, is associated with a wide variety of biological activities and has been widely used in medicine as an antioxidant, anti-aging, an antibacterial and anti-inflammatory agent[1]. Protocatechualdehyde (Catechaldehyde), a natural polyphenol compound isolated from the roots of radix Salviae Miltiorrhizae, is associated with a wide variety of biological activities and has been widely used in medicine as an antioxidant, anti-aging, an antibacterial and anti-inflammatory agent[1].

   

Sophoraflavonoloside

3-[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]oxy-tetrahydropyran-2-yl]oxy-5,7-dihydroxy-2-(4-hydroxyphenyl)chromen-4-one

C27H30O16 (610.1534)


Kaempferol 3-O-beta-D-glucosyl-(1->2)-beta-D-glucoside is a sophoroside that is kaempferol attached to a beta-D-sophorosyl residue at position 3 via a glycosidic linkage. It has a role as a plant metabolite. It is a trihydroxyflavone and a sophoroside. Sophoraflavonoloside is a natural product found in Equisetum palustre, Vigna subterranea, and other organisms with data available. Kaempferol 3-O-sophoroside, a derivative of Kaempferol, is isolated from the leaves of cultivated mountain ginseng (Panax ginseng) with anti-inflammatory effects[1]. Kaempferol 3-O-sophoroside, a derivative of Kaempferol, is isolated from the leaves of cultivated mountain ginseng (Panax ginseng) with anti-inflammatory effects[1].

   

Glycyrrhizin

(2S,3S,4S,5R,6R)-6-[(2S,3R,4S,5S,6S)-2-[[(3S,4aR,6aR,6bS,8aS,11S,12aR,14aR,14bS)-11-carboxy-4,4,6a,6b,8a,11,14b-heptamethyl-14-oxo-2,3,4a,5,6,7,8,9,10,12,12a,14a-dodecahydro-1H-picen-3-yl]oxy]-6-carboxy-4,5-dihydroxy-tetrahydropyran-3-yl]oxy-3,4,5-trihydroxy-tetrahydropyran-2-carboxylic acid

C42H62O16 (822.4038)


Glycyrrhizinic acid is a triterpenoid saponin that is the glucosiduronide derivative of 3beta-hydroxy-11-oxoolean-12-en-30-oic acid. It has a role as an EC 3.4.21.5 (thrombin) inhibitor and a plant metabolite. It is a glucosiduronic acid, a tricarboxylic acid, a pentacyclic triterpenoid, an enone and a triterpenoid saponin. It is a conjugate acid of a glycyrrhizinate(3-). Glycyrrhizic acid is extracted from the root of the licorice plant; Glycyrrhiza glabra. It is a triterpene glycoside with glycyrrhetinic acid that possesses a wide range of pharmacological and biological activities. When extracted from the plant, it can be obtained in the form of ammonium glycyrrhizin and mono-ammonium glycyrrhizin. Glycyrrhizic acid has been developed in Japan and China as a hepatoprotective drug in cases of chronic hepatitis. From January 2014, glycyrrhizic acid as part of the licorice extract was approved by the FDA as an existing food sweetener. It was approved by Health Canada to be used in over-the-counter products but all the products are currently on the status canceled post marketed. Glycyrrhizic acid is a natural product found in Hypomontagnella monticulosa, Abrus precatorius, and other organisms with data available. Glycyrrhizin is a saponin-like compound that provides the main sweet flavor for Glycyrrhiza glabra (licorice), with potential immunomodulating, anti-inflammatory, hepato- and neuro-protective, and antineoplastic activities. Glycyrrhizin modulates certain enzymes involved in inflammation and oxidative stress, and downregulates certain pro-inflammatory mediators, thereby protecting against inflammation- and reactive oxygen species (ROS)-induced damage. Glycerrhizin may also suppress the growth of susceptible tumor cells. Glycyrrhyzin is a metabolite found in or produced by Saccharomyces cerevisiae. A widely used anti-inflammatory agent isolated from the licorice root. It is metabolized to GLYCYRRHETINIC ACID, which inhibits 11-BETA-HYDROXYSTEROID DEHYDROGENASES and other enzymes involved in the metabolism of CORTICOSTEROIDS. Therefore, glycyrrhizic acid, which is the main and sweet component of licorice, has been investigated for its ability to cause hypermineralocorticoidism with sodium retention and potassium loss, edema, increased blood pressure, as well as depression of the renin-angiotensin-aldosterone system. See also: Enoxolone (has active moiety); Glycyrrhizinate Dipotassium (active moiety of); Glycyrrhiza uralensis Root (part of) ... View More ... A - Alimentary tract and metabolism > A05 - Bile and liver therapy > A05B - Liver therapy, lipotropics > A05BA - Liver therapy A triterpenoid saponin that is the glucosiduronide derivative of 3beta-hydroxy-11-oxoolean-12-en-30-oic acid. C1907 - Drug, Natural Product > C28269 - Phytochemical > C1905 - Triterpenoid Compound C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product D000893 - Anti-Inflammatory Agents Glycyrrhizic acid is a triterpenoid saponinl, acting as a direct HMGB1 antagonist, with anti-tumor, anti-diabetic activities. Glycyrrhizic acid is a triterpenoid saponinl, acting as a direct HMGB1 antagonist, with anti-tumor, anti-diabetic activities.

   

Schidigerasaponin D5

2-[4,5-dihydroxy-6-(hydroxymethyl)-2-(5,7,9,13-tetramethylspiro[5-oxapentacyclo[10.8.0.02,9.04,8.013,18]icosane-6,2-oxane]-16-yl)oxyoxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

C39H64O13 (740.4347)


Schidigerasaponin D5 is a natural product found in Yucca gloriosa and Asparagus gobicus with data available. Melongoside E is found in fruits. Melongoside E is a constituent of aubergine (Solanum melongena). Constituent of aubergine (Solanum melongena). Melongoside E is found in fruits and eggplant. Timosaponin AIII could inhibit acetylcholinesterase (AChE) activity, with an IC50 of 35.4 μM. Timosaponin AIII could inhibit acetylcholinesterase (AChE) activity, with an IC50 of 35.4 μM.

   

Fucosterol

(24E)-24-n-propylidenecholesterol;(3beta,24E)-stigmasta-5,24(28)-dien-3-ol;(E)-stigmasta-5,24(28)-dien-3beta-ol;24E-ethylidene-cholest-5-en-3beta-ol;fucosterin;trans-24-ethylidenecholesterol

C29H48O (412.3705)


A 3beta-sterol consisting of stigmastan-3beta-ol with double bonds at positions 5 and 24(28). (3b,5a,24(28)e)-stigmasta-7,24(28)-dien-3-ol belongs to stigmastanes and derivatives class of compounds. Those are sterol lipids with a structure based on the stigmastane skeleton, which consists of a cholestane moiety bearing an ethyl group at the carbon atom C24 (3b,5a,24(28)e)-stigmasta-7,24(28)-dien-3-ol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). (3b,5a,24(28)e)-stigmasta-7,24(28)-dien-3-ol can be found in horseradish tree and sunflower, which makes (3b,5a,24(28)e)-stigmasta-7,24(28)-dien-3-ol a potential biomarker for the consumption of these food products. Fucosterol is a sterol isolated from algae, seaweed or diatoms.?Fucosterol exhibits various biological activities, including antioxidant, anti-adipogenic, blood cholesterol reducing, anti-diabetic and anti-cancer activities[1][2]. Fucosterol regulates adipogenesis via inhibition of?PPARα?and?C/EBPα?expression and can be used for anti-obesity agents development research[1]. Fucosterol is a sterol isolated from algae, seaweed or diatoms.?Fucosterol exhibits various biological activities, including antioxidant, anti-adipogenic, blood cholesterol reducing, anti-diabetic and anti-cancer activities[1][2]. Fucosterol regulates adipogenesis via inhibition of?PPARα?and?C/EBPα?expression and can be used for anti-obesity agents development research[1].

   

Pinocembrin

4H-1-Benzopyran-4-one, 2,3-dihydro-5,7-dihydroxy-2-phenyl-, (S)-(-)-

C15H12O4 (256.0736)


(2s)-pinocembrin, also known as 5,7-dihydroxyflavanone or dihydrochrysin, is a member of the class of compounds known as flavanones. Flavanones are compounds containing a flavan-3-one moiety, with a structure characterized by a 2-phenyl-3,4-dihydro-2H-1-benzopyran bearing a ketone at the carbon C3. Thus, (2s)-pinocembrin is considered to be a flavonoid lipid molecule (2s)-pinocembrin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (2s)-pinocembrin can be found in a number of food items such as acorn, lentils, mulberry, and sorghum, which makes (2s)-pinocembrin a potential biomarker for the consumption of these food products. (s)-pinocembrin, also known as 5,7-dihydroxyflavanone or dihydrochrysin, is a member of the class of compounds known as flavanones. Flavanones are compounds containing a flavan-3-one moiety, with a structure characterized by a 2-phenyl-3,4-dihydro-2H-1-benzopyran bearing a ketone at the carbon C3 (s)-pinocembrin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (s)-pinocembrin is a bitter tasting compound found in mexican oregano and tarragon, which makes (s)-pinocembrin a potential biomarker for the consumption of these food products. relative retention time with respect to 9-anthracene Carboxylic Acid is 1.069 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.067 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.071 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.070 5,7-Dihydroxyflavanone is a natural product found in Pinus contorta var. latifolia, Piper nigrum, and other organisms with data available. (±)-Pinocembrin ((±)-5,7-Dihydroxyflavanone) is a GPR120 ligand able to promote wound healing in HaCaT cell line[1]. (±)-Pinocembrin ((±)-5,7-Dihydroxyflavanone) is a GPR120 ligand able to promote wound healing in HaCaT cell line[1]. Pinocembrin ((+)-Pinocoembrin) is a flavonoid found in propolis, acts as a competitive inhibitor of histidine decarboxylase, and is an effective anti-allergic agent, with antioxidant, antimicrobial and anti-inflammatory properties[1]. Pinocembrin ((+)-Pinocoembrin) is a flavonoid found in propolis, acts as a competitive inhibitor of histidine decarboxylase, and is an effective anti-allergic agent, with antioxidant, antimicrobial and anti-inflammatory properties[1].

   

cromolyn

Cromoglicic acid

C23H16O11 (468.0693)


A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07E - Intestinal antiinflammatory agents > A07EB - Antiallergic agents, excl. corticosteroids R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03B - Other drugs for obstructive airway diseases, inhalants > R03BC - Antiallergic agents, excl. corticosteroids R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AC - Antiallergic agents, excl. corticosteroids D - Dermatologicals > D11 - Other dermatological preparations > D11A - Other dermatological preparations > D11AH - Agents for dermatitis, excluding corticosteroids C78273 - Agent Affecting Respiratory System > C29712 - Anti-asthmatic Agent > C29714 - Mast Cell Stabilizer S - Sensory organs > S01 - Ophthalmologicals > S01G - Decongestants and antiallergics D000893 - Anti-Inflammatory Agents > D000082142 - Mast Cell Stabilizers D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents D018926 - Anti-Allergic Agents D007155 - Immunologic Factors

   

Swertiamarin

(4aR,5R,6S)-4a-hydroxy-6-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-5-vinyl-3,4,5,6-tetrahydropyrano[5,4-c]pyran-1-one

C16H22O10 (374.1213)


Annotation level-1 Swertiamarin, a secoiridoid glycoside found in genera of Enicostemma littorale, confers anti-hyperglycemic and anti-hyperlipidemic effects[1]. Swertiamarin, a secoiridoid glycoside found in genera of Enicostemma littorale, confers anti-hyperglycemic and anti-hyperlipidemic effects[1].

   

Papaverine

Papaverine

C20H21NO4 (339.1471)


A benzylisoquinoline alkaloid that is isoquinoline substituted by methoxy groups at positions 6 and 7 and a 3,4-dimethoxybenzyl group at position 1. It has been isolated from Papaver somniferum. A - Alimentary tract and metabolism > A03 - Drugs for functional gastrointestinal disorders > A03A - Drugs for functional gastrointestinal disorders > A03AD - Papaverine and derivatives G - Genito urinary system and sex hormones > G04 - Urologicals > G04B - Urologicals > G04BE - Drugs used in erectile dysfunction D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids C78274 - Agent Affecting Cardiovascular System > C29707 - Vasodilating Agent D004791 - Enzyme Inhibitors > D010726 - Phosphodiesterase Inhibitors D000089162 - Genitourinary Agents > D064804 - Urological Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents C471 - Enzyme Inhibitor > C744 - Phosphodiesterase Inhibitor Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.761 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.758

   

pyridoxamine

Pyridoxylamine

C8H12N2O2 (168.0899)


A monohydroxypyridine that is pyridine substituted by a hydroxy group at position 3, an aminomethyl group at position 4, a hydroxymethyl group at position 5 and a methyl group at position 2. The 4-aminomethyl form of vitamin B6, it is used (in the form of the hydrochloride salt) for treatment of diabetic nephropathy. D018977 - Micronutrients > D014815 - Vitamins Pyridoxylamine is an advanced glycation end production (AGEs) and lipoxidation end products (ALEs) inhibitor, to protect against diabetes-induced retinal vascular lesions.

   

Glyceraldehyde

DL-Glyceric aldehyde

C3H6O3 (90.0317)


An aldotriose comprising propanal having hydroxy groups at the 2- and 3-positions. It plays role in the formation of advanced glycation end-products (AGEs), a deleterious accompaniment to ageing. DL-Glyceraldehyde is a monosaccharide. DL-Glyceraldehyde is the simplest aldose. DL-Glyceraldehyde can be used for various biochemical studies[1].

   

glyoxylic acid

glyoxylic acid

C2H2O3 (74.0004)


A 2-oxo monocarboxylic acid that is acetic acid bearing an oxo group at the alpha carbon atom.

   

N8-Acetylspermidine

N8-Acetylspermidine

C9H21N3O (187.1685)


   

iproniazid

N-propan-2-ylpyridine-4-carbohydrazide

C9H13N3O (179.1059)


N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AF - Monoamine oxidase inhibitors, non-selective D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D004791 - Enzyme Inhibitors > D008996 - Monoamine Oxidase Inhibitors C471 - Enzyme Inhibitor > C667 - Monoamine Oxidase Inhibitor

   

Vincamin

Vincamine

C21H26N2O3 (354.1943)


C - Cardiovascular system > C04 - Peripheral vasodilators > C04A - Peripheral vasodilators D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000970 - Antineoplastic Agents > D014748 - Vinca Alkaloids CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2327 Vincamine?is a monoterpenoid indole alkaloid extracted from the?Madagascar periwinkle. Vincamine?is a peripheral?vasodilator?and exerts a selective vasoregulator action on the brain microcapilar circulation[1]. Vincamine?is a?GPR40?agonist and acts as a β-cell protector by ameliorating β-cell dysfunction and promoting glucose-stimulated insulin secretion (GSIS).?Vincamine?improves glucose homeostasis?in vivo, and has the potential for the type 2 diabetes mellitus (T2DM) research[2]. Vincamine?is a monoterpenoid indole alkaloid extracted from the?Madagascar periwinkle. Vincamine?is a peripheral?vasodilator?and exerts a selective vasoregulator action on the brain microcapilar circulation[1]. Vincamine?is a?GPR40?agonist and acts as a β-cell protector by ameliorating β-cell dysfunction and promoting glucose-stimulated insulin secretion (GSIS).?Vincamine?improves glucose homeostasis?in vivo, and has the potential for the type 2 diabetes mellitus (T2DM) research[2].

   

Schidigerasaponin D5

2-{[4,5-dihydroxy-6-(hydroxymethyl)-2-{5,7,9,13-tetramethyl-5-oxaspiro[oxane-2,6-pentacyclo[10.8.0.0^{2,9}.0^{4,8}.0^{13,18}]icosane]oxy}oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C39H64O13 (740.4347)


Timosaponin AIII could inhibit acetylcholinesterase (AChE) activity, with an IC50 of 35.4 μM. Timosaponin AIII could inhibit acetylcholinesterase (AChE) activity, with an IC50 of 35.4 μM.

   

FA 20:4;O4

4-(3-{[(1S,2S,3S)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]methyl}oxiran-2-yl)butanoic acid

C20H32O6 (368.2199)


D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides

   

ST 21:3;O4

2beta,3beta-dihydroxy-5beta,14beta-pregn-7-ene-6,20-dione

C21H30O4 (346.2144)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

139-85-5

InChI=1\C7H6O3\c8-4-5-1-2-6(9)7(10)3-5\h1-4,9-10

C7H6O3 (138.0317)


D006401 - Hematologic Agents > D000925 - Anticoagulants Protocatechualdehyde (Catechaldehyde), a natural polyphenol compound isolated from the roots of radix Salviae Miltiorrhizae, is associated with a wide variety of biological activities and has been widely used in medicine as an antioxidant, anti-aging, an antibacterial and anti-inflammatory agent[1]. Protocatechualdehyde (Catechaldehyde), a natural polyphenol compound isolated from the roots of radix Salviae Miltiorrhizae, is associated with a wide variety of biological activities and has been widely used in medicine as an antioxidant, anti-aging, an antibacterial and anti-inflammatory agent[1].

   

GLYOX

4-03-00-01489 (Beilstein Handbook Reference)

C2H2O3 (74.0004)


   

30373-88-7

3-[[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-2-tetrahydropyranyl]oxy]-5,7-dihydroxy-2-(4-hydroxyphenyl)-4-chromenone

C27H30O16 (610.1534)


Kaempferol 3-O-sophoroside, a derivative of Kaempferol, is isolated from the leaves of cultivated mountain ginseng (Panax ginseng) with anti-inflammatory effects[1]. Kaempferol 3-O-sophoroside, a derivative of Kaempferol, is isolated from the leaves of cultivated mountain ginseng (Panax ginseng) with anti-inflammatory effects[1].

   

554-37-0

3,4,5-trihydroxybenzoic acid [(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl] ester

C13H16O10 (332.0743)


   

Pavacot

InChI=1\C20H21NO4\c1-22-17-6-5-13(10-18(17)23-2)9-16-15-12-20(25-4)19(24-3)11-14(15)7-8-21-16\h5-8,10-12H,9H2,1-4H

C20H21NO4 (339.1471)


A - Alimentary tract and metabolism > A03 - Drugs for functional gastrointestinal disorders > A03A - Drugs for functional gastrointestinal disorders > A03AD - Papaverine and derivatives G - Genito urinary system and sex hormones > G04 - Urologicals > G04B - Urologicals > G04BE - Drugs used in erectile dysfunction D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids C78274 - Agent Affecting Cardiovascular System > C29707 - Vasodilating Agent D004791 - Enzyme Inhibitors > D010726 - Phosphodiesterase Inhibitors D000089162 - Genitourinary Agents > D064804 - Urological Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents C471 - Enzyme Inhibitor > C744 - Phosphodiesterase Inhibitor

   

Butylphen

InChI=1\C10H14O\c1-10(2,3)8-4-6-9(11)7-5-8\h4-7,11H,1-3H

C10H14O (150.1045)


   

Timosaponin A-III

Smilagenin 3-O-beta-D-glucopyranosyl-(1->2)-beta-D-galactopyranoside

C39H64O13 (740.4347)


A natural product found in Anemarrhena asphodeloides. Timosaponin AIII could inhibit acetylcholinesterase (AChE) activity, with an IC50 of 35.4 μM. Timosaponin AIII could inhibit acetylcholinesterase (AChE) activity, with an IC50 of 35.4 μM.

   

methylglyoxal

methylglyoxal

C3H4O2 (72.0211)


A 2-oxo aldehyde derived from propanal.

   

Streptozocin

Streptozocin

C8H15N3O7 (265.091)


An N-nitrosourea that is an antibiotic produced by Streptomyces achromogenes. It is used as an antineoplastic agent and to induce diabetes in experimental animals. L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01A - Alkylating agents > L01AD - Nitrosoureas D000970 - Antineoplastic Agents

   

Candesartan cilexetil

Candesartan cilexetil

C33H34N6O6 (610.254)


C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C66930 - Angiotensin II Receptor Antagonist D057911 - Angiotensin Receptor Antagonists > D047228 - Angiotensin II Type 1 Receptor Blockers COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Candesartan Cilexetil (TCV-116) is an angiotensin II receptor inhibitor. Candesartan Cilexetil ameliorates the pulmonary fibrosis and has antiviral and skin wound healing effect. Candesartan Cilexetil can be used for the research of high blood pressure[1][2][3][4][5][6].

   

glycolaldehyde

glycolaldehyde

C2H4O2 (60.0211)


The glycolaldehyde derived from ethylene glycol. The parent of the class of glycolaldehydes.

   

21-Deoxycortisol

11beta,17alpha-dihydroxy-4-pregnene-3,20-dione

C21H30O4 (346.2144)


A deoxycortisol that is 17xi-pregn-4-ene-3,20-dione substituted by a beta-hydroxy group at position 11 and an alpha-hydroxy group at position 17. It is a marker of virilizing adrenal hyperplasia caused by 21-hydroxylase deficiency. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

beta-Glucogallin

1-Galloyl-beta-glucose

C13H16O10 (332.0743)


   

N-Methylpyridinium

N-Methylpyridinium

C6H8N+ (94.0657)


   

3,4-Dihydroxymandelaldehyde

3,4-Dihydroxymandelaldehyde

C8H8O4 (168.0423)


A hydroxyaldehyde consisting of phenylacetaldehyde having three hydroxy substituents located at the alpha-, 3- and 4-positions. It is a metabolite of noradrenaline. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Oxalaldehyde

1,2-Ethanedione

C2H2O2 (58.0055)


   

4-tert-Butylphenol

4-tert-Butylphenol

C10H14O (150.1045)