1,3-Diaminopropane (BioDeep_00000002853)
Secondary id: BioDeep_00000399913, BioDeep_00001867710
natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019
代谢物信息卡片
化学式: C3H10N2 (74.084394)
中文名称: 1,3-丙二胺, 1,3-二氨基丙烷
谱图信息:
最多检出来源 Homo sapiens(blood) 35.65%
Last reviewed on 2024-07-09.
Cite this Page
1,3-Diaminopropane. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/1,3-diaminopropane (retrieved
2024-11-08) (BioDeep RN: BioDeep_00000002853). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C(CCN)N
InChI: InChI=1/C3H10N2/c4-2-1-3-5/h1-5H2
描述信息
1,3-Diaminopropane, also known as DAP or trimethylenediamine, belongs to the class of organic compounds known as monoalkylamines. These are organic compounds containing a primary aliphatic amine group. 1,3-Diaminopropane is a stable, flammable, and highly hygroscopic fluid. It is a polyamine that is normally quite toxic if swallowed, inhaled, or absorbed through the skin. It is a catabolic byproduct of spermidine. It is also a precursor in the enzymatic synthesis of beta-alanine. 1,3-Diaminopropane is involved in the arginine/proline metabolic pathways and the beta-alanine metabolic pathway. 1,3-Diaminopropane has been detected, but not quantified in, several different foods, such as cassava, shiitakes, oyster mushrooms, muscadine grapes, and cinnamons. This could make 1,3-diaminopropane a potential biomarker for the consumption of these foods.
1,3-Propanediamine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=109-76-2 (retrieved 2024-07-09) (CAS RN: 109-76-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
同义名列表
16 个代谢物同义名
Trimethylenediamine dihydrochloride; 1,3-Diaminopropane dihydrochloride; Trimethylenediamine hydrochloride; 1,3-Trimethylenediamine; 1,3-diamino-N-Propane; 1,3-Propylenediamine; Trimethylenediamine; Propane-1,3-diamine; 1,3-Propanediamine; a,W-Propanediamine; α,ω-propanediamine; 1,3-diaminopropane; 3-Aminopropylamine; 1,3-Diaminepropane; tn; 1,3-Diaminopropane
数据库引用编号
28 个数据库交叉引用编号
- ChEBI: CHEBI:35411
- ChEBI: CHEBI:15725
- KEGG: C00986
- PubChem: 428
- HMDB: HMDB0000002
- Metlin: METLIN3216
- ChEMBL: CHEMBL174324
- Wikipedia: 1,3-Diaminopropane
- MetaCyc: CPD-313
- KNApSAcK: C00007404
- foodb: FDB005274
- chemspider: 415
- CAS: 109-76-2
- MoNA: PS074002
- MoNA: KO002661
- MoNA: KO002659
- MoNA: PS000102
- MoNA: PS000101
- MoNA: PS074001
- MoNA: KO002660
- MoNA: KO002658
- MoNA: KO002657
- PMhub: MS000006680
- PDB-CCD: 13D
- 3DMET: B00214
- NIKKAJI: J1.969K
- RefMet: 1,3-Diaminopropane
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-146
分类词条
相关代谢途径
Reactome(3)
BioCyc(0)
PlantCyc(0)
代谢反应
95 个相关的代谢反应过程信息。
Reactome(68)
- Metabolism of proteins:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Gamma carboxylation, hypusine formation and arylsulfatase activation:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Hypusinylation:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Metabolism of proteins:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Post-translational protein modification:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Gamma carboxylation, hypusine formation and arylsulfatase activation:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Hypusinylation:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Metabolism of proteins:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Post-translational protein modification:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Gamma carboxylation, hypusine formation and arylsulfatase activation:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Hypusinylation:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Post-translational protein modification:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Metabolism of proteins:
EIF5A2 + NAD + SPM ⟶ 1,3-diaminopropane + H+ + H0ZKZ7 + NADH
- Post-translational protein modification:
EIF5A2 + NAD + SPM ⟶ 1,3-diaminopropane + H+ + H0ZKZ7 + NADH
- Gamma carboxylation, hypusine formation and arylsulfatase activation:
EIF5A2 + NAD + SPM ⟶ 1,3-diaminopropane + H+ + H0ZKZ7 + NADH
- Hypusinylation:
EIF5A2 + NAD + SPM ⟶ 1,3-diaminopropane + H+ + H0ZKZ7 + NADH
- Metabolism of proteins:
NAD + SPM + eif5a ⟶ 1,3-diaminopropane + H+ + NADH + eif5a
- Gamma carboxylation, hypusine formation and arylsulfatase activation:
NAD + SPM + eif5a ⟶ 1,3-diaminopropane + H+ + NADH + eif5a
- Metabolism of proteins:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Post-translational protein modification:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Gamma carboxylation, hypusine formation and arylsulfatase activation:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Hypusinylation:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Hypusinylation:
NAD + SPM + eif5a ⟶ 1,3-diaminopropane + H+ + NADH + eif5a
- Post-translational protein modification:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Gamma carboxylation, hypusine formation and arylsulfatase activation:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Hypusinylation:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Metabolism of proteins:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Post-translational protein modification:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Gamma carboxylation, hypusine formation and arylsulfatase activation:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Hypusinylation:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Metabolism of proteins:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Post-translational protein modification:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Gamma carboxylation, hypusine formation and arylsulfatase activation:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Hypusinylation:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Metabolism of proteins:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Post-translational protein modification:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Gamma carboxylation, hypusine formation and arylsulfatase activation:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Hypusinylation:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Metabolism of proteins:
NAD + SPM + eif5a ⟶ 1,3-diaminopropane + H+ + NADH + eif5a
- Post-translational protein modification:
NAD + SPM + eif5a ⟶ 1,3-diaminopropane + H+ + NADH + eif5a
- Gamma carboxylation, hypusine formation and arylsulfatase activation:
NAD + SPM + eif5a ⟶ 1,3-diaminopropane + H+ + NADH + eif5a
- Hypusinylation:
NAD + SPM + eif5a ⟶ 1,3-diaminopropane + H+ + NADH + eif5a
- Metabolism of proteins:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH + Q9GU68
- Post-translational protein modification:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH + Q9GU68
- Gamma carboxylation, hypusine formation and arylsulfatase activation:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH + Q9GU68
- Hypusinylation:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH + Q9GU68
- Metabolism of proteins:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Post-translational protein modification:
NAD + SPM + eif5a ⟶ 1,3-diaminopropane + H+ + NADH + eif5a
- Gamma carboxylation, hypusine formation and arylsulfatase activation:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Hypusinylation:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Metabolism of proteins:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Post-translational protein modification:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Gamma carboxylation, hypusine formation and arylsulfatase activation:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Hypusinylation:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Metabolism of proteins:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Post-translational protein modification:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Gamma carboxylation, hypusine formation and arylsulfatase activation:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Hypusinylation:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Metabolism of proteins:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Post-translational protein modification:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Gamma carboxylation, hypusine formation and arylsulfatase activation:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Hypusinylation:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Metabolism of proteins:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Post-translational protein modification:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Gamma carboxylation, hypusine formation and arylsulfatase activation:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Hypusinylation:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Metabolism of proteins:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Post-translational protein modification:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
BioCyc(1)
- β-alanine biosynthesis I:
H2O + O2 + propane-1,3-diamine ⟶ 3-aminopropanal + H+ + ammonia + hydrogen peroxide
WikiPathways(0)
Plant Reactome(12)
- Amino acid metabolism:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Amino acid biosynthesis:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Beta-alanine biosynthesis I:
H2O + SPM + hydrogen acceptor ⟶ 1,3-diaminopropane + 4-aminobutanal + hydrogen donor
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis I:
H2O + SPM + hydrogen acceptor ⟶ 1,3-diaminopropane + 4-aminobutanal + hydrogen donor
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Beta-alanine biosynthesis I:
H2O + SPM + hydrogen acceptor ⟶ 1,3-diaminopropane + 4-aminobutanal + hydrogen donor
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(14)
- beta-Alanine Metabolism:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- GABA-Transaminase Deficiency:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- Ureidopropionase Deficiency:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- Carnosinuria, Carnosinemia:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- beta-Alanine Metabolism:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- GABA-Transaminase Deficiency:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- Ureidopropionase Deficiency:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- beta-Alanine Metabolism:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- beta-Alanine Metabolism:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- beta-Alanine Metabolism:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- beta-Alanine Metabolism:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- GABA-Transaminase Deficiency:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- Carnosinuria, Carnosinemia:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- Carnosinuria, Carnosinemia:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
PharmGKB(0)
9 个相关的物种来源信息
- 3702 - Arabidopsis thaliana: 10.1104/PP.114.240986
- 3055 - Chlamydomonas reinhardtii: 10.1074/JBC.M110.122812
- 2771 - Cyanidium caldarium: 10.1016/0031-9422(90)85082-Q
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
- 442941 - Lyallia kerguelensis: 10.1016/S0031-9422(99)00191-0
- 3879 - Medicago sativa: 10.3389/FPLS.2017.01208
- 44947 - Pontederia crassipes: 10.1248/CPB.31.3315
- 28901 - Salmonella enterica: 10.1039/C3MB25598K
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Cagri Gulenturk, Fatma Nur Alp-Turgut, Busra Arikan, Aysenur Tofan, Ceyda Ozfidan-Konakci, Evren Yildiztugay. Polyamine, 1,3-diaminopropane, regulates defence responses on growth, gas exchange, PSII photochemistry and antioxidant system in wheat under arsenic toxicity.
Plant physiology and biochemistry : PPB.
2023 Jul; 201(?):107886. doi:
10.1016/j.plaphy.2023.107886
. [PMID: 37451004] - Roberto Mattioli, Gianmarco Pascarella, Riccardo D'Incà, Alessandra Cona, Riccardo Angelini, Veronica Morea, Paraskevi Tavladoraki. Arabidopsis N-acetyltransferase activity 2 preferentially acetylates 1,3-diaminopropane and thialysine.
Plant physiology and biochemistry : PPB.
2022 Jan; 170(?):123-132. doi:
10.1016/j.plaphy.2021.11.034
. [PMID: 34871830] - Sophie Maiocchi, Jacqueline Ku, Tom Hawtrey, Irene De Silvestro, Ernst Malle, Martin Rees, Shane R Thomas, Jonathan C Morris. Polyamine-Conjugated Nitroxides Are Efficacious Inhibitors of Oxidative Reactions Catalyzed by Endothelial-Localized Myeloperoxidase.
Chemical research in toxicology.
2021 06; 34(6):1681-1692. doi:
10.1021/acs.chemrestox.1c00094
. [PMID: 34085520] - Hong-Wu Liu, Qing-Tian Ji, Gang-Gang Ren, Fang Wang, Fen Su, Pei-Yi Wang, Xiang Zhou, Zhi-Bing Wu, Zhong Li, Song Yang. Antibacterial Functions and Proposed Modes of Action of Novel 1,2,3,4-Tetrahydro-β-carboline Derivatives that Possess an Attractive 1,3-Diaminopropan-2-ol Pattern against Rice Bacterial Blight, Kiwifruit Bacterial Canker, and Citrus Bacterial Canker.
Journal of agricultural and food chemistry.
2020 Nov; 68(45):12558-12568. doi:
10.1021/acs.jafc.0c02528
. [PMID: 33140649] - Nan Zhou, Yanping Shi, Chao Sun, Xingwei Zhang, Wei Zhao. Carbon quantum dot-AgOH colloid fluorescent probe for selective detection of biothiols based on the inner filter effect.
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.
2020 Mar; 228(?):117847. doi:
10.1016/j.saa.2019.117847
. [PMID: 31818643] - Nupur K Das, Andrew J Schwartz, Gabrielle Barthel, Naohiro Inohara, Qing Liu, Amanda Sankar, David R Hill, Xiaoya Ma, Olivia Lamberg, Matthew K Schnizlein, Juan L Arqués, Jason R Spence, Gabriel Nunez, Andrew D Patterson, Duxin Sun, Vincent B Young, Yatrik M Shah. Microbial Metabolite Signaling Is Required for Systemic Iron Homeostasis.
Cell metabolism.
2020 01; 31(1):115-130.e6. doi:
10.1016/j.cmet.2019.10.005
. [PMID: 31708445] - Iris Samarra, Bruno Ramos-Molina, M Isabel Queipo-Ortuño, Francisco J Tinahones, Lluís Arola, Antoni Delpino-Rius, Pol Herrero, Núria Canela. Gender-Related Differences on Polyamine Metabolome in Liquid Biopsies by a Simple and Sensitive Two-Step Liquid-Liquid Extraction and LC-MS/MS.
Biomolecules.
2019 11; 9(12):. doi:
10.3390/biom9120779
. [PMID: 31779105] - Wenwen Wang, Hao Zhang, Zhifeng Zhang, Mengying Luo, Yuedan Wang, Qiongzhen Liu, Yuanli Chen, Mufang Li, Dong Wang. Amine-functionalized PVA-co-PE nanofibrous membrane as affinity membrane with high adsorption capacity for bilirubin.
Colloids and surfaces. B, Biointerfaces.
2017 Feb; 150(?):271-278. doi:
10.1016/j.colsurfb.2016.10.034
. [PMID: 28029549] - K Kivirand, H Sõmerik, M-L Oldekop, R Rebane, T Rinken. Effect of spermidine and its metabolites on the activity of pea seedlings diamine oxidase and the problems of biosensing of biogenic amines with this enzyme.
Enzyme and microbial technology.
2016 Jan; 82(?):133-137. doi:
10.1016/j.enzmictec.2015.09.007
. [PMID: 26672459] - Said S Al-Jaroudi, Muhammad Altaf, Abdulaziz A Al-Saadi, Abdel-Nasser Kawde, Saleh Altuwaijri, Saeed Ahmad, Anvarhusein A Isab. Synthesis, characterization and theoretical calculations of (1,2-diaminocyclohexane)(1,3-diaminopropane)gold(III) chloride complexes: in vitro cytotoxic evaluations against human cancer cell lines.
Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine.
2015 Oct; 28(5):827-44. doi:
10.1007/s10534-015-9869-1
. [PMID: 26099502] - Peter Kämpfer, Stefanie P Glaeser, Louise K J Nilsson, Thomas Eberhard, Sebastian Håkansson, Lionel Guy, Stefan Roos, Hans-Jürgen Busse, Olle Terenius. Proposal of Thorsellia kenyensis sp. nov. and Thorsellia kandunguensis sp. nov., isolated from larvae of Anopheles arabiensis, as members of the family Thorselliaceae fam. nov.
International journal of systematic and evolutionary microbiology.
2015 Feb; 65(Pt 2):444-451. doi:
10.1099/ijs.0.070292-0
. [PMID: 25385997] - Fabien Jammes, Nathalie Leonhardt, Daniel Tran, Hadjira Bousserouel, Anne-Aliénor Véry, Jean-Pierre Renou, Alain Vavasseur, June M Kwak, Hervé Sentenac, François Bouteau, Jeffrey Leung. Acetylated 1,3-diaminopropane antagonizes abscisic acid-mediated stomatal closing in Arabidopsis.
The Plant journal : for cell and molecular biology.
2014 Jul; 79(2):322-33. doi:
10.1111/tpj.12564
. [PMID: 24891222] - Sushma Gurung, Michael F Cohen, Jon Fukuto, Hideo Yamasaki. Polyamine-Induced Rapid Root Abscission in Azolla pinnata.
Journal of amino acids.
2012; 2012(?):493209. doi:
10.1155/2012/493209
. [PMID: 22997568] - Mohamad Hamshou, Els J M Van Damme, Gianni Vandenborre, Bart Ghesquière, Geert Trooskens, Kris Gevaert, Guy Smagghe. GalNAc/Gal-binding Rhizoctonia solani agglutinin has antiproliferative activity in Drosophila melanogaster S2 cells via MAPK and JAK/STAT signaling.
PloS one.
2012; 7(4):e33680. doi:
10.1371/journal.pone.0033680
. [PMID: 22529896] - Pavel I Kitov, Eugenia Paszkiewicz, Joanna M Sadowska, Zhicheng Deng, Marya Ahmed, Ravin Narain, Thomas P Griener, George L Mulvey, Glen D Armstrong, David R Bundle. Impact of the nature and size of the polymeric backbone on the ability of heterobifunctional ligands to mediate shiga toxin and serum amyloid p component ternary complex formation.
Toxins.
2011 09; 3(9):1065-88. doi:
10.3390/toxins3091065
. [PMID: 22069757] - Jorge Martín, Carlos García-Estrada, Angel Rumbero, Eliseo Recio, Silvia M Albillos, Ricardo V Ullán, Juan-Francisco Martín. Characterization of an autoinducer of penicillin biosynthesis in Penicillium chrysogenum.
Applied and environmental microbiology.
2011 Aug; 77(16):5688-96. doi:
10.1128/aem.00059-11
. [PMID: 21724894] - Anna Borioni, Giuditta Bastanzio, Maurizio Delfini, Carlo Mustazza, Fabio Sciubba, Massimo Tatti, Maria Rosaria Del Giudice. High resolution NMR conformational studies of new bivalent NOP receptor antagonists in model membrane systems.
Bioorganic chemistry.
2011 Feb; 39(1):59-66. doi:
10.1016/j.bioorg.2010.12.001
. [PMID: 21211814] - Rafael Barros Gomes Camara, Leandro Silva Costa, Gabriel Pereira Fidelis, Leonardo Thiago Duarte Barreto Nobre, Nednaldo Dantas-Santos, Sara Lima Cordeiro, Mariana Santana Santos Pereira Costa, Luciana Guimaraes Alves, Hugo Alexandre Oliveira Rocha. Heterofucans from the brown seaweed Canistrocarpus cervicornis with anticoagulant and antioxidant activities.
Marine drugs.
2011 Jan; 9(1):124-38. doi:
10.3390/md9010124
. [PMID: 21339951] - Ran Liu, Ying Jia, Weiming Cheng, Junhong Ling, Lili Liu, Kaishun Bi, Qing Li. Determination of polyamines in human urine by precolumn derivatization with benzoyl chloride and high-performance liquid chromatography coupled with Q-time-of-flight mass spectrometry.
Talanta.
2011 Jan; 83(3):751-6. doi:
10.1016/j.talanta.2010.10.039
. [PMID: 21147316] - Paola Fincato, Panagiotis N Moschou, Valentina Spedaletti, Raffaela Tavazza, Riccardo Angelini, Rodolfo Federico, Kalliopi A Roubelakis-Angelakis, Paraskevi Tavladoraki. Functional diversity inside the Arabidopsis polyamine oxidase gene family.
Journal of experimental botany.
2011 Jan; 62(3):1155-68. doi:
10.1093/jxb/erq341
. [PMID: 21081665] - Muriel Quinet, Alexis Ndayiragije, Isabelle Lefèvre, Béatrice Lambillotte, Christine C Dupont-Gillain, Stanley Lutts. Putrescine differently influences the effect of salt stress on polyamine metabolism and ethylene synthesis in rice cultivars differing in salt resistance.
Journal of experimental botany.
2010 Jun; 61(10):2719-33. doi:
10.1093/jxb/erq118
. [PMID: 20472577] - Peter Kämpfer, Hans-Jürgen Busse, Holger C Scholz. Chromobacterium piscinae sp. nov. and Chromobacterium pseudoviolaceum sp. nov., from environmental samples.
International journal of systematic and evolutionary microbiology.
2009 Oct; 59(Pt 10):2486-90. doi:
10.1099/ijs.0.008888-0
. [PMID: 19622653] - Jose Sánchez-López, Gemma Camañes, Víctor Flors, Cristian Vicent, Victoria Pastor, Begonya Vicedo, Miguel Cerezo, Pilar García-Agustín. Underivatized polyamine analysis in plant samples by ion pair LC coupled with electrospray tandem mass spectrometry.
Plant physiology and biochemistry : PPB.
2009 Jul; 47(7):592-8. doi:
10.1016/j.plaphy.2009.02.006
. [PMID: 19303315] - Jeong Ah Byun, Man Ho Choi, Myeong Hee Moon, Gu Kong, Bong Chul Chung. Serum polyamines in pre- and post-operative patients with breast cancer corrected by menopausal status.
Cancer letters.
2009 Jan; 273(2):300-4. doi:
10.1016/j.canlet.2008.08.024
. [PMID: 18805631] - Santiago J Maiale, María Marina, Diego H Sánchez, Fernando L Pieckenstain, Oscar A Ruiz. In vitro and in vivo inhibition of plant polyamine oxidase activity by polyamine analogues.
Phytochemistry.
2008 Oct; 69(14):2552-8. doi:
10.1016/j.phytochem.2008.07.003
. [PMID: 18783804] - Panagiotis N Moschou, Maite Sanmartin, Athina H Andriopoulou, Enrique Rojo, Jose J Sanchez-Serrano, Kalliopi A Roubelakis-Angelakis. Bridging the gap between plant and mammalian polyamine catabolism: a novel peroxisomal polyamine oxidase responsible for a full back-conversion pathway in Arabidopsis.
Plant physiology.
2008 Aug; 147(4):1845-57. doi:
10.1104/pp.108.123802
. [PMID: 18583528] - Mathieu Mével, Gilles Breuzard, Jean-Jacques Yaouanc, Jean-Claude Clément, Pierre Lehn, Chantal Pichon, Paul-Alain Jaffrès, Patrick Midoux. Synthesis and transfection activity of new cationic phosphoramidate lipids: high efficiency of an imidazolium derivative.
Chembiochem : a European journal of chemical biology.
2008 Jun; 9(9):1462-71. doi:
10.1002/cbic.200700727
. [PMID: 18454443] - Panagiotis N Moschou, Ioannis D Delis, Konstantinos A Paschalidis, Kalliopi A Roubelakis-Angelakis. Transgenic tobacco plants overexpressing polyamine oxidase are not able to cope with oxidative burst generated by abiotic factors.
Physiologia plantarum.
2008 Jun; 133(2):140-56. doi:
10.1111/j.1399-3054.2008.01049.x
. [PMID: 18282192] - Jeong Ah Byun, Sang Hee Lee, Byung Hwa Jung, Man Ho Choi, Myeong Hee Moon, Bong Chul Chung. Analysis of polyamines as carbamoyl derivatives in urine and serum by liquid chromatography-tandem mass spectrometry.
Biomedical chromatography : BMC.
2008 Jan; 22(1):73-80. doi:
10.1002/bmc.898
. [PMID: 17668437] - Víctor Flors, Mercedes Paradís, Javier García-Andrade, Miguel Cerezo, Carmen González-Bosch, Pilar García-Agustín. A Tolerant Behavior in Salt-Sensitive Tomato Plants can be Mimicked by Chemical Stimuli.
Plant signaling & behavior.
2007 Jan; 2(1):50-7. doi:
10.4161/psb.2.1.3862
. [PMID: 19516968] - Michele Caraglia, Alessandra Dicitore, Gaia Giuberti, Diana Cassese, Marilena Lepretti, Maria Cartenì, Alberto Abbruzzese, Paola Stiuso. Effects of VIP and VIP-DAP on proliferation and lipid peroxidation metabolism in human KB cells.
Annals of the New York Academy of Sciences.
2006 Jul; 1070(?):167-72. doi:
10.1196/annals.1317.007
. [PMID: 16888160] - Peter Kämpfer, Jenny M Lindh, Olle Terenius, Siamak Haghdoost, Enevold Falsen, Hans-Jürgen Busse, Ingrid Faye. Thorsellia anophelis gen. nov., sp. nov., a new member of the Gammaproteobacteria.
International journal of systematic and evolutionary microbiology.
2006 Feb; 56(Pt 2):335-338. doi:
10.1099/ijs.0.63999-0
. [PMID: 16449435] - Alessandra Cona, Giuseppina Rea, Riccardo Angelini, Rodolfo Federico, Paraskevi Tavladoraki. Functions of amine oxidases in plant development and defence.
Trends in plant science.
2006 Feb; 11(2):80-8. doi:
10.1016/j.tplants.2005.12.009
. [PMID: 16406305] - Chandrashekhar Chittimalla, Liliane Zammut-Italiano, Guy Zuber, Jean-Paul Behr. Monomolecular DNA nanoparticles for intravenous delivery of genes.
Journal of the American Chemical Society.
2005 Aug; 127(32):11436-41. doi:
10.1021/ja0522332
. [PMID: 16089472] - Li-Yao Zhang, Xing-Chun Tang, Meng-Xiang Sun. Simultaneous determination of histamine and polyamines by capillary zone electrophoresis with 4-fluor-7-nitro-2,1,3-benzoxadiazole derivatization and fluorescence detection.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2005 Jun; 820(2):211-9. doi:
10.1016/j.jchromb.2005.03.033
. [PMID: 15869910] - Johanna Witzell, Tiina Kuusela, Tytti Sarjala. Polyamine profiles of healthy and parasite-infected Vaccinium myrtillus plants under nitrogen enrichment.
Journal of chemical ecology.
2005 Mar; 31(3):561-75. doi:
10.1007/s10886-005-2041-6
. [PMID: 15898501] - Rehana B Hossany, Margaret A Johnson, Adewale A Eniade, B Mario Pinto. Synthesis and immunochemical characterization of protein conjugates of carbohydrate and carbohydrate-mimetic peptides as experimental vaccines.
Bioorganic & medicinal chemistry.
2004 Jul; 12(13):3743-54. doi:
10.1016/j.bmc.2004.03.075
. [PMID: 15186860] - Iris J Edwards, Janice D Wagner, Catherine A Vogl-Willis, Kenneth N Litwak, William T Cefalu. Arterial heparan sulfate is negatively associated with hyperglycemia and atherosclerosis in diabetic monkeys.
Cardiovascular diabetology.
2004 Apr; 3(?):6. doi:
10.1186/1475-2840-3-6
. [PMID: 15117408] - Pau Arbós, Miguel Angel Campanero, Miguel Angel Arangoa, Juan M Irache. Nanoparticles with specific bioadhesive properties to circumvent the pre-systemic degradation of fluorinated pyrimidines.
Journal of controlled release : official journal of the Controlled Release Society.
2004 Apr; 96(1):55-65. doi:
10.1016/j.jconrel.2004.01.006
. [PMID: 15063029] - P Arbós, M A Campanero, M A Arangoa, M J Renedo, J M Irache. Influence of the surface characteristics of PVM/MA nanoparticles on their bioadhesive properties.
Journal of controlled release : official journal of the Controlled Release Society.
2003 Apr; 89(1):19-30. doi:
10.1016/s0168-3659(03)00066-x
. [PMID: 12695060] - Víctor Flors, M Carmen Miralles, Carmen González-Bosch, Miguel Carda, Pilar García-Agustín. Induction of protection against the necrotrophic pathogens Phytophthora citrophthora and Alternaria solani in Lycopersicon esculentum Mill. by a novel synthetic glycoside combined with amines.
Planta.
2003 Apr; 216(6):929-38. doi:
10.1007/s00425-002-0945-8
. [PMID: 12687360] - P Arbós, M Wirth, M A Arangoa, F Gabor, J M Irache. Gantrez AN as a new polymer for the preparation of ligand-nanoparticle conjugates.
Journal of controlled release : official journal of the Controlled Release Society.
2002 Oct; 83(3):321-30. doi:
10.1016/s0168-3659(02)00015-9
. [PMID: 12387941] - C Madhavaiah, S Verma. Kinetic evaluation of a metalated diglycine conjugate as a functional mimetic of phosphate ester hydrolase.
Bioconjugate chemistry.
2001 Nov; 12(6):855-60. doi:
10.1021/bc000140y
. [PMID: 11716674] - K Fujiwara, T Tanabe, M Yabuuchi, R Ueoka, D Tsuru. A monoclonal antibody against the glutaraldehyde-conjugated polyamine, putrescine: application to immunocytochemistry.
Histochemistry and cell biology.
2001 Jun; 115(6):471-7. doi:
10.1007/s004180100280
. [PMID: 11455447] - O E Zherebilo, N Kucheryava, R I Gvozdyak, D Ziegler, M Scheibner, G Auling. Diversity of polyamine patterns in soft rot pathogens and other plant-associated members of the Enterobacteriaceae.
Systematic and applied microbiology.
2001 Apr; 24(1):54-62. doi:
10.1078/0723-2020-00019
. [PMID: 11403399] - S Yamamoto, S Nagata, K Kusaba. Purification and characterization of homospermidine synthase in Acinetobacter tartarogenes ATCC 31105.
Journal of biochemistry.
1993 Jul; 114(1):45-9. doi:
10.1093/oxfordjournals.jbchem.a124137
. [PMID: 8407874] - Y Mizrahi, P B Applewhite, A W Galston. Polyamine binding to proteins in oat and Petunia protoplasts.
Plant physiology.
1989; 91(?):738-43. doi:
10.1104/pp.91.2.738
. [PMID: 11537462] - B H Rohde, G C Chiou. Effects of glucose on neuroblastoma in vitro and in vivo.
Journal of pharmaceutical sciences.
1987 May; 76(5):366-70. doi:
10.1002/jps.2600760505
. [PMID: 3656098] - J E Seely, L Persson, G J Sertich, A E Pegg. Comparison of ornithine decarboxylase from rat liver, rat hepatoma and mouse kidney.
The Biochemical journal.
1985 Mar; 226(2):577-86. doi:
10.1042/bj2260577
. [PMID: 3994674] - L Persson, E Rosengren. The effect of 1,3-diaminopropane on the urinary excretion of spermidine in the mouse.
Agents and actions.
1984 Oct; 15(3-4):235-7. doi:
10.1007/bf01972354
. [PMID: 6524521] - L Persson, J E Seely, A E Pegg. Investigation of structure and rate of synthesis of ornithine decarboxylase protein in mouse kidney.
Biochemistry.
1984 Jul; 23(16):3777-83. doi:
10.1021/bi00311a033
. [PMID: 6477895] - F A Muskiet, G A van den Berg, A W Kingma, D C Fremouw-Ottevangers, M R Halie. Total polyamines and their non-alpha-amino acid metabolites simultaneously determined in urine by capillary gas chromatography, with nitrogen-phosphorus detector; and some clinical applications.
Clinical chemistry.
1984 May; 30(5):687-95. doi:
. [PMID: 6713628]
- G Schepers, E M Weiner. Human C1q: rapid isolation and quantitative determination by immunodiffusion.
Journal of immunological methods.
1984 Feb; 67(1):185-92. doi:
10.1016/0022-1759(84)90097-8
. [PMID: 6421935] - J E Seely, A E Pegg. Changes in mouse kidney ornithine decarboxylase activity are brought about by changes in the amount of enzyme protein as measured by radioimmunoassay.
The Journal of biological chemistry.
1983 Feb; 258(4):2496-500. doi:
10.1016/s0021-9258(18)32953-3
. [PMID: 6401734] - D H Russell. Clinical relevance of polyamines.
Critical reviews in clinical laboratory sciences.
1983; 18(3):261-311. doi:
10.3109/10408368209085073
. [PMID: 6339165] - J E Seely, H Pösö, A E Pegg. Measurement of the number of ornithine decarboxylase molecules in rat and mouse tissues under various physiological conditions by binding of radiolabelled alpha-difluoromethylornithine.
The Biochemical journal.
1982 Aug; 206(2):311-8. doi:
10.1042/bj2060311
. [PMID: 6816220] - M Schwartz, S Kohsaka, B W Agranoff. Ornithine decarboxylase activity in retinal explants of goldfish undergoing optic nerve regeneration.
Brain research.
1981 Jun; 227(3):403-13. doi:
10.1016/0165-3806(81)90077-8
. [PMID: 7260646] - M A Grillo, S Bedino, G Testore. Induction of an ornithine decarboxylase-antizyme by diaminopropane in chicken kidney and intestinal mucosa.
Bollettino della Societa italiana di biologia sperimentale.
1980 Jul; 56(13):1341-4. doi:
NULL
. [PMID: 7004461] - K Tuomi, A Raina, R Mäntyjärvi. 1,3-Diaminopropane rapidly inhibits protein synthesis and virus production in BKT-1 cells.
FEBS letters.
1980 Mar; 111(2):329-32. doi:
10.1016/0014-5793(80)80820-9
. [PMID: 7358176] - R Cameron, S Henningsson, L Persson, E Rosengren. Effects of 1,3-diaminopropane on testosterone induced hypertrophy and polyamine synthesis in mouse kidney.
Acta physiologica Scandinavica.
1979 Jul; 106(3):299-305. doi:
10.1111/j.1748-1716.1979.tb06402.x
. [PMID: 506764] - W W LEE, B J BERRIDGE, L O ROSS, L GOODMAN. SYNTHESIS OF MUSTARDS FROM PUTRESCINE, CADAVERINE, AND 1,3-DIAMINOPROPANE.
Journal of medicinal chemistry.
1963 Sep; 6(?):567-9. doi:
10.1021/jm00341a023
. [PMID: 14173585] - . .
.
. doi:
. [PMID: 24634478]