4-Hydroxyphenylacetaldehyde (BioDeep_00000005309)
Secondary id: BioDeep_00000875067, BioDeep_00001868929
human metabolite PANOMIX_OTCML-2023 Endogenous natural product Volatile Flavor Compounds
代谢物信息卡片
化学式: C8H8O2 (136.0524268)
中文名称: 4-羟基苯乙醛
谱图信息:
最多检出来源 Viridiplantae(plant) 0.2%
分子结构信息
SMILES: C1=CC(=CC=C1CC=O)O
InChI: InChI=1S/C8H8O2/c9-6-5-7-1-3-8(10)4-2-7/h1-4,6,10H,5H2
描述信息
4-Hydroxyphenylacetaldehyde is a byproduct of tyrosine metabolism.
COVID info from COVID-19 Disease Map
Corona-virus
Coronavirus
SARS-CoV-2
COVID-19
SARS-CoV
COVID19
SARS2
SARS
同义名列表
数据库引用编号
18 个数据库交叉引用编号
- ChEBI: CHEBI:15621
- KEGG: C03765
- PubChem: 440113
- HMDB: HMDB0003767
- Metlin: METLIN63506
- Wikipedia: 4-Hydroxyphenylacetaldehyde
- MetaCyc: HYDRPHENYLAC-CPD
- KNApSAcK: C00051850
- foodb: FDB023224
- chemspider: 389113
- CAS: 7339-87-9
- PMhub: MS000018069
- PubChem: 6521
- 3DMET: B00637
- NIKKAJI: J707.372K
- RefMet: 4-Hydroxyphenylacetaldehyde
- LOTUS: LTS0005926
- KNApSAcK: 15621
分类词条
相关代谢途径
Reactome(5)
代谢反应
167 个相关的代谢反应过程信息。
Reactome(63)
- Biogenic amines are oxidatively deaminated to aldehydes by MAOA and MAOB:
H2O + Oxygen + TYR ⟶ H2O2 + HPHAC + ammonia
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Amine Oxidase reactions:
5HT + H2O + Oxygen ⟶ 5HIALD + H2O2 + ammonia
- Biogenic amines are oxidatively deaminated to aldehydes by MAOA and MAOB:
5HT + H2O + Oxygen ⟶ 5HIALD + H2O2 + ammonia
- Biogenic amines are oxidatively deaminated to aldehydes by MAOA and MAOB:
H2O + Oxygen + TYR ⟶ H2O2 + HPHAC + ammonia
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Amine Oxidase reactions:
5HT + H2O + Oxygen ⟶ 5HIALD + H2O2 + ammonia
- Biogenic amines are oxidatively deaminated to aldehydes by MAOA and MAOB:
5HT + H2O + Oxygen ⟶ 5HIALD + H2O2 + ammonia
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Amine Oxidase reactions:
5HT + H2O + Oxygen ⟶ 5HIALD + H2O2 + ammonia
- Biogenic amines are oxidatively deaminated to aldehydes by MAOA and MAOB:
5HT + H2O + Oxygen ⟶ 5HIALD + H2O2 + ammonia
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Amine Oxidase reactions:
H2O + Oxygen + TYR ⟶ H2O2 + HPHAC + ammonia
- Biogenic amines are oxidatively deaminated to aldehydes by MAOA and MAOB:
H2O + Oxygen + TYR ⟶ H2O2 + HPHAC + ammonia
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Amine Oxidase reactions:
5HT + H2O + Oxygen ⟶ 5HIALD + H2O2 + ammonia
- Biogenic amines are oxidatively deaminated to aldehydes by MAOA and MAOB:
5HT + H2O + Oxygen ⟶ 5HIALD + H2O2 + ammonia
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- Amine Oxidase reactions:
H2O + Oxygen + TYR ⟶ H2O2 + HPHAC + ammonia
- Biogenic amines are oxidatively deaminated to aldehydes by MAOA and MAOB:
H2O + Oxygen + TYR ⟶ H2O2 + HPHAC + ammonia
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Amine Oxidase reactions:
H2O + Oxygen + TYR ⟶ H2O2 + HPHAC + ammonia
- Biogenic amines are oxidatively deaminated to aldehydes by MAOA and MAOB:
H2O + Oxygen + TYR ⟶ H2O2 + HPHAC + ammonia
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Amine Oxidase reactions:
5HT + H2O + Oxygen ⟶ 5HIALD + H2O2 + ammonia
- Biogenic amines are oxidatively deaminated to aldehydes by MAOA and MAOB:
5HT + H2O + Oxygen ⟶ 5HIALD + H2O2 + ammonia
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Amine Oxidase reactions:
H2O + Oxygen + TYR ⟶ H2O2 + HPHAC + ammonia
- Biogenic amines are oxidatively deaminated to aldehydes by MAOA and MAOB:
H2O + Oxygen + TYR ⟶ H2O2 + HPHAC + ammonia
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Amine Oxidase reactions:
H2O + Oxygen + TYR ⟶ H2O2 + HPHAC + ammonia
- Biogenic amines are oxidatively deaminated to aldehydes by MAOA and MAOB:
H2O + Oxygen + TYR ⟶ H2O2 + HPHAC + ammonia
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Amine Oxidase reactions:
H2O + Oxygen + TYR ⟶ H2O2 + HPHAC + ammonia
- Biogenic amines are oxidatively deaminated to aldehydes by MAOA and MAOB:
H2O + Oxygen + TYR ⟶ H2O2 + HPHAC + ammonia
BioCyc(9)
- aromatic biogenic amine degradation (bacteria):
3,4-dihydroxyphenylacetaldehyde + H2O + NAD+ ⟶ 3,4-dihydroxyphenylacetate + H+ + NADH
- L-tyrosine degradation III:
4-tyrosol + NAD+ ⟶ (4-hydroxyphenyl)acetaldehyde + H+ + NADH
- salidroside biosynthesis:
4-tyrosol + UDP-α-D-glucose ⟶ H+ + UDP + salidroside
- (S)-reticuline biosynthesis I:
3-(4-hydroxyphenyl)pyruvate + H+ ⟶ (4-hydroxyphenyl)acetaldehyde + CO2
- tyrosine degradation:
pyruvate + tyr ⟶ 4-hydroxyphenylpyruvate + ala
- salidroside biosynthesis:
4-tyrosol + UDP-α-D-glucose ⟶ H+ + UDP + salidroside
- aromatic biogenic amine degradation (bacteria):
(4-hydroxyphenyl)acetaldehyde + H2O + NAD+ ⟶ 4-hydroxyphenylacetate + H+ + NADH
- tyrosine degradation III:
4-hydroxyphenylpyruvate + ala ⟶ pyruvate + tyr
- tyrosine degradation III:
pyruvate + tyr ⟶ 4-hydroxyphenylpyruvate + ala
WikiPathways(0)
Plant Reactome(0)
INOH(2)
- Tyrosine metabolism ( Tyrosine metabolism ):
4-Hydroxy-phenyl-acetaldehyde + H2O + NAD+ ⟶ 4-Hydroxy-phenyl-acetic acid + NADH
- NAD+ + 4-Hydroxy-phenyl-acetaldehyde + H2O = NADH + 4-Hydroxy-phenyl-acetic acid ( Tyrosine metabolism ):
4-Hydroxy-phenyl-acetaldehyde + H2O + NAD+ ⟶ 4-Hydroxy-phenyl-acetic acid + NADH
PlantCyc(90)
- (S)-reticuline biosynthesis I:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyramine ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + dopamine
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- (S)-reticuline biosynthesis I:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyramine ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + dopamine
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
4-tyrosol + NAD+ ⟶ (4-hydroxyphenyl)acetaldehyde + H+ + NADH
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
4-tyrosol + NAD+ ⟶ (4-hydroxyphenyl)acetaldehyde + H+ + NADH
- salidroside biosynthesis:
4-tyrosol + NAD+ ⟶ (4-hydroxyphenyl)acetaldehyde + H+ + NADH
- salidroside biosynthesis:
4-tyrosol + NAD+ ⟶ (4-hydroxyphenyl)acetaldehyde + H+ + NADH
COVID-19 Disease Map(1)
- @COVID-19 Disease
Map["name"]:
2-Methyl-3-acetoacetyl-CoA + Coenzyme A ⟶ Acetyl-CoA + Propanoyl-CoA
PathBank(2)
- Tyrosine Metabolism:
4-Hydroxyphenylpyruvic acid + L-Alanine ⟶ L-Tyrosine + Pyruvic acid
- Tyrosine Metabolism:
4-Fumarylacetoacetic acid + Water ⟶ Acetoacetic acid + Fumaric acid + Hydrogen Ion
PharmGKB(0)
38 个相关的物种来源信息
- 22140 - Annonaceae: LTS0005926
- 12947 - Aristolochia: LTS0005926
- 12948 - Aristolochia gigantea: 10.3390/MOLECULES15129462
- 12948 - Aristolochia gigantea: LTS0005926
- 16727 - Aristolochiaceae: LTS0005926
- 3452 - Clematis: LTS0005926
- 1857144 - Clematis parviloba: 10.1007/S12272-009-1111-7
- 1857144 - Clematis parviloba: LTS0005926
- 46246 - Delphinium: LTS0005926
- 1127184 - Delphinium pentagynum: 10.1016/J.PHYTOCHEM.2004.03.017
- 1127184 - Delphinium pentagynum: LTS0005926
- 3841 - Erythrina: LTS0005926
- 49817 - Erythrina crista-galli: 10.1016/S0031-9422(99)00230-7
- 49817 - Erythrina crista-galli: LTS0005926
- 2759 - Eukaryota: LTS0005926
- 3803 - Fabaceae: LTS0005926
- 3379 - Gnetaceae: LTS0005926
- 3372 - Gnetopsida: LTS0005926
- 3380 - Gnetum: LTS0005926
- 3381 - Gnetum montanum: 10.1021/NP200700F
- 3381 - Gnetum montanum: LTS0005926
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
- 56856 - Macleaya: LTS0005926
- 56857 - Macleaya cordata: 10.1016/J.MOLP.2017.05.007
- 56857 - Macleaya cordata: LTS0005926
- 3398 - Magnoliopsida: LTS0005926
- 3465 - Papaveraceae: LTS0005926
- 3440 - Ranunculaceae: LTS0005926
- 56861 - Romneya: LTS0005926
- 56862 - Romneya coulteri: 10.1016/S0031-9422(98)00745-6
- 56862 - Romneya coulteri: LTS0005926
- 35493 - Streptophyta: LTS0005926
- 58023 - Tracheophyta: LTS0005926
- 33090 - Viridiplantae: LTS0005926
- 225838 - Xylopia: LTS0005926
- 992813 - Xylopia parviflora: 10.1016/J.PHYTOCHEM.2003.12.010
- 992813 - Xylopia parviflora: LTS0005926
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Xiang Sheng, Fahmi Himo. Enzymatic Pictet-Spengler Reaction: Computational Study of the Mechanism and Enantioselectivity of Norcoclaurine Synthase.
Journal of the American Chemical Society.
2019 07; 141(28):11230-11238. doi:
10.1021/jacs.9b04591
. [PMID: 31265268] - Michael P Torrens-Spence, Glenda Gillaspy, Bingyu Zhao, Kim Harich, Robert H White, Jianyong Li. Biochemical evaluation of a parsley tyrosine decarboxylase results in a novel 4-hydroxyphenylacetaldehyde synthase enzyme.
Biochemical and biophysical research communications.
2012 Feb; 418(2):211-6. doi:
10.1016/j.bbrc.2011.12.124
. [PMID: 22266321] - Isabel Desgagné-Penix, Morgan F Khan, David C Schriemer, Dustin Cram, Jacek Nowak, Peter J Facchini. Integration of deep transcriptome and proteome analyses reveals the components of alkaloid metabolism in opium poppy cell cultures.
BMC plant biology.
2010 Nov; 10(?):252. doi:
10.1186/1471-2229-10-252
. [PMID: 21083930] - Luis González-Candelas, Santiago Alamar, Paloma Sánchez-Torres, Lorenzo Zacarías, Jose F Marcos. A transcriptomic approach highlights induction of secondary metabolism in citrus fruit in response to Penicillium digitatum infection.
BMC plant biology.
2010 Aug; 10(?):194. doi:
10.1186/1471-2229-10-194
. [PMID: 20807411] - Yuan-Yuan Xie, Dan Yuan, Jing-Yu Yang, Li-Hui Wang, Chun-Fu Wu. Cytotoxic activity of flavonoids from the flowers of Chrysanthemum morifolium on human colon cancer Colon205 cells.
Journal of Asian natural products research.
2009 Sep; 11(9):771-8. doi:
10.1080/10286020903128470
. [PMID: 20183323] - Christian Radauer, Peter Lackner, Heimo Breiteneder. The Bet v 1 fold: an ancient, versatile scaffold for binding of large, hydrophobic ligands.
BMC evolutionary biology.
2008 Oct; 8(?):286. doi:
10.1186/1471-2148-8-286
. [PMID: 18922149] - Anna Mura, Francesca Pintus, Antonella Fais, Simona Porcu, Marcella Corda, Delia Spanò, Rosaria Medda, Giovanni Floris. Tyramine oxidation by copper/TPQ amine oxidase and peroxidase from Euphorbia characias latex.
Archives of biochemistry and biophysics.
2008 Jul; 475(1):18-24. doi:
10.1016/j.abb.2008.03.034
. [PMID: 18423366] - Alessandra Pasquo, Alessandra Bonamore, Stefano Franceschini, Alberto Macone, Alberto Boffi, Andrea Ilari. Cloning, expression, crystallization and preliminary X-ray data analysis of norcoclaurine synthase from Thalictrum flavum.
Acta crystallographica. Section F, Structural biology and crystallization communications.
2008 Apr; 64(Pt 4):281-3. doi:
10.1107/s1744309108005678
. [PMID: 18391427] - Katherine G Zulak, Aalim M Weljie, Hans J Vogel, Peter J Facchini. Quantitative 1H NMR metabolomics reveals extensive metabolic reprogramming of primary and secondary metabolism in elicitor-treated opium poppy cell cultures.
BMC plant biology.
2008 Jan; 8(?):5. doi:
10.1186/1471-2229-8-5
. [PMID: 18211706] - Hiromichi Minami, Emilyn Dubouzet, Kinuko Iwasa, Fumihiko Sato. Functional analysis of norcoclaurine synthase in Coptis japonica.
The Journal of biological chemistry.
2007 Mar; 282(9):6274-82. doi:
10.1074/jbc.m608933200
. [PMID: 17204481] - Alessandra Padiglia, Giovanni Floris, Silvia Longu, M Eugenia Schininà, Jens Z Pedersen, Alessandro Finazzi Agrò, Francesco De Angelis, Rosaria Medda. Inhibition of lentil copper/TPQ amine oxidase by the mechanism-based inhibitor derived from tyramine.
Biological chemistry.
2004 Mar; 385(3-4):323-9. doi:
10.1515/bc.2004.028
. [PMID: 15134347] - N Samanani, P J Facchini. Isolation and partial characterization of norcoclaurine synthase, the first committed step in benzylisoquinoline alkaloid biosynthesis, from opium poppy.
Planta.
2001 Oct; 213(6):898-906. doi:
10.1007/s004250100581
. [PMID: 11722126] - M Exner, E Alt, M Hermann, R Hofbauer, S Kapiotis, P Quehenberger, W Speiser, E Minar, B Gmeiner. p-Hydroxyphenylacetaldehyde, the major product of tyrosine oxidation by the activated myeloperoxidase system can act as an antioxidant in LDL.
FEBS letters.
2001 Feb; 490(1-2):28-31. doi:
10.1016/s0014-5793(01)02131-7
. [PMID: 11172805] - S L Hazen, J P Gaut, J R Crowley, F F Hsu, J W Heinecke. Elevated levels of protein-bound p-hydroxyphenylacetaldehyde, an amino-acid-derived aldehyde generated by myeloperoxidase, are present in human fatty streaks, intermediate lesions and advanced atherosclerotic lesions.
The Biochemical journal.
2000 Dec; 352 Pt 3(?):693-9. doi:
. [PMID: 11104675]
- J I Heller, J R Crowley, S L Hazen, D M Salvay, P Wagner, S Pennathur, J W Heinecke. p-hydroxyphenylacetaldehyde, an aldehyde generated by myeloperoxidase, modifies phospholipid amino groups of low density lipoprotein in human atherosclerotic intima.
The Journal of biological chemistry.
2000 Apr; 275(14):9957-62. doi:
10.1074/jbc.275.14.9957
. [PMID: 10744670] - S L Hazen, J Heller, F F Hsu, A d'Avignon, J W Heinecke. Synthesis, isolation, and characterization of the adduct formed in the reaction of p-hydroxyphenylacetaldehyde with the amino headgroup of phosphatidylethanolamine and phosphatidylserine.
Chemical research in toxicology.
1999 Jan; 12(1):19-27. doi:
10.1021/tx980147s
. [PMID: 9894014] - S L Hazen, J P Gaut, F F Hsu, J R Crowley, A d'Avignon, J W Heinecke. p-Hydroxyphenylacetaldehyde, the major product of L-tyrosine oxidation by the myeloperoxidase-H2O2-chloride system of phagocytes, covalently modifies epsilon-amino groups of protein lysine residues.
The Journal of biological chemistry.
1997 Jul; 272(27):16990-8. doi:
10.1074/jbc.272.27.16990
. [PMID: 9202012] - S L Hazen, F F Hsu, J W Heinecke. p-Hydroxyphenylacetaldehyde is the major product of L-tyrosine oxidation by activated human phagocytes. A chloride-dependent mechanism for the conversion of free amino acids into reactive aldehydes by myeloperoxidase.
The Journal of biological chemistry.
1996 Jan; 271(4):1861-7. doi:
10.1074/jbc.271.4.1861
. [PMID: 8567631] - . .
.
. doi:
. [PMID: 21045121]
- . .
.
. doi:
. [PMID: 15447655]