Gene Association: TKT

UniProt Search: TKT (PROTEIN_CODING)
Function Description: transketolase

found 249 associated metabolites with current gene based on the text mining result from the pubmed database.

Harmaline

3H-Pyrido[3,4-b]indole, 4,9-dihydro-7-methoxy-1-methyl-

C13H14N2O (214.1106)


Harmaline is a harmala alkaloid in which the harman skeleton is methoxy-substituted at C-7 and has been reduced across the 3,4 bond. It has a role as a oneirogen. It derives from a hydride of a harman. Harmaline is a natural product found in Passiflora pilosicorona, Passiflora boenderi, and other organisms with data available. A beta-carboline alkaloid isolated from seeds of PEGANUM. A harmala alkaloid in which the harman skeleton is methoxy-substituted at C-7 and has been reduced across the 3,4 bond. Harmaline is found in fruits. Harmaline is an alkaloid from Passiflora incarnata (maypops D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants D004791 - Enzyme Inhibitors > D008996 - Monoamine Oxidase Inhibitors Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID H027; [MS2] KO008994 KEIO_ID H027

   

Niacinamide

pyridine-3-carboxamide

C6H6N2O (122.048)


Nicotinamide is a white powder. (NTP, 1992) Nicotinamide is a pyridinecarboxamide that is pyridine in which the hydrogen at position 3 is replaced by a carboxamide group. It has a role as an EC 2.4.2.30 (NAD(+) ADP-ribosyltransferase) inhibitor, a metabolite, a cofactor, an antioxidant, a neuroprotective agent, an EC 3.5.1.98 (histone deacetylase) inhibitor, an anti-inflammatory agent, a Sir2 inhibitor, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite, a mouse metabolite, a human urinary metabolite and a geroprotector. It is a vitamin B3, a pyridinecarboxamide and a pyridine alkaloid. It is functionally related to a nicotinic acid. An important compound functioning as a component of the coenzyme NAD. Its primary significance is in the prevention and/or cure of blacktongue and pellagra. Most animals cannot manufacture this compound in amounts sufficient to prevent nutritional deficiency and it therefore must be supplemented through dietary intake. Niacinamide is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Nicotinamide is a natural product found in Mus musculus, Euonymus grandiflorus, and other organisms with data available. Niacinamide is the active form of vitamin B3 and a component of the coenzyme nicotinamide adenine dinucleotide (NAD). Niacinamide acts as a chemo- and radio-sensitizing agent by enhancing tumor blood flow, thereby reducing tumor hypoxia. This agent also inhibits poly(ADP-ribose) polymerases, enzymes involved in the rejoining of DNA strand breaks induced by radiation or chemotherapy. Nicotinamide is a uremic toxin. Uremic toxins can be subdivided into three major groups based upon their chemical and physical characteristics: 1) small, water-soluble, non-protein-bound compounds, such as urea; 2) small, lipid-soluble and/or protein-bound compounds, such as the phenols and 3) larger so-called middle-molecules, such as beta2-microglobulin. Chronic exposure of uremic toxins can lead to a number of conditions including renal damage, chronic kidney disease and cardiovascular disease. Niacinamide or vitamin B3 is an important compound functioning as a component of the coenzyme NAD. Its primary significance is in the prevention and/or cure of blacktongue and pellagra. Most animals cannot manufacture this compound in amounts sufficient to prevent nutritional deficiency and it therefore must be supplemented through dietary intake. Niacinamide is used to increase the effect of radiation therapy on tumor cells. Niacin (nicotinic acid) and niacinamide, while both labeled as vitamin B3 also have different applications. Niacinamide is useful in arthritis and early-onset type I diabetes while niacin is an effective reducer of high cholesterol levels. Niacinamide is a metabolite found in or produced by Saccharomyces cerevisiae. An important compound functioning as a component of the coenzyme NAD. Its primary significance is in the prevention and/or cure of blacktongue and PELLAGRA. Most animals cannot manufacture this compound in amounts sufficient to prevent nutritional deficiency and it therefore must be supplemented through dietary intake. See also: Adenosine; Niacinamide (component of); Dapsone; niacinamide (component of); Adenosine; Niacinamide; Titanium Dioxide (component of) ... View More ... Niacinamide, also known as nicotinamide (NAM), is a form of vitamin B3 found in food and used as a dietary supplement and medication. Niacinamide belongs to the class of organic compounds known as nicotinamides. These are heterocyclic aromatic compounds containing a pyridine ring substituted at position 3 by a carboxamide group. Its primary significance is in the prevention and/or cure of blacktongue and pellagra. The structure of nicotinamide consists of a pyridine ring to which a primary amide group is attached in the meta position. It is an amide of nicotinic acid. As an aromatic compound, it undergoes electrophilic substitution reactions and transformations of its two functional groups. Niacinamide and phosphoribosyl pyrophosphate can be converted into nicotinic acid mononucleotide and phosphate by the enzyme nicotinamide phosphoribosyltransferase. In humans, niacinamide is involved in the metabolic disorder called the nad+ signalling pathway (cancer). Niacinamide is an odorless tasting compound. Outside of the human body, niacinamide is found, on average, in the highest concentration within a few different foods, such as common sages, cow milk, and cocoa beans and in a lower concentration in common pea. Niacinamide has also been detected, but not quantified in several different foods, such as yardlong beans, roselles, apples, oyster mushrooms, and swiss chards. Niacinamide occurs in trace amounts mainly in meat, fish, nuts, and mushrooms, as well as to a lesser extent in some vegetables. It is commonly added to cereals and other foods. Many multivitamins contain 20–30 mg of vitamin B3 and it is also available in higher doses. Most animals cannot manufacture this compound in amounts sufficient to prevent nutritional deficiency and it therefore must be supplemented through dietary intake. COVID info from COVID-19 Disease Map, WikiPathways, PDB, Protein Data Bank, clinicaltrial, clinicaltrials, clinical trial, clinical trials A pyridinecarboxamide that is pyridine in which the hydrogen at position 3 is replaced by a carboxamide group. Widespread in plants, e.g. rice, yeast and fungi. Dietary supplement, may be used in infant formulas Nicotinamide. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=98-92-0 (retrieved 2024-07-01) (CAS RN: 98-92-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Nicotinamide is a form of vitamin B3 or niacin. Nicotinamide Hydrochloride inhibits SIRT2 activity (IC50: 2 μM). Nicotinamide also inhibits SIRT1. Nicotinamide increases cellular NAD+, ATP, ROS levels. Nicotinamide inhibits tumor growth and improves survival. Nicotinamide also has anti-HBV activity[1][2][3][4]. Nicotinamide is a form of vitamin B3 or niacin. Nicotinamide Hydrochloride inhibits SIRT2 activity (IC50: 2 μM). Nicotinamide also inhibits SIRT1. Nicotinamide increases cellular NAD+, ATP, ROS levels. Nicotinamide inhibits tumor growth and improves survival. Nicotinamide also has anti-HBV activity[1][2][3][4]. Nicotinamide is a form of vitamin B3 or niacin. Nicotinamide Hydrochloride inhibits SIRT2 activity (IC50: 2 μM). Nicotinamide also inhibits SIRT1. Nicotinamide increases cellular NAD+, ATP, ROS levels. Nicotinamide inhibits tumor growth and improves survival. Nicotinamide also has anti-HBV activity[1][2][3][4].

   

Nicotinic acid

pyridine-3-carboxylic acid

C6H5NO2 (123.032)


Nicotinic acid is an odorless white crystalline powder with a feebly acid taste. pH (saturated aqueous solution) 2.7. pH (1.3\\\\\% solution) 3-3.5. (NTP, 1992) Nicotinic acid is a pyridinemonocarboxylic acid that is pyridine in which the hydrogen at position 3 is replaced by a carboxy group. It has a role as an antidote, an antilipemic drug, a vasodilator agent, a metabolite, an EC 3.5.1.19 (nicotinamidase) inhibitor, an Escherichia coli metabolite, a mouse metabolite, a human urinary metabolite and a plant metabolite. It is a vitamin B3, a pyridinemonocarboxylic acid and a pyridine alkaloid. It is a conjugate acid of a nicotinate. Niacin is a B vitamin used to treat vitamin deficiencies as well as hyperlipidemia, dyslipidemia, hypertriglyceridemia, and to reduce the risk of myocardial infarctions. Nicotinic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Niacin is a Nicotinic Acid. Niacin, also known as nicotinic acid and vitamin B3, is a water soluble, essential B vitamin that, when given in high doses, is effective in lowering low density lipoprotein (LDL) cholesterol and raising high density lipoprotein (HDL) cholesterol, which makes this agent of unique value in the therapy of dyslipidemia. Niacin can cause mild-to-moderate serum aminotransferase elevations and high doses and certain formulations of niacin have been linked to clinically apparent, acute liver injury which can be severe as well as fatal. Niacin is a water-soluble vitamin belonging to the vitamin B family, which occurs in many animal and plant tissues, with antihyperlipidemic activity. Niacin is converted to its active form niacinamide, which is a component of the coenzymes nicotinamide adenine dinucleotide (NAD) and its phosphate form, NADP. These coenzymes play an important role in tissue respiration and in glycogen, lipid, amino acid, protein, and purine metabolism. Although the exact mechanism of action by which niacin lowers cholesterol is not fully understood, it may act by inhibiting the synthesis of very low density lipoproteins (VLDL), inhibiting the release of free fatty acids from adipose tissue, increasing lipoprotein lipase activity, and reducing the hepatic synthesis of VLDL-C and LDL-C. Nicotinic acid, also known as niacin or vitamin B3, is a water-soluble vitamin whose derivatives such as NADH, NAD, NAD+, and NADP play essential roles in energy metabolism in the living cell and DNA repair. The designation vitamin B3 also includes the amide form, nicotinamide or niacinamide. Severe lack of niacin causes the deficiency disease pellagra, whereas a mild deficiency slows down the metabolism decreasing cold tolerance. The recommended daily allowance of niacin is 2-12 mg a day for children, 14 mg a day for women, 16 mg a day for men, and 18 mg a day for pregnant or breast-feeding women. It is found in various animal and plant tissues and has pellagra-curative, vasodilating, and antilipemic properties. The liver can synthesize niacin from the essential amino acid tryptophan (see below), but the synthesis is extremely slow and requires vitamin B6; 60 mg of tryptophan are required to make one milligram of niacin. Bacteria in the gut may also perform the conversion but are inefficient. A water-soluble vitamin of the B complex occurring in various animal and plant tissues. It is required by the body for the formation of coenzymes NAD and NADP. It has PELLAGRA-curative, vasodilating, and antilipemic properties. Nicotinic acid, also known as niacin or vitamin B3, is a water-soluble vitamin whose derivatives such as NADH, NAD, NAD+, and NADP play essential roles in energy metabolism in the living cell and DNA repair. The designation vitamin B3 also includes the amide form, nicotinamide or niacinamide. Severe lack of niacin causes the deficiency disease pellagra, whereas a mild deficiency slows down the metabolism decreasing cold tolerance. The recommended daily allowance of niacin is 2-12 mg a day for children, 14 mg a day for women, 16 mg a day for men, and 18 mg a day for pregnant or breast-feeding women. It is found in various animal and plant tissues and has pellagra-curative, vasodilating, and antilipemic properties. The liver can synthesize niacin from the essential amino acid tryptophan, but the synthesis is extremely slow and requires vitamin B6; 60 mg of tryptophan are required to make one milligram of niacin. Bacteria in the gut may also perform the conversion but are inefficient. Nicotinic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=59-67-6 (retrieved 2024-06-29) (CAS RN: 59-67-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Niacin (Vitamin B3) is an orally active water-soluble B3 vitamin that is an essential nutrient for humans. Niacin (Vitamin B3) plays a key role in energy metabolism, cell signaling cascades regulating gene expression and apoptosis. Niacin (Vitamin B3) is also used in the study of cardiovascular diseases[1][2]. Niacin (Vitamin B3) is an orally active water-soluble B3 vitamin that is an essential nutrient for humans. Niacin (Vitamin B3) plays a key role in energy metabolism, cell signaling cascades regulating gene expression and apoptosis. Niacin (Vitamin B3) is also used in the study of cardiovascular diseases[1][2].

   

Shikimic acid

Shikimic acid [3R-(3alpha,4alpha,5beta)]-3,4,5-Trihydroxy-1-cyclohexene-1-carboxylic acid

C7H10O5 (174.0528)


Shikimic acid is a cyclohexenecarboxylic acid that is cyclohex-1-ene-1-carboxylic acid substituted by hydroxy groups at positions 3, 4 and 5 (the 3R,4S,5R stereoisomer). It is an intermediate metabolite in plants and microorganisms. It has a role as an Escherichia coli metabolite, a Saccharomyces cerevisiae metabolite and a plant metabolite. It is a cyclohexenecarboxylic acid, a hydroxy monocarboxylic acid and an alpha,beta-unsaturated monocarboxylic acid. It is a conjugate acid of a shikimate. Shikimic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Shikimic acid is a natural product found in Quercus mongolica, Populus tremula, and other organisms with data available. Shikimic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A tri-hydroxy cyclohexene carboxylic acid important in biosynthesis of so many compounds that the shikimate pathway is named after it. Shikimic acid, more commonly known as its anionic form shikimate, is a cyclohexene, a cyclitol and a cyclohexanecarboxylic acid. It is an important biochemical intermediate in plants and microorganisms. Its name comes from the Japanese flower shikimi (the Japanese star anise, Illicium anisatum), from which it was first isolated. Shikimic acid is a precursor for: the aromatic amino acids phenylalanine and tyrosine; indole, indole derivatives and tryptophan; many alkaloids and other aromatic metabolites; tannins; and lignin. In pharmaceutical industry, shikimic acid from chinese star anise is used as a base material for production of Tamiflu (oseltamivir). Although shikimic acid is present in most autotrophic organisms, it is a biosynthetic intermediate and generally found in very low concentrations. A cyclohexenecarboxylic acid that is cyclohex-1-ene-1-carboxylic acid substituted by hydroxy groups at positions 3, 4 and 5 (the 3R,4S,5R stereoisomer). It is an intermediate metabolite in plants and microorganisms. Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 175 KEIO_ID S012 Shikimic acid is a key metabolic intermediate of the aromatic amino acid biosynthesis pathway, found in microbes and plants. Shikimic acid is a key metabolic intermediate of the aromatic amino acid biosynthesis pathway, found in microbes and plants.

   

alpha-Carotene

(6R)-1,5,5-trimethyl-6-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-3,7,12,16-tetramethyl-18-(2,6,6-trimethylcyclohex-1-en-1-yl)octadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]cyclohex-1-ene

C40H56 (536.4382)


alpha-Carotene belongs to the class of organic compounds known as carotenes. These are a type of unsaturated hydrocarbons containing eight consecutive isoprene units. They are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. alpha-Carotene is considered to be an isoprenoid lipid molecule. alpha-Carotene is one of the primary isomers of carotene. Plasma levels of alpha-carotene are positively associated with the detection rate of AFB1-DNA adducts in a dose-dependent manner, whereas plasma lycopene level was inversely related to the presence of the adducts in urine (PMID: 9214602). (6R)-beta,epsilon-carotene is an alpha-carotene. It is an enantiomer of a (6S)-beta,epsilon-carotene. alpha-Carotene is a natural product found in Hibiscus syriacus, Scandix stellata, and other organisms with data available. Widespread carotenoid, e.g. in carrots and palm oil. Has vitamin A activity but less than that of b-Carotene A cyclic carotene with a beta- and an epsilon-ring at opposite ends respectively. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

Folic acid

FOLVITE(Thomson.Micromedex. Drug Information for the Health Care Professional. 24th ed. Volume 1. Plus Updates. Content Reviewed by the United States Pharmacopeial Convention, Inc. Greenwood Village, CO. 2004., p. 1422)

C19H19N7O6 (441.1397)


Folic acid appears as odorless orange-yellow needles or platelets. Darkens and chars from approximately 482 °F. Folic acid is an N-acyl-amino acid that is a form of the water-soluble vitamin B9. Its biologically active forms (tetrahydrofolate and others) are essential for nucleotide biosynthesis and homocysteine remethylation. It has a role as a human metabolite, a nutrient and a mouse metabolite. It is a member of folic acids and a N-acyl-amino acid. It is functionally related to a pteroic acid. It is a conjugate acid of a folate(2-). Folic acid, also known as folate or Vitamin B9, is a member of the B vitamin family and an essential cofactor for enzymes involved in DNA and RNA synthesis. More specifically, folic acid is required by the body for the synthesis of purines, pyrimidines, and methionine before incorporation into DNA or protein. Folic acid is particularly important during phases of rapid cell division, such as infancy, pregnancy, and erythropoiesis, and plays a protective factor in the development of cancer. As humans are unable to synthesize folic acid endogenously, diet and supplementation is necessary to prevent deficiencies. For example, folic acid is present in green vegetables, beans, avocado, and some fruits. In order to function within the body, folic acid must first be reduced by the enzyme dihydrofolate reductase (DHFR) into the cofactors dihydrofolate (DHF) and tetrahydrofolate (THF). This important pathway, which is required for de novo synthesis of nucleic acids and amino acids, is disrupted by anti-metabolite therapies such as [DB00563] as they function as DHFR inhibitors to prevent DNA synthesis in rapidly dividing cells, and therefore prevent the formation of DHF and THF. When used in high doses such as for cancer therapy, or in low doses such as for Rheumatoid Arthritis or psoriasis, [DB00563] impedes the bodys ability to create folic acid. This results in a deficiency of coenzymes and a resultant buildup of toxic substances that are responsible for numerous adverse side effects. As a result, supplementation with 1-5mg of folic acid is recommended to prevent deficiency and a number of side effects associated with MTX therapy including mouth ulcers and gastrointestinal irritation. [DB00650] (also known as folinic acid) supplementation is typically used for high-dose MTX regimens for the treatment of cancer. Levoleucovorin and leucovorin are analogs of tetrahydrofolate (THF) and are able to bypass DHFR reduction to act as a cellular replacement for the co-factor THF. There are also several antiepileptic drugs (AEDs) that are associated with reduced serum and red blood cell folate, including [DB00564] (CBZ), [DB00252] (PHT), or barbiturates. Folic acid is therefore often provided as supplementation to individuals using these medications, particularly to women of child-bearing age. Inadequate folate levels can result in a number of health concerns including cardiovascular disease, megaloblastic anemias, cognitive deficiencies, and neural tube defects (NTDs). Folic acid is typically supplemented during pregnancy to prevent the development of NTDs and in individuals with alcoholism to prevent the development of neurological disorders, for example. Folic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). CID 6037 is a natural product found in Beta vulgaris, Angelica sinensis, and other organisms with data available. Folic Acid is a collective term for pteroylglutamic acids and their oligoglutamic acid conjugates. As a natural water-soluble substance, folic acid is involved in carbon transfer reactions of amino acid metabolism, in addition to purine and pyrimidine synthesis, and is essential for hematopoiesis and red blood cell production. (NCI05) A member of the vitamin B family that stimulates the hematopoietic system. It is present in the liver and kidney and is found in mushrooms, spinach, yeast, green leaves, and grasses (POACEAE). Folic acid is used in the treat... Folic acid or folate, is a vitamin that belongs to the class of compounds known as pterins. Chemically, folate consists of three distinct chemical moieties linked together. A pterin (2-amino-4-hydroxy-pteridine) linked by a methylene bridge to a p-aminobenzoyl group that in turn is linked through an amide linkage to glutamic acid. It is a member of the vitamin B family and is primarily known as vitamin B9. Folate is required for the body to make DNA and RNA and metabolize amino acids necessary for cell division for the hematopoietic system. As humans cannot make folate, it is required in the diet, making it an essential nutrient (i.e. a vitamin). Folate occurs naturally in many foods including mushrooms, spinach, yeast, green leaves, and grasses (poaceae). Folic acid, being biochemically inactive, is converted to tetrahydrofolic acid and methyltetrahydrofolate by the enzyme known as dihydrofolate reductase. Tetrahydrofolate and methyltetrahydrofolate are transported across cells by receptor-mediated endocytosis where they are needed to maintain normal erythropoiesis, synthesize purine and thymidylate nucleic acids, interconvert amino acids and generate formic acid. Folic acid is used in the treatment and prevention of folate deficiencies and megaloblastic anemia. Folic acid is also used as a supplement by women during pregnancy to reduce the risk of neural tube defects (NTDs) in babies. Low levels in early pregnancy are believed to be the cause of more than half of babies born with NTDs (PMID: 28097362). Folic acid is also a microbial metabolite produced by Bifidobacterium and Lactobacillus (PMID: 22254078). An N-acyl-amino acid that is a form of the water-soluble vitamin B9. Its biologically active forms (tetrahydrofolate and others) are essential for nucleotide biosynthesis and homocysteine remethylation. B - Blood and blood forming organs > B03 - Antianemic preparations > B03B - Vitamin b12 and folic acid > B03BB - Folic acid and derivatives COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D006401 - Hematologic Agents > D006397 - Hematinics D018977 - Micronutrients > D014815 - Vitamins V - Various > V04 - Diagnostic agents Dietary supplement Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Formula(Parent): C19H19N7O6; Bottle Name:Folic acid ,approx; PRIME Parent Name:Folic acid; PRIME in-house No.:V0080; SubCategory_DNP: Pteridines and analogues, Pteridine alkaloids Acquisition and generation of the data is financially supported in part by CREST/JST. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.543 CONFIDENCE standard compound; INTERNAL_ID 134 Folic acid (Vitamin B9) is a orally active essential nutrient from the B complex group of vitamins. Folic acid shows antidepressant-like effect. Folic acid sodium reduces the risk of neonatal neural tube defects. Folic acid can be used to the research of megaloblastic and macrocytic anemias due to folic deficiency[1][2][3][4]. Folic acid (Vitamin B9) is a orally active essential nutrient from the B complex group of vitamins. Folic acid shows antidepressant-like effect. Folic acid sodium reduces the risk of neonatal neural tube defects. Folic acid can be used to the research of megaloblastic and macrocytic anemias due to folic deficiency[1][2][3][4].

   

3-Hydroxybenzaldehyde

Benzaldehyde, 3-hydroxy-

C7H6O2 (122.0368)


3-hydroxybenzaldehyde is a hydroxybenzaldehyde carrying a hydroxy substituent at position 3. 3-Hydroxybenzaldehyde is a natural product found in Rhytidoponera metallica, Marchantia polymorpha, and other organisms with data available. 3-Hydroxybenzaldehyde, also known as 3-hydroxybenzaldehyde or m-hydroxybenzaldehyde, is an organic compound belonging to the class of aromatic aldehydes. Its chemical formula is C7H6O2 and it is characterized by a benzene ring with a hydroxyl group (-OH) and an aldehyde group (-CHO) attached at the meta position on the ring. Biologically, 3-hydroxybenzaldehyde has been found to possess several interesting properties: 1. **Antioxidant Activity**: It exhibits antioxidant properties, which means it can neutralize harmful free radicals in the body. This can be beneficial in reducing oxidative stress, which is associated with various diseases and aging. 2. **Antimicrobial Effects**: 3-Hydroxybenzaldehyde has shown antimicrobial activity against a range of microorganisms, including bacteria and fungi. This makes it a potential candidate for the development of new antimicrobial agents. 3. **Anti-inflammatory Properties**: Some studies have indicated that this compound may have anti-inflammatory effects, which could be useful in the treatment of inflammatory conditions. 4. **Cytotoxicity**: It has been observed to have cytotoxic effects on certain types of cancer cells, suggesting a potential role in cancer therapy. However, more research is needed in this area. 5. **Enzyme Inhibition**: 3-Hydroxybenzaldehyde can inhibit the activity of certain enzymes, which may have implications in the management of conditions where these enzymes play a pathological role. It's important to note that while 3-hydroxybenzaldehyde has these biological properties, its use in practical applications, especially in a medical context, is still largely experimental and requires further research. The compound's effects and safety profile need to be thoroughly evaluated before it can be considered for widespread use in therapeutic or preventive treatments. 3-Hydroxybenzaldehyde. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=100-83-4 (retrieved 2024-08-06) (CAS RN: 100-83-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). 3-Hydroxybenzaldehyde?is a precursor compound for phenolic compounds, such as Protocatechualdehyde (HY-N0295). 3-Hydroxybenzaldehyde is a substrate of aldehyde dehydrogenase (ALDH) in rats and humans (ALDH2). 3-Hydroxybenzaldehyde has vasculoprotective effects?in vitro and in vivo[1]. 3-Hydroxybenzaldehyde?is a precursor compound for phenolic compounds, such as Protocatechualdehyde (HY-N0295). 3-Hydroxybenzaldehyde is a substrate of aldehyde dehydrogenase (ALDH) in rats and humans (ALDH2). 3-Hydroxybenzaldehyde has vasculoprotective effects?in vitro and in vivo[1]. 3-Hydroxybenzaldehyde?is a precursor compound for phenolic compounds, such as Protocatechualdehyde (HY-N0295). 3-Hydroxybenzaldehyde is a substrate of aldehyde dehydrogenase (ALDH) in rats and humans (ALDH2). 3-Hydroxybenzaldehyde has vasculoprotective effects?in vitro and in vivo[1].

   

Pantothenic acid

(D,+)-N(alpha-gamma-Dihydroxy-beta,beta-dimethylbutyryl)-beta-alanine

C9H17NO5 (219.1107)


(R)-pantothenic acid is a pantothenic acid having R-configuration. It has a role as an antidote to curare poisoning, a human blood serum metabolite and a geroprotector. It is a vitamin B5 and a pantothenic acid. It is a conjugate acid of a (R)-pantothenate. Pantothenic acid, also called pantothenate or vitamin B5 (a B vitamin), is a water-soluble vitamin discovered by Roger J. Williams in 1919. For many animals, pantothenic acid is an essential nutrient as it is required to synthesize coenzyme-A (CoA), as well as to synthesize and metabolize proteins, carbohydrates, and fats. Pantothenic acid is the amide between pantoic acid and β-alanine and commonly found as its alcohol analog, the provitamin panthenol, and as calcium pantothenate. Small quantities of pantothenic acid are found in nearly every food, with high amounts in whole-grain cereals, legumes, eggs, meat, royal jelly, avocado, and yogurt. Pantothenic acid is an ingredient in some hair and skin care products. Only the dextrorotatory (D) isomer of pantothenic acid possesses biological activity. while the levorotatory (L) form may antagonize the effects of the dextrorotatory isomer. Pantothenic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Pantothenic acid is a natural product found in Chlamydomonas reinhardtii, Arabidopsis thaliana, and other organisms with data available. Pantothenic Acid is a water-soluble vitamin ubiquitously found in plants and animal tissues with antioxidant property. Vitamin B5 is a component of coenzyme A (CoA) and a part of the vitamin B2 complex. Vitamin B5 is a growth factor and is essential for various metabolic functions, including the metabolism of carbohydrates, proteins, and fatty acids. This vitamin is also involved in the synthesis of cholesterol, lipids, neurotransmitters, steroid hormones, and hemoglobin. (R)-Pantothenic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A butyryl-beta-alanine that can also be viewed as pantoic acid complexed with BETA ALANINE. It is incorporated into COENZYME A and protects cells against peroxidative damage by increasing the level of GLUTATHIONE. See also: Broccoli (part of). Pantothenic acid, also called vitamin B5, is a water-soluble vitamin required to sustain life. Pantothenic acid is needed to form coenzyme-A (CoA), and is thus critical in the metabolism and synthesis of carbohydrates, proteins, and fats. Its name is derived from the Greek pantothen meaning "from everywhere" and small quantities of pantothenic acid are found in nearly every food, with high amounts in whole grain cereals, legumes, eggs, meat, and royal jelly. Pantothenic acid is classified as a member of the secondary alcohols. Secondary alcohols are compounds containing a secondary alcohol functional group, with the general structure HOC(R)(R) (R,R=alkyl, aryl). Pantothenic acid is considered to be soluble (in water) and acidic. (r)-pantothenate, also known as (+)-pantothenic acid or vitamin b5, is a member of the class of compounds known as secondary alcohols. Secondary alcohols are compounds containing a secondary alcohol functional group, with the general structure HOC(R)(R) (R,R=alkyl, aryl) (r)-pantothenate is soluble (in water) and a weakly acidic compound (based on its pKa). (r)-pantothenate can be found in a number of food items such as spirulina, nance, cereals and cereal products, and sparkleberry, which makes (r)-pantothenate a potential biomarker for the consumption of these food products (r)-pantothenate can be found primarily in blood and urine (r)-pantothenate exists in all eukaryotes, ranging from yeast to humans. D018977 - Micronutrients > D014815 - Vitamins A pantothenic acid having R-configuration. Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID P032; [MS2] KO009182 KEIO_ID P032; [MS3] KO009183 KEIO_ID P032 D-Pantothenic acid (Pantothenate) is an essential trace nutrient that functions as the obligate precursor of coenzyme A (CoA). D-Pantothenic acid plays key roles in myriad biological processes, including many that regulate carbohydrate, lipid, protein, and nucleic acid metabolism[1]. D-Pantothenic acid (Pantothenate) is an essential trace nutrient that functions as the obligate precursor of coenzyme A (CoA). D-Pantothenic acid plays key roles in myriad biological processes, including many that regulate carbohydrate, lipid, protein, and nucleic acid metabolism[1].

   

Flavin adenine dinucleotide

[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxytetrahydrofuran-2-yl]methyl (2R,3S,4S)-5-(7,8-dimethyl-2,4-dioxo-3,4-dihydrobenzo[g]pteridin-10(2H)-yl)-2,3,4-trihydroxypentyl dihydrogen diphosphate (non-preferred name)

C27H33N9O15P2 (785.1571)


FAD is a flavin adenine dinucleotide in which the substituent at position 10 of the flavin nucleus is a 5-adenosyldiphosphoribityl group. It has a role as a human metabolite, an Escherichia coli metabolite, a mouse metabolite, a prosthetic group and a cofactor. It is a vitamin B2 and a flavin adenine dinucleotide. It is a conjugate acid of a FAD(3-). A condensation product of riboflavin and adenosine diphosphate. The coenzyme of various aerobic dehydrogenases, e.g., D-amino acid oxidase and L-amino acid oxidase. (Lehninger, Principles of Biochemistry, 1982, p972) Flavin adenine dinucleotide is approved for use in Japan under the trade name Adeflavin as an ophthalmic treatment for vitamin B2 deficiency. Flavin adenine dinucleotide is a natural product found in Bacillus subtilis, Eremothecium ashbyi, and other organisms with data available. FAD is a metabolite found in or produced by Saccharomyces cerevisiae. A condensation product of riboflavin and adenosine diphosphate. The coenzyme of various aerobic dehydrogenases, e.g., D-amino acid oxidase and L-amino acid oxidase. (Lehninger, Principles of Biochemistry, 1982, p972) Flavin adenine dinucleotide (FAD) is a redox-active coenzyme associated with various proteins, which is involved with several enzymatic reactions in metabolism. FAD, also known as adeflavin or flamitajin b, belongs to the class of organic compounds known as flavin nucleotides. These are nucleotides containing a flavin moiety. Flavin is a compound that contains the tricyclic isoalloxazine ring system, which bears 2 oxo groups at the 2- and 4-positions. FAD is a drug which is used to treat eye diseases caused by vitamin b2 deficiency, such as keratitis and blepharitis. FAD exists in all living species, ranging from bacteria to humans. In humans, FAD is involved in the metabolic disorder called the medium chain acyl-coa dehydrogenase deficiency (mcad) pathway. Outside of the human body, FAD has been detected, but not quantified in several different foods, such as other bread, passion fruits, asparagus, kelps, and green bell peppers. It is a flavoprotein in which the substituent at position 10 of the flavin nucleus is a 5-adenosyldiphosphoribityl group. A condensation product of riboflavin and adenosine diphosphate. The coenzyme of various aerobic dehydrogenases, e.g., D-amino acid oxidase and L-amino acid oxidase. (Lehninger, Principles of Biochemistry, 1982, p972) [HMDB]. FAD is found in many foods, some of which are common sage, kiwi, spearmint, and ceylon cinnamon. A flavin adenine dinucleotide in which the substituent at position 10 of the flavin nucleus is a 5-adenosyldiphosphoribityl group. FAD. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=146-14-5 (retrieved 2024-07-01) (CAS RN: 146-14-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Flavin adenine dinucleotide (FAD) is a redox cofactor, more specifically a prosthetic group of a protein, involved in several important enzymatic reactions in metabolism.

   

Orcinol

InChI=1/C7H8O2/c1-5-2-6(8)4-7(9)3-5/h2-4,8-9H,1H

C7H8O2 (124.0524)


Orcinol is a 5-alkylresorcinol in which the alkyl group is specified as methyl. It has a role as an Aspergillus metabolite. It is a 5-alkylresorcinol and a dihydroxytoluene. Orcinol is a natural product found in Calluna vulgaris, Rumex patientia, and other organisms with data available. A 5-alkylresorcinol in which the alkyl group is specified as methyl. D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents relative retention time with respect to 9-anthracene Carboxylic Acid is 0.272 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.266 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.263 KEIO_ID O013

   

D-Xylitol

(2R,3R,4S)-Pentane-1,2,3,4,5-pentaol

C5H12O5 (152.0685)


Xylitol is a five-carbon sugar alcohol that is obtained through the diet. It is not endogenously produced by humans. Xylitol is used as a diabetic sweetener which is roughly as sweet as sucrose with 33\\\\\\% fewer calories. Xylitol is naturally found in many fruits (strawberries, plums, raspberries) and vegetables (e.g. cauliflower). Because of fruit and vegetable consumption the human body naturally processes 15 grams of xylitol per day. Xylitol can be produced industrially starting from primary matters rich in xylan which is hydrolyzed to obtain xylose. It is extracted from hemicelluloses present in the corn raids, the almond hulls or the barks of birch (or of the by-products of wood: shavings hard, paper pulp). Of all polyols, it is the one that has the sweetest flavor (it borders that of saccharose). It gives a strong refreshing impression, making xylitol an ingredient of choice for the sugarless chewing gum industry. In addition to his use in confectionery, it is used in the pharmaceutical industry for certain mouthwashes and toothpastes and in cosmetics (creams, soaps, etc.). Xylitol is produced starting from xylose, the isomaltose, by enzymatic transposition of the saccharose (sugar). Xylitol is not metabolized by cariogenic (cavity-causing) bacteria and gum chewing stimulates the flow of saliva; as a result, chewing xylitol gum may prevent dental caries. Chewing xylitol gum for 4 to 14 days reduces the amount of dental plaque. The reduction in the amount of plaque following xylitol gum chewing within 2 weeks may be a transient phenomenon. Chewing xylitol gum for 6 months reduced mutans streptococci levels in saliva and plaque in adults (PMID:17426399, 15964535). Studies have also shown xylitol chewing gum can help prevent acute otitis media (ear aches and infections) as the act of chewing and swallowing assists with the disposal of earwax and clearing the middle ear, while the presence of xylitol prevents the growth of bacteria in the eustachian tubes. Xylitol is well established as a life-threatening toxin to dogs. The number of reported cases of xylitol toxicosis in dogs has significantly increased since the first reports in 2002. Dogs that have ingested foods containing xylitol (greater than 100 milligrams of xylitol consumed per kilogram of bodyweight) have presented with low blood sugar (hypoglycemia), which can be life-threatening. Xylitol is found to be associated with ribose-5-phosphate isomerase deficiency, which is an inborn error of metabolism. Occurs in a variety of plants, berries and fruits including plums, raspberries, cauliflower and endive; sweetening agent used in sugar free sweets and chewing gum D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Ribitol is a crystalline pentose alcohol formed by the reduction of ribose. Enhancing the flux of D-glucose to the pentose phosphate pathway in Saccharomyces cerevisiae for the production of D-ribose and ribitol. Ribitol is a crystalline pentose alcohol formed by the reduction of ribose. Enhancing the flux of D-glucose to the pentose phosphate pathway in Saccharomyces cerevisiae for the production of D-ribose and ribitol. Xylitol can be classified as polyols and sugar alcohols. Xylitol can be classified as polyols and sugar alcohols.

   

Sugiol

9(1H)-Phenanthrenone, 2,3,4,4a,10,10a-hexahydro-6-hydroxy-1,1,4a-trimethyl-7-(1-methylethyl)-, (4aS-trans)-

C20H28O2 (300.2089)


Sugiol is an abietane diterpenoid that is ferruginol in which the methylene group para to the phenolic hydroxy group has been substituted by an oxo group. It has a role as a plant metabolite, an antiviral agent, an antineoplastic agent, an antioxidant and a radical scavenger. It is an abietane diterpenoid, a carbotricyclic compound, a meroterpenoid, a member of phenols and a cyclic terpene ketone. It is functionally related to a ferruginol. Sugiol is a natural product found in Austrocedrus chilensis, Libocedrus bidwillii, and other organisms with data available. An abietane diterpenoid that is ferruginol in which the methylene group para to the phenolic hydroxy group has been substituted by an oxo group.

   

2,2':5',2'-Terthiophene

2,2 inverted exclamation mark :5 inverted exclamation mark ,2 inverted exclamation mark inverted exclamation mark -Terthiophene

C12H8S3 (247.9788)


2,2:5,2-terthiophene is a terthiophene. 2,2:5,2-Terthiophene is a natural product found in Schoenia cassiniana, Lawrencella rosea, and other organisms with data available. D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D010575 - Pesticides > D007306 - Insecticides D003879 - Dermatologic Agents D016573 - Agrochemicals 2,2':5',2''-Terthiophene (α-Terthiophene) is an oligomer of the heterocycle thiophene. 2,2':5',2''-Terthiophene has been employed as building block for the organic semi-conductor polythiophene. 2,2':5',2''-Terthiophene (α-Terthiophene) is an oligomer of the heterocycle thiophene. 2,2':5',2''-Terthiophene has been employed as building block for the organic semi-conductor polythiophene.

   

Pyridoxate

3-hydroxy-5-(hydroxymethyl)-2-methylpyridine-4-carboxylic acid

C8H9NO4 (183.0532)


4-Pyridoxic acid is a member of the class of compounds known as methylpyridines. More specifically it is a 2-methylpyridine derivative substituted by a hydroxy group at C-3, a carboxy group at C-4, and a hydroxymethyl group at C-5. 4-Pyridoxic acid is the catabolic product of vitamin B6 (also known as pyridoxine, pyridoxal and pyradoxamine) and is excreted in the urine. Urinary levels of 4-pyridoxic acid are lower in females than in males and will be reduced even further in persons with a riboflavin deficiency. 4-Pyridoxic acid is formed by the action of aldehyde oxidase I (an endogenous enzyme) and by microbial enzymes (pyridoxal 4-dehydrogenase), an NAD-dependent aldehyde dehydrogenase. 4-pyridoxic acid can be further broken down by the gut microflora via the enzyme known as 4-pyridoxic acid dehydrogenase. This enzyme catalyzes the four-electron oxidation of 4-pyridoxic acid to 3-hydroxy-2-methylpyridine-4,5-dicarboxylate, using nicotinamide adenine dinucleotide (NAD) as a cofactor. 4-Pyridoxic acid is the catabolic product of vitamin B6 (also known as pyridoxine, pyridoxal and pyradoxamine) which is excreted in the urine. Urinary levels of 4-pyridoxic acid are lower in females than in males and will be reduced in persons with riboflavin deficiency. 4-Pyridoxic acid is formed by the action of aldehyde oxidase I (an endogenous enzyme) and by microbial enzymes (pyridoxal 4-dehydrogenase), an NAD-dependent aldehyde dehydrogenase. 4-pyridoxic acid can be further broken down by the gut microflora via 4-pyridoxic acid dehydrogenase. This enzyme catalyzes the four electron oxidation of 4-pyridoxic acid to 3-hydroxy-2-methylpyridine-4,5-dicarboxylate, using nicotinamide adenine dinucleotide as a cofactor. [HMDB] Vitamin B6 is one of the B vitamins, and thus an essential nutrient.[1][2][3][4] The term refers to a group of six chemically similar compounds, i.e., "vitamers", which can be interconverted in biological systems. Its active form, pyridoxal 5′-phosphate, serves as a coenzyme in more than 140 enzyme reactions in amino acid, glucose, and lipid metabolism.[1][2][3] Plants synthesize pyridoxine as a means of protection from the UV-B radiation found in sunlight[5] and for the role it plays in the synthesis of chlorophyll.[6] Animals cannot synthesize any of the various forms of the vitamin, and hence must obtain it via diet, either of plants, or of other animals. There is some absorption of the vitamin produced by intestinal bacteria, but this is not sufficient to meet dietary needs. For adult humans, recommendations from various countries' food regulatory agencies are in the range of 1.0 to 2.0 milligrams (mg) per day. These same agencies also recognize ill effects from intakes that are too high, and so set safe upper limits, ranging from as low as 25 mg/day to as high as 100 mg/day depending on the country. Beef, pork, fowl and fish are generally good sources; dairy, eggs, mollusks and crustaceans also contain vitamin B6, but at lower levels. There is enough in a wide variety of plant foods so that a vegetarian or vegan diet does not put consumers at risk for deficiency.[7] Dietary deficiency is rare. Classic clinical symptoms include rash and inflammation around the mouth and eyes, plus neurological effects that include drowsiness and peripheral neuropathy affecting sensory and motor nerves in the hands and feet. In addition to dietary shortfall, deficiency can be the result of anti-vitamin drugs. There are also rare genetic defects that can trigger vitamin B6 deficiency-dependent epileptic seizures in infants. These are responsive to pyridoxal 5'-phosphate therapy.[8] 4-Pyridoxic acid is a catabolic product of vitamin B6 which is excreted in the urine.

   

2,3-Diphosphoglyceric acid

2,3-DIPHOSPHO-D-GLYCERIC ACID PENTASODIUM SALT

C3H8O10P2 (265.9593)


2,3-Bisphosphoglycerate (2,3-BPG, also known as 2,3-diphosphoglycerate or 2,3-DPG) is a three carbon isomer of the glycolytic intermediate 1,3-bisphosphoglycerate and is present at high levels in the human red blood cell (RBC; erythrocyte)--at the same molar concentration as hemoglobin. It is notable because it binds to deoxygenated hemoglobin in RBCs. In doing so, it allosterically upregulates the ability of RBCs to release oxygen near tissues that need it most. Its function was discovered in 1967 by Reinhold Benesch and Ruth Benesch. [HMDB] 2,3-Bisphosphoglycerate (CAS: 138-81-8), also known as 2,3-BPG or 2,3-diphosphoglycerate, is a three-carbon isomer of the glycolytic intermediate 1,3-bisphosphoglycerate and is present at high levels in the human red blood cell (RBC; erythrocyte) at the same molar concentration as hemoglobin. It is notable because it binds to deoxygenated hemoglobin in RBCs. In doing so, it allosterically upregulates the ability of RBCs to release oxygen near tissues that need it most. Its function was discovered in 1967 by Reinhold Benesch and Ruth Benesch. KEIO_ID D017

   

Phosphoribosyl pyrophosphate

[({[(2R,3R,4S,5R)-3,4-dihydroxy-5-[(phosphonooxy)methyl]oxolan-2-yl]oxy}(hydroxy)phosphoryl)oxy]phosphonic acid

C5H13O14P3 (389.9518)


Phosphoribosyl pyrophosphate, also known as PRPP or PRib-PP, belongs to the class of organic compounds known as pentose phosphates. These are carbohydrate derivatives containing a pentose substituted by one or more phosphate groups. Phosphoribosyl pyrophosphate is an extremely weak basic (essentially neutral) compound (based on its pKa). Phosphoribosyl pyrophosphate exists in all living species, ranging from bacteria to humans. Within humans, phosphoribosyl pyrophosphate participates in a number of enzymatic reactions. In particular, guanine and phosphoribosyl pyrophosphate can be biosynthesized from guanosine monophosphate through its interaction with the enzyme adenine phosphoribosyltransferase. In addition, guanine and phosphoribosyl pyrophosphate can be biosynthesized from guanosine monophosphate; which is catalyzed by the enzyme hypoxanthine-guanine phosphoribosyltransferase. In humans, phosphoribosyl pyrophosphate is involved in adenosine deaminase deficiency. Phosphoribosyl pyrophosphate is a pentosephosphate and it is the key substance in the biosynthesis of histidine, tryptophan, and purine and pyrimidine nucleotides. It is formed from ribose 5-phosphate by the enzyme ribose-phosphate diphosphokinase. It plays a role in transferring phosphate groups in several reactions. Phosphoribosyl pyrophosphate (PRPP) is a pentosephosphate. The key substance in the biosynthesis of histidine, tryptophan, and purine and pyrimidine nucleotides. COVID info from COVID-19 Disease Map KEIO_ID P023 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Guanidinosuccinic acid

(2S)-2-(diaminomethylideneamino)butanedioic acid

C5H9N3O4 (175.0593)


Guanidinosuccinic acid (GSA) has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID:22626821). It is one of the earliest uremic toxins isolated and its toxicity identified. Its metabolic origins show that it arose from the oxidation of argininosuccinic acid (ASA) by free radicals. The stimulus for this oxidation, occurring optimally in the presence of the failed kidney, is the rising level of urea which, through enzyme inhibition, results in a decline in hepatic levels of the semi-essential amino acid, arginine. It is further noted that concentrations of GSA in both serum and urine decline sharply in animals and humans exposed to the essential amino acid, methionine. Uremic patients suffer from a defective ability to generate methyl groups due to anorexia, dietary restrictions and renal protein leakage. This leads to the accumulation of homocysteine, a substance known to produce vascular damage. Even in healthy subjects intake of choline together with methionine is insufficient to satisfy total metabolic requirements for methyl groups. In end-stage renal disease, therefore, protein restriction contributes to the build-up of toxins in uremia. Replacement using specific amino acid mixtures should be directed toward identified deficiencies and adequacy monitored by following serum levels of the related toxins, in this case GSA and homocysteine. (PMID 12701806). Guanidinosuccinic acid (GSA) is one of the earliest uremic toxins isolated and its toxicity identified. Its metabolic origins show that it arose from the oxidation of argininosuccinic acid (ASA) by free radicals. The stimulus for this oxidation, occurring optimally in the presence of the failed kidney, is the rising level of urea which, through enzyme inhibition, results in a decline in hepatic levels of the semi-essential amino acid, arginine. It is further noted that concentrations of GSA in both serum and urine decline sharply in animals and humans exposed to the essential amino acid, methionine. Uremic patients suffer from a defective ability to generate methyl groups due to anorexia, dietary restrictions and renal protein leakage. This leads to the accumulation of homocysteine, a substance known to produce vascular damage. Even in healthy subjects intake of choline together with methionine is insufficient to satisfy total metabolic requirements for methyl groups. In end-stage renal disease, therefore, protein restriction contributes to the build-up of toxins in uremia. Replacement using specific amino acid mixtures should be directed toward identified deficiencies and adequacy monitored by following serum levels of the related toxins, in this case GSA and homocysteine. (PMID 12701806) [HMDB] Guanidinosuccinic acid is a nitrogenous metabolite.

   

L-Histidine

(2S)-2-amino-3-(1H-imidazol-5-yl)propanoic acid

C6H9N3O2 (155.0695)


Histidine (His), also known as L-histidine, is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. Histidine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Histidine is found in all organisms ranging from bacteria to plants to animals. It is classified as an aliphatic, positively charged or basic amino acid. Histidine is a unique amino acid with an imidazole functional group. The acid-base properties of the imidazole side chain are relevant to the catalytic mechanism of many enzymes such as proteases. In catalytic triads, the basic nitrogen of histidine abstracts a proton from serine, threonine, or cysteine to activate it as a nucleophile. In a histidine proton shuttle, histidine is used to quickly shuttle protons. It can do this by abstracting a proton with its basic nitrogen to make a positively charged intermediate and then use another molecule to extract the proton from its acidic nitrogen. Histidine forms complexes with many metal ions. The imidazole sidechain of the histidine residue commonly serves as a ligand in metalloproteins. Histidine was first isolated by German physician Albrecht Kossel in 1896. Histidine is an essential amino acid in humans and other mammals. It was initially thought that it was only essential for infants, but longer-term studies established that it is also essential for adults. Infants four to six months old require 33 mg/kg of histidine. It is not clear how adults make small amounts of histidine, and dietary sources probably account for most of the histidine in the body. Histidine is a precursor for histamine and carnosine biosynthesis. Inborn errors of histidine metabolism, including histidinemia, maple syrup urine disease, propionic acidemia, and tyrosinemia I, exist and are marked by increased histidine levels in the blood. Elevated blood histidine is accompanied by a wide range of symptoms, from mental and physical retardation to poor intellectual functioning, emotional instability, tremor, ataxia and psychosis. Histidine and other imidazole compounds have anti-oxidant, anti-inflammatory and anti-secretory properties (PMID: 9605177 ). The efficacy of L-histidine in protecting inflamed tissue is attributed to the capacity of the imidazole ring to scavenge reactive oxygen species (ROS) generated by cells during acute inflammatory response (PMID: 9605177 ). Histidine, when administered in therapeutic quantities is able to inhibit cytokines and growth factors involved in cell and tissue damage (US patent 6150392). Histidine in medical therapies has its most promising trials in rheumatoid arthritis where up to 4.5 g daily have been used effectively in severely affected patients. Arthritis patients have been found to have low serum histidine levels, apparently because of very rapid removal of histidine from their blood (PMID: 1079527 ). Other patients besides arthritis patients that have been found to be low in serum histidine are those with chronic renal failure. Urinary levels of histidine are reduced in pediatric patients with pneumonia (PMID: 2084459 ). Asthma patients exhibit increased serum levels of histidine over normal controls (PMID: 23517038 ). Serum histidine levels are lower and are negatively associated with inflammation and oxidative stress in obese women (PMID: 23361591 ). Histidine supplementation has been shown to reduce insulin resistance, reduce BMI and fat mass and suppress inflammation and oxidative stress in obese women with metabolic syndrome. Histidine appears to suppress pro-inflammatory cytokine expression, possibly via the NF-κB pathway, in adipocytes (PMID: 23361591 ). Low plasma concentrations of histidine are associated with protein-energy... [Spectral] L-Histidine (exact mass = 155.06948) and L-Lysine (exact mass = 146.10553) and L-Arginine (exact mass = 174.11168) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] L-Histidine (exact mass = 155.06948) and L-Arginine (exact mass = 174.11168) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Acquisition and generation of the data is financially supported in part by CREST/JST. Flavouring ingredient; dietary supplement, nutrient L-Histidine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=71-00-1 (retrieved 2024-07-01) (CAS RN: 71-00-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Histidine is an essential amino acid for infants. L-Histidine is an inhibitor of mitochondrial glutamine transport. L-Histidine is an essential amino acid for infants. L-Histidine is an inhibitor of mitochondrial glutamine transport. L-Histidine is an essential amino acid for infants. L-Histidine is an inhibitor of mitochondrial glutamine transport.

   

Pyridoxine

3-Hydroxy-4,5-bis(hydroxymethyl)-2-methylpyridine

C8H11NO3 (169.0739)


Pyridoxine, also known vitamin B6, is commonly found in food and is used as a dietary supplement. Pyridoxine is an essential nutrient, meaning the body cannot synthesize it, and it must be obtained from the diet. Sources in the diet include fruit, vegetables, and grain. Although pyridoxine and vitamin B6 are still frequently used as synonyms, especially by medical researchers, this practice is sometimes misleading (PMID: 2192605). Technically, pyridoxine is one of the compounds that can be called vitamin B6 or it is a member of the family of B6 vitamins. Healthy human blood levels of pyridoxine are 2.1 - 21.7 ng/mL. Pyridoxine is readily converted to pyridoxal phosphate which is a coenzyme for synthesis of amino acids, neurotransmitters (serotonin, norepinephrine), sphingolipids and aminolevulinic acid. Pyridoxine assists in the balancing of sodium and potassium as well as promoting red blood cell production. Therefore pyridoxine is required by the body to make amino acids, carbohydrates, and lipids. It is linked to cancer immunity and helps fight the formation of homocysteine. It has been suggested that pyridoxine might help children with learning difficulties, and may also prevent dandruff, eczema, and psoriasis. In addition, pyridoxine can help balance hormonal changes in women and aid in immune system. Lack of pyridoxine may cause anemia, nerve damage, seizures, skin problems, and sores in the mouth (Wikipedia). Deficiency of pyridoxine, though rare because of widespread distribution in foods, leads to the development of peripheral neuritis in adults and affects the central nervous system in children (DOSE - 3rd edition). As a supplement pyridoxine is used to treat and prevent pyridoxine deficiency, sideroblastic anaemia, pyridoxine-dependent epilepsy, certain metabolic disorders, problems from isoniazid, and certain types of mushroom poisoning. Pyridoxine in combination with doxylamine is used as a treatment for morning sickness in pregnant women. Found in rice husks, cane molasses, yeast, wheat germ and cod liver oils. Vitamin, dietary supplement, nutrient. Pyridoxine is one of the compounds that can be called vitamin B6, along with pyridoxal and pyridoxamine. It differs from pyridoxamine by the substituent at the 4 position. It is often used as pyridoxine hydrochloride. Pyridoxine in the urine is a biomarker for the consumption of soy products. Acquisition and generation of the data is financially supported in part by CREST/JST. A - Alimentary tract and metabolism > A11 - Vitamins D018977 - Micronutrients > D014815 - Vitamins COVID info from COVID-19 Disease Map KEIO_ID P053 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Pyridoxine (Pyridoxol) is a pyridine derivative. Pyridoxine exerts antioxidant effects in cell model of Alzheimer's disease via the Nrf-2/HO-1 pathway. Pyridoxine (Pyridoxol) is a pyridine derivative. Pyridoxine exerts antioxidant effects in cell model of Alzheimer's disease via the Nrf-2/HO-1 pathway.

   

Riboflavin (Vitamin B2)

7,8-dimethyl-10-[(2S,3S,4R)-2,3,4,5-tetrahydroxypentyl]-2H,3H,4H,10H-benzo[g]pteridine-2,4-dione

C17H20N4O6 (376.1383)


Riboflavin or vitamin B2 is an easily absorbed, water-soluble micronutrient with a key role in maintaining human health. Like the other B vitamins, it supports energy production by aiding in the metabolizing of fats, carbohydrates, and proteins. Vitamin B2 is also required for red blood cell formation and respiration, antibody production, and for regulating human growth and reproduction. It is essential for healthy skin, nails, hair growth and general good health, including regulating thyroid activity. Riboflavin is found in milk, eggs, malted barley, liver, kidney, heart, and leafy vegetables. Riboflavin is yellow or orange-yellow in color and in addition to being used as a food coloring it is also used to fortify some foods. It can be found in baby foods, breakfast cereals, sauces, processed cheese, fruit drinks and vitamin-enriched milk products. The richest natural source is yeast. It occurs in the free form only in the retina of the eye, in whey, and in urine; its principal forms in tissues and cells are as flavin mononucleotide and flavin adenine dinucleotide. Riboflavin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=83-88-5 (retrieved 2024-07-01) (CAS RN: 83-88-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Riboflavin (vitamin B2) is an extremely easily absorbed micronutrient. Riboflavin (vitamin B2) is an extremely easily absorbed micronutrient.

   

Sulfadoxine

4-amino-N-(5,6-dimethoxypyrimidin-4-yl)benzene-1-sulfonamide

C12H14N4O4S (310.0736)


Sulfadoxine is only found in individuals that have used or taken this drug. It is a long acting sulfonamide that is used, usually in combination with other drugs, for respiratory, urinary tract, and malarial infections. [PubChem]Sulfadoxine is a sulfa drug, often used in combination with pyrimethamine to treat malaria. This medicine may also be used to prevent malaria in people who are living in, or will be traveling to, an area where there is a chance of getting malaria. Sulfadoxine targets Plasmodium dihydropteroate synthase and dihydrofolate reductase. Sulfa drugs or Sulfonamides are antimetabolites. They compete with para-aminobenzoic acid (PABA) for incorporation into folic acid. The action of sulfonamides exploits the difference between mammal cells and other kinds of cells in their folic acid metabolism. All cells require folic acid for growth. Folic acid (as a vitamin) diffuses or is transported into human cells. However, folic acid cannot cross bacterial (and certain protozoan) cell walls by diffusion or active transport. For this reason bacteria must synthesize folic acid from p-aminobenzoic acid. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent D000890 - Anti-Infective Agents > D013424 - Sulfanilamides CONFIDENCE standard compound; INTERNAL_ID 1010

   

Furazolidone

3-[(E)-[(5-nitrofuran-2-yl)methylidene]amino]-1,3-oxazolidin-2-one

C8H7N3O5 (225.0386)


Furazolidone is a nitrofuran derivative with antiprotozoal and antibacterial activity. Furazolidone has been shown to exhibit antibiotic and anti-microbial functions (PMID 1476092, 6651278). Furazolidone is also used as a poultry food additive. It is marketed by Roberts Laboratories under the brand name Furoxone and by GlaxoSmithKline as Dependal-M. Furoxone has a broad antibacterial spectrum covering the majority of gastrointestinal tract pathogens including E. coli, staphylococci, Salmonella, Shigella, Proteus, Aerobacter aerogenes, Vibrio cholerae and Giardia lamblia. Its bactericidal activity is based upon its interference with DNA replication and protein production. Furazolidone binds bacterial DNA which leads to the gradual inhibition of monoamine oxidase (From Martindale, The Extra Pharmacopoeia, 30th ed, p514). Furazolidone and its related free radical products are believed to bind DNA and induce cross-links. Bacterial DNA is particularly susceptible to this drug leading to high levels of mutations (transitions and transversions) in the bacterial chromosome. Furazolidone belongs to the family of Nitrofurans. These are compounds containing a furan ring which bears a nitro group. G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D004791 - Enzyme Inhibitors > D008996 - Monoamine Oxidase Inhibitors D000890 - Anti-Infective Agents > D023303 - Oxazolidinones C254 - Anti-Infective Agent Poultry food additive

   

Xanthurenic acid

4,8-Dihydroxy-2-quinolinecarboxylic acid

C10H7NO4 (205.0375)


Xanthurenic acid, also known as xanthurenate or 8-hydroxykynurenic acid, is a member of the class of compounds known as quinoline carboxylic acids. Quinoline carboxylic acids are quinolines in which the quinoline ring system is substituted by a carboxyl group at one or more positions. Xanthurenic acid is slightly soluble (in water). Xanthurenic acid can be found primarily in blood, feces, and urine, as well as in human epidermis tissue. Within the cell, xanthurenic acid is primarily located in the membrane. Xanthurenic acid exists in all eukaryotes, ranging from yeast to humans. In humans, xanthurenic acid is involved in the tryptophan metabolism. Moreover, xanthurenic acid is found to be associated with citrullinemia type I, which is an inborn error of metabolism. Xanthurenic acid is a metabolite from tryptophan catabolism. It is a substrate of the enzyme methyltransferases (EC 2.1.1.-) in pathway tryptophan metabolism (KEGG). Xanthurenic acid is a metabolite from tryptophan catabolism. It is a substrate of the enzyme methyltransferases [EC 2.1.1.-] in pathway tryptophan metabolism (KEGG). [HMDB] D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents [Raw Data] CBA13_Xanthurenic-aci_neg_40eV_1-5_01_737.txt [Raw Data] CBA13_Xanthurenic-aci_neg_50eV_1-5_01_738.txt [Raw Data] CBA13_Xanthurenic-aci_neg_10eV_1-5_01_734.txt [Raw Data] CBA13_Xanthurenic-aci_neg_30eV_1-5_01_736.txt [Raw Data] CBA13_Xanthurenic-aci_pos_40eV_1-5_01_684.txt [Raw Data] CBA13_Xanthurenic-aci_pos_50eV_1-5_01_685.txt [Raw Data] CBA13_Xanthurenic-aci_pos_30eV_1-5_01_683.txt [Raw Data] CBA13_Xanthurenic-aci_pos_10eV_1-5_01_681.txt [Raw Data] CBA13_Xanthurenic-aci_pos_20eV_1-5_01_682.txt [Raw Data] CBA13_Xanthurenic-aci_neg_20eV_1-5_01_735.txt Xanthurenic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=59-00-7 (retrieved 2024-07-01) (CAS RN: 59-00-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Xanthurenic acid is a putative endogenous Group II metabotropic glutamate receptor agonist, on sensory transmission in the thalamus. Xanthurenic acid is a putative endogenous Group II metabotropic glutamate receptor agonist, on sensory transmission in the thalamus.

   

Gluconic acid

(2R,3S,4R,5R)-2,3,4,5,6-Pentahydroxyhexanoic acid

C6H12O7 (196.0583)


Gluconic acid, also known as D-gluconic acid, D-gluconate or (2R,3S,4R,5R)-2,3,4,5,6-pentahydroxyhexanoic acid (also named dextronic acid), is the C1-oxidized form of D-glucose where the aldehyde group has become oxidized to the corresponding carboxylic acid. Gluconic acid belongs to the class of organic compounds known as sugar acids and derivatives. Sugar acids and derivatives are compounds containing a saccharide unit which bears a carboxylic acid group. In aqueous solution, gluconic acid exists in equilibrium with the cyclic ester glucono delta-lactone. Gluconic acid occurs naturally in fruit, honey, kombucha tea and wine. The salts of gluconic acid are known as "gluconates". Gluconic acid, gluconate salts, and gluconate esters occur widely in nature because such species arise from the oxidation of glucose. Gluconic acid exists in all living species, ranging from bacteria to plants to humans. The metabolism of gluconate is well characterized in prokaryotes where it is known to be degraded following phosphorylation by gluconokinase. Glucokinase activity has also been detected in mammals, including humans (PMID: 24896608). Gluconic acid is produced in the gluconate shunt pathway. In the gluconate shunt, glucose is oxidized by glucose dehydrogenase (also called glucose oxidase) to furnish gluconate, the form in which D-gluconic acid is present at physiological pH. Subsequently, gluconate is phosphorylated by the action of gluconate kinase to produce 6-phosphogluconate, which is the second intermediate of the pentose phosphate pathway. This gluconate shunt is mainly found in plants, algae, cyanobacteria and some bacteria, which all use the Entner–Doudoroff pathway to degrade glucose or gluconate; this generates 2-keto-3-deoxygluconate-6-phosphate, which is then cleaved to generate pyruvate and glyceraldehyde 3-phosphate. Glucose dehydrogenase and gluconate kinase activities are also present in mammals, fission yeast, and flies. Gluconic acid has many industrial uses. It is used as a drug as part of electrolyte supplementation in total parenteral nutrition. It is also used in cleaning products where it helps cleaning up mineral deposits. Gluconic acid or Gluconic acid is used to maintain the cation-anion balance on electrolyte solutions. In humans, gluconic acid is involved in the metabolic disorder called the transaldolase deficiency. Gluconic acid has been found to be a metabolite in Aspergillus (Hugo Vanden Bossche, D.W.R. Mackenzie and G. Cauwenbergh. Aspergillus and Aspergillosis, 1987). [Spectral] D-Gluconic acid (exact mass = 196.0583) and Guanine (exact mass = 151.04941) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Dietary supplement, acidity regulator approved in Japan. Component of bottle rinsing formulations Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID G031

   

Phosphoenolpyruvic acid

Phosphoenolpyruvic Acid Trisodium Salt monohydrate

C3H5O6P (167.9824)


Phosphoenolpyruvate, also known as pep or 2-(phosphonooxy)-2-propenoic acid, is a member of the class of compounds known as phosphate esters. Phosphate esters are organic compounds containing phosphoric acid ester functional group, with the general structure R1P(=O)(R2)OR3. R1,R2 = O,N, or halogen atom; R3 = organyl group. Phosphoenolpyruvate is soluble (in water) and an extremely strong acidic compound (based on its pKa). Phosphoenolpyruvate can be found in a number of food items such as okra, endive, chestnut, and dandelion, which makes phosphoenolpyruvate a potential biomarker for the consumption of these food products. Phosphoenolpyruvate can be found primarily in blood, cellular cytoplasm, and saliva, as well as in human prostate tissue. Phosphoenolpyruvate exists in all living species, ranging from bacteria to humans. In humans, phosphoenolpyruvate is involved in several metabolic pathways, some of which include glycolysis, amino sugar metabolism, gluconeogenesis, and glycogenosis, type IC. Phosphoenolpyruvate is also involved in several metabolic disorders, some of which include glycogen storage disease type 1A (GSD1A) or von gierke disease, salla disease/infantile sialic acid storage disease, phosphoenolpyruvate carboxykinase deficiency 1 (PEPCK1), and pyruvate dehydrogenase complex deficiency. Phosphoenolpyruvate (2-phosphoenolpyruvate, PEP) as the ester derived from the enol of pyruvate and phosphate. It exists as an anion; the parent acid, which is only of theoretical interest, is phosphoenolpyruvic acid. PEP is an important intermediate in biochemistry. It has the highest-energy phosphate bond found (−61.9 kJ/mol) in living organisms, and is involved in glycolysis and gluconeogenesis. In plants, it is also involved in the biosynthesis of various aromatic compounds, and in carbon fixation; in bacteria, it is also used as the source of energy for the phosphotransferase system . Phosphoenolpyruvate (PEP) is an important chemical compound in biochemistry. It has a high energy phosphate bond, and is involved in glycolysis and gluconeogenesis. In glycolysis, PEP is formed by the action of the enzyme enolase on 2-phosphoglycerate. Metabolism of PEP to pyruvate by pyruvate kinase (PK) generates 1 molecule of adenosine triphosphate (ATP) via substrate-level phosphorylation. ATP is one of the major currencies of chemical energy within cells. In gluconeogenesis, PEP is formed from the decarboxylation of oxaloacetate and hydrolysis of 1 guanosine triphosphate molecule. This reaction is catalyzed by the enzyme phosphoenolpyruvate carboxykinase (PEPCK). This reaction is a rate-limiting step in gluconeogenesis. (wikipedia). [Spectral] Phosphoenolpyruvate (exact mass = 167.98237) and 6-Phospho-D-gluconate (exact mass = 276.02463) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID P007

   

4-Hydroxyphenylpyruvic acid

4-Hydroxy-alpha-oxobenzenepropanoic acid

C9H8O4 (180.0423)


3-(4-hydroxy-phenyl)pyruvic acid, also known as 4-hydroxy a-oxobenzenepropanoate or 3-(p-hydroxyphenyl)-2-oxopropanoate, belongs to phenylpyruvic acid derivatives class of compounds. Those are compounds containing a phenylpyruvic acid moiety, which consists of a phenyl group substituted at the second position by an pyruvic acid. 3-(4-hydroxy-phenyl)pyruvic acid is slightly soluble (in water) and a moderately acidic compound (based on its pKa). 3-(4-hydroxy-phenyl)pyruvic acid can be synthesized from pyruvic acid. 3-(4-hydroxy-phenyl)pyruvic acid can also be synthesized into 4-hydroxyphenylpyruvic acid oxime. 3-(4-hydroxy-phenyl)pyruvic acid can be found in a number of food items such as garden onion (variety), rose hip, sourdough, and horseradish tree, which makes 3-(4-hydroxy-phenyl)pyruvic acid a potential biomarker for the consumption of these food products. 3-(4-hydroxy-phenyl)pyruvic acid can be found primarily in blood and urine, as well as in human prostate tissue. 3-(4-hydroxy-phenyl)pyruvic acid exists in all eukaryotes, ranging from yeast to humans. In humans, 3-(4-hydroxy-phenyl)pyruvic acid is involved in few metabolic pathways, which include disulfiram action pathway, phenylalanine and tyrosine metabolism, and tyrosine metabolism. 3-(4-hydroxy-phenyl)pyruvic acid is also involved in several metabolic disorders, some of which include tyrosinemia type I, phenylketonuria, tyrosinemia, transient, of the newborn, and alkaptonuria. Moreover, 3-(4-hydroxy-phenyl)pyruvic acid is found to be associated with hawkinsinuria and phenylketonuria. 4-Hydroxyphenylpyruvic acid (4-HPPA) is a keto acid that is involved in the tyrosine catabolism pathway. It is a product of the enzyme (R)-4-hydroxyphenyllactate dehydrogenase (EC 1.1.1.222) and is formed during tyrosine metabolism. The conversion from tyrosine to 4-HPPA is catalyzed by tyrosine aminotransferase. Additionally, 4-HPPA can be converted to homogentisic acid which is one of the precursors to ochronotic pigment. The enzyme 4-hydroxyphenylpyruvic acid dioxygenase (HPD) catalyzes the reaction that converts 4-hydroxyphenylpyruvic acid to homogentisic acid. A deficiency in the catalytic activity of HPD is known to lead to tyrosinemia type III, an autosomal recessive disorder characterized by elevated levels of blood tyrosine and massive excretion of tyrosine derivatives into urine. It has been shown that hawkinsinuria, an autosomal dominant disorder characterized by the excretion of hawkinsin, may also be a result of HPD deficiency (PMID: 11073718). Moreover, 4-hydroxyphenylpyruvic acid is also found to be associated in phenylketonuria, which is also an inborn error of metabolism. There are two isomers of HPPA, specifically 4HPPA and 3HPPA, of which 4HPPA is the most common. 4-HPPA has been found to be a microbial metabolite in Escherichia (ECMDB). KEIO_ID H007 4-Hydroxyphenylpyruvic acid is an intermediate in the metabolism of the amino acid phenylalanine. 4-Hydroxyphenylpyruvic acid is an intermediate in the metabolism of the amino acid phenylalanine.

   

Methylmalonic acid

1,1-Ethanedicarboxylic acid

C4H6O4 (118.0266)


Methylmalonic acid is a malonic acid derivative, which is a vital intermediate in the metabolism of fat and protein. In particular, the coenzyme A-linked form of methylmalonic acid, methylmalonyl-CoA, is converted into succinyl-CoA by methylmalonyl-CoA mutase in a reaction that requires vitamin B12 as a cofactor. In this way, methylmalonic acid enters the Krebs cycle and is thus part of one of the anaplerotic reactions. Abnormalities in methylmalonic acid metabolism lead to methylmalonic aciduria. This inborn error of metabolism is attributed to a block in the enzymatic conversion of methylmalonyl CoA to succinyl CoA. Methylmalonic acid is also found to be associated with other inborn errors of metabolism, including cobalamin deficiency, cobalamin malabsorption, malonyl-CoA decarboxylase deficiency, and transcobalamin II deficiency. When present in sufficiently high levels, methylmalonic acid can act as an acidogen and a metabotoxin. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of methylmalonic acid are associated with at least 5 inborn errors of metabolism, including Malonyl CoA decarboxylase deficiency, Malonic Aciduria, Methylmalonate Semialdehyde Dehydrogenase Deficiency, Methylmalonic Aciduria and Methylmalonic Aciduria Due to Cobalamin-Related Disorders. Methylmalonic acid is an organic acid and abnormally high levels of organic acids in the blood (organic acidemia), urine (organic aciduria), the brain, and other tissues lead to general metabolic acidosis. Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis, the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). These can progress to heart abnormalities, kidney abnormalities, liver damage, seizures, coma, and possibly death. These are also the characteristic symptoms of the untreated IEMs mentioned above. Many affected children with organic acidemias experience intellectual disability or delayed development. In adults, acidosis or acidemia is characterized by headaches, confusion, feeling tired, tremors, sleepiness, and seizures. A malonic acid derivative which is a vital intermediate in the metabolism of fat and protein. Abnormalities in methylmalonic acid metabolism lead to methylmalonic aciduria. This metabolic disease is attributed to a block in the enzymatic conversion of methylmalonyl CoA to succinyl CoA. [HMDB] KEIO_ID M014 Methylmalonic acid (Methylmalonate) is an indicator of Vitamin B-12 deficiency in cancer. Methylmalonic acid (Methylmalonate) is an indicator of Vitamin B-12 deficiency in cancer.

   

Oxaloacetate

2-oxobutanedioic acid

C4H4O5 (132.0059)


Oxalacetic acid, also known as oxaloacetic acid, keto-oxaloacetate or 2-oxobutanedioate, belongs to the class of organic compounds known as short-chain keto acids and derivatives. These are keto acids with an alkyl chain the contains less than 6 carbon atoms. Oxalacetic acid is a metabolic intermediate in many processes that occur in animals and plants. It takes part in gluconeogenesis, the urea cycle, the glyoxylate cycle, amino acid synthesis, fatty acid synthesis and the citric acid cycle. Oxalacetic acid exists in all living species, ranging from bacteria to plants to humans. Within humans, oxalacetic acid participates in a number of enzymatic reactions. In particular, oxalacetic acid is an intermediate of the citric acid cycle, where it reacts with acetyl-CoA to form citrate, catalyzed by citrate synthase. It is also involved in gluconeogenesis and the urea cycle. In gluconeogenesis oxaloacetate is decarboxylated and phosphorylated by phosphoenolpyruvate carboxykinase and becomes 2-phosphoenolpyruvate using guanosine triphosphate (GTP) as phosphate source. In the urea cycle, malate is acted on by malate dehydrogenase to become oxaloacetate, producing a molecule of NADH. After that, oxaloacetate can be recycled to aspartate, as this recycling maintains the flow of nitrogen into the cell. In mice, injections of oxalacetic acid have been shown to promote brain mitochondrial biogenesis, activate the insulin signaling pathway, reduce neuroinflammation and activate hippocampal neurogenesis (PMID: 25027327). Oxalacetic acid has also been reported to reduce hyperglycemia in type II diabetes and to extend longevity in C. elegans (PMID: 25027327). Outside of the human body, oxalacetic acid has been detected, but not quantified in, several different foods, such as Persian limes, lemon balms, wild rice, canola, and peanuts. This could make oxalacetic acid a potential biomarker for the consumption of these foods. Oxalacetic acid, also known as ketosuccinic acid or oxaloacetate, belongs to short-chain keto acids and derivatives class of compounds. Those are keto acids with an alkyl chain the contains less than 6 carbon atoms. Thus, oxalacetic acid is considered to be a fatty acid lipid molecule. Oxalacetic acid is soluble (in water) and a moderately acidic compound (based on its pKa). Oxalacetic acid can be synthesized from succinic acid. Oxalacetic acid can also be synthesized into oxaloacetic acid 4-methyl ester. Oxalacetic acid can be found in a number of food items such as daikon radish, sacred lotus, cucurbita (gourd), and tarragon, which makes oxalacetic acid a potential biomarker for the consumption of these food products. Oxalacetic acid can be found primarily in cellular cytoplasm, cerebrospinal fluid (CSF), and urine, as well as in human liver tissue. Oxalacetic acid exists in all living species, ranging from bacteria to humans. In humans, oxalacetic acid is involved in several metabolic pathways, some of which include the oncogenic action of succinate, the oncogenic action of 2-hydroxyglutarate, glycogenosis, type IB, and the oncogenic action of fumarate. Oxalacetic acid is also involved in several metabolic disorders, some of which include the oncogenic action of l-2-hydroxyglutarate in hydroxygluaricaciduria, transfer of acetyl groups into mitochondria, argininemia, and 2-ketoglutarate dehydrogenase complex deficiency. Moreover, oxalacetic acid is found to be associated with anoxia. C274 - Antineoplastic Agent > C177430 - Agent Targeting Cancer Metabolism C26170 - Protective Agent > C1509 - Neuroprotective Agent Oxaloacetic acid (2-Oxosuccinic acid) is a metabolic intermediate involved in several ways, such as citric acid cycle, gluconeogenesis, the urea cycle, the glyoxylate cycle, amino acid synthesis, and fatty acid synthesis[1][2]. Oxaloacetic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=328-42-7 (retrieved 2024-10-17) (CAS RN: 328-42-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Aldohexose 6-phosphate

Aldohexose 6-phosphate

C6H13O9P (260.0297)


   

Erythritol

1,2,3,4-Butanetetrol,(2R,3R)-rel-

C4H10O4 (122.0579)


Erythritol is a sugar alcohol (or polyol), used as a food additive and sugar substitute. It is naturally occurring and is made from corn using enzymes and fermentation. Its formula is C4H10O4, or HO(CH2)(CHOH)2(CH2)OH; specifically, one particular stereoisomer with that formula. Erythritol is 60–70\\\\\% as sweet as sucrose (table sugar), yet it is almost noncaloric and does not affect blood sugar or cause tooth decay. Erythritol occurs widely in nature and has been found to occur naturally in several foods including wine, sake, beer, watermelon, pear, grape, and soy sauce. Evidence indicates that erythritol also exists endogenously in the tissues and body fluids of humans and animals. Erythritol is absorbed from the proximal intestine by passive diffusion in a manner similar to that of many low molecular weight organic molecules which do not have associated active transport systems. The rate of absorption is related to their molecular size. It passes through the intestinal membranes at a faster rate than larger molecules such as mannitol or glucose. In diabetics, erythritol has also been shown to be rapidly absorbed and excreted unchanged in the urine. Following absorption, ingested erythritol is rapidly distributed throughout the body and has been reported to occur in hepatocytes, pancreatic cells, and vascular smooth muscle cells. Erythritol also has been reported to cross the human placenta and to pass slowly from the plasma into the brain and cerebrospinal fluid (PMID:9862657). Erythritol is found to be associated with ribose-5-phosphate isomerase deficiency, which is an inborn error of metabolism. Bulk sweetener with good taste props. Not metabolised, excreted unchanged in urine. Less sweet than sucrose. Use not yet permitted in most countries (1997). GRAS status for use as a sweetener, thickener, stabiliser, humectant, etc. in food meso-Erythritol is a sugar alcohol that occurs naturally in a variety of foods (e.g., pear, watermelon), is 60-80\\% as sweet as sucrose, and is an approved low-calorie sweetener food additive[1]. meso-Erythritol is a sugar alcohol that occurs naturally in a variety of foods (e.g., pear, watermelon), is 60-80\% as sweet as sucrose, and is an approved low-calorie sweetener food additive[1].

   

Sedoheptulose 7-phosphate

[(2R,3R,4R,5S)-2,3,4,5,7-pentahydroxy-6-oxoheptyl] dihydrogen phosphate

C7H15O10P (290.0403)


KEIO_ID S083

   

D-Ribulose 5-phosphate

{[(2R,3R)-2,3,5-trihydroxy-4-oxopentyl]oxy}phosphonic acid

C5H11O8P (230.0192)


D-Ribulose 5-phosphate is a metabolite in the Pentose phosphate pathway, Pentose and glucuronate interconversions, and in the Riboflavin metabolism (KEGG) [HMDB]. D-Ribulose 5-phosphate is found in many foods, some of which are olive, cocoa bean, common chokecherry, and orange mint. D-Ribulose 5-phosphate is a metabolite in the following pathways: pentose phosphate pathway, pentose and glucuronate interconversions, and riboflavin metabolism (KEGG). Acquisition and generation of the data is financially supported in part by CREST/JST.

   

Ribose 1-phosphate

{[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}phosphonic acid

C5H11O8P (230.0192)


Ribose 1-phosphate, also known as alpha-D-ribofuranose 1-phosphate or 1-O-phosphono-A-D-ribofuranose, is a member of the class of compounds known as pentoses. Pentoses are monosaccharides in which the carbohydrate moiety contains five carbon atoms. Ribose 1-phosphate is soluble (in water) and a moderately acidic compound (based on its pKa). Ribose 1-phosphate can be found in a number of food items such as cassava, capers, pine nut, and wheat, which makes ribose 1-phosphate a potential biomarker for the consumption of these food products. Ribose 1-phosphate can be found primarily in cellular cytoplasm. Ribose 1-phosphate exists in all living species, ranging from bacteria to humans. In humans, ribose 1-phosphate is involved in several metabolic pathways, some of which include pyrimidine metabolism, nicotinate and nicotinamide metabolism, pentose phosphate pathway, and azathioprine action pathway. Ribose 1-phosphate is also involved in several metabolic disorders, some of which include beta ureidopropionase deficiency, gout or kelley-seegmiller syndrome, transaldolase deficiency, and UMP synthase deficiency (orotic aciduria). Ribose 1-phosphate is an intermediate in the metabolism of Pyrimidine and the metabolism of Nicotinate and nicotinamide. It is a substrate for Uridine phosphorylase 2, Phosphoglucomutase, Purine nucleoside phosphorylase and Uridine phosphorylase 1. Ribose 1-phosphate can be formed from guanosine through the action of purine nucleoside phosphorylase. Ribose 1-phosphate can also act as a ribose donor in the synthesis of xanthosine as catalyzed by the same enzyme (purine nucleoside phosphorylase). The presence of guanase, which irreversibly converts guanine to xanthine, affects the overall process of guanosine transformation. As a result of this purine pathway, guanosine is converted into xanthosine, thus overcoming the lack of guanosine deaminase in mammals. The activated ribose moiety in Ribose 1-phosphate which stems from the catabolism of purine nucleosides can be transferred to uracil and, in the presence of ATP, used for the synthesis of pyrimidine nucleotides; therefore, purine nucleosides can act as ribose donors for the salvage of pyrimidine bases. (PMID: 9133638). COVID info from COVID-19 Disease Map Corona-virus KEIO_ID R017 Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Glucose 6-phosphate

{[(2R,3S,4S,5R)-3,4,5,6-tetrahydroxyoxan-2-yl]methoxy}phosphonic acid

C6H13O9P (260.0297)


Glucose 6 phosphate (alpha-D-glucose 6 phosphate or G6P) is the alpha-anomer of glucose-6-phosphate. There are two anomers of glucose 6 phosphate, the alpha anomer and the beta anomer. Glucose 6 phosphate is an ester of glucose with phosphoric acid, made in the course of glucose metabolism by mammalian and other cells. It is a normal constituent of resting muscle and probably is in constant equilibrium with fructose-6-phosphate. (Stedman, 26th ed). Glucose-6-phosphate is a phosphorylated glucose molecule on carbon 6. When glucose enters a cell, it is immediately phosphorylated to G6P. This is catalyzed with hexokinase enzymes, thus consuming one ATP. A major reason for immediate phosphorylation of the glucose is so that it cannot diffuse out of the cell. The phosphorylation adds a charged group so the G6P cannot easily cross cell membranes. G6P can travel down two metabolic pathways, glycolysis and the pentose phosphate pathway. In addition to the metabolic pathways, G6P can also be stored as glycogen in the liver if blood glucose levels are high. If the body needs energy or carbon skeletons for syntheses, G6P can be isomerized to Fructose-6-phosphate and then phosphorylated to Fructose-1,6-bisphosphate. Note, the molecule now has 2 phosphoryl groups attached. The addition of the 2nd phosphoryl group is an irreversible step, so once this happens G6P will enter glycolysis and be turned into pyruvate (ATP production occurs). If blood glucose levels are high, the body needs a way to store the excess glucose. After being converted to G6P, phosphoglucose mutase (isomerase) can turn the molecule into glucose-1-phosphate. Glucose-1-phosphate can then be combined with uridine triphosphate (UTP) to form UDP-glucose. This reaction is driven by the hydrolysis of pyrophosphate that is released in the reaction. Now, the activated UDP-glucose can add to a growing glycogen molecule with the help of glycogen synthase. This is a very efficient storage mechanism for glucose since it costs the body only 1 ATP to store the 1 glucose molecule and virtually no energy to remove it from storage. It is important to note that glucose-6-phosphate is an allosteric activator of glycogen synthase, which makes sense because when the level of glucose is high the body should store the excess glucose as glycogen. On the other hand, glycogen synthase is inhibited when it is phosphorylated by protein kinase a during times of high stress or low blood glucose levels. -- Wikipedia [HMDB] Glucose 6-phosphate (G6P, sometimes called the Robison ester) is a glucose sugar phosphorylated at the hydroxy group on carbon 6. Glucose 6-phosphate (G6P) has two anomers: the alpha anomer and the beta anomer. Glucose 6-phosphate is an ester of glucose with phosphoric acid, made in the course of glucose metabolism by mammalian and other cells. It is a normal constituent of resting muscle and probably is in constant equilibrium with fructose 6-phosphate (Stedman, 26th ed). When glucose enters a cell, it is immediately phosphorylated to G6P. This is catalyzed with hexokinase enzymes, thus consuming one ATP. A major reason for immediate phosphorylation of the glucose is so that it cannot diffuse out of the cell. The phosphorylation adds a charged group so the G6P cannot easily cross cell membranes. G6P can travel down two metabolic pathways: glycolysis and the pentose phosphate pathway. In addition to the metabolic pathways, G6P can also be stored as glycogen in the liver if blood glucose levels are high. If the body needs energy or carbon skeletons for syntheses, G6P can be isomerized to fructose 6-phosphate and then phosphorylated to fructose 1,6-bisphosphate. Note, the molecule now has 2 phosphoryl groups attached. The addition of the 2nd phosphoryl group is an irreversible step, so once this happens G6P will enter glycolysis and be turned into pyruvate (ATP production occurs). If blood glucose levels are high, the body needs a way to store the excess glucose. After being converted to G6P, phosphoglucose mutase (an isomerase) can turn the molecule into glucose 1-phosphate. Glucose 1-phosphate can then be combined with uridine triphosphate (UTP) to form UDP-glucose. This reaction is driven by the hydrolysis of pyrophosphate that is released in the reaction. Now, the activated UDP-glucose can add to a growing glycogen molecule with the help of glycogen synthase. This is a very efficient storage mechanism for glucose since it costs the body only 1 ATP to store the 1 glucose molecule and virtually no energy to remove it from storage. It is important to note that glucose 6-phosphate is an allosteric activator of glycogen synthase, which makes sense because when the level of glucose is high the body should store the excess glucose as glycogen. On the other hand, glycogen synthase is inhibited when it is phosphorylated by protein kinase during times of high stress or low blood glucose levels. Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 237 KEIO_ID G003; [MS2] KO009109 KEIO_ID G003

   

Dimethylbenzimidazole

5,6-Dimethylbenzimidazole hydrochloride

C9H10N2 (146.0844)


Dimethylbenzimidazole is an intermediate in Riboflavin metabolism. Dimethylbenzimidazole is the second to last step for the synthesis of alpha-Ribazole. It is converted from Riboflavin then it is converted to N1-(5-Phospho-alpha-D-ribosyl)-5,6-dimethylbenzimidazole via the enzyme nicotinate-nucleotide--dimethylbenzimidazole phosphoribosyltransferase (EC 2.4.2.21). Dimethylbenzimidazole is an intermediate in Riboflavin metabolism. KEIO_ID D087 5,6-Dimethyl-1H-benzo[d]imidazole is an endogenous metabolite.

   

Glucosamine

(3R,4R,5S,6R)-3-Amino-6-(hydroxymethyl)oxane-2,4,5-triol

C6H13NO5 (179.0794)


Glucosamine (C6H13NO5) is an amino sugar and a prominent precursor in the biochemical synthesis of glycosylated proteins and lipids. Glucosamine is part of the structure of two polysaccharides, chitosan and chitin. Glucosamine is one of the most abundant monosaccharides. Produced commercially by the hydrolysis of shellfish exoskeletons or, less commonly, by fermentation of a grain such as corn or wheat, glucosamine has many names depending on country. Although a common dietary supplement, there is little evidence that it is effective for relief of arthritis or pain, and is not an approved prescription drug. In the United States, glucosamine is not approved by the Food and Drug Administration for medical use in humans. Since glucosamine is classified as a dietary supplement, evidence of safety and efficacy is not required as long as it is not advertised as a treatment for a medical condition. Nevertheless, glucosamine is a popular alternative medicine used by consumers for the treatment of osteoarthritis. Glucosamine is also extensively used in veterinary medicine as an unregulated but widely accepted supplement. Treatment with oral glucosamine is commonly used for the treatment of osteoarthritis. Since glucosamine is a precursor for glycosaminoglycans, and glycosaminoglycans are a major component of joint cartilage, supplemental glucosamine may help to rebuild cartilage and treat arthritis. However, there is little evidence that any clinical effect of glucosamine works this way. Its use as a therapy for osteoarthritis appears safe but there is conflicting evidence as to its effectiveness. Glucosamine is naturally present in the shells of shellfish, animal bones, bone marrow, and fungi. D-Glucosamine is made naturally in the form of glucosamine-6-phosphate, and is the biochemical precursor of all nitrogen-containing sugars. Specifically in humans, glucosamine-6-phosphate is synthesized from fructose 6-phosphate and glutamine by glutamine—fructose-6-phosphate transaminase as the first step of the hexosamine biosynthesis pathway. The end-product of this pathway is uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), which is then used for making glycosaminoglycans, proteoglycans, and glycolipids. As the formation of glucosamine-6-phosphate is the first step for the synthesis of these products, glucosamine may be important in regulating their production; however, the way that the hexosamine biosynthesis pathway is actually regulated, and whether this could be involved in contributing to human disease remains unclear. Present in mucopolysaccharides and in polysaccharides found in bacteria, fungi, higher plants, invertebrates, vertebrates, antibiotics and UDP complexes. Obt. comly. by hydrol. of seashells [CCD] M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID G051 Glucosamine (D-Glucosamine) is an amino sugar and a prominent precursor in the biochemical synthesis of glycosylated proteins and lipids, is used as a dietary supplement. Glucosamine also is a natural constituent of glycosaminoglycans in the cartilage matrix and synovial fluid, which when administered exogenously, exerts pharmacological effects on osteoarthritic cartilage and chondrocytes[1]. Glucosamine (D-Glucosamine) is an amino sugar and a prominent precursor in the biochemical synthesis of glycosylated proteins and lipids, is used as a dietary supplement. Glucosamine also is a natural constituent of glycosaminoglycans in the cartilage matrix and synovial fluid, which when administered exogenously, exerts pharmacological effects on osteoarthritic cartilage and chondrocytes[1]. Glucosamine (D-Glucosamine) is an amino sugar and a prominent precursor in the biochemical synthesis of glycosylated proteins and lipids, is used as a dietary supplement. Glucosamine also is a natural constituent of glycosaminoglycans in the cartilage matrix and synovial fluid, which when administered exogenously, exerts pharmacological effects on osteoarthritic cartilage and chondrocytes[1].

   

(3R,4R,5R)-1,3,4,5,6-Pentahydroxyhexan-2-one

(3R,4R,5R)-1,3,4,5,6-Pentahydroxyhexan-2-one

C6H12O6 (180.0634)


   

D-Xylose

(3R,4S,5R)-Tetrahydro-2H-pyran-2,3,4,5-tetrol

C5H10O5 (150.0528)


Xylose or wood sugar is an aldopentose - a monosaccharide containing five carbon atoms and an aldehyde functional group. It has chemical formula C5H10O5 and is 40\\\\% as sweet as sucrose. Xylose is found in the embryos of most edible plants. The polysaccharide xylan, which is closely associated with cellulose, consists practically entirely of d-xylose. Corncobs, cottonseed hulls, pecan shells, and straw contain considerable amounts of this sugar. Xylose is also found in mucopolysaccharides of connective tissue and sometimes in the urine. Xylose is the first sugar added to serine or threonine residues during proteoglycan type O-glycosylation. Therefore xylose is involved in the biosythetic pathways of most anionic polysaccharides such as heparan sulphate and chondroitin sulphate. In medicine, xylose is used to test for malabsorption by administering a xylose solution to the patient after fasting. If xylose is detected in the blood and/or urine within the next few hours, it has been absorbed by the intestines. Xylose is said to be one of eight sugars which are essential for human nutrition, the others being galactose, glucose, mannose, N-acetylglucosamine, N-acetylgalactosamine, fucose, and sialic acid. (Wikipedia). Xylose in the urine is a biomarker for the consumption of apples and other fruits. Xylose is a sugar first isolated from wood, and named for it. Xylose is classified as a monosaccharide of the aldopentose type, which means that it contains five carbon atoms and includes an aldehyde functional group. It is the precursor to hemicellulose, one of the main constituents of biomass. D-Xylopyranose is found in flaxseed. D-(+)-xylose (Xylose) is a natural compound that is catalyzed by xylose isomerase to form xylulose, which is a key step in the anaerobic ethanol fermentation of xylose. D-(+)-xylose (Xylose) is a natural compound that is catalyzed by xylose isomerase to form xylulose, which is a key step in the anaerobic ethanol fermentation of xylose.

   

D-Arabinose

WURCS=2.0/1,1,0/[a122h-1b_1-5]/1/

C5H10O5 (150.0528)


D-Arabinose (CAS: 10323-20-3) belongs to the class of organic compounds known as pentoses. These are monosaccharides in which the carbohydrate moiety contains five carbon atoms. Outside of the human body, D-arabinose has been detected, but not quantified in, sweet basils and tamarinds. This could make D-arabinose a potential biomarker for the consumption of these foods. Arabinose is an aldopentose – a monosaccharide containing five carbon atoms, and including an aldehyde (CHO) functional group. D-Arabinose is found in sweet basil and tamarind. D000074385 - Food Ingredients > D005503 - Food Additives > D010368 - Pectins Arabinose is an endogenous metabolite. Arabinose is an endogenous metabolite. DL-Xylose is an intermediate of organic synthesis. DL-Xylose is an intermediate of organic synthesis. L-(+)-Arabinose selectively inhibits intestinal sucrase activity in a noncompetitive manner and suppresses the plasma glucose increase due to sucrose ingestion. L-(+)-Arabinose selectively inhibits intestinal sucrase activity in a noncompetitive manner and suppresses the plasma glucose increase due to sucrose ingestion. D-(+)-xylose (Xylose) is a natural compound that is catalyzed by xylose isomerase to form xylulose, which is a key step in the anaerobic ethanol fermentation of xylose. D-(+)-xylose (Xylose) is a natural compound that is catalyzed by xylose isomerase to form xylulose, which is a key step in the anaerobic ethanol fermentation of xylose.

   

Glycolic acid

Glycolic acid, monopotassium salt

C2H4O3 (76.016)


Glycolic acid (or hydroxyacetic acid) is the smallest alpha-hydroxy acid (AHA). This colourless, odourless, and hygroscopic crystalline solid is highly soluble in water. Due to its excellent capability to penetrate skin, glycolic acid is often used in skin care products, most often as a chemical peel. It may reduce wrinkles, acne scarring, and hyperpigmentation and improve many other skin conditions, including actinic keratosis, hyperkeratosis, and seborrheic keratosis. Once applied, glycolic acid reacts with the upper layer of the epidermis, weakening the binding properties of the lipids that hold the dead skin cells together. This allows the outer skin to dissolve, revealing the underlying skin. It is thought that this is due to the reduction of calcium ion concentrations in the epidermis and the removal of calcium ions from cell adhesions, leading to desquamation. Glycolic acid is a known inhibitor of tyrosinase. This can suppress melanin formation and lead to a lightening of skin colour. Acute doses of glycolic acid on skin or eyes leads to local effects that are typical of a strong acid (e.g. dermal and eye irritation). Glycolate is a nephrotoxin if consumed orally. A nephrotoxin is a compound that causes damage to the kidney and kidney tissues. Glycolic acids renal toxicity is due to its metabolism to oxalic acid. Glycolic and oxalic acid, along with excess lactic acid, are responsible for the anion gap metabolic acidosis. Oxalic acid readily precipitates with calcium to form insoluble calcium oxalate crystals. Renal tissue injury is caused by widespread deposition of oxalate crystals and the toxic effects of glycolic acid. Glycolic acid does exhibit some inhalation toxicity and can cause respiratory, thymus, and liver damage if present in very high levels over long periods of time. Elevated glycolic acid without elevated oxalic acid is most likely a result of GI yeast overgrowth (Aspergillus, Penicillium, probably Candida) or due to dietary sources containing glycerol (glycerine). (http://drweyrich.weyrich.com/labs/oat.html). Glycolic acid has also been found to be a metabolite in Acetobacter, Acidithiobacillus, Alcaligenes, Corynebacterium, Cryptococcus, Escherichia, Gluconobacter, Kluyveromyces, Leptospirillum, Pichia, Rhodococcus, Rhodotorula and Saccharomyces (PMID: 11758919; PMID: 26360870; PMID: 14390024). D003879 - Dermatologic Agents > D007641 - Keratolytic Agents Found in sugar cane (Saccharum officinarum) KEIO_ID G012 Glycolic acid is an inhibitor of tyrosinase, suppressing melanin formation and lead to a lightening of skin colour. Glycolic acid is an inhibitor of tyrosinase, suppressing melanin formation and lead to a lightening of skin colour.

   

Alpha-ketobutyrate

2-oxobutanoic acid

C4H6O3 (102.0317)


3-methyl pyruvic acid, also known as alpha-ketobutyric acid or 2-oxobutyric acid, belongs to short-chain keto acids and derivatives class of compounds. Those are keto acids with an alkyl chain the contains less than 6 carbon atoms. Thus, 3-methyl pyruvic acid is considered to be a fatty acid lipid molecule. 3-methyl pyruvic acid is soluble (in water) and a weakly acidic compound (based on its pKa). 3-methyl pyruvic acid can be found in a number of food items such as pepper (c. baccatum), triticale, european plum, and black walnut, which makes 3-methyl pyruvic acid a potential biomarker for the consumption of these food products. 3-methyl pyruvic acid can be found primarily in blood, cerebrospinal fluid (CSF), saliva, and urine. 3-methyl pyruvic acid exists in all living species, ranging from bacteria to humans. In humans, 3-methyl pyruvic acid is involved in several metabolic pathways, some of which include methionine metabolism, homocysteine degradation, threonine and 2-oxobutanoate degradation, and propanoate metabolism. 3-methyl pyruvic acid is also involved in several metabolic disorders, some of which include dimethylglycine dehydrogenase deficiency, methylenetetrahydrofolate reductase deficiency (MTHFRD), s-adenosylhomocysteine (SAH) hydrolase deficiency, and hyperglycinemia, non-ketotic. 2-Ketobutyric acid, also known as alpha-ketobutyrate or 2-oxobutyrate, belongs to the class of organic compounds known as short-chain keto acids and derivatives. These are keto acids with an alkyl chain the contains less than 6 carbon atoms. 2-Ketobutyric acid is a substance that is involved in the metabolism of many amino acids (glycine, methionine, valine, leucine, serine, threonine, isoleucine) as well as propanoate metabolism and C-5 branched dibasic acid metabolism. It is also one of the degradation products of threonine. It can be converted into propionyl-CoA (and subsequently methylmalonyl CoA, which can be converted into succinyl CoA, a citric acid cycle intermediate), and thus enter the citric acid cycle. More specifically, 2-ketobutyric acid is a product of the lysis of cystathionine. 2-Oxobutanoic acid is a product in the enzymatic cleavage of cystathionine.

   

Pyruvic acid

alpha-Ketopropanoic acid

C3H4O3 (88.016)


Pyruvic acid, also known as 2-oxopropanoic acid or alpha-ketopropionic acid, belongs to alpha-keto acids and derivatives class of compounds. Those are organic compounds containing an aldehyde substituted with a keto group on the adjacent carbon. Thus, pyruvic acid is considered to be a fatty acid lipid molecule. Pyruvic acid is soluble (in water) and a moderately acidic compound (based on its pKa). Pyruvic acid can be synthesized from propionic acid. Pyruvic acid is also a parent compound for other transformation products, including but not limited to, 4-hydroxy-3-iodophenylpyruvate, 3-acylpyruvic acid, and methyl pyruvate. Pyruvic acid can be found in a number of food items such as kumquat, groundcherry, coconut, and prunus (cherry, plum), which makes pyruvic acid a potential biomarker for the consumption of these food products. Pyruvic acid can be found primarily in most biofluids, including sweat, blood, urine, and feces, as well as throughout most human tissues. Pyruvic acid exists in all living species, ranging from bacteria to humans. In humans, pyruvic acid is involved in several metabolic pathways, some of which include glycogenosis, type IB, glycolysis, urea cycle, and gluconeogenesis. Pyruvic acid is also involved in several metabolic disorders, some of which include non ketotic hyperglycinemia, pyruvate dehydrogenase complex deficiency, fructose-1,6-diphosphatase deficiency, and 4-hydroxybutyric aciduria/succinic semialdehyde dehydrogenase deficiency. Moreover, pyruvic acid is found to be associated with anoxia, schizophrenia, fumarase deficiency, and meningitis. Pyruvic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Pyruvic acid is a drug which is used for nutritional supplementation, also for treating dietary shortage or imbalanc. Pyruvic acid can be made from glucose through glycolysis, converted back to carbohydrates (such as glucose) via gluconeogenesis, or to fatty acids through a reaction with acetyl-CoA. It can also be used to construct the amino acid alanine and can be converted into ethanol or lactic acid via fermentation . Those taking large doses of supplemental pyruvate—usually greater than 5 grams daily—have reported gastrointestinal symptoms, including abdominal discomfort and bloating, gas and diarrhea. One child receiving pyruvate intravenously for restrictive cardiomyopathy died (DrugBank). Pyruvate serves as a biological fuel by being converted to acetyl coenzyme A, which enters the tricarboxylic acid or Krebs cycle where it is metabolized to produce ATP aerobically. Energy can also be obtained anaerobically from pyruvate via its conversion to lactate. Pyruvate injections or perfusions increase contractile function of hearts when metabolizing glucose or fatty acids. This inotropic effect is striking in hearts stunned by ischemia/reperfusion. The inotropic effect of pyruvate requires intracoronary infusion. Among possible mechanisms for this effect are increased generation of ATP and an increase in ATP phosphorylation potential. Another is activation of pyruvate dehydrogenase, promoting its own oxidation by inhibiting pyruvate dehydrogenase kinase. Pyruvate dehydrogenase is inactivated in ischemia myocardium. Yet another is reduction of cytosolic inorganic phosphate concentration. Pyruvate, as an antioxidant, is known to scavenge such reactive oxygen species as hydrogen peroxide and lipid peroxides. Indirectly, supraphysiological levels of pyruvate may increase cellular reduced glutathione (T3DB). Pyruvic acid or pyruvate is a simple alpha-keto acid. It is a three-carbon molecule containing a carboxylic acid group and a ketone functional group. Pyruvate is the simplest alpha-keto acid and according to official nomenclature by IUPAC, it is called alpha-keto propanoic acid. Like other keto acids, pyruvic acid can tautomerize from its ketone form to its enol form, containing a double bond and an alcohol. Pyruvate is found in all living organisms ranging from bacteria to plants to humans. It is intermediate compound in the metabolism of carbohydrates, proteins, and fats. Pyruvate is a key intermediate in several metabolic pathways throughout the cell. In particular, pyruvic acid can be made from glucose through glycolysis, converted back to carbohydrates (such as glucose) via gluconeogenesis, or to fatty acids through a reaction with acetyl-CoA. Pyruvic acid supplies energy to cells through the citric acid cycle (TCA or Krebs cycle) when oxygen is present (aerobic respiration), and alternatively ferments to produce lactate when oxygen is lacking (lactic acid). In glycolysis, phosphoenolpyruvate (PEP) is converted to pyruvate by pyruvate kinase. This reaction is strongly exergonic and irreversible. In gluconeogenesis, it takes two enzymes, pyruvate carboxylase and PEP carboxykinase, to catalyze the reverse transformation of pyruvate to PEP. Pyruvic acid is also a metabolite of Corynebacterium (PMID: 27872963). Pyruvic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=127-17-3 (retrieved 2024-07-01) (CAS RN: 127-17-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Pyruvic acid is an intermediate metabolite in the metabolism of carbohydrates, proteins, and fats. Pyruvic acid is an intermediate metabolite in the metabolism of carbohydrates, proteins, and fats.

   

Thiamine

3-[(4-amino-2-methylpyrimidin-5-yl)methyl]-5-(2-hydroxyethyl)-4-methyl-1,3-thiazol-3-ium

C12H17N4OS (265.1123)


Thiamine, also known as aneurin or vitamin B1, belongs to the class of organic compounds known as thiamines. Thiamines are compounds containing a thiamine moiety, which is structurally characterized by a 3-[(4-Amino-2-methyl-pyrimidin-5-yl)methyl]-4-methyl-thiazol-5-yl backbone. Thiamine exists in all living species, ranging from bacteria to plants to humans. Thiamine biosynthesis occurs in bacteria, some protozoans, plants, and fungi. Thiamine is a vitamin and an essential nutrient meaning the body cannot synthesize it, and it must be obtained from the diet. It is soluble in water and insoluble in alcohol. Thiamine decomposes if heated. Thiamine was first discovered in 1897 by Umetaro Suzuki in Japan when researching how rice bran cured patients of Beriberi. Thiamine was the first B vitamin to be isolated in 1926 and was first made in 1936. Thiamine plays a key role in intracellular glucose metabolism and it is thought that thiamine inhibits the effect of glucose and insulin on arterial smooth muscle cell proliferation. Thiamine plays an important role in helping the body convert carbohydrates and fat into energy. It is essential for normal growth and development and helps to maintain proper functioning of the heart and the nervous and digestive systems. Thiamine cannot be stored in the body; however, once absorbed, the vitamin is concentrated in muscle tissue. Thiamine has antioxidant, erythropoietic, cognition-and mood-modulatory, antiatherosclerotic, putative ergogenic, and detoxification activities. Natural derivatives of thiamine, such as thiamine monophosphate (ThMP), thiamine diphosphate (ThDP), also sometimes called thiamine pyrophosphate (TPP), thiamine triphosphate (ThTP), and adenosine thiamine triphosphate (AThTP), act as coenzymes in addition to performing unique biological functions. Thiamine deficiency can lead to beriberi, Wernicke–Korsakoff syndrome, optic neuropathy, Leighs disease, African seasonal ataxia (or Nigerian seasonal ataxia), and central pontine myelinolysis. In Western countries, thiamine deficiency is seen mainly in chronic alcoholism. Thiamine supplements or thiamine therapy can be used for the treatment of a number of disorders including thiamine and niacin deficiency states, Korsakovs alcoholic psychosis, Wernicke-Korsakov syndrome, delirium, and peripheral neuritis. In humans, thiamine is involved in the metabolic disorder called 2-methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency. Outside of the human body, Thiamine is found in high quantities in whole grains, legumes, pork, fruits, and yeast and fish. Grain processing removes much of the thiamine content in grains, so in many countries cereals and flours are enriched with thiamine. Thiamine is an essential vitamin. It is found in many foods, some of which are atlantic croaker, wonton wrapper, cereals and cereal products, and turmeric. A - Alimentary tract and metabolism > A11 - Vitamins > A11D - Vitamin b1, plain and in combination with vitamin b6 and b12 > A11DA - Vitamin b1, plain Acquisition and generation of the data is financially supported in part by CREST/JST. D018977 - Micronutrients > D014815 - Vitamins KEIO_ID T056; [MS2] KO009294 KEIO_ID T056

   

1-Methylnicotinamide

N(1)-Methylnicotinamide iodide, 3-(aminocarbonyl-13C)-labeled

[C7H9N2O]+ (137.0715)


1-Methylnicotinamide is a metabolite of nicotinamide and is produced primarily in the liver. It has anti-inflammatory properties (PMID 16197374). It is a product of nicotinamide N-methyltransferase [EC 2.1.1.1] in the pathway of nicotinate and nicotinamide metabolism (KEGG). 1-Methylnicotinamide may be an endogenous activator of prostacyclin production and thus may regulate thrombotic as well as inflammatory processes in the cardiovascular system (PMID: 17641676). [HMDB] 1-Methylnicotinamide is a metabolite of nicotinamide and is produced primarily in the liver. It has anti-inflammatory properties (PMID 16197374). It is a product of nicotinamide N-methyltransferase [EC 2.1.1.1] in the pathway of nicotinate and nicotinamide metabolism (KEGG). 1-Methylnicotinamide may be an endogenous activator of prostacyclin production and thus may regulate thrombotic as well as inflammatory processes in the cardiovascular system (PMID: 17641676). 1-Methylnicotinamide. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=3106-60-3 (retrieved 2024-08-06) (CAS RN: 3106-60-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

N-Acetylimidazole

1-(1H-imidazol-1-yl)ethan-1-one

C5H6N2O (110.048)


   

Beta-Guanidinopropionic acid

3-(diaminomethylideneamino)propanoic acid

C4H9N3O2 (131.0695)


Beta-Guanidinopropionic acid is analog of creatine and is reported to decrease phosphocreatine and ATP content in animal tissues in vivo. Acquisition and generation of the data is financially supported in part by CREST/JST. A human metabolite taken as a putative food compound of mammalian origin [HMDB] C274 - Antineoplastic Agent > C177430 - Agent Targeting Cancer Metabolism KEIO_ID G039

   

Lipoamide

5-(1,2-Dithiolan-3-yl)-pentanamide

C8H15NOS2 (205.0595)


Lipoamide is a trivial name for 6,8-dithiooctanoic amide. It is 6,8-dithiooctanoic acids functional form where the carboxyl group is attached to protein (or any other amine) by an amide linkage (containing -NH2) to an amino group. Lipoamide forms a thioester bond, oxidizing the disulfide bond, with acetaldehyde (pyruvate after it has been decarboxylated). It then transfers the acetaldehyde group to CoA which can then continue in the TCA cycle. Lipoamide is an intermediate in glycolysis/gluconeogenesis, citrate cycle (TCA cycle), alanine, aspartate and pyruvate metabolism, and valine, leucine and isoleucine degradation (KEGG:C00248). It is generated from dihydrolipoamide via the enzyme dihydrolipoamide dehydrogenase (EC:1.8.1.4) and then converted to S-glutaryl-dihydrolipoamide via the enzyme oxoglutarate dehydrogenase (EC:1.2.4.2). Lipoamide is the oxidized form of glutathione. (PMID:8957191) KEIO_ID L031; [MS2] KO009031 KEIO_ID L031

   

3-methyl-2-oxovalerate

alpha-keto-beta-Methyl-n-valeric acid

C6H10O3 (130.063)


3-Methyl-2-oxovaleric acid (CAS: 1460-34-0) is an abnormal metabolite that arises from the incomplete breakdown of branched-chain amino acids. 3-Methyl-2-oxovaleric acid is a neurotoxin, an acidogen, and a metabotoxin. A neurotoxin causes damage to nerve cells and nerve tissues. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of 3-methyl-2-oxovaleric acid are associated with maple syrup urine disease. MSUD is a metabolic disorder caused by a deficiency of the branched-chain alpha-keto acid dehydrogenase complex (BCKDC), leading to a buildup of the branched-chain amino acids (leucine, isoleucine, and valine) and their toxic by-products (ketoacids) in the blood and urine. The symptoms of MSUD often show in infancy and lead to severe brain damage if untreated. MSUD may also present later depending on the severity of the disease. If left untreated in older individuals, during times of metabolic crisis, symptoms of the condition include uncharacteristically inappropriate, extreme, or erratic behaviour and moods, hallucinations, anorexia, weight loss, anemia, diarrhea, vomiting, dehydration, lethargy, oscillating hypertonia and hypotonia, ataxia, seizures, hypoglycemia, ketoacidosis, opisthotonus, pancreatitis, rapid neurological decline, and coma. In maple syrup urine disease, the brain concentration of branched-chain ketoacids can increase 10- to 20-fold. This leads to a depletion of glutamate and a consequent reduction in the concentration of brain glutamine, aspartate, alanine, and other amino acids. The result is a compromise of energy metabolism because of a failure of the malate-aspartate shuttle and a diminished rate of protein synthesis (PMID: 15930465). 3-Methyl-2-oxovaleric acid is a keto-acid, which is a subclass of organic acids. Abnormally high levels of organic acids in the blood (organic acidemia), urine (organic aciduria), the brain, and other tissues lead to general metabolic acidosis. Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis, the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). These can progress to heart, liver, and kidney abnormalities, seizures, coma, and possibly death. These are also the characteristic symptoms of untreated MSUD. Many affected children with organic acidemias experience intellectual disability or delayed development. (s)-3-methyl-2-oxopentanoate, also known as (3s)-2-oxo-3-methyl-N-valeric acid or (S)-omv, belongs to short-chain keto acids and derivatives class of compounds. Those are keto acids with an alkyl chain the contains less than 6 carbon atoms. Thus, (s)-3-methyl-2-oxopentanoate is considered to be a fatty acid lipid molecule (s)-3-methyl-2-oxopentanoate is slightly soluble (in water) and a weakly acidic compound (based on its pKa). (s)-3-methyl-2-oxopentanoate can be found in a number of food items such as bean, prickly pear, wild leek, and nutmeg, which makes (s)-3-methyl-2-oxopentanoate a potential biomarker for the consumption of these food products (s)-3-methyl-2-oxopentanoate may be a unique S.cerevisiae (yeast) metabolite.

   

Ketoleucine

4-methyl-2-oxopentanoic acid

C6H10O3 (130.063)


Ketoleucine is an abnormal metabolite that arises from the incomplete breakdown of branched-chain amino acids. Ketoleucine is both a neurotoxin and a metabotoxin. A neurotoxin causes damage to nerve cells and nerve tissues. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of ketoleucine are associated with maple syrup urine disease (MSUD). MSUD is a metabolic disorder caused by a deficiency of the branched-chain alpha-keto acid dehydrogenase complex (BCKDC), leading to a buildup of the branched-chain amino acids (leucine, isoleucine, and valine) and their toxic by-products (ketoacids) in the blood and urine. The symptoms of MSUD often show in infancy and lead to severe brain damage if untreated. MSUD may also present later depending on the severity of the disease. If left untreated in older individuals, during times of metabolic crisis, symptoms of the condition include uncharacteristically inappropriate, extreme, or erratic behaviour and moods, hallucinations, anorexia, weight loss, anemia, diarrhea, vomiting, dehydration, lethargy, oscillating hypertonia and hypotonia, ataxia, seizures, hypoglycemia, ketoacidosis, opisthotonus, pancreatitis, rapid neurological decline, and coma. In maple syrup urine disease, the brain concentration of branched-chain ketoacids can increase 10- to 20-fold. This leads to a depletion of glutamate and a consequent reduction in the concentration of brain glutamine, aspartate, alanine, and other amino acids. The result is a compromise of energy metabolism because of a failure of the malate-aspartate shuttle and a diminished rate of protein synthesis (PMID: 15930465). Ketoleucine, also known as alpha-ketoisocaproic acid or 2-oxoisocaproate, belongs to short-chain keto acids and derivatives class of compounds. Those are keto acids with an alkyl chain the contains less than 6 carbon atoms. Ketoleucine is slightly soluble (in water) and a weakly acidic compound (based on its pKa). Ketoleucine can be found in a number of food items such as arctic blackberry, sesame, sea-buckthornberry, and soft-necked garlic, which makes ketoleucine a potential biomarker for the consumption of these food products. Ketoleucine can be found primarily in most biofluids, including saliva, blood, cerebrospinal fluid (CSF), and urine, as well as in human muscle, neuron and prostate tissues. Ketoleucine exists in all living species, ranging from bacteria to humans. In humans, ketoleucine is involved in the valine, leucine and isoleucine degradation. Ketoleucine is also involved in several metabolic disorders, some of which include methylmalonate semialdehyde dehydrogenase deficiency, propionic acidemia, 3-methylglutaconic aciduria type IV, and 3-methylglutaconic aciduria type I. Ketoleucine is a non-carcinogenic (not listed by IARC) potentially toxic compound. Ketoleucine is a metabolite that accumulates in Maple Syrup Urine Disease (MSUD) and shown to compromise brain energy metabolism by blocking the respiratory chain (T3DB). 4-Methyl-2-oxopentanoic acid (α-Ketoisocaproic acid), an abnormal metabolite, is both a neurotoxin and a metabotoxin.

   

Dihydroxyacetone phosphate

1,3-Dihydroxy-2-propanone monodihydrogen phosphoric acid

C3H7O6P (169.998)


An important intermediate in lipid biosynthesis and in glycolysis.; Dihydroxyacetone phosphate (DHAP) is a biochemical compound involved in many reactions, from the Calvin cycle in plants to the ether-lipid biosynthesis process in Leishmania mexicana. Its major biochemical role is in the glycolysis metabolic pathway. DHAP may be referred to as glycerone phosphate in older texts.; Dihydroxyacetone phosphate lies in the glycolysis metabolic pathway, and is one of the two products of breakdown of fructose 1,6-phosphate, along with glyceraldehyde 3-phosphate. It is rapidly and reversibly isomerised to glyceraldehyde 3-phosphate.; In the Calvin cycle, DHAP is one of the products of the sixfold reduction of 1,3-bisphosphoglycerate by NADPH. It is also used in the synthesis of sedoheptulose 1,7-bisphosphate and fructose 1,6-bisphosphate which are both used to reform ribulose 5-phosphate, the key carbohydrate of the Calvin cycle. Dihydroxyacetone phosphate is found in many foods, some of which are sesame, mexican groundcherry, parsley, and common wheat. [Spectral] Glycerone phosphate (exact mass = 169.99802) and beta-D-Fructose 1,6-bisphosphate (exact mass = 339.99605) and NADP+ (exact mass = 743.07545) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Dihydroxyacetone phosphate is an important intermediate in lipid biosynthesis and in glycolysis. Dihydroxyacetone phosphate is found to be associated with transaldolase deficiency, which is an inborn error of metabolism. Dihydroxyacetone phosphate has been identified in the human placenta (PMID: 32033212). KEIO_ID D014

   

Fructose 1,6-bisphosphate

D-fructofuranose 1,6-bisphosphate

C6H14O12P2 (339.9961)


D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents C - Cardiovascular system > C01 - Cardiac therapy D007155 - Immunologic Factors D020011 - Protective Agents KEIO_ID F008

   

Glycoprotein-phospho-D-mannose

(2S,3S,4R,5R)-2,3,4,5,6-Pentahydroxyhexanal

C6H12O6 (180.0634)


Glycoprotein-phospho-D-mannose, also known as (2S,3S,4R,5R)-2,3,4,5,6-Pentahydroxyhexanal or Mannose homopolymer, is classified as a member of the Hexoses. Hexoses are monosaccharides in which the sugar unit is a is a six-carbon containing moeity. Glycoprotein-phospho-D-mannose is considered to be soluble (in water) and acidic

   

Glyceraldehyde

(2R)-2,3-dihydroxypropanal

C3H6O3 (90.0317)


DL-Glyceraldehyde is a monosaccharide. DL-Glyceraldehyde is the simplest aldose. DL-Glyceraldehyde can be used for various biochemical studies[1].

   

alpha-Ketoisovaleric acid

3-Methyl-2-oxobutyric acid sodium salt

C5H8O3 (116.0473)


alpha-Ketoisovaleric acid is an abnormal metabolite that arises from the incomplete breakdown of branched-chain amino acids. alpha-Ketoisovaleric acid is a neurotoxin, an acidogen, and a metabotoxin. A neurotoxin causes damage to nerve cells and nerve tissues. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of alpha-ketoisovaleric acid are associated with maple syrup urine disease. MSUD is a metabolic disorder caused by a deficiency of the branched-chain alpha-keto acid dehydrogenase complex (BCKDC), leading to a buildup of the branched-chain amino acids (leucine, isoleucine, and valine) and their toxic by-products (ketoacids) in the blood and urine. The symptoms of MSUD often show in infancy and lead to severe brain damage if untreated. MSUD may also present later depending on the severity of the disease. If left untreated in older individuals, during times of metabolic crisis, symptoms of the condition include uncharacteristically inappropriate, extreme, or erratic behaviour and moods, hallucinations, anorexia, weight loss, anemia, diarrhea, vomiting, dehydration, lethargy, oscillating hypertonia and hypotonia, ataxia, seizures, hypoglycemia, ketoacidosis, opisthotonus, pancreatitis, rapid neurological decline, and coma. In maple syrup urine disease, the brain concentration of branched-chain ketoacids can increase 10- to 20-fold. This leads to a depletion of glutamate and a consequent reduction in the concentration of brain glutamine, aspartate, alanine, and other amino acids. The result is a compromise of energy metabolism because of a failure of the malate-aspartate shuttle and a diminished rate of protein synthesis (PMID: 15930465). alpha-Ketoisovaleric acid is a keto-acid, which is a subclass of organic acids. Abnormally high levels of organic acids in the blood (organic acidemia), urine (organic aciduria), the brain, and other tissues lead to general metabolic acidosis. Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis, the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). These can progress to heart, liver, and kidney abnormalities, seizures, coma, and possibly death. These are also the characteristic symptoms of untreated MSUD. Many affected children with organic acidemias experience intellectual disability or delayed development. Flavouring ingredient for use in butter-type flavours. Found in banana, bread, cheeses, asparagus, beer and cocoa KEIO_ID M006 3-Methyl-2-oxobutanoic acid is a precursor of pantothenic acid in Escherichia coli.

   

Mestranol

(1S,10R,11S,14R,15S)-14-ethynyl-5-methoxy-15-methyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadeca-2(7),3,5-trien-14-ol

C21H26O2 (310.1933)


Mestranol is only found in individuals that have used or taken this drug. It is the 3-methyl ether of ethinyl estradiol. It must be demethylated to be biologically active. It is used as the estrogen component of many combination ORAL contraceptives. [PubChem]Mestranol is the 3-methyl ether of ethinylestradiol. Ethinylestradiol, is a synthetic derivative of estradiol. Ethinylestradiol is orally bio-active and the estrogen used in almost all modern formulations of combined oral contraceptive pills. It binds to (and activates) the estrogen receptor. Mestranol is a biologically inactive prodrug of ethinylestradiol to which it is demethylated in the liver with a conversion efficiency of 70\\%.Estrogens diffuse into their target cells and interact with a protein receptor. Target cells include the female reproductive tract, the mammary gland, the hypothalamus, and the pituitary. Estrogens increase the hepatic synthesis of sex hormone binding globulin (SHBG), thyroid-binding globulin (TBG), and other serum proteins and suppress follicle-stimulating hormone (FSH) from the anterior pituitary. The combination of an estrogen with a progestin suppresses the hypothalamic-pituitary system, decreasing the secretion of gonadotropin-releasing hormone (GnRH). D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents

   

5-Keto-D-gluconate

2,3,4,6-tetrahydroxy-5-oxohexanoic acid

C6H10O7 (194.0427)


5-Keto-D-gluconate is metabolized from glucose in certain bacterial species. It is an intermediate in L-idonate degradation and ketogluconate metabolism. 5-Keto-D-gluconate 5-reductase catalyzes the reversible reduction of 5-ketogluconate to D-gluconate. This is the second reaction of the L-idonate catabolic pathway after uptake of L-idonate into the cell. The enzyme specifically reduces 5-ketogluconate using either NADH or NADPH. The enzyme is also specific for D-gluconate oxidation using NADP as the coenzyme, NAD does not serve as a coenzyme. 5-Keto-D-gluconate has also been found to be a metabolite of Gluconobacter (https://www.sciencedirect.com/science/article/pii/S138111779800112X). 5-Keto-D-gluconate is metabolized from glucose in certain bacterial species. It is an intermediate in L-idonate degradation and ketogluconate metabolism. 5-Keto-D-gluconate 5-reductase catalyzes the reversible reduction of 5-ketogluconate to D-gluconate. This is the second reaction of the L-idonate catabolic pathway after uptake of L-idonate into the cell. The enzyme specifically reduces 5-ketogluconate using either NADH or NADPH. The enzyme is also specific for D-gluconate oxidation using NADP as the coenzyme, NAD does not serve as a coenzyme. [HMDB]

   

Moniliformin

3-hydroxycyclobut-3-ene-1,2-dione

C4H2O3 (98.0004)


   

D-Arabinose 5-phosphate

{[(2R,3R,4S)-2,3,4-trihydroxy-5-oxopentyl]oxy}phosphonic acid

C5H11O8P (230.0192)


D-Arabinose 5-phosphate is an intermediate in biosynthesis of lipopolysaccharide. It is reversibly converted to D-ribulose 5-phosphate by arabinose-5-phosphate isomerase (EC 5.3.1.13). Acquisition and generation of the data is financially supported in part by CREST/JST. D-Arabinose 5-phosphate is an intermediate in biosynthesis of lipopolysaccharide. KEIO_ID A147

   

Thiamine pyrophosphate

3-[(4-amino-2-methylpyrimidin-5-yl)methyl]-5-(2-{[hydroxy(phosphonooxy)phosphoryl]oxy}ethyl)-4-methyl-1,3-thiazol-3-ium

[C12H19N4O7P2S]+ (425.045)


Thiamine pyrophosphate is the active form of thiamine, and it serves as a cofactor for several enzymes involved primarily in carbohydrate catabolism. The enzymes are important in the biosynthesis of a number of cell constituents, including neurotransmitters, and for the production of reducing equivalents used in oxidant stress defenses and in biosyntheses and for synthesis of pentoses used as nucleic acid precursors. The chemical structure of TPP is that of an aromatic methylaminopyrimidine ring, linked via a methylene bridge to a methylthiazolium ring with a pyrophosphate group attached to a hydroxyethyl side chain. In non-enzymatic model studies it has been demonstrated that the thiazolium ring can catalyse reactions which are similar to those of TPP-dependent enzymes but several orders of magnitude slower. Using infrared and NMR spectrophotometry it has been shown that the dissociation of the proton from C2 of the thiazolium ring is necessary for catalysis; the abstraction of the proton leads to the formation of a carbanion (ylid) with the potential for a nucleophilic attack on the carbonyl group of the substrate. In all TPP-dependent enzymes the abstraction of the proton from the C2 atom is the first step in catalysis, which is followed by a nucleophilic attack of this carbanion on the substrate. Subsequent cleavage of a C-C bond releases the first product with formation of a second carbanion (2-greek small letter alpha-carbanion or enamine). The formation of this 2-greek small letter alpha-carbanion is the second feature of TPP catalysis common to all TPP-dependent enzymes. Depending on the enzyme and the substrate(s), the reaction intermediates and products differ. Methyl-branched fatty acids, as phytanic acid, undergo peroxisomal beta-oxidation in which they are shortened by 1 carbon atom. This process includes four steps: activation, 2-hydroxylation, thiamine pyrophosphate dependent cleavage and aldehyde dehydrogenation. In the third step, 2-hydroxy-3-methylacyl-CoA is cleaved in the peroxisomal matrix by 2-hydroxyphytanoyl-CoA lyase (2-HPCL), which uses thiamine pyrophosphate (TPP) as cofactor. The thiamine pyrophosphate dependence of the third step is unique in peroxisomal mammalian enzymology. Human pathology due to a deficient alpha-oxidation is mostly linked to mutations in the gene coding for the second enzyme of the sequence, phytanoyl-CoA hydroxylase (EC 1.14.11.18). (PMID: 12694175, 11899071, 9924800) [HMDB] Thiamine pyrophosphate (CAS: 154-87-0) is the active form of thiamine, and it serves as a cofactor for several enzymes involved primarily in carbohydrate catabolism. These enzymes are important in the biosynthesis of several cell constituents, including neurotransmitters, and for the production of reducing equivalents used in oxidant stress defences. The enzymes are also important for the synthesis of pentoses used as nucleic acid precursors. The chemical structure of TPP is that of an aromatic methylaminopyrimidine ring, linked via a methylene bridge to a methylthiazolium ring with a pyrophosphate group attached to a hydroxyethyl side chain. In non-enzymatic model studies, it has been demonstrated that the thiazolium ring can catalyze reactions that are similar to those of TPP-dependent enzymes but several orders of magnitude slower. Using infrared and NMR spectrophotometry it has been shown that the dissociation of the proton from C2 of the thiazolium ring is necessary for catalysis; the abstraction of the proton leads to the formation of a carbanion with the potential for a nucleophilic attack on the carbonyl group of the substrate. In all TPP-dependent enzymes, the abstraction of the proton from the C2 atom is the first step in catalysis, which is followed by a nucleophilic attack of this carbanion on the substrate. Subsequent cleavage of a C-C bond releases the first product with the formation of a second carbanion (enamine). This formation is the second feature of TPP catalysis common to all TPP-dependent enzymes. Depending on the enzyme and the substrate(s), the reaction intermediates and products differ. Methyl-branched fatty acids, as phytanic acid, undergo peroxisomal beta-oxidation in which they are shortened by 1 carbon atom. This process includes four steps: activation, 2-hydroxylation, thiamine pyrophosphate-dependent cleavage, and aldehyde dehydrogenation. In the third step, 2-hydroxy-3-methylacyl-CoA is cleaved in the peroxisomal matrix by 2-hydroxyphytanoyl-CoA lyase (2-HPCL), which uses thiamine pyrophosphate (TPP) as a cofactor. The thiamine pyrophosphate dependence of the third step is unique in peroxisomal mammalian enzymology. Human pathology due to a deficient alpha-oxidation is mostly linked to mutations in the gene coding for the second enzyme of the sequence, phytanoyl-CoA hydroxylase (EC 1.14.11.18) (PMID:12694175, 11899071, 9924800). D018977 - Micronutrients > D014815 - Vitamins KEIO_ID C077

   

β-D-Fructose 6-phosphate

[(2R,3R,4S)-2,3,4,6-tetrahydroxy-5-oxohexyl] dihydrogen phosphate

C6H13O9P (260.0297)


Fructose 6-phosphate (F6P) belongs to the class of organic compounds known as hexose phosphates. These are carbohydrate derivatives containing a hexose substituted by one or more phosphate groups. F6P is a derivative of fructose, which has been phosphorylated at the 6-hydroxy group. Fructose 6-phosphate is a fundamental metabolite and exists in all living species, ranging from bacteria to plants to humans. The great majority of glucose is converted to fructose 6-phosphate as part of the glycolytic metabolic pathway (glycolysis). Specifically, F6P is produce is produced by the isomerisation of glucose 6-phosphate via the enzyme phosphoglucose isomerase. F6P is in turn further phosphorylated to fructose-1,6-bisphosphate by the enzyme phosphofructokinase-1. Glycolysis is the metabolic pathway that converts glucose into pyruvic acid. The free energy released in this process is used to form ATP and reduced nicotinamide adenine dinucleotide (NADH). In addition to its key involvement in glycolysis, fructose 6-phosphate can also be biosynthesized from glucosamine 6-phosphate via the enzyme glucosamine-6-phosphate isomerase 1. In addition, fructose 6-phosphate and L-glutamine can be converted into glucosamine 6-phosphate and L-glutamic acid through the action of the enzyme glutamine--fructose-6-phosphate aminotransferase. An important intermediate in the Carbohydrates pathway. The interconversion of glucose-6-phosphate and fructose-6-phosphate, the second step of the Embden-Meyerhof glycolytic pathway, is catalyzed by the enzyme phosphoglucose isomerase (PGI). In gluconeogenesis, fructose-6-phosphate is the immediate precursor of glucose-6-phosphate (wikipedia) [HMDB] Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID F001

   

6-Phosphogluconic acid

(2R,3S,4R,5R)-2,3,4,5-tetrahydroxy-6-(phosphonooxy)hexanoic acid

C6H13O10P (276.0246)


6-phosphogluconic acid, also known as 6-phospho-D-gluconate or D-gluconic acid 6-(dihydrogen phosphate), is a member of the class of compounds known as monosaccharide phosphates. Monosaccharide phosphates are monosaccharides comprising a phosphated group linked to the carbohydrate unit. 6-phosphogluconic acid is soluble (in water) and a moderately acidic compound (based on its pKa). 6-phosphogluconic acid can be found in a number of food items such as purple mangosteen, nopal, chicory leaves, and common sage, which makes 6-phosphogluconic acid a potential biomarker for the consumption of these food products. 6-phosphogluconic acid can be found primarily in blood, cellular cytoplasm, and saliva, as well as throughout most human tissues. 6-phosphogluconic acid exists in all living species, ranging from bacteria to humans. In humans, 6-phosphogluconic acid is involved in the pentose phosphate pathway. 6-phosphogluconic acid is also involved in few metabolic disorders, which include glucose-6-phosphate dehydrogenase deficiency, ribose-5-phosphate isomerase deficiency, transaldolase deficiency, and warburg effect. 6-phosphogluconic acid is formed by 6-phosphogluconolactonase, and acted upon by phosphogluconate dehydrogenase to produce ribulose 5-phosphate. It may also be acted upon by 6-phosphogluconate dehydratase to produce 2-keto-3-deoxy-6-phosphogluconate . 6-Phosphogluconic acid, also known as 6-phospho-D-gluconate or gluconic acid-6-phosphate, belongs to the class of organic compounds known as monosaccharide phosphates. These are monosaccharides comprising a phosphated group linked to the carbohydrate unit. 6-Phosphogluconic acid exists in all living species, ranging from bacteria to humans. Within humans, 6-phosphogluconic acid participates in a number of enzymatic reactions. In particular, 6-phosphogluconic acid can be biosynthesized from gluconolactone; which is mediated by the enzyme 6-phosphogluconolactonase. In addition, 6-phosphogluconic acid can be converted into D-ribulose 5-phosphate through the action of the enzyme 6-phosphogluconate dehydrogenase, decarboxylating. In humans, 6-phosphogluconic acid is involved in the metabolic disorder called the transaldolase deficiency pathway. Outside of the human body, 6-Phosphogluconic acid has been detected, but not quantified in several different foods, such as cascade huckleberries, common chokecherries, half-highbush blueberries, american cranberries, and okra. [Spectral] 6-Phospho-D-gluconate (exact mass = 276.02463) and Phosphoenolpyruvate (exact mass = 167.98237) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. KEIO_ID P031

   

D-ribulose-1,5-bisphosphate

{[(3R,4R)-3,4-dihydroxy-2-oxo-5-(phosphonooxy)pentyl]oxy}phosphonic acid

C5H12O11P2 (309.9855)


D-ribulose-1,5-bisphosphate, also known as ribulose-1,5-diphosphoric acid or ribulose-1,5 diphosphate, (D)-isomer, is a member of the class of compounds known as pentose phosphates. Pentose phosphates are carbohydrate derivatives containing a pentose substituted by one or more phosphate groups. D-ribulose-1,5-bisphosphate is soluble (in water) and a moderately acidic compound (based on its pKa). D-ribulose-1,5-bisphosphate can be found in a number of food items such as bamboo shoots, bog bilberry, chestnut, and other cereal product, which makes D-ribulose-1,5-bisphosphate a potential biomarker for the consumption of these food products. D-ribulose-1,5-bisphosphate may be a unique E.coli metabolite. Ribulose 1,5-bisphosphate (RuBP) is an organic substance that is involved in photosynthesis. It is a colourless anion, a double phosphate ester of the ketopentose (ketone-containing sugar with five carbon atoms) called ribulose. Salts of RuBP can be isolated, but its crucial biological function happens in solution. To simplify the presentation, the image in the above table depicts the acid form of this anion . KEIO_ID R005

   

Thiamine monophosphate

2-[3-[(4-Azanyl-2-methyl-pyrimidin-5-yl)methyl]-4-methyl-1,3-thiazol-3-ium-5-yl]ethyl dihydrogen phosphoric acid

[C12H18N4O4PS]+ (345.0786)


Thiamine monophosphate, also known as thiamin phosphoric acid or TMP, belongs to the class of organic compounds known as thiamine phosphates. These are thiamine derivatives in which the hydroxyl group of the ethanol moiety is substituted by a phosphate group. Thiamine monophosphate is a very strong basic compound (based on its pKa). Thiamine monophosphate is one of the five known natural thiamine phosphate derivatives. Thiamine (vitamin B1) is the transport form of the vitamin while the phosphorylated derivatives are the active forms. Thiamine dihydrogen phosphate ester. The monophosphate ester of thiamine. Synonyms: monophosphothiamine; vitamin B1 monophosphate. -- Pubchem [HMDB] Acquisition and generation of the data is financially supported in part by CREST/JST. D018977 - Micronutrients > D014815 - Vitamins KEIO_ID T057; [MS3] KO009298 KEIO_ID T057; [MS2] KO009297 KEIO_ID T057

   

Xanthylic acid

{[(2R,3S,4R,5R)-5-(2,6-dioxo-2,3,6,9-tetrahydro-1H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}phosphonic acid

C10H13N4O9P (364.042)


Xanthylic acid, also known as xmp or (9-D-ribosylxanthine)-5-phosphate, is a member of the class of compounds known as purine ribonucleoside monophosphates. Purine ribonucleoside monophosphates are nucleotides consisting of a purine base linked to a ribose to which one monophosphate group is attached. Xanthylic acid is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Xanthylic acid can be found in a number of food items such as common grape, black-eyed pea, java plum, and wild rice, which makes xanthylic acid a potential biomarker for the consumption of these food products. Xanthylic acid exists in all living species, ranging from bacteria to humans. In humans, xanthylic acid is involved in several metabolic pathways, some of which include azathioprine action pathway, glutamate metabolism, mercaptopurine action pathway, and purine metabolism. Xanthylic acid is also involved in several metabolic disorders, some of which include purine nucleoside phosphorylase deficiency, succinic semialdehyde dehydrogenase deficiency, xanthine dehydrogenase deficiency (xanthinuria), and molybdenum cofactor deficiency. Xanthosine monophosphate is an intermediate in purine metabolism. It is a ribonucleoside monophosphate. It is formed from IMP via the action of IMP dehydrogenase, and it forms GMP via the action of GMP synthaseand is) also, XMP can be released from XTP by enzyme deoxyribonucleoside triphosphate pyrophosphohydrolase containing (d)XTPase activity . Xanthylic acid is an important metabolic intermediate in the Purine Metabolism, and is a product or substrate of the enzymes Inosine monophosphate dehydrogenase (EC 1.1.1.205), Hypoxanthine phosphoribosyltransferase (EC 2.4.2.8), Xanthine phosphoribosyltransferase (EC 2.4.2.22), 5-Ribonucleotide phosphohydrolase (EC 3.1.3.5), Ap4A hydrolase (EC 3.6.1.17), Nucleoside-triphosphate diphosphatase (EC 3.6.1.19), Phosphoribosylamine-glycine ligase (EC 6.3.4.1), and glutamine amidotransferase (EC 6.3.5.2). (KEGG) Xanthylic acid can also be used in quantitative measurements of the Inosine monophosphate dehydrogenase enzyme activities in purine metabolism. This measurement is important for optimal thiopurine therapy for children with acute lymphoblastic leukaemia (ALL). (PMID: 16725387). Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

O-acetylhomoserine

O-Acetyl-L-homoserine hydrochloride

C6H11NO4 (161.0688)


Acetylhomoserine is found in pulses. Acetylhomoserine is found in Pisum sativum (peas) Acquisition and generation of the data is financially supported in part by CREST/JST. Found in green tissues of pea (Pisum sativum)

   

D-Erythrose 4-phosphate

[(2R,3R)-2,3-dihydroxy-4-oxobutoxy]phosphonic acid

C4H9O7P (200.0086)


D-Erythrose 4-phosphate is a phosphorylated derivative of erythrose that serves as an important intermediate in the pentose phosphate pathway. It is also used in phenylalanine, tyrosine and tryptophan biosynthesis, and it plays a role in vitamin B6 metabolism (KEGG); Erythrose 4-phosphate is an intermediate in the pentose phosphate pathway and the Calvin cycle. In addition, it serves as a precursor in the biosynthesis of the aromatic amino acids tyrosine, phenylalanine, and tryptophan. D-Erythrose 4-phosphate is found in many foods, some of which are shea tree, bog bilberry, arrowhead, and dock. D-Erythrose 4-phosphate is a phosphorylated derivative of erythrose that serves as an important intermediate in the pentose phosphate pathway. It is also used in phenylalanine, tyrosine and tryptophan biosynthesis, and it plays a role in vitamin B6 metabolism (KEGG). Acquisition and generation of the data is financially supported in part by CREST/JST.

   

Glyceraldehyde 3-phosphate

[(2R)-2-hydroxy-3-oxopropoxy]phosphonic acid

C3H7O6P (169.998)


Glyceraldehyde 3-phosphate (G3P) (CAS: 591-59-3), also known as triose phosphate, belongs to the class of organic compounds known as glyceraldehyde-3-phosphates. Glyceraldehyde-3-phosphates are compounds containing a glyceraldehyde substituted at position O3 by a phosphate group. Glyceraldehyde 3-phosphate is an extremely weak basic (essentially neutral) compound (based on its pKa). Glyceraldehyde 3-phosphate has been detected, but not quantified in, several different foods, such as sea-buckthorn berries, lingonberries, prunus (cherry, plum), quinoa, and sparkleberries. This could make glyceraldehyde 3-phosphate a potential biomarker for the consumption of these foods. Glyceraldehyde 3-phosphate is an aldotriose, an important metabolic intermediate in both glycolysis and gluconeogenesis, and in tryptophan biosynthesis. G3P is formed from fructose 1,6-bisphosphate, dihydroxyacetone phosphate (DHAP), and 1,3-bisphosphoglycerate (1,3BPG). This is the process by which glycerol (as DHAP) enters the glycolytic and gluconeogenesis pathways. Glyceraldehyde 3-phosphate (G3P) or triose phosphate is an aldotriose, an important metabolic intermediate in both glycolysis and gluconeogenesis, and in tryptophan biosynthesis. G3P is formed from Fructose-1,6-bisphosphate, Dihydroxyacetone phosphate (DHAP),and 1,3-bisphosphoglycerate, (1,3BPG), and this is how glycerol (as DHAP) enters the glycolytic and gluconeogenesis pathways. D-Glyceraldehyde 3-phosphate is found in many foods, some of which are quince, chinese cabbage, carob, and peach. Acquisition and generation of the data is financially supported in part by CREST/JST.

   

2-Oxovaleric acid

2-Ketopentanoic acid, sodium salt

C5H8O3 (116.0473)


2-Oxovaleric acid is an alpha-ketoacid is a metabolite usually found in human biofluids. Ketoacids have been known to play an important part in the metabolism of valine, leucine, isoleucine. 2-Oxovaleric acid presence has been determined in human blood serum and urine in numerous scientific documents, although its origin remains unclear. (PMID: 11482739, 9869358, 3235498). Acquisition and generation of the data is financially supported in part by CREST/JST. Isolated from Trigonella caerulea (sweet trefoil) 2-Oxovaleric acid is a keto acid that is found in human blood.

   

Benzoin

alpha -Hydroxy-alpha -phenylacetophenone

C14H12O2 (212.0837)


(±)-Benzoin is a flavouring ingredient.Benzoin is an organic compound with the formula PhCH(OH)C(O)Ph. It is a hydroxy ketone attached to two phenyl groups. It appears as off-white crystals, with a light camphor-like odor. Benzoin is synthesized from benzaldehyde in the benzoin condensation. It is chiral and it exists as a pair of enantiomers: (R)-benzoin and (S)-benzoin. (Wikipedia C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent Flavouring ingredient Benzoin is a kind of alsamic resin isolated from the styracaceae family. Benzoin can be used as a colour additive used for marking plants[1].

   

1-Methylguanidine

1-Methylguanidine hydrochloride

C2H7N3 (73.064)


Methylguanidine (MG) is a guanidine in which one of the amino hydrogens of guanidine itself is substituted by a methyl group. Methylguanidine is a guanidine compound deriving from protein catabolism. It is also a product of putrefaction. Methylguanidine has a role as a metabolite, an EC 1.14.13.39 (nitric oxide synthase) inhibitor and as a uremic toxin. It has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID:22626821). It accumulates in renal failure, however it also exhibits anti-inflammatory effects. Methylguanidine is synthesized from creatinine concomitant with the synthesis of hydrogen peroxide from endogenous substrates in peroxisomes. Recent evidence suggests that methylguanidine significantly inhibits iNOS activity and TNF- release. This means that methylguandine can attenuate the degree of inflammation and tissue damage associated with endotoxic shock. Methylguanidine (MG) is a guanidine compound deriving from protein catabolism. It is also a product of putrefaction. Methylguanidine is a suspected uraemic toxin that accumulates in renal failure, however it also exhibits anti-inflammatory effects. Methylguanidine is synthesized from creatinine concomitant with the synthesis of hydrogen peroxide from endogenous substrates in peroxisomes. Recent evidence suggests that methylguanidine significantly inhibits iNOS activity and TNF- release. This means that methylguandine can attenuate the degree of inflammation and tissue damage associated with endotoxic shock. Methylguanidine is found in loquat and apple. Methylguanidine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=471-29-4 (retrieved 2024-07-16) (CAS RN: 471-29-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Glycolaldehyde

Monomethylolformaldehyde

C2H4O2 (60.0211)


Glycolaldehyde, also known as hydroxyacetaldehyde or methylol formaldehyde, is a member of the class of compounds known as short-chain aldehydes. Short-chain aldehydes are an aldehyde with a chain length containing between 2 and 5 carbon atoms. Glycolaldehyde is soluble (in water) and a very weakly acidic compound (based on its pKa). Glycolaldehyde can be found in a number of food items such as acorn, elderberry, dandelion, and conch, which makes glycolaldehyde a potential biomarker for the consumption of these food products. Glycolaldehyde can be found primarily in human neuron tissue. Glycolaldehyde exists in all living organisms, ranging from bacteria to humans. In humans, glycolaldehyde is involved in the vitamin B6 metabolism. Glycolaldehyde is also involved in hypophosphatasia, which is a metabolic disorder. Glycolaldehyde is the organic compound with the formula HOCH2-CHO. It is the smallest possible molecule that contains both an aldehyde group and a hydroxyl group. It is a highly reactive molecule that occurs both in the biosphere and in the interstellar medium. It is normally supplied as a white solid. Although it conforms to the general formula for carbohydrates, Cn(H2O)n, it is not generally considered to be a saccharide . Glycolaldehyde (HOCH2-CH=O, IUPAC name 2-hydroxyethanal) is a type of diose (2-carbon monosaccharide). Glycolaldehyde is readily converted to acetyl coenzyme A. It has an aldehyde and a hydroxyl group. However, it is not actually a sugar, because there is only one hydroxyl group. Glycolaldehyde is formed from many sources, including the amino acid glycine and from purone catabolism. It can form by action of ketolase on fructose 1,6-bisphosphate in an alternate glycolysis pathway. This compound is transferred by thiamin pyrophosphate during the pentose phosphate shunt.

   

Chorismate

(3R,4R)-3-[(1-carboxyeth-1-en-1-yl)oxy]-4-hydroxycyclohexa-1,5-diene-1-carboxylic acid

C10H10O6 (226.0477)


Chorismic acid, more commonly known as its anionic form chorismate, is an important biochemical intermediate in plants and microorganisms. It is a precursor for the aromatic amino acids phenylalanine and tyrosine,indole, indole derivatives and tryptophan,2,3-dihydroxybenzoic acid (DHB) used for enterobactin biosynthesis,the plant hormone salicylic acid and many alkaloids and other aromatic metabolites. -- Wikipedia [HMDB]. Chorismate is found in many foods, some of which are pigeon pea, ucuhuba, beech nut, and fireweed. Chorismic acid, more commonly known as its anionic form chorismate, is an important biochemical intermediate in plants and microorganisms. It is a precursor for the aromatic amino acids phenylalanine and tyrosine,indole, indole derivatives and tryptophan,2,3-dihydroxybenzoic acid (DHB) used for enterobactin biosynthesis,the plant hormone salicylic acid and many alkaloids and other aromatic metabolites. -- Wikipedia. CONFIDENCE standard compound; INTERNAL_ID 114

   

7-Ketodeoxycholic acid

(4R)-4-[(1S,2S,5R,7S,10R,11S,14R,15R,16S)-5,16-dihydroxy-2,15-dimethyl-9-oxotetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-14-yl]pentanoic acid

C24H38O5 (406.2719)


7-Ketodeoxycholic acid is a bile acid. Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, depending only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). 7-Ketodeoxycholic acid is a bile acid. Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12. D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids 7-keto-lithocholic acid is a metabolite of bile acids in Clostridium absonum. 7-keto-lithocholic acid is also converted from Lactobacillus and Bifidobacterium with specific condition[1][2].

   

11beta-OHA4

11β-hydroxyandrost-4-ene-3,17-dione

C19H26O3 (302.1882)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones CONFIDENCE standard compound; INTERNAL_ID 2829 11-Beta-hydroxyandrostenedione (4-Androsten-11β-ol-3,17-dione) is a steroid mainly found in the the adrenal origin (11β-hydroxylase is present in adrenal tissue, but absent in ovarian tissue). 11-Beta-hydroxyandrostenedione is a 11β-hydroxysteroid dehydrogenase (11βHSD) isozymes inhibitor. As 4-androstenedione increases, measuring plasma 11-Beta-hydroxyandrostenedione can distinguish the adrenal or ovarian origin of hyperandrogenism[1][2].

   

Benzaldehyde

benzaldehyde

C7H6O (106.0419)


Benzaldehyde is occasionally found as a volatile component of urine. Benzaldehyde is an aromatic aldehyde used in cosmetics as a denaturant, a flavoring agent, and as a fragrance. Currently used in only seven cosmetic products, its highest reported concentration of use was 0.5\\\% in perfumes. Benzaldehyde is a generally regarded as safe (GRAS) food additive in the United States and is accepted as a flavoring substance in the European Union. Because Benzaldehyde rapidly metabolizes to Benzoic Acid in the skin, the available dermal irritation and sensitization data demonstrating no adverse reactions to Benzoic Acid were considered supportive of the safety of Benzaldehyde. Benzaldehyde is absorbed through skin and by the lungs, distributes to all well-perfused organs, but does not accumulate in any specific tissue type. After being metabolized to benzoic acid, conjugates are formed with glycine or glucuronic acid, and excreted in the urine. Several studies have suggested that Benzaldehyde can have carcinostatic or antitumor properties. Overall, at the concentrations used in cosmetics, Benzaldehyde was not considered a carcinogenic risk to humans. Although there are limited irritation and sensitization data available for Benzaldehyde, the available dermal irritation and sensitization data and ultraviolet (UV) absorption and phototoxicity data demonstrating no adverse reactions to Benzoic Acid support the safety of Benzaldehyde as currently used in cosmetic products. (PMID:16835129, Int J Toxicol. 2006;25 Suppl 1:11-27.). Benzaldehyde, a volatile organic compound, is naturally present in a variety of plants, particularly in certain fruits, nuts, and flowers. It plays a significant role in the aromatic profiles of these plants. For instance, benzaldehyde is a primary component of bitter almond oil, which was one of its earliest known natural sources. Besides bitter almonds, it is also found in fruits like cherries, peaches, and plums, as well as in flowers such as jasmine. In the food industry, benzaldehyde is occasionally used as a food additive to impart specific flavors. This prevalence in plants highlights that benzaldehyde is not only an industrial chemical but also a naturally occurring compound in the plant kingdom. Its presence in these natural sources underscores its significance in both nature and industry. Found in plants, especies in almond kernelsand is) also present in strawberry jam, leek, crispbread, cheese, black tea and several essential oils. Parent and derivs. (e.g. glyceryl acetal) are used as flavourings

   

Acetylphosphate

Acetic acid, monoanhydride with phosphoric acid

C2H5O5P (139.9875)


Acetylphosphate, also known as acetyl-p, belongs to the class of organic compounds known as acyl monophosphates. These are organic compounds containing a monophosphate linked to an acyl group. They have the general structure R-CO-P(O)(O)OH, R=H or organyl. Since acetylphosphate synthesis is known to depend on cholinesterase activity, pseudocholinesterase was assumed to participate to a small extent in acetylphosphate synthesis by cancerous serum. It is also an intermediate in pyruvate metabolism. Acetylphosphate is a drug. Acetylphosphate exists in all living organisms, ranging from bacteria to humans. Acetylphosphate can be converted into acetic acid; which is mediated by the enzyme acylphosphatase-1. It is generated from pyruvate and the formation is catalyzed by pyruvate oxidase (EC:1.2.3.3). In humans, acetylphosphate is involved in the metabolic disorder called the pyruvate dehydrogenase complex deficiency pathway. It is generated from sulfoacetaldehyde, converted to acetyl-CoA and acetate via phosphate acetyltransferase (EC:2.3.1.8) and acetate kinase (EC:2.7.2.1) respectively. Acetylphosphate or actyl phosphate is a compound involved in taurine and hypotaurine metabolism as well as pyruvate metabolism. Cancerous serum produced 37\\% less acetylphosphate than normal serum. Cancerous serum produced 37\\% less acetylphosphate than normal serum. Since acetylphosphate synthesis is known to depend on cholinesterase activity, pseudocholinesterase was assumed to participate to a small extent in acetylphosphate synthesis by cancerous serum.( Rev. sci. Med., Acad. rep. populaire Roumaine (1960), 5 7-10) [HMDB]

   

Penicillamine

2-amino-3-methyl-3-sulfanylbutanoic acid

C5H11NO2S (149.051)


Penicillamine is only found in individuals that have used or taken this drug. It is the most characteristic degradation product of the penicillin antibiotics. It is used as an antirheumatic and as a chelating agent in Wilsons disease. [PubChem]Penicillamine is a chelating agent recommended for the removal of excess copper in patients with Wilsons disease. From in vitro studies which indicate that one atom of copper combines with two molecules of penicillamine. Penicillamine also reduces excess cystine excretion in cystinuria. This is done, at least in part, by disulfide interchange between penicillamine and cystine, resulting in formation of penicillamine-cysteine disulfide, a substance that is much more soluble than cystine and is excreted readily. Penicillamine interferes with the formation of cross-links between tropocollagen molecules and cleaves them when newly formed. The mechanism of action of penicillamine in rheumatoid arthritis is unknown although it appears to suppress disease activity. Unlike cytotoxic immunosuppressants, penicillamine markedly lowers IgM rheumatoid factor but produces no significant depression in absolute levels of serum immunoglobulins. Also unlike cytotoxic immunosuppressants which act on both, penicillamine in vitro depresses T-cell activity but not B-cell activity. M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01C - Specific antirheumatic agents > M01CC - Penicillamine and similar agents C274 - Antineoplastic Agent > C1742 - Angiogenesis Inhibitor > C1971 - Angiogenesis Activator Inhibitor D064449 - Sequestering Agents > D002614 - Chelating Agents D020011 - Protective Agents > D000931 - Antidotes D018501 - Antirheumatic Agents Penicillamine (D-(-)-Penicillamine) is a penicillin metabolic degradation product, can be used as a heavy metal chelator. Penicillamine increases free copper and enhances oxidative stress. Penicillamine has effect of seizures through nitric oxide/NMDA pathways. Penicillamine is a potential immune modulator. Penicillamine can be used for the research of Wilson disease, rheumatoid arthritis, and cystinuria[1][2][3][4].

   

3-deoxy-D-arabino-heptulosonate-7-phosphate

3-Deoxy-D-arabino-2-heptulosonic acid 7-(dihydrogen phosphoric acid)

C7H13O10P (288.0246)


2-dehydro-3-deoxy-d-arabino-heptonate 7-phosphate, also known as 2-dahp or 3-deoxy-arabino-heptulonic acid 7-phosphoric acid, is a member of the class of compounds known as monosaccharide phosphates. Monosaccharide phosphates are monosaccharides comprising a phosphated group linked to the carbohydrate unit. 2-dehydro-3-deoxy-d-arabino-heptonate 7-phosphate is soluble (in water) and a moderately acidic compound (based on its pKa). 2-dehydro-3-deoxy-d-arabino-heptonate 7-phosphate can be found in a number of food items such as prairie turnip, horned melon, bilberry, and biscuit, which makes 2-dehydro-3-deoxy-d-arabino-heptonate 7-phosphate a potential biomarker for the consumption of these food products. 2-dehydro-3-deoxy-d-arabino-heptonate 7-phosphate exists in E.coli (prokaryote) and yeast (eukaryote).

   

3-dehydroshikimate

4,5-dihydroxy-3-oxocyclohexene-1-carboxylic acid

C7H8O5 (172.0372)


   

Propanal

Propionaldehyde, 1-14C-labeled

C3H6O (58.0419)


Propanal, also known as N-propionaldehyde or C2H5CHO, belongs to the class of organic compounds known as alpha-hydrogen aldehydes. These are aldehydes with the general formula HC(H)(R)C(=O)H, where R is an organyl group. Propanal exists in all living species, ranging from bacteria to humans. Propanal is an alcohol, cocoa, and earthy tasting compound. Outside of the human body, Propanal is found, on average, in the highest concentration within wild celeries and carrots. Propanal has also been detected, but not quantified in several different foods, such as purple lavers, black salsifies, strawberry guava, grapefruit/pummelo hybrids, and alaska wild rhubarbs. It is an aldehyde that consists of ethane bearing a formyl substituent. Isolated from various plant sources, e.g. hops, banana, sweet or sour cherry, blackcurrants, melon, pineapple, bread, chesses, coffee, cooked rice and strawberry or apple aroma. Flavouring agent

   

Hydroxypyruvic acid

2-oxo-3-hydroxy-propanoic acid

C3H4O4 (104.011)


3-hydroxypyruvic acid, also known as beta-hydroxypyruvate or oh-pyr, belongs to beta hydroxy acids and derivatives class of compounds. Those are compounds containing a carboxylic acid substituted with a hydroxyl group on the C3 carbon atom. 3-hydroxypyruvic acid is soluble (in water) and a moderately acidic compound (based on its pKa). 3-hydroxypyruvic acid can be found in a number of food items such as fox grape, black mulberry, elliotts blueberry, and silver linden, which makes 3-hydroxypyruvic acid a potential biomarker for the consumption of these food products. 3-hydroxypyruvic acid can be found primarily in blood and urine. 3-hydroxypyruvic acid exists in all living organisms, ranging from bacteria to humans. In humans, 3-hydroxypyruvic acid is involved in the glycine and serine metabolism. 3-hydroxypyruvic acid is also involved in several metabolic disorders, some of which include dihydropyrimidine dehydrogenase deficiency (DHPD), 3-phosphoglycerate dehydrogenase deficiency, hyperglycinemia, non-ketotic, and non ketotic hyperglycinemia. Hydroxypyruvic acid is a pyruvic acid derivative with the formula C3H4O4 and a neutral charge with an atomic mass of 104.06146 . Hydroxypyruvic acid is an intermediate in the metabolism of Glycine, serine and threonine. It is a substrate for Serine--pyruvate aminotransferase and Glyoxylate reductase/hydroxypyruvate reductase. Hydroxypyruvic acid (β-Hydroxypyruvic acid) is an intermediate in the metabolism of glycine, serine and threonine. Hydroxypyruvic acid is a substrate for serine-pyruvate aminotransferase and glyoxylate reductase/hydroxypyruvate reductase. Hydroxypyruvic acid is involved in the metabolic disorder which is the dimethylglycine dehydrogenase deficiency pathway.

   

Dihydroxyacetone

Summers brand OF dihydroxyacetone

C3H6O3 (90.0317)


Dihydroxyacetone, also known as 1,3-dihydroxy-2-propanone or glycerone, is a member of the class of compounds known as monosaccharides. Monosaccharides are compounds containing one carbohydrate unit not glycosidically linked to another such unit, and no set of two or more glycosidically linked carbohydrate units. Monosaccharides have the general formula CnH2nOn. Dihydroxyacetone is soluble (in water) and a very weakly acidic compound (based on its pKa). Dihydroxyacetone can be found in a number of food items such as cauliflower, green bell pepper, black cabbage, and sweet basil, which makes dihydroxyacetone a potential biomarker for the consumption of these food products. Dihydroxyacetone can be found primarily in urine, as well as in human muscle and stratum corneum tissues. Dihydroxyacetone exists in all living species, ranging from bacteria to humans. Dihydroxyacetone is primarily used as an ingredient in sunless tanning products. It is often derived from plant sources such as sugar beets and sugar cane, and by the fermentation of glycerin . Dihydroxyacetone (also known as DHA) is a ketotriose compound. Its addition to blood preservation solutions results in better maintenance of 2,3-diphosphoglycerate levels during storage. It is readily phosphorylated to dihydroxyacetone phosphate by triokinase in erythrocytes. In combination with naphthoquinones, it acts as a sunscreening agent. Dihydroxyacetone is the simplest of all ketoses and, having no chiral centre, is the only one that has no optical activity. Dihydroxyacetone is a simple non-toxic sugar. It is often derived from plant sources such as sugar beets and sugar cane, by the fermentation of glycerin. Dihydroxyacetone is a white crystalline powder which is water soluble. 1,3-Dihydroxyacetone (DHA), the main active ingredient in sunless tanning skin-care preparations and an important precursor for the synthesis of various fine chemicals, is produced on an industrial scale by microbial fermentation of glycerol over Gluconobacter oxydans[1]. 1,3-Dihydroxyacetone (DHA), the main active ingredient in sunless tanning skin-care preparations and an important precursor for the synthesis of various fine chemicals, is produced on an industrial scale by microbial fermentation of glycerol over Gluconobacter oxydans[1].

   

Ferricyanide

Ferricyanide; Hexacyanoferrate(III)

C6FeN6-3 (211.9534)


D006401 - Hematologic Agents > D006397 - Hematinics > D005290 - Ferric Compounds

   

Sedoheptulose 1,7-bisphosphate

{[(3S,4R,5R,6R)-3,4,5,6-tetrahydroxy-2-oxo-7-(phosphonooxy)heptyl]oxy}phosphonic acid

C7H16O13P2 (370.0066)


This compound belongs to the family of Monosaccharide Phosphates. These are monosaccharides comprising a phosphated group linked tot he carbohydrate unit.

   

(S)-2-Aceto-2-hydroxybutanoic acid

2-Aceto-2-hydroxybutyric acid

C6H10O4 (146.0579)


   

3-Dehydroquinic acid

(1R,3R,4S)-1,3,4-trihydroxy-5-oxocyclohexane-1-carboxylic acid

C7H10O6 (190.0477)


3-Dehydroquinic acid belongs to the class of organic compounds known as alpha-hydroxy acids and derivatives. These are organic compounds containing a carboxylic acid substituted with a hydroxyl group on the adjacent carbon. 3-Dehydroquinic acid is an extremely weak basic (essentially neutral) compound (based on its pKa). In most organisms, 3-dehydroquinic acid is synthesized from D-erythrose-4-phosphate in two steps. However, archaea genomes contain no orthologs for the genes that encode these first two steps. Instead, archaeabacteria appear to utilize an alternative pathway in which 3-dehydroquinic acid is synthesized from 6-deoxy-5-ketofructose-1-phosphate and L-aspartate-semialdehyde. These two compounds are first condensed to form 2-amino-3,7-dideoxy-D-threo-hept-6-ulosonate, which cyclizes to 3-dehydroquinic acid. From 3-dehydroquinic acid and on to chorismate, the archaeal pathway appears to be identical to the bacterial pathway. In most organisms, 3-dehydroquinate is synthesized from D-erythrose-4-phosphate in two steps . However, the genomes of the archaea contain no orthologs for the genes that encode these first two steps. Instead, archaeabacteria appear to utilize an alternative pathway in which 3-dehydroquinate is synthesized from 6-deoxy-5-ketofructose-1-phosphate and L-aspartate-semialdehyde . These two compounds are first condensed to form 2-amino-3,7-dideoxy-D-threo-hept-6-ulosonate , which cyclizes to 3-dehydroquinate . From 3-dehydroquinate and on to chorismate , the archaeal pathway appears to be identical to the bacterial pathway [HMDB]. 3-Dehydroquinate is found in many foods, some of which are allium (onion), cashew nut, american cranberry, and common wheat.

   

UDP-N-acetylmuramoyl-L-alanine

Uridine-5-diphosphate-n-acetylmuramoyl-l-alanine

C23H36N4O20P2 (750.1398)


   

4-Amino-5-hydroxymethyl-2-methylpyrimidine

4-Amino-2-methyl-5-hydroxymethylpyrimidine

C6H9N3O (139.0746)


Hydroxymethylpyrimidine, also known as pyramine or toxopyrimidine, is a member of the class of compounds known as hydropyrimidines. Hydropyrimidines are compounds containing a hydrogenated pyrimidine ring (i.e. containing less than the maximum number of double bonds.). Hydroxymethylpyrimidine is soluble (in water) and a very weakly acidic compound (based on its pKa). Hydroxymethylpyrimidine can be found in a number of food items such as mexican oregano, sugar apple, tronchuda cabbage, and cinnamon, which makes hydroxymethylpyrimidine a potential biomarker for the consumption of these food products. Hydroxymethylpyrimidine exists in E.coli (prokaryote) and yeast (eukaryote).

   

rifamycin B

rifamycin B

C39H49NO14 (755.3153)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D012294 - Rifamycins

   

ZOPOLRESTAT

2-(4-oxo-3-{[5-(trifluoromethyl)-1,3-benzothiazol-2-yl]methyl}-3,4-dihydrophthalazin-1-yl)acetic acid

C19H12F3N3O3S (419.0551)


C471 - Enzyme Inhibitor > C72880 - Aldose Reductase Inhibitor D007004 - Hypoglycemic Agents D004791 - Enzyme Inhibitors

   

L-Erythrulose

(3S)-1,3,4-Trihydroxybutan-2-one

C4H8O4 (120.0423)


L-Erythrulose is an extremely reactive ketose, which rapidly glycates and crosslinks proteins, and therefore may mediate the(L-ascorbate) AsA-dependent modification of protein (ascorbylation) seen in vitro, and also proposed to occur in vivo in human lens during diabetic and age-onset cataract formation.(PMID: 10727845) [HMDB] L-Erythrulose is an extremely reactive ketose, which rapidly glycates and crosslinks proteins, and therefore may mediate the(L-ascorbate) AsA-dependent modification of protein (ascorbylation) seen in vitro, and also proposed to occur in vivo in human lens during diabetic and age-onset cataract formation.(PMID: 10727845).

   

PHOSPHONOPYRUVATE

3-Phosphonopyruvate

C3H5O6P (167.9824)


   

Decaprenyl phosphate

[(2Z,6Z,10Z,14Z,18Z,22Z,26Z,30Z,34E)-3,7,11,15,19,23,27,31,35,39-decamethyltetraconta-2,6,10,14,18,22,26,30,34,38-decaenyl] dihydrogen phosphate

C50H83O4P (778.6029)


   

Thiamine triphosphate

3-[(4-amino-2-methylpyrimidin-5-yl)methyl]-5-(2-{[hydroxy({[hydroxy(phosphonooxy)phosphoryl]oxy})phosphoryl]oxy}ethyl)-4-methyl-1,3-thiazol-3-ium

C12H20N4O10P3S+ (505.0113)


Thiamine triphosphate is the triphosphate ester of thiamine. Thiamine triphosphate (ThTP) was previously considered to be a specific neuroactive form of thiamine. However, it was recently shown that ThTP exists in bacteria, fungi, plants and animals suggesting a much more general cellular role. In particular, it seems to play a role in response to amino acid starvation. In mammals, ThTP is hydrolyzed by a specific thiamine triphosphatase. In Leighs disease, this compound is present in decreased amounts in the brain due to a metabolic block in its formation. [HMDB] Thiamine triphosphate is the triphosphate ester of thiamine. Thiamine triphosphate (ThTP) was previously considered to be a specific neuroactive form of thiamine. However, it was recently shown that ThTP exists in bacteria, fungi, plants and animals suggesting a much more general cellular role. In particular, it seems to play a role in response to amino acid starvation. In mammals, ThTP is hydrolyzed by a specific thiamine triphosphatase. In Leighs disease, this compound is present in decreased amounts in the brain due to a metabolic block in its formation. D018977 - Micronutrients > D014815 - Vitamins

   

CHEMBL1161469

4-Phospho-D-erythronate

C4H9O8P (216.0035)


   

D-Erythrulose 4-phosphate

D-Erythrulose 4-phosphate

C4H9O7P (200.0086)


A ketotetrose phosphate that is D-erythrulose carrying a phosphono substituent at position O-4.

   

6,7-Dimethyl-8-(1-D-ribityl)lumazine

2,4(1H,3H)-Pteridinedione, 6,7-dimethyl-8-(2,3,4,5-tetrahydroxypentyl)-, [2S-(2R*,3R*,4S*)]-

C13H18N4O6 (326.1226)


6,7-Dimethyl-8-(1-D-ribityl)lumazine belongs to the class of organic compounds known as pteridines and derivatives. These are polycyclic aromatic compounds containing a pteridine moiety, which consists of a pyrimidine fused to a pyrazine ring to form pyrimido(4,5-b)pyrazine. 6,7-Dimethyl-8-(1-D-ribityl)lumazine is an extremely weak basic (essentially neutral) compound (based on its pKa). 6,7-Dimethyl-8-(1-D-ribityl)lumazine exists in all living organisms, ranging from bacteria to humans. In humans, 6,7-dimethyl-8-(1-D-ribityl)lumazine is involved in riboflavin metabolism. Outside of the human body, 6,7-dimethyl-8-(1-D-ribityl)lumazine has been detected, but not quantified in, several different foods, such as quinoa, arrowhead, conchs, watermelons, and Elliotts blueberries. This could make 6,7-dimethyl-8-(1-D-ribityl)lumazine a potential biomarker for the consumption of these foods. 6,7-Dimethyl-8-(1-D-ribityl)lumazine is an intermediate in riboflavin metabolism. 6,7-Dimethyl-8-(1-D-ribityl)lumazine is the second to last step in the synthesis of ribitol and is converted from 4-(1-D-ribitylamino)-5-amino-2,6-dihydroxypyrimidine via the enzyme riboflavin synthase beta chain. It is then converted into riboflavin via the enzyme riboflavin synthase alpha chain (EC 2.5.1.9). 6,7-Dimethyl-8-(1-D-ribityl)lumazine is an intermediate in riboflavin metabolism. 6,7-Dimethyl-8-(1-D-ribityl)lumazine is the second to last step in the synthesis of ribitol and is converted from 4-(1-D-ribitylamino)-5-amino-2,6-dihydroxypyrimidine via the enzyme riboflavin synthase beta chain. It is then

   

Coenzyme B

3-phosphonooxy-2-(7-sulfanylheptanoylamino)butanoic acid

C11H22NO7PS (343.0855)


   

2-(a-Hydroxyethyl)thiamine diphosphate

3-[(4-amino-2-methylpyrimidin-5-yl)methyl]-5-(2-{[hydroxy(phosphonooxy)phosphoryl]oxy}ethyl)-2-(1-hydroxyethyl)-4-methyl-1,3-thiazol-3-ium

C14H23N4O8P2S+ (469.0712)


2-Hydroxyethyl-ThPP is involved in Glycolysis, Gluconeogenesis, Alanine and aspartate matabolism, Valine, Leucine and isoleucine biosynthesis, Pyruvate metabolism, and Butanoate metabolism [Kegg: c05125] [HMDB] 2-Hydroxyethyl-ThPP is involved in Glycolysis, Gluconeogenesis, Alanine and aspartate matabolism, Valine, Leucine and isoleucine biosynthesis, Pyruvate metabolism, and Butanoate metabolism [Kegg: c05125].

   

O-Phospho-4-hydroxy-L-threonine

(2S,3S)-2-amino-3-hydroxy-4-(phosphonooxy)butanoic acid

C4H10NO7P (215.0195)


O-Phospho-4-hydroxy-L-threonine is involved in the vitamin B6 metabolism system. O-Phospho-4-hydroxy-L-threonine is a precursor for pyridoxine. O-Phospho-4-hydroxy-L-threonine can be converted to 4-hydroxy-L-threonine and 2-Amino-3-oxo-4-phosphonooxybutyrate by threonine synthase [EC:4.2.3.1] and 4-hydroxythreonine-4-phosphate dehydrogenase [EC:1.1.1.262], respectively. [HMDB] O-Phospho-4-hydroxy-L-threonine is involved in the vitamin B6 metabolism system. O-Phospho-4-hydroxy-L-threonine is a precursor for pyridoxine. O-Phospho-4-hydroxy-L-threonine can be converted to 4-hydroxy-L-threonine and 2-Amino-3-oxo-4-phosphonooxybutyrate by threonine synthase [EC:4.2.3.1] and 4-hydroxythreonine-4-phosphate dehydrogenase [EC:1.1.1.262], respectively.

   

(+)-threo-2-Amino-3,4-dihydroxybutanoic acid

(+)-threo-2-Amino-3,4-dihydroxybutanoic acid

C4H9NO4 (135.0532)


(+)-threo-2-Amino-3,4-dihydroxybutanoic acid is found in mushrooms. (+)-threo-2-Amino-3,4-dihydroxybutanoic acid is isolated from the mushroom Lyophyllum ulmariu

   

ACMC-20my24

2(5H)-Furanone,3,4-dihydroxy-5-(hydroxymethyl)-,(5R)-

C5H6O5 (146.0215)


   

Nitrosobenzene

Nitrosobenzene, 14C-labeled

C6H5NO (107.0371)


   

Rifapentine

(7S,9Z,11S,12R,13S,14R,15R,16R,17S,18S,21Z)-26-[(1E)-[(4-cyclopentylpiperazin-1-yl)imino]methyl]-2,15,17,23,27,29-hexahydroxy-11-methoxy-3,7,12,14,16,18,22-heptamethyl-6-oxo-8,30-dioxa-24-azatetracyclo[23.3.1.1^{4,7}.0^{5,28}]triaconta-1(28),2,4,9,19,21,23,25(29),26-nonaen-13-yl acetate

C47H64N4O12 (876.4521)


Rifapentine is only found in individuals that have used or taken this drug. It is an antibiotic drug used in the treatment of tuberculosis.Rifapentine has shown higher bacteriostatic and bactericidal activities especially against intracellular bacteria growing in human monocyte-derived macrophages. Rifapentine inhibits DNA-dependent RNA polymerase in susceptible strains of M. tuberculosis. Rifapentine acts via the inhibition of DNA-dependent RNA polymerase, leading to a suppression of RNA synthesis and cell death. J - Antiinfectives for systemic use > J04 - Antimycobacterials > J04A - Drugs for treatment of tuberculosis > J04AB - Antibiotics D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D000995 - Antitubercular Agents D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007917 - Leprostatic Agents D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D012294 - Rifamycins C254 - Anti-Infective Agent > C52588 - Antibacterial Agent > C280 - Antitubercular Agent

   

2-C-methyl-D-erythritol-4-phosphate

[(2R,3S)-2,3,4-trihydroxy-3-methylbutoxy]phosphonic acid

C5H13O7P (216.0399)


2-c-methyl-d-erythritol-4-phosphate is a member of the class of compounds known as monoalkyl phosphates. Monoalkyl phosphates are organic compounds containing a phosphate group that is linked to exactly one alkyl chain. 2-c-methyl-d-erythritol-4-phosphate is soluble (in water) and a moderately acidic compound (based on its pKa). 2-c-methyl-d-erythritol-4-phosphate can be found in a number of food items such as tea, narrowleaf cattail, chickpea, and rocket salad (sspecies), which makes 2-c-methyl-d-erythritol-4-phosphate a potential biomarker for the consumption of these food products.

   

1-Deoxy-D-xylulose 5-phosphate

[(2R,3S)-2,3-dihydroxy-4-oxopentyl] dihydrogen phosphate

C5H11O7P (214.0242)


1-Deoxy-D-xylulose 5-phosphate is a substrate for 2,4-dienoyl-CoA reductase (mitochondrial). [HMDB]. 1-Deoxy-D-xylulose 5-phosphate is found in many foods, some of which are jackfruit, dandelion, italian sweet red pepper, and summer grape. 1-Deoxy-D-xylulose 5-phosphate is a substrate for 2,4-dienoyl-CoA reductase (mitochondrial). It has been found to be a metabolite of Escherichia and Streptomyces (PMID: 10648511; PMID: 9371765).

   

Succinylsulfathiazole

3-({4-[(1,3-thiazol-2-yl)sulphamoyl]phenyl}carbamoyl)propanoic acid

C13H13N3O5S2 (355.0297)


Same as: D07060

   

L-2-Amino-3-(4-aminophenyl)propanoic acid

4-Aminophenylalanine, (L)-isomer, 14C and 15N-labeled

C9H12N2O2 (180.0899)


L-2-Amino-3-(4-aminophenyl)propanoic acid is found in pulses. L-2-Amino-3-(4-aminophenyl)propanoic acid is a constituent of the famine food Vigna vexillata

   

Rifamycin

Rifamycin SV

C37H47NO12 (697.3098)


A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07A - Intestinal antiinfectives > A07AA - Antibiotics J - Antiinfectives for systemic use > J04 - Antimycobacterials > J04A - Drugs for treatment of tuberculosis > J04AB - Antibiotics D - Dermatologicals > D06 - Antibiotics and chemotherapeutics for dermatological use > D06A - Antibiotics for topical use A member of the class of rifamycins that exhibits antibiotic and antitubercular properties. S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives > S01AA - Antibiotics D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D012294 - Rifamycins C254 - Anti-Infective Agent > C52588 - Antibacterial Agent > C280 - Antitubercular Agent S - Sensory organs > S02 - Otologicals > S02A - Antiinfectives > S02AA - Antiinfectives Same as: D02549

   

3-Amino-5-hydroxybenzoic acid

3-Amino-5-hydroxybenzoic acid

C7H7NO3 (153.0426)


   

5-Deoxy-5-aminoshikimic acid

5-Deoxy-5-aminoshikimic acid

C7H11NO4 (173.0688)


   

Sulbutiamine

Bisibuthiamine

C32H46N8O6S2 (702.2982)


A - Alimentary tract and metabolism > A11 - Vitamins > A11D - Vitamin b1, plain and in combination with vitamin b6 and b12 > A11DA - Vitamin b1, plain Same as: D01319

   

Kelnac

(2Z,6E)-2-[(3E)-4,8-dimethylnona-3,7-dien-1-yl]-6-methylocta-2,6-diene-1,8-diol

C20H34O2 (306.2559)


A diterpenoid that is geranylgeraniol carrying an additional hydroxy substituent at position 18. C78276 - Agent Affecting Digestive System or Metabolism > C29701 - Anti-ulcer Agent D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents D000890 - Anti-Infective Agents Same as: D01803

   

Glyoxal

Glyoxal aldehyde

C2H2O2 (58.0055)


Glyoxal, also known as 1,2-ethanedione or oxalaldehyde, is a member of the class of compounds known as short-chain aldehydes. Short-chain aldehydes are an aldehyde with a chain length containing between 2 and 5 carbon atoms. Glyoxal is soluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Glyoxal can be found in garden tomato (variety), ginger, and sesame, which makes glyoxal a potential biomarker for the consumption of these food products. Glyoxal is an organic compound with the chemical formula OCHCHO. It is a yellow-colored Liquid that evaporates to give a green-colored gas. Glyoxal is the smallest dialdehyde (two aldehyde groups). Its structure is more complicated than typically represented because the molecule hydrates and oligomerizes. It is produced industrially as a precursor to many products .

   

RifamycinS

Rifamycin S

C37H45NO12 (695.2942)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D012294 - Rifamycins Rifamycin S, a quinone, is an antibiotic against Gram-positive bacteria (including MRSA). Rifamycin S is the oxidized forms of a reversible oxidation-reduction system involving two electrons. Rifamycin S generates reactive oxygen species (ROS) and inhibits microsomal lipid peroxidation. Rifamycin S can be used for tuberculosis and leprosy[1][2][3].

   

3,3',4,4',5-Pentachlorobiphenyl

3,4,5,3,4-Penta coplanar polychlorinated biphenyl

C12H5Cl5 (323.8834)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D004965 - Estrogen Antagonists D004785 - Environmental Pollutants > D011078 - Polychlorinated Biphenyls

   

Strophanthin

K-Strophanthin-beta

C36H54O14 (710.3513)


D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D013328 - Strophanthins D002317 - Cardiovascular Agents D004791 - Enzyme Inhibitors

   

Hydroxypyruvaldehyde phosphate

Hydroxypyruvaldehyde phosphate

C3H5O6P (167.9824)


   

Glyceraldehyde

alpha,beta-Dihydroxypropionaldehyde

C3H6O3 (90.0317)


Glyceraldehyde is a triose monosaccharide with chemical formula C3H6O3. It is the simplest of all common aldoses. It is a sweet, colourless crystalline solid that is an intermediate compound in carbohydrate metabolism. The word "glyceraldehyde" comes from combining glycerine and aldehyde, as glyceraldehyde is merely glycerine with one hydroxide changed to an aldehyde. Glyceraldehyde is produced from the action of the enzyme glyceraldehyde dehydrogenase, which converts glycerol to glyceraldehyde using NADP as a cofactor. When present at sufficiently high levels, glyceraldehyde can be a cytotoxin and a mutagen. A cytotoxin is a compound that kills cells. A mutagen is a compound that causes mutations in DNA. Glyceraldehyde is a highly reactive compound that can modify and cross-link proteins. Glyceraldehyde-modified proteins appear to be cytotoxic, depress intracellular glutathione levels, and induce reactive oxygen species (ROS) production (PMID:14981296). Glyceraldehyde has been shown to cause chromosome damage to human cells in culture and is mutagenic in the Ames bacterial test. Glyceraldehyde is a triose monosaccharide with chemical formula C3H6O3. It is the simplest of all common aldoses. It is a sweet colorless crystalline solid that is an intermediate compound in carbohydrate metabolism. The word comes from combining glycerine and aldehyde, as glyceraldehyde is merely glycerine with one hydroxide changed to an aldehyde. [HMDB] DL-Glyceraldehyde is a monosaccharide. DL-Glyceraldehyde is the simplest aldose. DL-Glyceraldehyde can be used for various biochemical studies[1].

   

2-Oxo-3-methylvalerate

(+-)-3-Methyl-2-oxovaleric acid sodium salt

C6H10O3 (130.063)


CONFIDENCE standard compound; ML_ID 14 3-Methyl-2-oxovaleric acid is a neurotoxin, an acidogen, and a metabotoxin, and also an abnormal metabolite that arises from the incomplete breakdown of branched-chain amino acids.

   

succinylsulfathiazole

Succinyl sulfathiazole

C13H13N3O5S2 (355.0297)


A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07A - Intestinal antiinfectives > A07AB - Sulfonamides C254 - Anti-Infective Agent > C29739 - Sulfonamide Anti-Infective Agent D000890 - Anti-Infective Agents > D013432 - Sulfathiazoles D000890 - Anti-Infective Agents > D013424 - Sulfanilamides Same as: D07060

   

D-Psicose

(3R,4R,5R)-1,3,4,5,6-Pentahydroxyhexan-2-one

C6H12O6 (180.0634)


The D-enantiomer of psicose.

   

3-phosphoglyceraldehyde

DL-Glyceraldehyde 3-phosphate

C3H7O6P (169.998)


   

2,3-Diphosphoglyceric acid

2,3-diphosphonooxypropanoic acid

C3H8O10P2 (265.9593)


   

DL-Benzoin

benzoin compound tincture

C14H12O2 (212.0837)


C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent Benzoin is a kind of alsamic resin isolated from the styracaceae family. Benzoin can be used as a colour additive used for marking plants[1].

   

D-Altrose

(2R,3S,4S,5R)-2,3,4,5,6-pentahydroxyhexanal

C6H12O6 (180.0634)


D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents D-Allose is an endogenous metabolite. D-Allose is an endogenous metabolite.

   

furazolidone

3-[(5-Nitrofuran-2-yl)methylideneamino]-1,3-oxazolidin-2-one

C8H7N3O5 (225.0386)


G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D004791 - Enzyme Inhibitors > D008996 - Monoamine Oxidase Inhibitors D000890 - Anti-Infective Agents > D023303 - Oxazolidinones C254 - Anti-Infective Agent

   

Ribitol

Xylitol, Pharmaceutical Secondary Standard; Certified Reference Material

C5H12O5 (152.0685)


Xylitol is a pentitol (five-carbon sugar alcohol) having meso-configuration, being derived from xylose by reduction of the carbonyl group. It has a role as a sweetening agent, an allergen, a hapten, a human metabolite, an algal metabolite, a Saccharomyces cerevisiae metabolite and a mouse metabolite. Xylitol is a naturally occurring five-carbon sugar alcohol found in most plant material, including many fruits and vegetables. Xylitol-rich plant materials include birch and beechwood. It is widely used as a sugar substitute and in "sugar-free" food products. The effects of xylitol on dental caries have been widely studied, and xylitol is added to some chewing gums and other oral care products to prevent tooth decay and dry mouth. Xylitol is a non-fermentable sugar alcohol by most plaque bacteria, indicating that it cannot be fermented into cariogenic acid end-products. It works by inhibiting the growth of the microorganisms present in plaque and saliva after it accummulates intracellularly into the microorganism. The recommended dose of xylitol for dental caries prevention is 6–10 g/day, and most adults can tolerate 40 g/day without adverse events. Ribitol is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Xylitol is a natural product found in Rubus parvifolius with data available. Xylitol is a metabolite found in or produced by Saccharomyces cerevisiae. A five-carbon sugar alcohol derived from XYLOSE by reduction of the carbonyl group. It is as sweet as sucrose and used as a noncariogenic sweetener. A pentitol (five-carbon sugar alcohol) having meso-configuration, being derived from ribose by reduction of the carbonyl group. It occurs naturally in the plant Adonis vernalis. D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Ribitol is a crystalline pentose alcohol formed by the reduction of ribose. Enhancing the flux of D-glucose to the pentose phosphate pathway in Saccharomyces cerevisiae for the production of D-ribose and ribitol. Ribitol is a crystalline pentose alcohol formed by the reduction of ribose. Enhancing the flux of D-glucose to the pentose phosphate pathway in Saccharomyces cerevisiae for the production of D-ribose and ribitol. Xylitol can be classified as polyols and sugar alcohols. Xylitol can be classified as polyols and sugar alcohols.

   

Ribitol

(2R,3s,4S)-pentane-1,2,3,4,5-pentol

C5H12O5 (152.0685)


Ribitol is a pentose alcohol formed by the reduction of ribose. It occurs naturally in plants as well as in the cell walls of some Gram-positive bacteria. Ribitol forms part of the chemical structure of riboflavin and flavin mononucleotide (FMN). It is also a metabolic end product formed by the reduction of ribose in human fibroblasts and erythrocytes. In this regard ribitol is found in all organisms from bacteria to plants to humans. Ribitol is a normal constituent of human urine (PMID: 2736321). Elevated levels of ribitol in the serum or urine can be found in patients with transaldolase deficiency (PMID: 11283793). Transaldolase is an important enzyme in the pentose phosphate pathway (PPP). Elevated levels of ribitol in the serum or urine can be found in patients with Ribose-5-phosphate isomerase deficiency (PMID: 14988808). Ribose-5-phosphate isomerase is an important enzyme in the pentose phosphate pathway (PPP). Export of ribitol across the cell membrane indicates that can be cleared from the body without metabolic conversion (PMID 15234337). Ribitol is normally absent in Breast milk (PMID 16456418). Ribitol is a metabolic end product formed by the reduction of ribose in human fibroblasts and erythrocytes (pentitol, sugar alcohol, polyol). Export of ribitol across the cell membrane indicates that can be cleared from the body without metabolic conversion. (PMID 15234337) D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Ribitol is a crystalline pentose alcohol formed by the reduction of ribose. Enhancing the flux of D-glucose to the pentose phosphate pathway in Saccharomyces cerevisiae for the production of D-ribose and ribitol. Ribitol is a crystalline pentose alcohol formed by the reduction of ribose. Enhancing the flux of D-glucose to the pentose phosphate pathway in Saccharomyces cerevisiae for the production of D-ribose and ribitol. Xylitol can be classified as polyols and sugar alcohols. Xylitol can be classified as polyols and sugar alcohols.

   

Sedoheptulose 7-phosphate

sedoheptulose-7-phosphate

C7H15O10P (290.0403)


   

Xylitol

(2R,4S)-pentane-1,2,3,4,5-pentol

C5H12O5 (152.0685)


D-arabitol, also known as D-lyxitol or klinit, is a member of the class of compounds known as sugar alcohols. Sugar alcohols are hydrogenated forms of carbohydrate in which the carbonyl group (aldehyde or ketone, reducing sugar) has been reduced to a primary or secondary hydroxyl group. D-arabitol is soluble (in water) and a very weakly acidic compound (based on its pKa). D-arabitol can be found in avocado, which makes D-arabitol a potential biomarker for the consumption of this food product. D-arabitol can be found primarily in blood, cerebrospinal fluid (CSF), and urine. Moreover, D-arabitol is found to be associated with invasive candidiasis and ribose-5-phosphate isomerase deficiency. Arabitol or arabinitol is a sugar alcohol. It can be formed by the reduction of either arabinose or lyxose. Some organic acid tests check for the presence of D-arabitol, which may indicate overgrowth of intestinal microbes such as Candida albicans or other yeast/fungus species . D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Ribitol is a crystalline pentose alcohol formed by the reduction of ribose. Enhancing the flux of D-glucose to the pentose phosphate pathway in Saccharomyces cerevisiae for the production of D-ribose and ribitol. Ribitol is a crystalline pentose alcohol formed by the reduction of ribose. Enhancing the flux of D-glucose to the pentose phosphate pathway in Saccharomyces cerevisiae for the production of D-ribose and ribitol. Xylitol can be classified as polyols and sugar alcohols. Xylitol can be classified as polyols and sugar alcohols.

   

Strophanthin

7,11-dihydroxy-5-[(4-methoxy-6-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-15-methyl-14-(5-oxo-2,5-dihydrofuran-3-yl)tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecane-2-carbaldehyde

C36H54O14 (710.3513)


D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D013328 - Strophanthins D002317 - Cardiovascular Agents D004791 - Enzyme Inhibitors

   

2-Oxazolidinone, 3-[[(5-nitro-2-furanyl)methylene]amino]-

3-{[(5-nitrofuran-2-yl)methylidene]amino}-1,3-oxazolidin-2-one

C8H7N3O5 (225.0386)


G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D004791 - Enzyme Inhibitors > D008996 - Monoamine Oxidase Inhibitors D000890 - Anti-Infective Agents > D023303 - Oxazolidinones C254 - Anti-Infective Agent

   

D-Arabinopyranose

oxane-2,3,4,5-tetrol

C5H10O5 (150.0528)


   

3-[[(2S)-2,4-Dihydroxy-3,3-dimethylbutanoyl]amino]propanoic acid

3-[[(2S)-2,4-Dihydroxy-3,3-dimethylbutanoyl]amino]propanoic acid

C9H17NO5 (219.1107)


Pantothenic acid is a water-soluble vitamin. For many animals, pantothenic acid is an essential nutrient. Only the dextrorotatory (D) isomer of pantothenic acid possesses biologic activity. The levorotatory (L) form may antagonize the effects of the dextrorotatory isomer. Pantothenic acid is found in many foods, some of which are cream substitute, yellow bell pepper, corn, and atlantic mackerel. D018977 - Micronutrients > D014815 - Vitamins D-Pantothenic acid (Pantothenate) is an essential trace nutrient that functions as the obligate precursor of coenzyme A (CoA). D-Pantothenic acid plays key roles in myriad biological processes, including many that regulate carbohydrate, lipid, protein, and nucleic acid metabolism[1]. D-Pantothenic acid (Pantothenate) is an essential trace nutrient that functions as the obligate precursor of coenzyme A (CoA). D-Pantothenic acid plays key roles in myriad biological processes, including many that regulate carbohydrate, lipid, protein, and nucleic acid metabolism[1].

   

Rifapentina

26-{[(4-cyclopentylpiperazin-1-yl)imino]methyl}-2,15,17,27,29-pentahydroxy-11-methoxy-3,7,12,14,16,18,22-heptamethyl-6,23-dioxo-8,30-dioxa-24-azatetracyclo[23.3.1.1^{4,7}.0^{5,28}]triaconta-1(28),2,4,9,19,21,25(29),26-octaen-13-yl acetate

C47H64N4O12 (876.4521)


   

Pantothenic Acid

D-(+)-pantothenic acid

C9H17NO5 (219.1107)


D018977 - Micronutrients > D014815 - Vitamins D-Pantothenic acid (Pantothenate) is an essential trace nutrient that functions as the obligate precursor of coenzyme A (CoA). D-Pantothenic acid plays key roles in myriad biological processes, including many that regulate carbohydrate, lipid, protein, and nucleic acid metabolism[1]. D-Pantothenic acid (Pantothenate) is an essential trace nutrient that functions as the obligate precursor of coenzyme A (CoA). D-Pantothenic acid plays key roles in myriad biological processes, including many that regulate carbohydrate, lipid, protein, and nucleic acid metabolism[1].

   

4-Pyridoxic acid

4-Pyridoxic acid

C8H9NO4 (183.0532)


4-Pyridoxic acid is a catabolic product of vitamin B6 which is excreted in the urine.

   

3-methyl-2-oxovalerate

(3S)-3-Methyl-2-oxopentanoic acid

C6H10O3 (130.063)


3-Methyl-2-oxovaleric acid is a neurotoxin, an acidogen, and a metabotoxin, and also an abnormal metabolite that arises from the incomplete breakdown of branched-chain amino acids.

   

Ketoleucine

4-methyl-2-oxopentanoic acid

C6H10O3 (130.063)


4-Methyl-2-oxopentanoic acid (α-Ketoisocaproic acid), an abnormal metabolite, is both a neurotoxin and a metabotoxin.

   

Ketovaline

3-Methyl-2-oxobutanoic acid

C5H8O3 (116.0473)


3-Methyl-2-oxobutanoic acid is a precursor of pantothenic acid in Escherichia coli.

   

gluconic acid

D-gluconic acid

C6H12O7 (196.0583)


   

3-Methyl-2-oxovaleric acid

(3S)-3-Methyl-2-oxopentanoic acid

C6H10O3 (130.063)


A 2-oxo monocarboxylic acid that is valeric acid carrying oxo- and methyl substituents at C-2 and C-3, respectively. An alpha-keto acid analogue and metabolite of isoleucine in man, animals and bacteria. Used as a clinical marker for maple syrup urine disease (MSUD). 3-Methyl-2-oxovaleric acid is a neurotoxin, an acidogen, and a metabotoxin, and also an abnormal metabolite that arises from the incomplete breakdown of branched-chain amino acids.

   

Methylmalonic acid

Methylmalonic acid

C4H6O4 (118.0266)


A dicarboxylic acid that is malonic acid in which one of the methylene hydrogens is substituted by a methyl group. Methylmalonic acid (Methylmalonate) is an indicator of Vitamin B-12 deficiency in cancer. Methylmalonic acid (Methylmalonate) is an indicator of Vitamin B-12 deficiency in cancer.

   

6-Phosphogluconic acid

6-Phosphogluconic acid

C6H13O10P (276.0246)


   

Dihydroxyacetone

1,3-Dihydroxyacetone

C3H6O3 (90.0317)


A ketotriose consisting of acetone bearing hydroxy substituents at positions 1 and 3. The simplest member of the class of ketoses and the parent of the class of glycerones. 1,3-Dihydroxyacetone (DHA), the main active ingredient in sunless tanning skin-care preparations and an important precursor for the synthesis of various fine chemicals, is produced on an industrial scale by microbial fermentation of glycerol over Gluconobacter oxydans[1]. 1,3-Dihydroxyacetone (DHA), the main active ingredient in sunless tanning skin-care preparations and an important precursor for the synthesis of various fine chemicals, is produced on an industrial scale by microbial fermentation of glycerol over Gluconobacter oxydans[1].

   

Xylitol

D-Xylitol

C5H12O5 (152.0685)


A pentitol (five-carbon sugar alcohol) having meso-configuration, being derived from xylose by reduction of the carbonyl group. D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS [Spectral] Ribitol (exact mass = 152.06847) and L-Citrulline (exact mass = 175.09569) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Ribitol is a crystalline pentose alcohol formed by the reduction of ribose. Enhancing the flux of D-glucose to the pentose phosphate pathway in Saccharomyces cerevisiae for the production of D-ribose and ribitol. Ribitol is a crystalline pentose alcohol formed by the reduction of ribose. Enhancing the flux of D-glucose to the pentose phosphate pathway in Saccharomyces cerevisiae for the production of D-ribose and ribitol. Xylitol can be classified as polyols and sugar alcohols. Xylitol can be classified as polyols and sugar alcohols.

   

Glucose 6-phosphate

D-Glucose 6-phosphate

C6H13O9P (260.0297)


   

Dtxcid6021115

Rifapentine (Priftin)

C47H64N4O12 (876.4521)


J - Antiinfectives for systemic use > J04 - Antimycobacterials > J04A - Drugs for treatment of tuberculosis > J04AB - Antibiotics D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D000995 - Antitubercular Agents D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007917 - Leprostatic Agents D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D012294 - Rifamycins C254 - Anti-Infective Agent > C52588 - Antibacterial Agent > C280 - Antitubercular Agent

   

Harmaline

HARMALINE HYDROCHLORIDE DIHYDRATE

C13H14N2O (214.1106)


relative retention time with respect to 9-anthracene Carboxylic Acid is 0.572 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.569 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.563 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.565 D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants D004791 - Enzyme Inhibitors > D008996 - Monoamine Oxidase Inhibitors

   

pectin

(+/-)-Arabinose; DL-Arabinose; dl-Arabinose

C5H10O5 (150.0528)


2,3,4,5-tetrahydroxypentanal is a pentose, a polyol and a hydroxyaldehyde. DL-Arabinose is a natural product found in Arabidopsis thaliana, Streptomyces hainanensis, and other organisms with data available. Citrus Pectin is dietary fiber source, extracted from rind of citrus fruits, and used as a gelling agent. High molecular weight polysaccharides present in the cell walls of all plants. Pectins cement cell walls together. They are used as emulsifiers and stabilizers in the food industry. They have been tried for a variety of therapeutic uses including as antidiarrheals, where they are now generally considered ineffective, and in the treatment of hypercholesterolemia. D000074385 - Food Ingredients > D005503 - Food Additives > D010368 - Pectins Arabinose is an endogenous metabolite. Arabinose is an endogenous metabolite. DL-Xylose is an intermediate of organic synthesis. DL-Xylose is an intermediate of organic synthesis. D-Lyxose is an endogenous metabolite. L-(+)-Arabinose selectively inhibits intestinal sucrase activity in a noncompetitive manner and suppresses the plasma glucose increase due to sucrose ingestion. L-(+)-Arabinose selectively inhibits intestinal sucrase activity in a noncompetitive manner and suppresses the plasma glucose increase due to sucrose ingestion. L-Xylose (L-(-)-Xylose) is the levo-isomer of Xylose. Xylose is classified as a?monosaccharide?of the?aldopentose?type[1]. D-(+)-xylose (Xylose) is a natural compound that is catalyzed by xylose isomerase to form xylulose, which is a key step in the anaerobic ethanol fermentation of xylose. D-(+)-xylose (Xylose) is a natural compound that is catalyzed by xylose isomerase to form xylulose, which is a key step in the anaerobic ethanol fermentation of xylose.

   

Xylose

(+/-)-Arabinose; DL-Arabinose; dl-Arabinose

C5H10O5 (150.0528)


2,3,4,5-tetrahydroxypentanal is a pentose, a polyol and a hydroxyaldehyde. DL-Arabinose is a natural product found in Arabidopsis thaliana, Streptomyces hainanensis, and other organisms with data available. Citrus Pectin is dietary fiber source, extracted from rind of citrus fruits, and used as a gelling agent. High molecular weight polysaccharides present in the cell walls of all plants. Pectins cement cell walls together. They are used as emulsifiers and stabilizers in the food industry. They have been tried for a variety of therapeutic uses including as antidiarrheals, where they are now generally considered ineffective, and in the treatment of hypercholesterolemia. D000074385 - Food Ingredients > D005503 - Food Additives > D010368 - Pectins Arabinose is an endogenous metabolite. Arabinose is an endogenous metabolite. DL-Xylose is an intermediate of organic synthesis. DL-Xylose is an intermediate of organic synthesis. D-Lyxose is an endogenous metabolite. L-(+)-Arabinose selectively inhibits intestinal sucrase activity in a noncompetitive manner and suppresses the plasma glucose increase due to sucrose ingestion. L-(+)-Arabinose selectively inhibits intestinal sucrase activity in a noncompetitive manner and suppresses the plasma glucose increase due to sucrose ingestion. L-Xylose (L-(-)-Xylose) is the levo-isomer of Xylose. Xylose is classified as a?monosaccharide?of the?aldopentose?type[1]. D-(+)-xylose (Xylose) is a natural compound that is catalyzed by xylose isomerase to form xylulose, which is a key step in the anaerobic ethanol fermentation of xylose. D-(+)-xylose (Xylose) is a natural compound that is catalyzed by xylose isomerase to form xylulose, which is a key step in the anaerobic ethanol fermentation of xylose.

   

Riboflavin

Riboflavin (Vitamin B2)

C17H20N4O6 (376.1383)


D-Ribitol in which the hydroxy group at position 5 is substituted by a 7,8-dimethyl-2,4-dioxo-3,4-dihydrobenzo[g]pteridin-10(2H)-yl moiety. It is a nutritional factor found in milk, eggs, malted barley, liver, kidney, heart, and leafy vegetables, but the richest natural source is yeast. The free form occurs only in the retina of the eye, in whey, and in urine; its principal forms in tissues and cells are as flavin mononucleotide and flavin-adenine dinucleotide. D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents A - Alimentary tract and metabolism > A11 - Vitamins D018977 - Micronutrients > D014815 - Vitamins S - Sensory organs > S01 - Ophthalmologicals D003879 - Dermatologic Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 0.581 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.582 Riboflavin (vitamin B2) is an extremely easily absorbed micronutrient. Riboflavin (vitamin B2) is an extremely easily absorbed micronutrient.

   

Mestranol

Mestranol

C21H26O2 (310.1933)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents

   

Pyridoxine

4,5-bis(hydroxymethyl)-2-methylpyridin-3-ol

C8H11NO3 (169.0739)


A hydroxymethylpyridine with hydroxymethyl groups at positions 4 and 5, a hydroxy group at position 3 and a methyl group at position 2. The 4-methanol form of vitamin B6, it is converted intoto pyridoxal phosphate which is a coenzyme for synthesis of amino acids, neurotransmitters, sphingolipids and aminolevulinic acid. A - Alimentary tract and metabolism > A11 - Vitamins D018977 - Micronutrients > D014815 - Vitamins COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Pyridoxine (Pyridoxol) is a pyridine derivative. Pyridoxine exerts antioxidant effects in cell model of Alzheimer's disease via the Nrf-2/HO-1 pathway. Pyridoxine (Pyridoxol) is a pyridine derivative. Pyridoxine exerts antioxidant effects in cell model of Alzheimer's disease via the Nrf-2/HO-1 pathway.

   

METHYLGUANIDINE

N-methylguanidine

C2H7N3 (73.064)


A guanidine in which one of the amino hydrogens of guanidine itself is substituted by a methyl group.

   

D-Glucose 6-phosphate

D-Glucose-6-phosphate sodium salt

C6H13O9P (260.0297)


The open-chain form of D-glucose 6-phosphate.

   

Flavin adenine dinucleotide

Flavin adenine dinucleotide

C27H33N9O15P2 (785.1571)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Flavin adenine dinucleotide (FAD) is a redox cofactor, more specifically a prosthetic group of a protein, involved in several important enzymatic reactions in metabolism.

   

Guanidinosuccinic acid

Guanidinosuccinic acid

C5H9N3O4 (175.0593)


Guanidinosuccinic acid is a nitrogenous metabolite.

   

Xanthurenic acid

Xanthurenic acid

C10H7NO4 (205.0375)


A quinolinemonocarboxylic acid that is quinoline-2-carboxylic acid substituted by hydroxy groups at C-4 and C-8. D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Xanthurenic acid is a putative endogenous Group II metabotropic glutamate receptor agonist, on sensory transmission in the thalamus. Xanthurenic acid is a putative endogenous Group II metabotropic glutamate receptor agonist, on sensory transmission in the thalamus.

   

lipoamide

5-(1,2-dithiolan-3-yl)pentanamide

C8H15NOS2 (205.0595)


A monocarboxylic acid amide resulting from the formal condensation of the carboxy group of lipoic acid with ammonia.

   

4-Hydroxyphenylpyruvic acid

4-Hydroxyphenylpyruvic acid

C9H8O4 (180.0423)


A 2-oxo monocarboxylic acid that is pyruvic acid in which one of the methyl hydrogens is substituted by a 4-hydroxyphenyl group. 4-Hydroxyphenylpyruvic acid (4-HPPA) is a keto acid. It is a product of the enzyme (R)-4-hydroxyphenyllactate dehydrogenase [EC 1.1.1.222] and is formed during tyrosine metabolism (KEGG). There are two isomers of HPPA, specifically 4HPPA and 3HPPA, of which 4HPPA is the most common. The enzyme 4-hydroxyphenylpyruvic acid dioxygenase (HPD) catalyzes the reaction of 4-hydroxyphenylpyruvic acid to homogentisic acid in the tyrosine catabolism pathway. A deficiency in the catalytic activity of HPD is known to lead to tyrosinemia type III, an autosomal recessive disorder characterized by elevated levels of blood tyrosine and massive excretion of tyrosine derivatives into urine. It has been shown that hawkinsinuria, an autosomal dominant disorder characterized by the excretion of hawkinsin, may also be a result of HPD deficiency (PMID: 11073718). [HMDB] 4-Hydroxyphenylpyruvic acid is an intermediate in the metabolism of the amino acid phenylalanine. 4-Hydroxyphenylpyruvic acid is an intermediate in the metabolism of the amino acid phenylalanine.

   

Harden-Young ester

1,6-Di-O-phosphono-beta-D-fructofuranose

C6H14O12P2 (339.9961)


D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents C - Cardiovascular system > C01 - Cardiac therapy D007155 - Immunologic Factors D020011 - Protective Agents The furanose form of D-fructose 1,6-bisphosphate. A D-fructofuranose 1,6-bisphosphate with a beta-configuration at the anomeric position.

   

Folic acid

Folic acid ,approx

C19H19N7O6 (441.1397)


CONFIDENCE standard compound; INTERNAL_ID 452; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2727; ORIGINAL_PRECURSOR_SCAN_NO 2725 B - Blood and blood forming organs > B03 - Antianemic preparations > B03B - Vitamin b12 and folic acid > B03BB - Folic acid and derivatives COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D006401 - Hematologic Agents > D006397 - Hematinics D018977 - Micronutrients > D014815 - Vitamins V - Various > V04 - Diagnostic agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 452; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2742; ORIGINAL_PRECURSOR_SCAN_NO 2740 CONFIDENCE standard compound; INTERNAL_ID 452; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2705; ORIGINAL_PRECURSOR_SCAN_NO 2702 CONFIDENCE standard compound; INTERNAL_ID 452; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2726; ORIGINAL_PRECURSOR_SCAN_NO 2724 CONFIDENCE standard compound; INTERNAL_ID 452; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2724; ORIGINAL_PRECURSOR_SCAN_NO 2722 CONFIDENCE standard compound; INTERNAL_ID 452; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2722; ORIGINAL_PRECURSOR_SCAN_NO 2720 CONFIDENCE standard compound; INTERNAL_ID 452; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5826; ORIGINAL_PRECURSOR_SCAN_NO 5821 CONFIDENCE standard compound; INTERNAL_ID 452; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5819; ORIGINAL_PRECURSOR_SCAN_NO 5814 Folic acid (Vitamin B9) is a orally active essential nutrient from the B complex group of vitamins. Folic acid shows antidepressant-like effect. Folic acid sodium reduces the risk of neonatal neural tube defects. Folic acid can be used to the research of megaloblastic and macrocytic anemias due to folic deficiency[1][2][3][4]. Folic acid (Vitamin B9) is a orally active essential nutrient from the B complex group of vitamins. Folic acid shows antidepressant-like effect. Folic acid sodium reduces the risk of neonatal neural tube defects. Folic acid can be used to the research of megaloblastic and macrocytic anemias due to folic deficiency[1][2][3][4].

   

Glyceraldehyde

DL-Glyceric aldehyde

C3H6O3 (90.0317)


An aldotriose comprising propanal having hydroxy groups at the 2- and 3-positions. It plays role in the formation of advanced glycation end-products (AGEs), a deleterious accompaniment to ageing. DL-Glyceraldehyde is a monosaccharide. DL-Glyceraldehyde is the simplest aldose. DL-Glyceraldehyde can be used for various biochemical studies[1].

   

Nicotinic acid

Nicotinic acid

C6H5NO2 (123.032)


CONFIDENCE standard compound; INTERNAL_ID 488; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 706; ORIGINAL_PRECURSOR_SCAN_NO 705 C - Cardiovascular system > C10 - Lipid modifying agents > C10A - Lipid modifying agents, plain > C10AD - Nicotinic acid and derivatives C - Cardiovascular system > C04 - Peripheral vasodilators > C04A - Peripheral vasodilators > C04AC - Nicotinic acid and derivatives D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D018977 - Micronutrients > D014815 - Vitamins D009676 - Noxae > D000963 - Antimetabolites COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 488; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 699; ORIGINAL_PRECURSOR_SCAN_NO 697 CONFIDENCE standard compound; INTERNAL_ID 488; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 707; ORIGINAL_PRECURSOR_SCAN_NO 706 CONFIDENCE standard compound; INTERNAL_ID 488; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1277; ORIGINAL_PRECURSOR_SCAN_NO 1275 CONFIDENCE standard compound; INTERNAL_ID 488; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1271; ORIGINAL_PRECURSOR_SCAN_NO 1269 CONFIDENCE standard compound; INTERNAL_ID 488; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1283; ORIGINAL_PRECURSOR_SCAN_NO 1281 CONFIDENCE standard compound; INTERNAL_ID 488; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1265; ORIGINAL_PRECURSOR_SCAN_NO 1263 MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; PVNIIMVLHYAWGP_STSL_0169_Nicotinic acid_0125fmol_180506_S2_LC02_MS02_96; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. Niacin (Vitamin B3) is an orally active water-soluble B3 vitamin that is an essential nutrient for humans. Niacin (Vitamin B3) plays a key role in energy metabolism, cell signaling cascades regulating gene expression and apoptosis. Niacin (Vitamin B3) is also used in the study of cardiovascular diseases[1][2]. Niacin (Vitamin B3) is an orally active water-soluble B3 vitamin that is an essential nutrient for humans. Niacin (Vitamin B3) plays a key role in energy metabolism, cell signaling cascades regulating gene expression and apoptosis. Niacin (Vitamin B3) is also used in the study of cardiovascular diseases[1][2].

   

RGX-202

3-Guanidinopropionic acid

C4H9N3O2 (131.0695)


C274 - Antineoplastic Agent > C177430 - Agent Targeting Cancer Metabolism

   

2-Oxobutyric acid

Sodium 2-Oxobutyrate

C4H6O3 (102.0317)


A 2-oxo monocarboxylic acid that is the 2-oxo derivative of butanoic acid. 2-Oxobutanoic acid is a product in the enzymatic cleavage of cystathionine.

   

2-Oxovaleric acid

2-Oxopentanoic acid

C5H8O3 (116.0473)


An oxopentanoic acid carrying an oxo group at position 2. 2-Oxovaleric acid is a keto acid that is found in human blood.

   

α-Ketoisovaleric acid

3-Methyl-2-oxobutanoic acid

C5H8O3 (116.0473)


A 2-oxo monocarboxylic acid that is the 2-oxo derivative of isovaleric acid. 3-Methyl-2-oxobutanoic acid is a precursor of pantothenic acid in Escherichia coli.

   

D-Xylose

D-(+)-Xylose

C5H10O5 (150.0528)


D-Xylose is a flavouring ingredient; sweetener. It is found in straw, corncobs, pecan shells, carrot, dandelion, german camomile, and sweet orange. D-Xylose is a sugar first isolated from wood, and named for it. D-Xylose is classified as a monosaccharide of the aldopentose type, which means that it contains five carbon atoms and includes an aldehyde functional group. It is the precursor to hemicellulose, one of the main constituents of biomass (Wikipedia). Xylose in the urine is a biomarker for the consumption of fruits. D-(+)-xylose (Xylose) is a natural compound that is catalyzed by xylose isomerase to form xylulose, which is a key step in the anaerobic ethanol fermentation of xylose. D-(+)-xylose (Xylose) is a natural compound that is catalyzed by xylose isomerase to form xylulose, which is a key step in the anaerobic ethanol fermentation of xylose.

   

glycolic acid

glycolic acid

C2H4O3 (76.016)


A 2-hydroxy monocarboxylic acid that is acetic acid where the methyl group has been hydroxylated. D003879 - Dermatologic Agents > D007641 - Keratolytic Agents Glycolic acid is an inhibitor of tyrosinase, suppressing melanin formation and lead to a lightening of skin colour. Glycolic acid is an inhibitor of tyrosinase, suppressing melanin formation and lead to a lightening of skin colour.

   

Oxalacetic acid

2-oxobutanedioic acid

C4H4O5 (132.0059)


C274 - Antineoplastic Agent > C177430 - Agent Targeting Cancer Metabolism C26170 - Protective Agent > C1509 - Neuroprotective Agent Oxaloacetic acid (2-Oxosuccinic acid) is a metabolic intermediate involved in several ways, such as citric acid cycle, gluconeogenesis, the urea cycle, the glyoxylate cycle, amino acid synthesis, and fatty acid synthesis[1][2]. Oxaloacetic acid (2-Oxosuccinic acid) is a metabolic intermediate involved in several ways, such as citric acid cycle, gluconeogenesis, the urea cycle, the glyoxylate cycle, amino acid synthesis, and fatty acid synthesis[1][2].

   

Ketoleucine

4-methyl-2-oxopentanoic acid

C6H10O3 (130.063)


A 2-oxo monocarboxylic acid that is pentanoic acid (valeric acid) substituted with a keto group at C-2 and a methyl group at C-4. A metabolite that has been found to accumulate in maple syrup urine disease. 4-Methyl-2-oxopentanoic acid (α-Ketoisocaproic acid), an abnormal metabolite, is both a neurotoxin and a metabotoxin.

   

acetylphosphate

acetyl dihydrogen phosphate

C2H5O5P (139.9875)


   

benzaldehyde

benzaldehyde-carbonyl-13c

C7H6O (106.0419)


An arenecarbaldehyde that consists of benzene bearing a single formyl substituent; the simplest aromatic aldehyde and parent of the class of benzaldehydes.

   

1-Acetylimidazole

1-Acetylimidazole

C5H6N2O (110.048)


   

1-Methylnicotinamide

1-Methylnicotinamide

C7H9N2O+ (137.0715)


A pyridinium ion comprising nicotinamide having a methyl group at the 1-position. It is a metabolite of nicotinamide which was initially considered to be biologically inactive but has emerged as an anti-thrombotic and anti-inflammatory agent. COVID info from COVID-19 Disease Map, clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

4-Pyridoxic acid

4-Pyridoxic acid

C8H9NO4 (183.0532)


A methylpyridine that is 2-methylpyridine substituted by a hydroxy group at C-3, a carboxy group at C-4, and a hydroxymethyl group at C-5. It is the catabolic product of vitamin B6 and is excreted in the urine. 4-Pyridoxic acid is a catabolic product of vitamin B6 which is excreted in the urine.

   

5,6-Dimethylbenzimidazole

5,6-Dimethylbenzimidazole

C9H10N2 (146.0844)


A dimethylbenzimidazole carrying methyl substituents at positions 5 and 6. 5,6-Dimethyl-1H-benzo[d]imidazole is an endogenous metabolite.

   

DIHYDROXYACETONE PHOSPHATE

DIHYDROXYACETONE PHOSPHATE

C3H7O6P (169.998)


A member of the class of glycerone phosphates that consists of glycerone bearing a single phospho substituent.

   

Pyruvic acid

alpha-keto propionic acid

C3H4O3 (88.016)


A 2-oxo monocarboxylic acid that is the 2-keto derivative of propionic acid. It is a metabolite obtained during glycolysis. Pyruvic acid is an intermediate compound in the metabolism of carbohydrates, proteins, and fats. In thiamine deficiency, its oxidation is retarded and it accumulates in the tissues, especially in nervous structures (From Stedman, 26th ed.). Biological Source: Intermediate in primary metabolism including fermentation processes. Present in muscle in redox equilibrium with Lactic acid. A common constituent, as a chiral cyclic acetal linked to saccharide residues, of bacterial polysaccharides. Isolated from cane sugar fermentation broth and peppermint. Constituent of Bauhinia purpurea, Cicer arietinum (chickpea), Delonix regia, Pisum sativum (pea) and Trigonella caerulea (sweet trefoil) Use/Importance: Reagent for regeneration of carbonyl compdounds from semicarbazones, phenylhydrazones and oximes. Flavoring ingredient (Dictionary of Organic Compounds); Pyruvate is a key intersection in the network of metabolic pathways. Pyruvate can be converted into carbohydrates via gluconeogenesis, to fatty acids or energy through acetyl-CoA, to the amino acid alanine and to ethanol. Therefore it unites several key metabolic processes.; Pyruvate is an important chemical compound in biochemistry. It is the output of the anaerobic metabolism of glucose known as glycolysis. One molecule of glucose breaks down into two molecules of pyruvate, which are then used to provide further energy, in one of two ways. Pyruvate is converted into acetyl-coenzyme A, which is the main input for a series of reactions known as the Krebs cycle. Pyruvate is also converted to oxaloacetate by an anaplerotic reaction which replenishes Krebs cycle intermediates; alternatively, the oxaloacetate is used for gluconeogenesis. These reactions are named after Hans Adolf Krebs, the biochemist awarded the 1953 Nobel Prize for physiology, jointly with Fritz Lipmann, for research into metabolic processes. The cycle is also called the citric acid cycle, because citric acid is one of the intermediate compounds formed during the reactions.; Pyruvic acid (CH3COCOOH) is an organic acid. It is also a ketone, as well as being the simplest alpha-keto acid. The carboxylate (COOH) ion (anion) of pyruvic acid, CH3COCOO-, is known as pyruvate, and is a key intersection in several metabolic pathways. It can be made from glucose through glycolysis, supplies energy to living cells in the citric acid cycle, and can also be converted to carbohydrates via gluconeogenesis, to fatty acids or energy through acetyl-CoA, to the amino acid alanine and to ethanol.; Pyruvic acid is a colorless liquid with a smell similar to that of acetic acid. It is miscible with water, and soluble in ethanol and diethyl ether. In the laboratory, pyruvic acid may be prepared by heating a mixture of tartaric acid and potassium hydrogen sulfate, by the oxidation of propylene glycol by a strong oxidizer (eg. potassium permanganate or bleach), or by the hydrolysis of acetyl cyanide, formed by reaction of acetyl chloride with potassium cyanide:; Pyruvic acid or pyruvate is a key intermediate in the glycolytic and pyruvate dehydrogenase pathways, which are involved in biological energy production. Pyruvate is widely found in living organisms. It is not an essential nutrient since it can be synthesized in the cells of the body. Certain fruits and vegetables are rich in pyruvate. For example, an average-size red apple contains approximately 450 milligrams. Dark beer and red wine are also rich sources of pyruvate. Recent research suggests that pyruvate in high concentrations may have a role in cardiovascular therapy, as an inotropic agent. Supplements of this dietary substance may also have bariatric and ergogenic applications. Pyruvic acid is isolated from cane sugar fermentation broth, Cicer arietinum (chickpea), Pisum sativum (pea), Trigonella cerulea (sweet trefoil) and peppermint. It can be used as a flavouring ingredient. Pyruvic acid is an intermediate metabolite in the metabolism of carbohydrates, proteins, and fats. Pyruvic acid is an intermediate metabolite in the metabolism of carbohydrates, proteins, and fats.

   

Erythrit

rel-(2R,3S)-1,2,3,4-Butanetetrol

C4H10O4 (122.0579)


D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents The meso-diastereomer of butane-1,2,3,4-tetrol. meso-Erythritol is a sugar alcohol that occurs naturally in a variety of foods (e.g., pear, watermelon), is 60-80\\% as sweet as sucrose, and is an approved low-calorie sweetener food additive[1]. meso-Erythritol is a sugar alcohol that occurs naturally in a variety of foods (e.g., pear, watermelon), is 60-80\% as sweet as sucrose, and is an approved low-calorie sweetener food additive[1].

   

7-Ketodeoxycholic acid

7-Keto-3α,12-α-dihydroxycholanic Acid

C24H38O5 (406.2719)


D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids CONFIDENCE standard compound; INTERNAL_ID 265 7-keto-lithocholic acid is a metabolite of bile acids in Clostridium absonum. 7-keto-lithocholic acid is also converted from Lactobacillus and Bifidobacterium with specific condition[1][2].

   

pantothenate

D-Pantothenic acid

C9H17NO5 (219.1107)


CONFIDENCE standard compound; INTERNAL_ID 870; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2028; ORIGINAL_PRECURSOR_SCAN_NO 2025 D018977 - Micronutrients > D014815 - Vitamins CONFIDENCE standard compound; INTERNAL_ID 870; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2045; ORIGINAL_PRECURSOR_SCAN_NO 2043 CONFIDENCE standard compound; INTERNAL_ID 870; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2007; ORIGINAL_PRECURSOR_SCAN_NO 2005 CONFIDENCE standard compound; INTERNAL_ID 870; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2020; ORIGINAL_PRECURSOR_SCAN_NO 2018 CONFIDENCE standard compound; INTERNAL_ID 870; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2022; ORIGINAL_PRECURSOR_SCAN_NO 2020 CONFIDENCE standard compound; INTERNAL_ID 870; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2020; ORIGINAL_PRECURSOR_SCAN_NO 2018 CONFIDENCE standard compound; INTERNAL_ID 870; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4240; ORIGINAL_PRECURSOR_SCAN_NO 4238 CONFIDENCE standard compound; INTERNAL_ID 870; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4241; ORIGINAL_PRECURSOR_SCAN_NO 4239 CONFIDENCE standard compound; INTERNAL_ID 870; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4259; ORIGINAL_PRECURSOR_SCAN_NO 4257 CONFIDENCE standard compound; INTERNAL_ID 870; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4274; ORIGINAL_PRECURSOR_SCAN_NO 4273 CONFIDENCE standard compound; INTERNAL_ID 870; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4270; ORIGINAL_PRECURSOR_SCAN_NO 4268 CONFIDENCE standard compound; INTERNAL_ID 870; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4269; ORIGINAL_PRECURSOR_SCAN_NO 4266 D-Pantothenic acid (Pantothenate) is an essential trace nutrient that functions as the obligate precursor of coenzyme A (CoA). D-Pantothenic acid plays key roles in myriad biological processes, including many that regulate carbohydrate, lipid, protein, and nucleic acid metabolism[1]. D-Pantothenic acid (Pantothenate) is an essential trace nutrient that functions as the obligate precursor of coenzyme A (CoA). D-Pantothenic acid plays key roles in myriad biological processes, including many that regulate carbohydrate, lipid, protein, and nucleic acid metabolism[1].

   

Thiamine

Thiamine

C12H17N4OS+ (265.1123)


A - Alimentary tract and metabolism > A11 - Vitamins > A11D - Vitamin b1, plain and in combination with vitamin b6 and b12 > A11DA - Vitamin b1, plain D018977 - Micronutrients > D014815 - Vitamins

   

D-Ribulose 1,5-bisphosphate

D-Ribulose 1,5-bisphosphate

C5H12O11P2 (309.9855)


A ribulose phosphate that is D-ribulose attached to phosphate groups at positions 1 and 5. It is an intermediate in photosynthesis.

   

3-Amino-5-hydroxybenzoic acid

3-Amino-5-hydroxybenzoic acid

C7H7NO3 (153.0426)


   

Phosphoribosyl pyrophosphate

ALPHA-PHOSPHORIBOSYLPYROphosphORIC ACID

C5H13O14P3 (389.9518)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

phosphoenolpyruvate

2-dihydroxyphosphinoyloxyacrylic acid

C3H5O6P (167.9824)


   

Thiamine monophosphate

Thiamine monophosphate

C12H18N4O4PS+ (345.0786)


D018977 - Micronutrients > D014815 - Vitamins

   

4-Aminophenylalanine

L-2-Amino-3-(4-aminophenyl)propanoic acid

C9H12N2O2 (180.0899)


   

FA 4:1;O2

xi-3-Hydroxy-2-oxobutanoic acid

C4H6O4 (118.0266)


Methylmalonic acid (Methylmalonate) is an indicator of Vitamin B-12 deficiency in cancer. Methylmalonic acid (Methylmalonate) is an indicator of Vitamin B-12 deficiency in cancer.

   

FA 4:2;O3

2-Hydroxybut-2-enedioic acid

C4H4O5 (132.0059)


C274 - Antineoplastic Agent > C177430 - Agent Targeting Cancer Metabolism C26170 - Protective Agent > C1509 - Neuroprotective Agent Oxaloacetic acid (2-Oxosuccinic acid) is a metabolic intermediate involved in several ways, such as citric acid cycle, gluconeogenesis, the urea cycle, the glyoxylate cycle, amino acid synthesis, and fatty acid synthesis[1][2]. Oxaloacetic acid (2-Oxosuccinic acid) is a metabolic intermediate involved in several ways, such as citric acid cycle, gluconeogenesis, the urea cycle, the glyoxylate cycle, amino acid synthesis, and fatty acid synthesis[1][2].

   

4-Amino-L-phenylalanine

2-amino-3-(4-aminophenyl)propanoic acid

C9H12N2O2 (180.0899)


   

NITROSOBENZENE

NITROSOBENZENE

C6H5NO (107.0371)


A nitroso compound that is the nitroso derivative of benzene; a diamagnetic hybrid of singlet O2 and azobenzene.

   

D-Sedoheptulose 7-phosphate

{[(2R,3S,4R,5S,6S)-3,4,5,6-tetrahydroxy-6-(hydroxymethyl)oxan-2-yl]methoxy}phosphonic acid

C7H15O10P (290.0403)


D-Sedoheptulose 7-phosphate (CAS: 2646-35-7) is an intermediate of the pentose phosphate pathway (PPP) that has two functions: (1) the generation of NADPH for reductive syntheses and oxidative stress responses within cells, and (2) the formation of ribose residues for nucleotide and nucleic acid biosynthesis (PMID: 16055050). It is formed by transketolase and acted upon (degraded) by transaldolase. Sedoheptulose 7-phosphate can be increased in the blood of patients affected with a transaldolase deficiency, a genetic disorder (PMID: 12881455). Sedoheptulose is a ketoheptose, a monosaccharide with seven carbon atoms and a ketone functional group. It is one of the few heptoses found in nature (Wikipedia). D-Sedoheptulose 7-phosphate is an intermediate of the Pentose phosphate pathway (PPP) that has two functions: the generation of NADPH for reductive syntheses and oxidative stress responses within cells, and the formation of ribose residues for nucleotide and nucleic acid biosynthesis. (PMID 16055050)

   

2-Amino-2-Deoxy-Hexose

2-Amino-2-Deoxy-Hexose

C6H13NO5 (179.0794)


   

plaunotol

plaunotol

C20H34O2 (306.2559)


C78276 - Agent Affecting Digestive System or Metabolism > C29701 - Anti-ulcer Agent D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents D000890 - Anti-Infective Agents

   

Linic

InChI=1\C6H5NO2\c8-6(9)5-2-1-3-7-4-5\h1-4H,(H,8,9

C6H5NO2 (123.032)


C - Cardiovascular system > C10 - Lipid modifying agents > C10A - Lipid modifying agents, plain > C10AD - Nicotinic acid and derivatives C - Cardiovascular system > C04 - Peripheral vasodilators > C04A - Peripheral vasodilators > C04AC - Nicotinic acid and derivatives D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D018977 - Micronutrients > D014815 - Vitamins D009676 - Noxae > D000963 - Antimetabolites COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Niacin (Vitamin B3) is an orally active water-soluble B3 vitamin that is an essential nutrient for humans. Niacin (Vitamin B3) plays a key role in energy metabolism, cell signaling cascades regulating gene expression and apoptosis. Niacin (Vitamin B3) is also used in the study of cardiovascular diseases[1][2]. Niacin (Vitamin B3) is an orally active water-soluble B3 vitamin that is an essential nutrient for humans. Niacin (Vitamin B3) plays a key role in energy metabolism, cell signaling cascades regulating gene expression and apoptosis. Niacin (Vitamin B3) is also used in the study of cardiovascular diseases[1][2].

   

LS-27

InChI=1\C7H6O\c8-6-7-4-2-1-3-5-7\h1-6

C7H6O (106.0419)


   

Pelmin

InChI=1\C6H6N2O\c7-6(9)5-2-1-3-8-4-5\h1-4H,(H2,7,9

C6H6N2O (122.048)


COVID info from COVID-19 Disease Map, WikiPathways, PDB, Protein Data Bank, clinicaltrial, clinicaltrials, clinical trial, clinical trials A - Alimentary tract and metabolism > A11 - Vitamins C26170 - Protective Agent > C275 - Antioxidant D018977 - Micronutrients > D014815 - Vitamins Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Nicotinamide is a form of vitamin B3 or niacin. Nicotinamide Hydrochloride inhibits SIRT2 activity (IC50: 2 μM). Nicotinamide also inhibits SIRT1. Nicotinamide increases cellular NAD+, ATP, ROS levels. Nicotinamide inhibits tumor growth and improves survival. Nicotinamide also has anti-HBV activity[1][2][3][4]. Nicotinamide is a form of vitamin B3 or niacin. Nicotinamide Hydrochloride inhibits SIRT2 activity (IC50: 2 μM). Nicotinamide also inhibits SIRT1. Nicotinamide increases cellular NAD+, ATP, ROS levels. Nicotinamide inhibits tumor growth and improves survival. Nicotinamide also has anti-HBV activity[1][2][3][4]. Nicotinamide is a form of vitamin B3 or niacin. Nicotinamide Hydrochloride inhibits SIRT2 activity (IC50: 2 μM). Nicotinamide also inhibits SIRT1. Nicotinamide increases cellular NAD+, ATP, ROS levels. Nicotinamide inhibits tumor growth and improves survival. Nicotinamide also has anti-HBV activity[1][2][3][4].

   

terthiophene

InChI=1\C12H8S3\c1-3-9(13-7-1)11-5-6-12(15-11)10-4-2-8-14-10\h1-8

C12H8S3 (247.9788)


D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D010575 - Pesticides > D007306 - Insecticides D003879 - Dermatologic Agents D016573 - Agrochemicals 2,2':5',2''-Terthiophene (α-Terthiophene) is an oligomer of the heterocycle thiophene. 2,2':5',2''-Terthiophene has been employed as building block for the organic semi-conductor polythiophene. 2,2':5',2''-Terthiophene (α-Terthiophene) is an oligomer of the heterocycle thiophene. 2,2':5',2''-Terthiophene has been employed as building block for the organic semi-conductor polythiophene.

   

Orcin

InChI=1\C7H8O2\c1-5-2-6(8)4-7(9)3-5\h2-4,8-9H,1H

C7H8O2 (124.0524)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents

   

Soleal

4-01-00-04119 (Beilstein Handbook Reference)

C3H6O3 (90.0317)


1,3-Dihydroxyacetone (DHA), the main active ingredient in sunless tanning skin-care preparations and an important precursor for the synthesis of various fine chemicals, is produced on an industrial scale by microbial fermentation of glycerol over Gluconobacter oxydans[1]. 1,3-Dihydroxyacetone (DHA), the main active ingredient in sunless tanning skin-care preparations and an important precursor for the synthesis of various fine chemicals, is produced on an industrial scale by microbial fermentation of glycerol over Gluconobacter oxydans[1].

   

LS-2371

4-03-00-01505 (Beilstein Handbook Reference)

C3H4O3 (88.016)


Pyruvic acid is an intermediate metabolite in the metabolism of carbohydrates, proteins, and fats. Pyruvic acid is an intermediate metabolite in the metabolism of carbohydrates, proteins, and fats.

   

CHEBI:30918

(4S,5R)-4,5-dihydroxy-3-oxocyclohex-1-ene-1-carboxylic acid

C7H8O5 (172.0372)


   

3-Formylphenol

3-Hydroxybenzaldehyde

C7H6O2 (122.0368)


3-Hydroxybenzaldehyde. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=100-83-4 (retrieved 2024-08-06) (CAS RN: 100-83-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). 3-Hydroxybenzaldehyde?is a precursor compound for phenolic compounds, such as Protocatechualdehyde (HY-N0295). 3-Hydroxybenzaldehyde is a substrate of aldehyde dehydrogenase (ALDH) in rats and humans (ALDH2). 3-Hydroxybenzaldehyde has vasculoprotective effects?in vitro and in vivo[1]. 3-Hydroxybenzaldehyde?is a precursor compound for phenolic compounds, such as Protocatechualdehyde (HY-N0295). 3-Hydroxybenzaldehyde is a substrate of aldehyde dehydrogenase (ALDH) in rats and humans (ALDH2). 3-Hydroxybenzaldehyde has vasculoprotective effects?in vitro and in vivo[1]. 3-Hydroxybenzaldehyde?is a precursor compound for phenolic compounds, such as Protocatechualdehyde (HY-N0295). 3-Hydroxybenzaldehyde is a substrate of aldehyde dehydrogenase (ALDH) in rats and humans (ALDH2). 3-Hydroxybenzaldehyde has vasculoprotective effects?in vitro and in vivo[1].

   

Pyridoxin

InChI=1\C8H11NO3\c1-5-8(12)7(4-11)6(3-10)2-9-5\h2,10-12H,3-4H2,1H

C8H11NO3 (169.0739)


A - Alimentary tract and metabolism > A11 - Vitamins D018977 - Micronutrients > D014815 - Vitamins COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Pyridoxine (Pyridoxol) is a pyridine derivative. Pyridoxine exerts antioxidant effects in cell model of Alzheimer's disease via the Nrf-2/HO-1 pathway. Pyridoxine (Pyridoxol) is a pyridine derivative. Pyridoxine exerts antioxidant effects in cell model of Alzheimer's disease via the Nrf-2/HO-1 pathway.

   

Terthiophene

2,2 inverted exclamation mark :5 inverted exclamation mark ,2 inverted exclamation mark inverted exclamation mark -Terthiophene

C12H8S3 (247.9788)


2,2:5,2-terthiophene is a terthiophene. 2,2:5,2-Terthiophene is a natural product found in Schoenia cassiniana, Lawrencella rosea, and other organisms with data available. D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D010575 - Pesticides > D007306 - Insecticides D003879 - Dermatologic Agents D016573 - Agrochemicals 2,2':5',2''-Terthiophene (α-Terthiophene) is an oligomer of the heterocycle thiophene. 2,2':5',2''-Terthiophene has been employed as building block for the organic semi-conductor polythiophene. 2,2':5',2''-Terthiophene (α-Terthiophene) is an oligomer of the heterocycle thiophene. 2,2':5',2''-Terthiophene has been employed as building block for the organic semi-conductor polythiophene.

   

Propionaldehyde

Propionaldehyde

C3H6O (58.0419)


   

SULFADOXINE

SULFADOXINE

C12H14N4O4S (310.0736)


D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent D000890 - Anti-Infective Agents > D013424 - Sulfanilamides

   

glycolaldehyde

glycolaldehyde

C2H4O2 (60.0211)


The glycolaldehyde derived from ethylene glycol. The parent of the class of glycolaldehydes.

   

hydroxypyruvic acid

3-Hydroxypyruvic acid

C3H4O4 (104.011)


A 2-oxo monocarboxylic acid that is pyruvic acid in which one of the methyl hydrogens is substituted by a hydroxy group. It is an intermediate involved in the glycine and serine metabolism. Hydroxypyruvic acid (β-Hydroxypyruvic acid) is an intermediate in the metabolism of glycine, serine and threonine. Hydroxypyruvic acid is a substrate for serine-pyruvate aminotransferase and glyoxylate reductase/hydroxypyruvate reductase. Hydroxypyruvic acid is involved in the metabolic disorder which is the dimethylglycine dehydrogenase deficiency pathway.

   

11beta-Hydroxyandrostenedione

11-Beta-hydroxyandrostenedione

C19H26O3 (302.1882)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones 11-Beta-hydroxyandrostenedione (4-Androsten-11β-ol-3,17-dione) is a steroid mainly found in the the adrenal origin (11β-hydroxylase is present in adrenal tissue, but absent in ovarian tissue). 11-Beta-hydroxyandrostenedione is a 11β-hydroxysteroid dehydrogenase (11βHSD) isozymes inhibitor. As 4-androstenedione increases, measuring plasma 11-Beta-hydroxyandrostenedione can distinguish the adrenal or ovarian origin of hyperandrogenism[1][2].

   

D-Ribulose 5-phosphate

D-Ribulose 5-phosphate

C5H11O8P (230.0192)


The D-enantiomer of ribulose 5-phosphate that is one of the end-products of the pentose phosphate pathway.

   

(3S)-3-Methyl-2-oxopentanoic acid

(3S)-3-Methyl-2-oxopentanoic acid

C6H10O3 (130.063)


   

D-Glyceraldehyde

D-(+)-Glyceraldehyde

C3H6O3 (90.0317)


The D-enantiomer of glyceraldehyde.

   

4-Amino-5-hydroxymethyl-2-methylpyrimidine

4-Amino-5-hydroxymethyl-2-methylpyrimidine

C6H9N3O (139.0746)


An aminopyrimidine that is pyrimidine in which the hydrogens at positions 2, 4, and 5 are replaced by methyl, amino, and hydroxymethyl substituents, respectively.

   

Thiamine diphosphate

Thiamine diphosphate

C12H19N4O7P2S+ (425.045)


D018977 - Micronutrients > D014815 - Vitamins

   

Chorismic acid

Chorismic acid

C10H10O6 (226.0477)


The (3R,4R)-stereoisomer of 5-[(1-carboxyethenyl)oxy]-6-hydroxycyclohexa-1,3-diene-1-carboxylic acid.

   

D-Erythrose 4-phosphate

D-Erythrose 4-phosphate

C4H9O7P (200.0086)


An erythrose phosphate that is D-erythrose carrying a phosphate group at position 4. It is an intermediate in the pentose phosphate pathway and Calvin cycle.

   

glyceraldehyde-3-phosphate

glyceraldehyde-3-phosphate

C3H7O6P (169.998)


   

5-xanthylic acid

Xanthosine-5-monophosphate

C10H13N4O9P (364.042)


A purine ribonucleoside 5-monophosphate having xanthine as the nucleobase. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

D-Arabinose 5-phosphate

aldehydo-D-arabinose 5-phosphate

C5H11O8P (230.0192)


The 5-phospho derivative of D-arabinose. It is an intermediate in the synthesis of lipopolysaccharides.

   

Ribose-1-phosphate

Ribose-1-phosphate

C5H11O8P (230.0192)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

L-Erythrulose

L-(+)-Erythrulose

C4H8O4 (120.0423)


   

3-Dehydroquinic acid

3-Dehydroquinic acid

C7H10O6 (190.0477)


A 4-oxo monocarboxylic acid derived from quinic acid by oxidation of the hydroxy group at position 3 to the corresponding keto group.

   

6,7-Dimethyl-8-ribityllumazine

6,7-Dimethyl-8-ribityllumazine

C13H18N4O6 (326.1226)


   

4-Phospho-D-erythronate

4-Phospho-D-erythronate

C4H9O8P (216.0035)


   

Thiamine triphosphate

Thiamine triphosphate

C12H20N4O10P3S+ (505.0113)


D018977 - Micronutrients > D014815 - Vitamins

   

2-aceto-2-hydroxybutanoate

2-aceto-2-hydroxybutanoate

C6H10O4 (146.0579)


   

4-(Phosphonooxy)-L-threonine

4-(Phosphonooxy)-L-threonine

C4H10NO7P (215.0195)


   

4-Hydroxy-L-threonine

4-Hydroxy-L-threonine

C4H9NO4 (135.0532)


A hydroxy-amino acid consisting of L-threonine having a hydroxy substituent at the 4-position.

   

Sedoheptulose 1,7-bisphosphate

Sedoheptulose 1,7-bisphosphate

C7H16O13P2 (370.0066)


   

Sedoheptulose 7-phosphate

Sedoheptulose 7-phosphate

C7H15O10P (290.0403)


A ketoheptose phosphate consisting of sedoheptulose having a phosphate group at the 7-position. It is an intermediate metabolite in the pentose phosphate pathway.

   

O-Acetyl-L-homoserine

O-Acetyl-L-homoserine

C6H11NO4 (161.0688)


The O-acetyl derivative of L-homoserine.

   

3-deoxy-D-arabino-heptulosonate-7-phosphate

7-phospho-2-dehydro-3-deoxy-D-arabino-heptonic acid

C7H13O10P (288.0246)


A ketoaldonic acid phosphate consisting of 2-dehydro-3-deoxy-D-arabino-heptonic acid having a phospho group at the 7-position.

   

Dehydro-D-arabinono-1,4-lactone

2(5H)-Furanone,3,4-dihydroxy-5-(hydroxymethyl)-,(5R)-

C5H6O5 (146.0215)


A gamma-lactone that is 5-(hydroxymethyl)furan-2(5H)-one substituted at positions 3 and 4 by hydroxy groups (the 5R-stereoisomer).

   

2-(alpha-Hydroxyethyl)thiamine diphosphate

2-(alpha-Hydroxyethyl)thiamine diphosphate

C14H23N4O8P2S+ (469.0712)


   

Erythrulose

1,3,4-Trihydroxy-2-butanone

C4H8O4 (120.0423)


Erythrulose. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=40031-31-0 (retrieved 2024-08-19) (CAS RN: 40031-31-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Fructose-6-phosphate

D-fructofuranose 6-phosphate

C6H13O9P (260.0297)


   

1-Deoxy-D-xylulose 5-phosphate

(2,3-dihydroxy-4-oxo-pentoxy)phosphonic acid

C5H11O7P (214.0242)


The 5-phospho derivative of 1-deoxy-D-xylulose.

   

Oxalaldehyde

1,2-Ethanedione

C2H2O2 (58.0055)


   

DL-Penicillamine

L-(+)-Penicillamine

C5H11NO2S (149.051)


D064449 - Sequestering Agents > D002614 - Chelating Agents D020011 - Protective Agents > D000931 - Antidotes D018501 - Antirheumatic Agents

   

Pentose

L-Arabinopyranose

C5H10O5 (150.0528)


   

3-Ahba

3-Amino-5-hydroxybenzoic acid

C7H7NO3 (153.0426)


   

PCB-126

3,3,4,4,5-Pentachlorobiphenyl

C12H5Cl5 (323.8834)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D004965 - Estrogen Antagonists D004785 - Environmental Pollutants > D011078 - Polychlorinated Biphenyls

   

2,3,4,6-tetrahydroxy-5-oxohexanoic acid

2,3,4,6-tetrahydroxy-5-oxohexanoic acid

C6H10O7 (194.0427)