Gene Association: CTSK

UniProt Search: CTSK (PROTEIN_CODING)
Function Description: cathepsin K

found 145 associated metabolites with current gene based on the text mining result from the pubmed database.

Fraxetin

7,8-dihydroxy-6-methoxychromen-2-one

C10H8O5 (208.0372)


Fraxetin is a hydroxycoumarin that is 6-methoxycoumarin in which the hydrogens at positions 7 and 8 have been replaced by hydroxy groups. It has a role as an Arabidopsis thaliana metabolite, an antimicrobial agent, an apoptosis inhibitor, an apoptosis inducer, an antioxidant, an anti-inflammatory agent, a hepatoprotective agent, an antibacterial agent and a hypoglycemic agent. It is a hydroxycoumarin and an aromatic ether. Fraxetin is a natural product found in Santolina pinnata, Campanula dolomitica, and other organisms with data available. A hydroxycoumarin that is 6-methoxycoumarin in which the hydrogens at positions 7 and 8 have been replaced by hydroxy groups. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.550 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.543 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.542 Fraxetin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=574-84-5 (retrieved 2024-06-28) (CAS RN: 574-84-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Fraxetin is isolated from Fraxinus rhynchophylla Hance. Fraxetin has antitumor, anti-oxidation effects and anti-inflammory effects. Fraxetin induces apoptosis[1]. Fraxetin is isolated from Fraxinus rhynchophylla Hance. Fraxetin has antitumor, anti-oxidation effects and anti-inflammory effects. Fraxetin induces apoptosis[1].

   

Quercitrin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-(((2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O11 (448.1006)


Quercitrin, also known as quercimelin or quercitronic acid, belongs to the class of organic compounds known as flavonoid-3-o-glycosides. These are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. A quercetin O-glycoside that is quercetin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. Quercitrin exists in all living organisms, ranging from bacteria to humans. Quercitrin is found, on average, in the highest concentration within a few different foods, such as lingonberries, american cranberries, and olives and in a lower concentration in common beans, tea, and welsh onions. Quercitrin has also been detected, but not quantified, in several different foods, such as guava, bilberries, common pea, apricots, and spearmints. Quercitrin is a quercetin O-glycoside that is quercetin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. It has a role as an antioxidant, an antileishmanial agent, an EC 1.1.1.184 [carbonyl reductase (NADPH)] inhibitor, an EC 1.1.1.21 (aldehyde reductase) inhibitor, an EC 1.14.18.1 (tyrosinase) inhibitor and a plant metabolite. It is a monosaccharide derivative, a tetrahydroxyflavone, an alpha-L-rhamnoside and a quercetin O-glycoside. It is a conjugate acid of a quercitrin-7-olate. Quercitrin is a natural product found in Xylopia emarginata, Lotus ucrainicus, and other organisms with data available. Quercitrin is a glycoside formed from the flavonoid quercetin and the deoxy sugar rhamnose. It is a constituent of the dye quercitron. Quercitrin is found in many foods, some of which are garden tomato (variety), kiwi, italian sweet red pepper, and guava. A quercetin O-glycoside that is quercetin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. [Raw Data] CBA03_Quercitrin_pos_10eV.txt [Raw Data] CBA03_Quercitrin_pos_20eV.txt [Raw Data] CBA03_Quercitrin_neg_50eV.txt [Raw Data] CBA03_Quercitrin_neg_30eV.txt [Raw Data] CBA03_Quercitrin_neg_10eV.txt [Raw Data] CBA03_Quercitrin_neg_40eV.txt [Raw Data] CBA03_Quercitrin_neg_20eV.txt [Raw Data] CBA03_Quercitrin_pos_50eV.txt [Raw Data] CBA03_Quercitrin_pos_30eV.txt [Raw Data] CBA03_Quercitrin_pos_40eV.txt Quercitrin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=522-12-3 (retrieved 2024-07-09) (CAS RN: 522-12-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2].

   

Gamabufogenin

5-[(3S,5R,8R,9S,10S,11R,13R,14S,17R)-3,11,14-trihydroxy-10,13-dimethyl-1,2,3,4,5,6,7,8,9,11,12,15,16,17-tetradecahydrocyclopenta[a]phenanthren-17-yl]pyran-2-one

C24H34O5 (402.2406)


Gamabufogenin is a steroid lactone. It is functionally related to a bufanolide. Gamabufotalin is a natural product found in Bufotes viridis, Bufo, and other organisms with data available. D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002018 - Bufanolides Gamabufotalin (Gamabufagin), a main active compound isolated from Chinese medicine Chansu, has been shown to strongly inhibit cancer cell growth and inflammatory response. Gamabufotalin could inhibite angiogenesis by inhibiting the activation of VEGFR-2 signaling pathways. Gamabufotalin (Gamabufagin), a main active compound isolated from Chinese medicine Chansu, has been shown to strongly inhibit cancer cell growth and inflammatory response. Gamabufotalin could inhibite angiogenesis by inhibiting the activation of VEGFR-2 signaling pathways.

   

Pollenin A

4H-1-Benzopyran-4-one, 3,5,7,8-tetrahydroxy-2-(4-hydroxyphenyl)-

C15H10O7 (302.0427)


Herbacetin is a pentahydroxyflavone that is kaempferol substituted by a hydroxy group at position 8. It is a natural flavonoid from flaxseed which exerts antioxidant, anti-inflammatory and anticancer activities. It has a role as an EC 4.1.1.17 (ornithine decarboxylase) inhibitor, an antineoplastic agent, an apoptosis inducer, an angiogenesis inhibitor, a plant metabolite, an antilipemic drug, an anti-inflammatory agent and an EC 3.4.22.69 (SARS coronavirus main proteinase) inhibitor. It is a pentahydroxyflavone and a 7-hydroxyflavonol. It is functionally related to a kaempferol. Herbacetin is a natural product found in Sedum anglicum, Sedum apoleipon, and other organisms with data available. See also: Larrea tridentata whole (part of). Isolated from pollen of Camellia sinensis (tea). Pollenin A is found in tea. Herbacetin is a natural flavonoid from flaxseed, exerts various pharmacological activities, including antioxidant, anti-inflammatory and anticancer effects[1]. Herbacetin is an Ornithine decarboxylase (ODC) allosteric inhibitor, directly binds to Asp44, Asp243, and Glu384 on ODC. Ornithine decarboxylase (ODC) is a rate-limiting enzyme in the first step of polyamine biosynthesis[2]. Herbacetin is a natural flavonoid from flaxseed, exerts various pharmacological activities, including antioxidant, anti-inflammatory and anticancer effects[1]. Herbacetin is an Ornithine decarboxylase (ODC) allosteric inhibitor, directly binds to Asp44, Asp243, and Glu384 on ODC. Ornithine decarboxylase (ODC) is a rate-limiting enzyme in the first step of polyamine biosynthesis[2].

   

Icariin

5-hydroxy-2-(4-methoxyphenyl)-8-(3-methylbut-2-en-1-yl)-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-3-(((2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C33H40O15 (676.2367)


Icariin is a member of the class of flavonols that is kaempferol which is substituted at position 8 by a 3-methylbut-2-en-1-yl group and in which the hydroxy groups at positions 3, 4, and 7 have been converted to the corresponding 6-deoxy-alpha-L-mannopyranoside, methyl ether, and beta-D-glucopyranoside, respectively. A phoshphodiesterase-5 inhibitor, it is obtained from several species of plants in the genus Epimedium and is thought to be the main active ingredient of the Chinese herbal medicine Herba Epimedii (yinyanghuo). It has a role as a bone density conservation agent, a phytoestrogen, an EC 3.1.4.35 (3,5-cyclic-GMP phosphodiesterase) inhibitor and an antioxidant. It is a glycosyloxyflavone and a member of flavonols. Icariin has been investigated for the basic science of the Pharmacokinetic Profile of Icariin in Humans. Icariin is a natural product found in Epimedium pubescens, Epimedium grandiflorum, and other organisms with data available. Origin: Plant, Pyrans Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.077 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.073 Icariin is a flavonol glycoside. Icariin inhibits PDE5 and PDE4 activities with IC50s of 432 nM and 73.50 μM, respectively. Icariin also is a PPARα activator. Icariin is a flavonol glycoside. Icariin inhibits PDE5 and PDE4 activities with IC50s of 432 nM and 73.50 μM, respectively. Icariin also is a PPARα activator. Icariin is a flavonol glycoside. Icariin inhibits PDE5 and PDE4 activities with IC50s of 432 nM and 73.50 μM, respectively. Icariin also is a PPARα activator.

   

Isofraxidin

7-Hydroxy-6,8-dimethoxy-2H-1-benzopyran-2-one

C11H10O5 (222.0528)


Isofraxidin, also known as 6,8-dimethoxy-7-hydroxycoumarin or 7-hydroxy-6,8-dimethoxy-2h-1-benzopyran-2-one, is a member of the class of compounds known as 7-hydroxycoumarins. 7-hydroxycoumarins are coumarins that contain one or more hydroxyl groups attached to the C7 position the coumarin skeleton. Isofraxidin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Isofraxidin can be found in muskmelon, tarragon, and watermelon, which makes isofraxidin a potential biomarker for the consumption of these food products. Isofraxidin is a chemical compound found in a variety of plants including Eleutherococcus senticosus . Isofraxidin, a coumarin component from Acanthopanax senticosus, inhibits MMP-7 expression and cell invasion of human hepatoma cells. Isofraxidin inhibits the phosphorylation of ERK1/2 in hepatoma cells[1]. Isofraxidin attenuates the expression of iNOS and COX-2, Isofraxidinalso inhibits TLR4/myeloid differentiation protein-2 (MD-2) complex formation[2]. Isofraxidin, a coumarin component from Acanthopanax senticosus, inhibits MMP-7 expression and cell invasion of human hepatoma cells. Isofraxidin inhibits the phosphorylation of ERK1/2 in hepatoma cells[1]. Isofraxidin attenuates the expression of iNOS and COX-2, Isofraxidinalso inhibits TLR4/myeloid differentiation protein-2 (MD-2) complex formation[2].

   

Orsellinic_acid

6-Methyl-beta-resorcylic acid; Orcinolcarboxylic acid

C8H8O4 (168.0423)


O-orsellinic acid is a dihydroxybenzoic acid that is 2,4-dihydroxybenzoic acid in which the hydrogen at position 6 is replaced by a methyl group. It has a role as a metabolite, a marine metabolite and a fungal metabolite. It is a dihydroxybenzoic acid and a member of resorcinols. It is a conjugate acid of an o-orsellinate. 2,4-Dihydroxy-6-methylbenzoic acid is a natural product found in Nidularia pulvinata, Hypoxylon rubiginosum, and other organisms with data available. A dihydroxybenzoic acid that is 2,4-dihydroxybenzoic acid in which the hydrogen at position 6 is replaced by a methyl group. Orsellinic acid is a compound produced by Lecanoric acid treated with alcohols. Lecanoric acid is a lichen depside isolated from a Parmotrema tinctorum specimen[1].

   

Astilbin

(2R,3R)-2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-3,4-dihydro-2H-1-benzopyran-4-one

C21H22O11 (450.1162)


Astilbin is a flavanone glycoside that is (+)-taxifolin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. It has a role as a radical scavenger, an anti-inflammatory agent and a plant metabolite. It is an alpha-L-rhamnoside, a member of 3-hydroxyflavanones, a tetrahydroxyflavanone, a flavanone glycoside, a monosaccharide derivative and a member of 4-hydroxyflavanones. It is functionally related to a (+)-taxifolin. It is an enantiomer of a neoastilbin. Astilbin is a natural product found in Smilax corbularia, Rhododendron simsii, and other organisms with data available. Astilbin is a metabolite found in or produced by Saccharomyces cerevisiae. Astilbin is found in alcoholic beverages. Astilbin is a constituent of Vitis vinifera (wine grape).Astilbin is a flavanonol, a type of flavonoid. It can be found in St Johns wort (Hypericum perforatum, Clusiaceae, subfamily Hypericoideae, formerly often considered a full family Hypericaceae), in Dimorphandra mollis (Fava danta, Fabaceae), in the the leaves of Harungana madagascariensis (Hypericaceae), in the rhizome of Astilbe thunbergii, in the root of Astilbe odontophylla(Saxifragaceae) and in the rhizone of Smilax glabra (Chinaroot, Smilacaceae). A flavanone glycoside that is (+)-taxifolin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. Constituent of Vitis vinifera (wine grape) Astilbin is a flavonoid compound and enhances NRF2 activation. Astilbin also suppresses TNF-α expression and NF-κB activation. Astilbin is a flavonoid compound and enhances NRF2 activation. Astilbin also suppresses TNF-α expression and NF-κB activation. Isoastilbin is a dihydroflavonol glycoside compound in Rhizoma Smilacis glabrae and Astragalus membranaceus. Isoastilbin inhibits glucosyltransferase (GTase) with an IC50 value of 54.3 μg/mL, and also inhibits tyrosinase activity. Isoastilbin shows neuroprotective, antioxidation, antimicrobial and anti-apoptotic properties and has the potential for Alzheimer’s disease research[1][21][3]. Isoastilbin is a dihydroflavonol glycoside compound in Rhizoma Smilacis glabrae and Astragalus membranaceus. Isoastilbin inhibits glucosyltransferase (GTase) with an IC50 value of 54.3 μg/mL, and also inhibits tyrosinase activity. Isoastilbin shows neuroprotective, antioxidation, antimicrobial and anti-apoptotic properties and has the potential for Alzheimer’s disease research[1][21][3].

   

Saikosaponin A

(2S,3R,4S,5S,6R)-2-[(2R,3R,4S,5S,6R)-3,5-dihydroxy-2-[[(1S,2S,4S,5R,8R,9R,10S,13S,14R,17S,18R)-2-hydroxy-9-(hydroxymethyl)-4,5,9,13,20,20-hexamethyl-24-oxahexacyclo[15.5.2.01,18.04,17.05,14.08,13]tetracos-15-en-10-yl]oxy]-6-methyloxan-4-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

C42H68O13 (780.466)


Saikosaponin A is a saikosaponin. Saikosaponin A is a natural product found in Bupleurum kunmingense, Clinopodium gracile, and other organisms with data available. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000893 - Anti-Inflammatory Agents D000970 - Antineoplastic Agents D018501 - Antirheumatic Agents Saikosaponin A is an active component of Bupleurum chinensis, up-regulates LXRα expression, with potent anti-inflammatory activity[1]. Saikosaponin A is an active component of Bupleurum chinensis, up-regulates LXRα expression, with potent anti-inflammatory activity[1]. Saikosaponin A is an active component of Bupleurum chinensis, up-regulates LXRα expression, with potent anti-inflammatory activity[1]. Saikosaponin D is a triterpene saponin isolated from Bupleurum, with anti-inflammatory, anti-bacterial, anti-tumor, and anti-allergic activities; Saikosaponin D inhibits selectin, STAT3 and NF-kB and activates estrogen receptor-β. Saikosaponin D is a triterpene saponin isolated from Bupleurum, with anti-inflammatory, anti-bacterial, anti-tumor, and anti-allergic activities; Saikosaponin D inhibits selectin, STAT3 and NF-kB and activates estrogen receptor-β.

   

Osthol

InChI=1/C15H16O3/c1-10(2)4-7-12-13(17-3)8-5-11-6-9-14(16)18-15(11)12/h4-6,8-9H,7H2,1-3H

C15H16O3 (244.1099)


Osthol, also known as 7-methoxy-8-(3-methylpent-2-enyl)coumarin, belongs to coumarins and derivatives class of compounds. Those are polycyclic aromatic compounds containing a 1-benzopyran moiety with a ketone group at the C2 carbon atom (1-benzopyran-2-one). Osthol is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Osthol can be found in a number of food items such as wild celery, lemon, parsley, and wild carrot, which makes osthol a potential biomarker for the consumption of these food products. Osthol is an O-methylated coumarin. It is a calcium channel blocker, found in plants such as Cnidium monnieri, Angelica archangelica and Angelica pubescens . Osthole is a member of coumarins and a botanical anti-fungal agent. It has a role as a metabolite. Osthole is a natural product found in Murraya alata, Pentaceras australe, and other organisms with data available. See also: Angelica pubescens root (part of). D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators D007155 - Immunologic Factors Osthole (Osthol) is a natural antihistamine alternative. Osthole may be a potential inhibitor of histamine H1 receptor activity. Osthole also suppresses the secretion of HBV in cells. Osthole (Osthol) is a natural antihistamine alternative. Osthole may be a potential inhibitor of histamine H1 receptor activity. Osthole also suppresses the secretion of HBV in cells. Osthole (Osthol) is a natural antihistamine alternative. Osthole may be a potential inhibitor of histamine H1 receptor activity. Osthole also suppresses the secretion of HBV in cells.

   

Loganic_acid

(1S,4aS,6S,7R,7aS)-6-hydroxy-7-methyl-1-((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yloxy)-1,4a,5,6,7,7a-hexahydrocyclopenta[c]pyran-4-carboxylic acid

C16H24O10 (376.1369)


Loganic acid is a cyclopentapyran that is 1,4a,5,6,7,7a-hexahydrocyclopenta[c]pyran-4-carboxylic acid substituted at positions 1, 6 and 7 by beta-D-glucosyloxy, hydroxy and methyl groups respectively It has a role as a plant metabolite. It is a cyclopentapyran, an alpha,beta-unsaturated monocarboxylic acid and a glucoside. It is a conjugate acid of a loganate. Loganic acid is a natural product found in Strychnos axillaris, Strychnos cocculoides, and other organisms with data available. A cyclopentapyran that is 1,4a,5,6,7,7a-hexahydrocyclopenta[c]pyran-4-carboxylic acid substituted at positions 1, 6 and 7 by beta-D-glucosyloxy, hydroxy and methyl groups respectively KEIO_ID L043 Loganic acid is an iridoid isolated from cornelian cherry fruits. Loganic acid can modulate diet-induced atherosclerosis and redox status. Loganic acid has strong free radical scavenging activity and remarkable cyto-protective effect against heavy metal mediated toxicity[1][2]. Loganic acid is an iridoid isolated from cornelian cherry fruits. Loganic acid can modulate diet-induced atherosclerosis and redox status. Loganic acid has strong free radical scavenging activity and remarkable cyto-protective effect against heavy metal mediated toxicity[1][2].

   

Alizarina

1,2-dihydroxyanthracene-9,10-dione

C14H8O4 (240.0423)


Alizarin is a dihydroxyanthraquinone that is anthracene-9,10-dione in which the two hydroxy groups are located at positions 1 and 2. It has a role as a chromophore, a dye and a plant metabolite. Alizarin has been reported in Rubia lanceolata, Rubia argyi COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 8028 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Alizarin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=72-48-0 (retrieved 2024-12-18) (CAS RN: 72-48-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Genkwanin

5-Hydroxy-2-(4-hydroxyphenyl)-7-methoxy-4H-chromen-4-one

C16H12O5 (284.0685)


Genkwanin, also known as 5,4-dihydroxy-7-methoxyflavone or 7-methylapigenin, is a member of the class of compounds known as 7-o-methylated flavonoids. 7-o-methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, genkwanin is considered to be a flavonoid lipid molecule. Genkwanin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Genkwanin is a bitter tasting compound and can be found in a number of food items such as winter savory, sweet basil, rosemary, and common sage, which makes genkwanin a potential biomarker for the consumption of these food products. Genkwanin is an O-methylated flavone, a type of flavonoid. It can be found in the seeds of Alnus glutinosa, and the leaves of the ferns Notholaena bryopoda and Asplenium normale . Genkwanin is a major non-glycosylated flavonoid with anti-flammatory activities. Genkwanin is a major non-glycosylated flavonoid with anti-flammatory activities.

   

Aconine

(1S,2R,3R,4R,5R,6S,7S,8R,9R,13R,14R,16S,17S,18R)-11-ethyl-6,16,18-trimethoxy-13-(methoxymethyl)-11-azahexacyclo[7.7.2.12,5.01,10.03,8.013,17]nonadecane-4,5,7,8,14-pentol

C25H41NO9 (499.2781)


A diterpene alkaloid with formula C25H41NO9 that is isolated from several Aconitum species. Aconine is a diterpene alkaloid with formula C25H41NO9 that is isolated from several Aconitum species. It has a role as a plant metabolite, a human urinary metabolite, a NF-kappaB inhibitor and a xenobiotic. It is a bridged compound, a diterpene alkaloid, an organic heteropolycyclic compound, a polyether, a tertiary amino compound, a pentol, a secondary alcohol and a tertiary alcohol. It derives from a hydride of an aconitane. Jesaconine is a natural product found in Euglena gracilis, Aconitum, and Aconitum pendulum with data available. Origin: Plant; SubCategory_DNP: Terpenoid alkaloids, Diterpene alkaloid, Aconitum alkaloid Aconine inhibits receptor activator of nuclear factor (NF)-κB ligand (RANKL)-induced NF-κB activation. Aconine inhibits receptor activator of nuclear factor (NF)-κB ligand (RANKL)-induced NF-κB activation.

   

Melatonin

N-[2-(5-methoxy-1H-indol-3-yl)ethyl]acetamide

C13H16N2O2 (232.1212)


Melatonin is a member of the class of acetamides that is acetamide in which one of the hydrogens attached to the nitrogen atom is replaced by a 2-(5-methoxy-1H-indol-3-yl)ethyl group. It is a hormone secreted by the pineal gland in humans. It has a role as a hormone, an anticonvulsant, an immunological adjuvant, a radical scavenger, a central nervous system depressant, a human metabolite, a mouse metabolite and a geroprotector. It is a member of acetamides and a member of tryptamines. It is functionally related to a tryptamine. Melatonin is a biogenic amine that is found in animals, plants and microbes. Aaron B. Lerner of Yale University is credited for naming the hormone and for defining its chemical structure in 1958. In mammals, melatonin is produced by the pineal gland. The pineal gland is small endocrine gland, about the size of a rice grain and shaped like a pine cone (hence the name), that is located in the center of the brain (rostro-dorsal to the superior colliculus) but outside the blood-brain barrier. The secretion of melatonin increases in darkness and decreases during exposure to light, thereby regulating the circadian rhythms of several biological functions, including the sleep-wake cycle. In particular, melatonin regulates the sleep-wake cycle by chemically causing drowsiness and lowering the body temperature. Melatonin is also implicated in the regulation of mood, learning and memory, immune activity, dreaming, fertility and reproduction. Melatonin is also an effective antioxidant. Most of the actions of melatonin are mediated through the binding and activation of melatonin receptors. Individuals with autism spectrum disorders (ASD) may have lower than normal levels of melatonin. A 2008 study found that unaffected parents of individuals with ASD also have lower melatonin levels, and that the deficits were associated with low activity of the ASMT gene, which encodes the last enzyme of melatonin synthesis. Reduced melatonin production has also been proposed as a likely factor in the significantly higher cancer rates in night workers. Melatonin is a hormone produced by the pineal gland that has multiple effects including somnolence, and is believed to play a role in regulation of the sleep-wake cycle. Melatonin is available over-the-counter and is reported to have beneficial effects on wellbeing and sleep. Melatonin has not been implicated in causing serum enzyme elevations or clinically apparent liver injury. Melatonin is a natural product found in Mesocricetus auratus, Ophiopogon japonicus, and other organisms with data available. Therapeutic Melatonin is a therapeutic chemically synthesized form of the pineal indole melatonin with antioxidant properties. The pineal synthesis and secretion of melatonin, a serotonin-derived neurohormone, is dependent on beta-adrenergic receptor function. Melatonin is involved in numerous biological functions including circadian rhythm, sleep, the stress response, aging, and immunity. Melatonin is a hormone involved in sleep regulatory activity, and a tryptophan-derived neurotransmitter, which inhibits the synthesis and secretion of other neurotransmitters such as dopamine and GABA. Melatonin is synthesized from serotonin intermediate in the pineal gland and the retina where the enzyme 5-hydroxyindole-O-methyltransferase, that catalyzes the last step of synthesis, is found. This hormone binds to and activates melatonin receptors and is involved in regulating the sleep and wake cycles. In addition, melatonin possesses antioxidative and immunoregulatory properties via regulating other neurotransmitters. Melatonin is a biogenic amine that is found in animals, plants and microbes. Aaron B. Lerner of Yale University is credited for naming the hormone and for defining its chemical structure in 1958. In mammals, melatonin is produced by the pineal gland. The pineal gland is small endocrine gland, about the size of a rice grain and shaped like a pine cone (hence the name), that is l... Melatonin is a biogenic amine that is found in animals, plants and microbes. Aaron B. Lerner of Yale University is credited for naming the hormone and for defining its chemical structure in 1958. In mammals, melatonin is produced by the pineal gland. The pineal gland is small endocrine gland, about the size of a rice grain and shaped like a pine cone (hence the name), that is located in the center of the brain (rostro-dorsal to the superior colliculus) but outside the blood-brain barrier. The secretion of melatonin increases in darkness and decreases during exposure to light, thereby regulating the circadian rhythms of several biological functions, including the sleep-wake cycle. In particular, melatonin regulates the sleep-wake cycle by chemically causing drowsiness and. lowering the body temperature. Melatonin is also implicated in the regulation of mood,learning and memory, immune activity, dreaming, fertility and reproduction. Melatonin is also an effective antioxidant. Most of the actions of melatonin are mediated through the binding and activation of melatonin receptors. Individuals with autism spectrum disorders(ASD) may have lower than normal levels of melatonin. A 2008 study found that unaffected parents of individuals with ASD also have lower melatonin levels, and that the deficits. were associated with low activity of the ASMT gene, which encodes the last enzyme of melatonin synthesis. Reduced melatonin production has also been proposed as a likely factor in the significantly higher cancer rates in night workers. Melatonin, also known chemically as N-acetyl-5-methoxytryptamine, is a naturally occurring compound found in animals, plants and microbes. In animals, circulating levels of the hormone melatonin vary in a daily cycle, thereby allowing the entrainment of the circadian rhythms of several biological functions. A member of the class of acetamides that is acetamide in which one of the hydrogens attached to the nitrogen atom is replaced by a 2-(5-methoxy-1H-indol-3-yl)ethyl group. It is a hormone secreted by the pineal gland in humans. Melatonin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=73-31-4 (retrieved 2024-07-01) (CAS RN: 73-31-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Melatonin is a hormone made by the pineal gland that can activates melatonin receptor. Melatonin plays a role in sleep and possesses important antioxidative and anti-inflammatory properties[1][2][3]. Melatonin is a novel selective ATF-6 inhibitor and induces human hepatoma cell apoptosis through COX-2 downregulation[4]. Melatonin attenuates palmitic acid-induced (HY-N0830) mouse granulosa cells apoptosis via endoplasmic reticulum stress[5]. Melatonin is a hormone made by the pineal gland that can activates melatonin receptor. Melatonin plays a role in sleep and possesses important antioxidative and anti-inflammatory properties[1][2][3]. Melatonin is a novel selective ATF-6 inhibitor and induces human hepatoma cell apoptosis through COX-2 downregulation[4]. Melatonin attenuates palmitic acid-induced (HY-N0830) mouse granulosa cells apoptosis via endoplasmic reticulum stress[5].

   

Citric acid

2-hydroxypropane-1,2,3-tricarboxylic acid

C6H8O7 (192.027)


Citric acid (citrate) is a tricarboxylic acid, an organic acid with three carboxylate groups. Citrate is an intermediate in the TCA cycle (also known as the Tricarboxylic Acid cycle, the Citric Acid cycle or Krebs cycle). The TCA cycle is a central metabolic pathway for all animals, plants, and bacteria. As a result, citrate is found in all living organisms, from bacteria to plants to animals. In the TCA cycle, the enzyme citrate synthase catalyzes the condensation of oxaloacetate with acetyl CoA to form citrate. Citrate then acts as the substrate for the enzyme known as aconitase and is then converted into aconitic acid. The TCA cycle ends with regeneration of oxaloacetate. This series of chemical reactions in the TCA cycle is the source of two-thirds of the food-derived energy in higher organisms. Citrate can be transported out of the mitochondria and into the cytoplasm, then broken down into acetyl-CoA for fatty acid synthesis, and into oxaloacetate. Citrate is a positive modulator of this conversion, and allosterically regulates the enzyme acetyl-CoA carboxylase, which is the regulating enzyme in the conversion of acetyl-CoA into malonyl-CoA (the commitment step in fatty acid synthesis). In short, citrate is transported into the cytoplasm, converted into acetyl CoA, which is then converted into malonyl CoA by acetyl CoA carboxylase, which is allosterically modulated by citrate. In mammals and other vertebrates, Citrate is a vital component of bone, helping to regulate the size of apatite crystals (PMID: 21127269). Citric acid is found in citrus fruits, most concentrated in lemons and limes, where it can comprise as much as 8\\\\\% of the dry weight of the fruit. Citric acid is a natural preservative and is also used to add an acidic (sour) taste to foods and carbonated drinks. Because it is one of the stronger edible acids, the dominant use of citric acid is as a flavoring and preservative in food and beverages, especially soft drinks and candies. Citric acid is an excellent chelating agent, binding metals by making them soluble. It is used to remove and discourage the buildup of limescale from boilers and evaporators. It can be used to treat water, which makes it useful in improving the effectiveness of soaps and laundry detergents. The salts of citric acid (citrates) can be used as anticoagulants due to their calcium chelating ability. Intolerance to citric acid in the diet is known to exist. Little information is available as the condition appears to be rare, but like other types of food intolerance it is often described as a "pseudo-allergic" reaction. Citric acid appears as colorless, odorless crystals with an acid taste. Denser than water. (USCG, 1999) Citric acid is a tricarboxylic acid that is propane-1,2,3-tricarboxylic acid bearing a hydroxy substituent at position 2. It is an important metabolite in the pathway of all aerobic organisms. It has a role as a food acidity regulator, a chelator, an antimicrobial agent and a fundamental metabolite. It is a conjugate acid of a citrate(1-) and a citrate anion. A key intermediate in metabolism. It is an acid compound found in citrus fruits. The salts of citric acid (citrates) can be used as anticoagulants due to their calcium-chelating ability. Citric acid is one of the active ingredients in Phexxi, a non-hormonal contraceptive agent that was approved by the FDA on May 2020. It is also used in combination with magnesium oxide to form magnesium citrate, an osmotic laxative. Citric acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Anhydrous citric acid is a Calculi Dissolution Agent and Anti-coagulant. The mechanism of action of anhydrous citric acid is as an Acidifying Activity and Calcium Chelating Activity. The physiologic effect of anhydrous citric acid is by means of Decreased Coagulation Factor Activity. Anhydrous Citric Acid is a tricarboxylic acid found in citrus fruits. Citric acid is used as an excipient in pharmaceutical preparations due to its antioxidant properties. It maintains stability of active ingredients and is used as a preservative. It is also used as an acidulant to control pH and acts as an anticoagulant by chelating calcium in blood. A key intermediate in metabolism. It is an acid compound found in citrus fruits. The salts of citric acid (citrates) can be used as anticoagulants due to their calcium chelating ability. See also: Citric Acid Monohydrate (related). Citrate, also known as anhydrous citric acid or 2-hydroxy-1,2,3-propanetricarboxylic acid, belongs to tricarboxylic acids and derivatives class of compounds. Those are carboxylic acids containing exactly three carboxyl groups. Citrate is soluble (in water) and a weakly acidic compound (based on its pKa). Citrate can be found in a number of food items such as ucuhuba, loquat, bayberry, and longan, which makes citrate a potential biomarker for the consumption of these food products. Citrate can be found primarily in most biofluids, including saliva, sweat, feces, and blood, as well as throughout all human tissues. Citrate exists in all living species, ranging from bacteria to humans. In humans, citrate is involved in several metabolic pathways, some of which include the oncogenic action of succinate, the oncogenic action of fumarate, the oncogenic action of 2-hydroxyglutarate, and congenital lactic acidosis. Citrate is also involved in several metabolic disorders, some of which include 2-ketoglutarate dehydrogenase complex deficiency, pyruvate dehydrogenase deficiency (E2), fumarase deficiency, and glutaminolysis and cancer. Moreover, citrate is found to be associated with lung Cancer, tyrosinemia I, maple syrup urine disease, and propionic acidemia. A citrate is a derivative of citric acid; that is, the salts, esters, and the polyatomic anion found in solution. An example of the former, a salt is trisodium citrate; an ester is triethyl citrate. When part of a salt, the formula of the citrate ion is written as C6H5O73− or C3H5O(COO)33− . A tricarboxylic acid that is propane-1,2,3-tricarboxylic acid bearing a hydroxy substituent at position 2. It is an important metabolite in the pathway of all aerobic organisms. Citric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=77-92-9 (retrieved 2024-07-01) (CAS RN: 77-92-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Citric acid is a natural preservative and food tartness enhancer. Citric acid induces apoptosis and cell cycle arrest at G2/M phase and S phase in HaCaT cells. Citric acid cause oxidative damage of the liver by means of the decrease of antioxidative enzyme activities. Citric acid causes renal toxicity in mice[1][2][3]. Citric acid is a natural preservative and food tartness enhancer. Citric acid induces apoptosis and cell cycle arrest at G2/M phase and S phase in HaCaT cells. Citric acid cause oxidative damage of the liver by means of the decrease of antioxidative enzyme activities. Citric acid causes renal toxicity in mice[1][2][3].

   

Corylifolinin

2-PROPEN-1-ONE, 1-(2,4-DIHYDROXY-3-(3-METHYL-2-BUTEN-1-YL)PHENYL)-3-(4-HYDROXYPHENYL)-, (2E)-

C20H20O4 (324.1362)


Isobavachalcone is a member of the class of chalcones that is trans-chalcone substituted by hydroxy groups at positions 4, 2 and 4 and a prenyl group at position 3. It has a role as an antibacterial agent, a platelet aggregation inhibitor and a metabolite. It is a polyphenol and a member of chalcones. It is functionally related to a trans-chalcone. Isobavachalcone is a natural product found in Broussonetia papyrifera, Anthyllis hermanniae, and other organisms with data available. See also: Angelica keiskei top (part of). A member of the class of chalcones that is trans-chalcone substituted by hydroxy groups at positions 4, 2 and 4 and a prenyl group at position 3. Isobavachalcone (Corylifolinin) is derived from Psoralea corylifolia Linn. and is a potent inhibitor of Akt signaling pathway, which induces apoptosis in human cancer cells (Inhibits OVCAR-8 cell growth with an IC50 value of 7.92 μM). Isobavachalcone also induces Reactive Oxyen Species (ROS) generation in OVCAR-8 cells and has exhibit cancer anti-promotive and anti-proliferative activity[1]. Isobavachalcone (Corylifolinin) is derived from Psoralea corylifolia Linn. and is a potent inhibitor of Akt signaling pathway, which induces apoptosis in human cancer cells (Inhibits OVCAR-8 cell growth with an IC50 value of 7.92 μM). Isobavachalcone also induces Reactive Oxyen Species (ROS) generation in OVCAR-8 cells and has exhibit cancer anti-promotive and anti-proliferative activity[1]. Isobavachalcone (Corylifolinin) is derived from Psoralea corylifolia Linn. and is a potent inhibitor of Akt signaling pathway, which induces apoptosis in human cancer cells (Inhibits OVCAR-8 cell growth with an IC50 value of 7.92 μM). Isobavachalcone also induces Reactive Oxyen Species (ROS) generation in OVCAR-8 cells and has exhibit cancer anti-promotive and anti-proliferative activity[1].

   

Poncirin

(2S)-7-[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-tetrahydropyran-2-yl]oxy-tetrahydropyran-2-yl]oxy-5-hydroxy-2-(4-methoxyphenyl)chroman-4-one

C28H34O14 (594.1948)


(2S)-poncirin is a flavanone glycoside that is 4-methoxy-5,7-dihydroxyflavanone attached to a neohesperidose (alpha-L-rhamnopyranosyl-(1->2)-beta-D-glucopyranose) residue via a glycosidic linkage. It has been isolated from the fruits of Poncirus trifoliata and exhibits inhibitory activity against liopolysaccharide (LPS)-induced prostaglandin E2 and interleukin-6 (IL-6) production. It has a role as a plant metabolite. It is a monomethoxyflavanone, a flavanone glycoside, a disaccharide derivative, a neohesperidoside and a member of 4-methoxyflavanones. It is functionally related to a 4-methoxy-5,7-dihydroxyflavanone. Poncirin is a natural product found in Citrus medica, Micromeria graeca, and other organisms with data available. Isolated from Citrus subspecies Poncirin is found in many foods, some of which are citrus, grapefruit, lemon, and grapefruit/pummelo hybrid. Acquisition and generation of the data is financially supported in part by CREST/JST. Poncirin is found in citrus. Poncirin is isolated from Citrus specie Poncirin is isolated from?Poncirus trifoliata with anti-inflammory activites. Poncirin significantly reduces mechanical hyperalgesia and allodynia in Complete Freund’s Adjuvant (CFA)-induced inflammatory pain models[1]. Poncirin is isolated from?Poncirus trifoliata with anti-inflammory activites. Poncirin significantly reduces mechanical hyperalgesia and allodynia in Complete Freund’s Adjuvant (CFA)-induced inflammatory pain models[1].

   

Brazilin

(1R,10S)-8-oxatetracyclo[8.7.0.0?,?.0??,??]heptadeca-2(7),3,5,12,14,16-hexaene-5,10,14,15-tetrol

C16H14O5 (286.0841)


Brazilin is a organic heterotetracyclic compound that is a red pigment obtained from the wood of Caesalpinia echinata (Brazil-wood) or Caesalpinia sappan (sappan-wood). It has a role as a plant metabolite, a histological dye, an antineoplastic agent, a biological pigment, an anti-inflammatory agent, an apoptosis inducer, an antioxidant, an antibacterial agent, a NF-kappaB inhibitor and a hepatoprotective agent. It is an organic heterotetracyclic compound, a member of catechols and a tertiary alcohol. Brazilin is a natural product found in Guilandina bonduc, Biancaea decapetala, and other organisms with data available. A organic heterotetracyclic compound that is a red pigment obtained from the wood of Caesalpinia echinata (Brazil-wood) or Caesalpinia sappan (sappan-wood). Brazilin is a red dye precursor obtained from the heartwood of several species of tropical hardwoods. Brazilin inhibits the cells proliferation, promotes apoptosis, and induces autophagy through the AMPK/mTOR pathway. Brazilin shows chondroprotective and anti-inflammatory activities[1][2][3]. Brazilin is a red dye precursor obtained from the heartwood of several species of tropical hardwoods. Brazilin inhibits the cells proliferation, promotes apoptosis, and induces autophagy through the AMPK/mTOR pathway. Brazilin shows chondroprotective and anti-inflammatory activities[1][2][3].

   

Hamaudol 3-glucoside

(S)-5-Hydroxy-2,2,8-trimethyl-3-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-3,4-dihydro-2H,6H-pyrano[3,2-g]chromen-6-one

C21H26O10 (438.1526)


Sec-o-Glucosylhamaudol is a member of chromenes. sec-o-Glucosylhamaudol is a natural product found in Ostericum grosseserratum, Saposhnikovia divaricata, and other organisms with data available. Sec-O-Glucosylhamaudol is a natural compound extracted from Peucedanum japonicum Thunb, decreases levels of μ-opioid receptor, with analgesic effect[1]. Sec-O-Glucosylhamaudol is a natural compound extracted from Peucedanum japonicum Thunb, decreases levels of μ-opioid receptor, with analgesic effect[1]. Sec-O-Glucosylhamaudol is a natural compound extracted from Peucedanum japonicum Thunb, decreases levels of μ-opioid receptor, with analgesic effect[1].

   

8-Prenylnaringenin

4H-1-BENZOPYRAN-4-ONE, 2,3-DIHYDRO-5,7-DIHYDROXY-2-(4-HYDROXYPHENYL)-8-(3-METHYL-2-BUTEN-1-YL)-, (2S)-

C20H20O5 (340.1311)


Sophoraflavanone B is a trihydroxyflavanone that is (S)-naringenin having a prenyl group at position 8. It has a role as a platelet aggregation inhibitor and a plant metabolite. It is a trihydroxyflavanone, a member of 4-hydroxyflavanones and a (2S)-flavan-4-one. It is functionally related to a (S)-naringenin. It is a conjugate acid of a sophoraflavanone B(1-). 8-Prenylnaringenin is a natural product found in Macaranga conifera, Macaranga denticulata, and other organisms with data available. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens A trihydroxyflavanone that is (S)-naringenin having a prenyl group at position 8. INTERNAL_ID 2299; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2299

   

Feretoside

(1S,4aS,5R,7aS)-5-hydroxy-7-(hydroxymethyl)-1-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-1,4a,5,7a-tetrahydrocyclopenta[d]pyran-4-carboxylic acid methyl ester

C17H24O11 (404.1319)


Scandoside methyl ester is a terpene glycoside. Scandoside methyl ester is a natural product found in Feretia apodanthera, Gardenia jasminoides, and other organisms with data available.

   

Sclareol

1-Naphthalenepropanol, alpha-ethenyldecahydro-2-hydroxy-alpha,2,5,5,8a-pentamethyl-, (alphaR,1R,2R,4aS,8aS)-: (1R,2R,4aS,8aS)-1-[(3R)-3-hydroxy-3-methylpent-4-en-1-yl]-2,5,5,8a-tetramethyldecahydronaphthalen-2-ol

C20H36O2 (308.2715)


Sclareol is a labdane diterpenoid that is labd-14-ene substituted by hydroxy groups at positions 8 and 13. It has been isolated from Salvia sclarea. It has a role as an antimicrobial agent, an apoptosis inducer, a fragrance, an antifungal agent and a plant metabolite. Sclareol is a natural product found in Curcuma aromatica, Curcuma wenyujin, and other organisms with data available. See also: Clary Sage Oil (part of). Constituent of Salvia sclarea (clary sage). Sclareol is found in many foods, some of which are common thyme, herbs and spices, tea, and nutmeg. Sclareol is found in alcoholic beverages. Sclareol is a constituent of Salvia sclarea (clary sage) Sclareol is isolated from Salvia sclarea with anticarcinogenic activity. Sclareol shows strong cytotoxic activity against mouse leukemia?(P-388), human epidermal?carcinoma?(KB) cells and human?leukemia?cell lines. Sclareol induces cell apoptosis[1]. Sclareol is isolated from Salvia sclarea with anticarcinogenic activity. Sclareol shows strong cytotoxic activity against mouse leukemia?(P-388), human epidermal?carcinoma?(KB) cells and human?leukemia?cell lines. Sclareol induces cell apoptosis[1].

   

Aloin

(10S)-1,8-dihydroxy-3-(hydroxymethyl)-10-[(2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]-10H-anthracen-9-one;Aloin

C21H22O9 (418.1264)


C78276 - Agent Affecting Digestive System or Metabolism > C29697 - Laxative D005765 - Gastrointestinal Agents > D002400 - Cathartics Aloin A is a C-glycosyl compound that is beta-D-glucopyranose in which the anomeric hydroxy group is replaced by a 4,5-dihydroxy-2-(hydroxymethyl)-10-oxo-9,10-dihydroanthracen-9-yl moiety (the 9S diastereoisomer). It has a role as a metabolite and a laxative. It is a C-glycosyl compound, a member of anthracenes, a cyclic ketone and a member of phenols. Barbaloin is a natural product found in Aloe africana, Aloe castanea, and other organisms with data available. See also: Aloe Vera Leaf (part of); Frangula purshiana Bark (part of). A C-glycosyl compound that is beta-D-glucopyranose in which the anomeric hydroxy group is replaced by a 4,5-dihydroxy-2-(hydroxymethyl)-10-oxo-9,10-dihydroanthracen-9-yl moiety (the 9S diastereoisomer). Aloin B is a C-glycosyl compound that is beta-D-glucopyranose in which the anomeric hydroxy group is replaced by a 4,5-dihydroxy-2-(hydroxymethyl)-10-oxo-9,10-dihydroanthracen-9-yl moiety (the 9R diastereoisomer). It has a role as a metabolite and a laxative. It is a C-glycosyl compound, a member of anthracenes, a cyclic ketone and a member of phenols. Aloin is a natural product found in Aloe africana, Aloe castanea, and other organisms with data available. See also: Aloe Vera Leaf (part of); Frangula purshiana Bark (part of). A C-glycosyl compound that is beta-D-glucopyranose in which the anomeric hydroxy group is replaced by a 4,5-dihydroxy-2-(hydroxymethyl)-10-oxo-9,10-dihydroanthracen-9-yl moiety (the 9R diastereoisomer). IPB_RECORD: 1881; CONFIDENCE confident structure Aloin (Aloin-A; Barbaloin-A) is a natural anti-tumor anthraquinone glycoside with iron chelating activity. Aloin (Aloin-A; Barbaloin-A) is a natural anti-tumor anthraquinone glycoside with iron chelating activity. Aloin B is an isomer of aloin, a physiologically active anthraquinone compound in aloe. Aloin B is an isomer of aloin, a physiologically active anthraquinone compound in aloe. Aloin (mixture of A&B) is anthraquinone derivative isolated from Aloe vera. Aloin (mixture of A&B) has diverse biological activities such as anti-inflammatory, immunity, antidiabetic, antioxidant, antibacterial, antifungal, and antitumor activities. Aloin (mixture of A&B) also an effective inhibitor of stimulated granulocyte matrix metalloproteinases (MMPs)[1][2].

   

Sanggenon C

2-((1S,2R,3S)-2-(2,4-dihydroxybenzoyl)-2,4-dihydroxy-5-methyl-1,2,3,6-tetrahydro-[1,1-biphenyl]-3-yl)-1,3,8,10a-tetrahydroxy-5a-(3-methylbut-2-en-1-yl)-5a,10a-dihydro-11H-benzofuro[3,2-b]chromen-11-one

C40H36O12 (708.2207)


Sanggenon C is a diarylheptanoid. Sanggenone C is a natural product found in Morus cathayana with data available. Sanggenon C is a flavanone Diels-Alder adduct compound, which is isolated from Cortex Mori (Sang Bai Pi). Sanggenon C exerts protective effects against cardiac hypertrophy and fibrosis via suppression of the calcineurin/NFAT2 pathway. Sanggenon C inhibits inducible nitric oxide synthase expression in RAW264.7 cells, and tumor necrosis factor-α-stimulated cell adhesion and vascular cell adhesion molecule-1 expression, by suppressing NF-κB activity[1]. Sanggenon C possesses antioxidant, anti-inflammatory activities and inhibits Pancreatic lipase (PL) with the an IC50 of 3.00?μM[2]. Sanggenon C, a flavonoid, exerts protective effects against cardiac hypertrophy and fibrosis via suppression of the calcineurin/NFAT2 pathway. Sanggenon C inhibits mitochondrial fission to induce apoptosis by blocking the ERK signaling pathway. Sanggenon C inhibits inducible nitric oxide synthase expression in RAW264.7 cells, and TNF-α-stimulated cell adhesion and VCAM-1 expression, by suppressing NF-κB activity. Sanggenon C possesses antioxidant, anti-inflammatory and antitumor activities[1][2]. Sanggenon C is a flavanone Diels-Alder adduct compound, which is isolated from Cortex Mori (Sang Bai Pi). Sanggenon C exerts protective effects against cardiac hypertrophy and fibrosis via suppression of the calcineurin/NFAT2 pathway. Sanggenon C inhibits inducible nitric oxide synthase expression in RAW264.7 cells, and tumor necrosis factor-α-stimulated cell adhesion and vascular cell adhesion molecule-1 expression, by suppressing NF-κB activity[1]. Sanggenon C possesses antioxidant, anti-inflammatory activities and inhibits Pancreatic lipase (PL) with the an IC50 of 3.00?μM[2].

   

Jionoside B1

[(2R,3R,4R,5R,6R)-5-hydroxy-6-[2-(3-hydroxy-4-methoxy-phenyl)ethoxy]-2-[[(2R,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]oxymethyl]-4-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-tetrahydropyran-2-yl]oxy-tetrahydropyran-3-yl] (E)-3-(4-hydroxy-3-methoxy-phenyl)prop-2-enoate

C37H50O20 (814.2895)


Jionoside B1 is an oligosaccharide. Jionoside B1 is a natural product found in Lamium purpureum and Rehmannia glutinosa with data available. Jionoside B1 is a phenylpropanoid isolated from herbs of Eriophyton wallichii. Jionoside B1 is a phenylpropanoid isolated from herbs of Eriophyton wallichii.

   

Smilagenin

(1R,2R,2S,4S,5R,7S,8R,9S,12S,13S,16S,18R)-5,7,9,13-tetramethyl-5-oxaspiro[oxane-2,6-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]-16-ol

C27H44O3 (416.329)


(25R)-5beta-spirostan-3beta-ol is an oxaspiro compound that is(5beta,25R)-spirostan substituted by a beta-hydroxy group at position 3. It has a role as an antineoplastic agent and a metabolite. It is an oxaspiro compound, a 3beta-hydroxy steroid, an organic heterohexacyclic compound and a sapogenin. It derives from a hydride of a (25R)-5beta-spirostan. Smilagenin is a novel non-peptide, orally bioavailable neurotrophic factor inducer that readily reverses free radical neurotoxicity produced by 1-ethyl-4- phenylpyridium (MPP+) in dopaminergic neurones and reverses the decrease of neuronal growth factors and dopamine receptors in the brain. Pre-clinical work with smilagenin showed it to be neuroprotective against betya-amyloid and glutamate damage which contributes to Alzheimers disease and reverses the changes in the area of the brain involved in Parkinson’s disease. P58 is a protein synthesis stimulant acts by restoring levels of proteins that are altered in the ageing brain, reversing the loss of nerve receptors in the ageing brain and potentially allowing for the regrowth of neural connections. P58 therefore provides a totally novel mode of action with potential importance for diseases associated with ageing of the brain. P58 is one of a family of phytochemicals isolated from traditional treatments for the elderly that have previously been shown to offer significant benefit in the treatment of senile dementia. Smilagenin is a natural product found in Yucca gloriosa, Yucca aloifolia, and other organisms with data available. Constituent of Jamaica sarsaparilla (Smilax ornata). Smilagenin is found in herbs and spices and fenugreek. Smilagenin is found in fenugreek. Smilagenin is a constituent of Jamaica sarsaparilla (Smilax ornata) An oxaspiro compound that is(5beta,25R)-spirostan substituted by a beta-hydroxy group at position 3. C78276 - Agent Affecting Digestive System or Metabolism > C29711 - Anti-diabetic Agent Smilagenin (SMI) is a small-molecule steroidal sapogenin from Anemarrhena asphodeloides and Pelargonium hortorum widely used in traditional Chinese medicine for treating chronic neurodegeneration diseases[1]. Smilagenin (SMI) improves memory of aged rats by increasing the muscarinic receptor subtype 1 (M1)-receptor density[2]. Smilagenin (SMI) attenuates Aβ(25-35)-induced neurodegenerationvia stimulating the gene expression of brain-derived neurotrophic factor, may represents a novel therapeutic strategy for AD[3]. Smilagenin (SMI) is a small-molecule steroidal sapogenin from Anemarrhena asphodeloides and Pelargonium hortorum widely used in traditional Chinese medicine for treating chronic neurodegeneration diseases[1]. Smilagenin (SMI) improves memory of aged rats by increasing the muscarinic receptor subtype 1 (M1)-receptor density[2]. Smilagenin (SMI) attenuates Aβ(25-35)-induced neurodegenerationvia stimulating the gene expression of brain-derived neurotrophic factor, may represents a novel therapeutic strategy for AD[3]. Smilagenin (SMI) is a small-molecule steroidal sapogenin from Anemarrhena asphodeloides and Pelargonium hortorum widely used in traditional Chinese medicine for treating chronic neurodegeneration diseases[1]. Smilagenin (SMI) improves memory of aged rats by increasing the muscarinic receptor subtype 1 (M1)-receptor density[2]. Smilagenin (SMI) attenuates Aβ(25-35)-induced neurodegenerationvia stimulating the gene expression of brain-derived neurotrophic factor, may represents a novel therapeutic strategy for AD[3].

   

beta-Cryptoxanthin

(1R)-3,5,5-trimethyl-4-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-3,7,12,16-tetramethyl-18-(2,6,6-trimethylcyclohex-1-en-1-yl)octadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]cyclohex-3-en-1-ol

C40H56O (552.4331)


beta-Cryptoxanthin has been isolated from abalone, fish eggs, and many higher plants. beta-Cryptoxanthin is a major source of vitamin A, often second only to beta-carotene, and is present in fruits such as oranges, tangerines, and papayas (PMID: 8554331). Frequent intake of tropical fruits that are rich in beta-cryptoxanthin is associated with higher plasma beta-cryptoxanthin concentrations in Costa Rican adolescents. Papaya intake was the best food predictor of plasma beta-cryptoxanthin concentrations. Subjects that frequently consumed (i.e. greater or equal to 3 times/day) tropical fruits with at least 50 micro g/100 g beta-cryptoxanthin (e.g. papaya, tangerine, orange, watermelon) had twofold the plasma beta-cryptoxanthin concentrations of those with intakes of less than 4 times/week (PMID: 12368412). A modest increase in beta-cryptoxanthin intake, equivalent to one glass of freshly squeezed orange juice per day, is associated with a reduced risk of developing inflammatory disorders such as rheumatoid arthritis (PMID: 16087992). Higher prediagnostic serum levels of total carotenoids and beta-cryptoxanthin were associated with lower smoking-related lung cancer risk in middle-aged and older men in Shanghai, China (PMID: 11440962). Consistent with inhibition of the lung cancer cell growth, beta-cryptoxanthin induced the mRNA levels of retinoic acid receptor beta (RAR-beta) in BEAS-2B cells, although this effect was less pronounced in A549 cells. Furthermore, beta-cryptoxanthin transactivated the RAR-mediated transcription activity of the retinoic acid response element. These findings suggest a mechanism of anti-proliferative action of beta-cryptoxanthin and indicate that beta-cryptoxanthin may be a promising chemopreventive agent against lung cancer (PMID: 16841329). Cryptoxanthin is a natural carotenoid pigment. It has been isolated from a variety of sources including the petals and flowers of plants in the genus Physalis, orange rind, papaya, egg yolk, butter, apples, and bovine blood serum. In a pure form, cryptoxanthin is a red crystalline solid with a metallic lustre. It is freely soluble in chloroform, benzene, pyridine, and carbon disulfide. In the human body, cryptoxanthin is converted into vitamin A (retinol) and is therefore considered a provitamin A. As with other carotenoids, cryptoxanthin is an antioxidant and may help prevent free radical damage to cells and DNA, as well as stimulate the repair of oxidative damage to DNA. Structurally, cryptoxanthin is closely related to beta-carotene, with only the addition of a hydroxyl group. It is a member of the class of carotenoids known as xanthophylls. Beta-cryptoxanthin is a carotenol that exhibits antioxidant activity. It has been isolated from fruits such as papaya and oranges. It has a role as a provitamin A, an antioxidant, a biomarker and a plant metabolite. It derives from a hydride of a beta-carotene. beta-Cryptoxanthin is a natural product found in Hibiscus syriacus, Cladonia gracilis, and other organisms with data available. A mono-hydroxylated xanthophyll that is a provitamin A precursor. See also: Corn (part of). A carotenol that exhibits antioxidant activity. It has been isolated from fruits such as papaya and oranges. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids D018977 - Micronutrients > D014815 - Vitamins > D000072664 - Provitamins Cryptoxanthin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=472-70-8 (retrieved 2024-10-31) (CAS RN: 472-70-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Petunidin

1-Benzopyrylium, 2-(3,4-dihydroxy-5-methoxyphenyl)-3,5,7-trihydroxy-, chloride

C16H13ClO7 (352.035)


Petunidin chloride is an anthocyanidin chloride that has petunidin as the cationic component. It has a role as a metabolite. An anthocyanidin chloride that has petunidin as the cationic component.

   

(+)-Fargesin

1,3-Benzodioxole, 5-(4-(3,4-dimethoxyphenyl)tetrahydro-1H,3H-furo(3,4-c)furan-1-yl)-, (1S-(1alpha,3aalpha,4beta,6aalpha))-

C21H22O6 (370.1416)


Fargesin is a lignan. Planinin is a natural product found in Piper mullesua and Magnolia coco with data available. Constituent of Artemisia absinthium (wormwood). (+)-Fargesin is found in alcoholic beverages and herbs and spices. (+)-Spinescin is found in herbs and spices. (+)-Spinescin is a constituent of sassafras root. Fargesin is a bioactive neolignan isolated from magnolia plants, with antihypertensive and anti-inflammatory effects[1][2][3]. Fargesin is a bioactive neolignan isolated from magnolia plants, with antihypertensive and anti-inflammatory effects[1][2][3].

   

Tolmetin

2-[1-methyl-5-(4-methylbenzoyl)-1H-pyrrol-2-yl]acetic acid

C15H15NO3 (257.1052)


Tolmetin is only found in individuals that have used or taken this drug. It is a non-steroidal anti-inflammatory agent (anti-inflammatory agents, NON-steroidal) similar in mode of action to indomethacin. [PubChem]The mode of action of tolmetin is not known. However, studies in laboratory animals and man have demonstrated that the anti-inflammatory action of tolmetin is not due to pituitary-adrenal stimulation. Tolmetin inhibits prostaglandin synthetase in vitro and lowers the plasma level of prostaglandin E in man. This reduction in prostaglandin synthesis may be responsible for the anti-inflammatory action. Tolmetin does not appear to alter the course of the underlying disease in man. M - Musculo-skeletal system > M02 - Topical products for joint and muscular pain > M02A - Topical products for joint and muscular pain > M02AA - Antiinflammatory preparations, non-steroids for topical use M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AB - Acetic acid derivatives and related substances D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents KEIO_ID T044; [MS2] KO009288 D004791 - Enzyme Inhibitors KEIO_ID T044

   

D-Tartaric acid

L-(+)-Tartaric acid

C4H6O6 (150.0164)


DL-Tartaric acid is a non-racemic mixture of L- and D-tartaric acids with antioxidant activities[1][2].

   

Chlorhexidine

N-(4-chlorophenyl)-1-3-(6-{N-[3-(4-chlorophenyl)carbamimidamidomethanimidoyl]amino}hexyl)carbamimidamidomethanimidamide

C22H30Cl2N10 (504.2032)


Chlorhexidine is only found in individuals that have used or taken this drug. It is a disinfectant and topical anti-infective agent used also as mouthwash to prevent oral plaque. [PubChem]Chlorhexidines antimicrobial effects are associated with the attractions between chlorhexidine (cation) and negatively charged bacterial cells. After chlorhexidine is absorpted onto the organisms cell wall, it disrupts the integrity of the cell membrane and causes the leakage of intracellular components of the organisms. A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations > A01AB - Antiinfectives and antiseptics for local oral treatment B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05C - Irrigating solutions > B05CA - Antiinfectives D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants > D08AC - Biguanides and amidines D - Dermatologicals > D09 - Medicated dressings > D09A - Medicated dressings > D09AA - Medicated dressings with antiinfectives S - Sensory organs > S03 - Ophthalmological and otological preparations > S03A - Antiinfectives > S03AA - Antiinfectives R - Respiratory system > R02 - Throat preparations > R02A - Throat preparations > R02AA - Antiseptics S - Sensory organs > S02 - Otologicals > S02A - Antiinfectives > S02AA - Antiinfectives S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D007004 - Hypoglycemic Agents > D001645 - Biguanides D003358 - Cosmetics > D009067 - Mouthwashes D001697 - Biomedical and Dental Materials D000890 - Anti-Infective Agents D004202 - Disinfectants

   

Phalloidine

Mast Cell Degranulating (MCD) Peptide

C35H48N8O11S (788.3163)


D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins

   

Cilastatin

(Z)-7-((R)-2-Amino-2-carboxy-ethylsulphanyl)-2-[((S)-2,2-dimethyl-cyclopropanecarbonyl)-amino]-hept-2-enoic acid

C16H26N2O5S (358.1562)


A renal dehydropeptidase-I and leukotriene D4 dipeptidase inhibitor. Since the antibiotic, imipenem, is hydrolyzed by dehydropeptidase-I, which resides in the brush border of the renal tubule, cilastatin is administered with imipenem to increase its effectiveness. The drug also inhibits the metabolism of leukotriene D4 to leukotriene E4. [PubChem] D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors C471 - Enzyme Inhibitor > C783 - Protease Inhibitor CONFIDENCE standard compound; INTERNAL_ID 2129

   

Cyclohexanecarboxylic acid

Cyclohexanecarboxylic acid, sodium salt, 11C-labeled

C7H12O2 (128.0837)


Cyclohexanecarboxylic acid is a flavouring ingredien Flavouring ingredient KEIO_ID C180 Cyclohexanecarboxylic acid is a Valproate structural analogue with anticonvulsant action[1].

   

Raloxifene

(2-(4-Hydroxyphenyl)-6-hydroxybenzo(b)thien-3-yl)(4-(2-(1-piperidinyl)ethoxy)phenyl)methanone

C28H27NO4S (473.1661)


Raloxifene is only found in individuals that have used or taken this drug. It is a second generation selective estrogen receptor modulator (SERM) used to prevent osteoporosis in postmenopausal women. It has estrogen agonist effects on bone and cholesterol metabolism but behaves as a complete estrogen antagonist on mammary gland and uterine tissue. [PubChem]. Raloxifene binds to estrogen receptors, resulting in differential expression of multiple estrogen-regulated genes in different tissues. Raloxifene produces estrogen-like effects on bone, reducing resorption of bone and increasing bone mineral density in postmenopausal women, thus slowing the rate of bone loss. The maintenance of bone mass by raloxifene and estrogens is, in part, through the regulation of the gene-encoding transforming growth factor-β3 (TGF-β3), which is a bone matrix protein with antiosteoclastic properties. Raloxifene activates TGF-β3 through pathways that are estrogen receptor-mediated but involve DNA sequences distinct from the estrogen response element. The drug also binds to the estrogen receptor and acts as an estrogen agonist in preosteoclastic cells, which results in the inhibtion of their proliferative capacity. This inhibition is thought to contribute to the drugs effect on bone resorption. Other mechanisms include the suppression of activity of the bone-resorbing cytokine interleukin-6 promoter activity. Raloxifene also antagonizes the effects of estrogen on mammary tissue and blocks uterotrophic responses to estrogen. By competing with estrogens for the estrogen receptors in reproductive tissue, raloxifene prevents the transcriptional activation of genes containing the estrogen response element. As well, raloxifene inhibits the estradiol-dependent proliferation of MCF-7 human mammary tumor cells in vitro. The mechansim of action of raloxifene has not been fully determined, but evidence suggests that the drugs tissue-specific estrogen agonist or antagonist activity is related to the structural differences between the raloxifene-estrogen receptor complex (specifically the surface topography of AF-2) and the estrogen-estrogen receptor complex. Also, the existence of at least 2 estrogen receptors (ERα, ERβ) may contribute to the tissue specificity of raloxifene. CONFIDENCE standard compound; INTERNAL_ID 236; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3671; ORIGINAL_PRECURSOR_SCAN_NO 3667 CONFIDENCE standard compound; INTERNAL_ID 236; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7479; ORIGINAL_PRECURSOR_SCAN_NO 7477 CONFIDENCE standard compound; INTERNAL_ID 236; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3606; ORIGINAL_PRECURSOR_SCAN_NO 3604 CONFIDENCE standard compound; INTERNAL_ID 236; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3605; ORIGINAL_PRECURSOR_SCAN_NO 3603 CONFIDENCE standard compound; INTERNAL_ID 236; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7456; ORIGINAL_PRECURSOR_SCAN_NO 7455 CONFIDENCE standard compound; INTERNAL_ID 236; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7507; ORIGINAL_PRECURSOR_SCAN_NO 7505 CONFIDENCE standard compound; INTERNAL_ID 236; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7491; ORIGINAL_PRECURSOR_SCAN_NO 7487 CONFIDENCE standard compound; INTERNAL_ID 236; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7503; ORIGINAL_PRECURSOR_SCAN_NO 7502 CONFIDENCE standard compound; INTERNAL_ID 236; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7515; ORIGINAL_PRECURSOR_SCAN_NO 7513 CONFIDENCE standard compound; INTERNAL_ID 236; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3597; ORIGINAL_PRECURSOR_SCAN_NO 3594 CONFIDENCE standard compound; INTERNAL_ID 236; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3612; ORIGINAL_PRECURSOR_SCAN_NO 3610 CONFIDENCE standard compound; INTERNAL_ID 236; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3602; ORIGINAL_PRECURSOR_SCAN_NO 3597 G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03X - Other sex hormones and modulators of the genital system > G03XC - Selective estrogen receptor modulators D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D020847 - Estrogen Receptor Modulators D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D004965 - Estrogen Antagonists C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C1821 - Selective Estrogen Receptor Modulator C274 - Antineoplastic Agent > C129818 - Antineoplastic Hormonal/Endocrine Agent > C481 - Antiestrogen C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist CONFIDENCE standard compound; INTERNAL_ID 2754 CONFIDENCE standard compound; INTERNAL_ID 8536 D050071 - Bone Density Conservation Agents C1892 - Chemopreventive Agent Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Raloxifene (Keoxifene) is a benzothiophene-derived selective estrogen receptor modulator (SERM). Raloxifene has estrogen-agonistic effects on bone and lipids and estrogen-antagonistic effects on the breast and uterus. Raloxifene is used for breast cancer and osteoporosis research[1].

   

Kaempferol 3-O-beta-robinoside 7-O-alpha-L-rhamnopyranoside

5-hydroxy-2-(4-hydroxyphenyl)-3-{[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-({[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-7-{[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-4H-chromen-4-one

C33H40O19 (740.2164)


Kaempferol 3-o-beta-robinoside 7-o-alpha-l-rhamnopyranoside, also known as kaempherol-3-O-robinoside-7-O-rhamnoside, is a member of the class of compounds known as flavonoid-7-o-glycosides. Flavonoid-7-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C7-position. Kaempferol 3-o-beta-robinoside 7-o-alpha-l-rhamnopyranoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Kaempferol 3-o-beta-robinoside 7-o-alpha-l-rhamnopyranoside can be found in common bean, which makes kaempferol 3-o-beta-robinoside 7-o-alpha-l-rhamnopyranoside a potential biomarker for the consumption of this food product. Acquisition and generation of the data is financially supported in part by CREST/JST. Robinin is present in?flavonoid?fraction of?Vigna unguiculata?leaf. Robinin inhibits upregulated expression of TLR2 and TLR4. Robinin ameliorates oxidized low density lipoprotein?(Ox-LDL) induced inflammatory insult through TLR4/NF-κB pathway[1]. Robinin is present in?flavonoid?fraction of?Vigna unguiculata?leaf. Robinin inhibits upregulated expression of TLR2 and TLR4. Robinin ameliorates oxidized low density lipoprotein?(Ox-LDL) induced inflammatory insult through TLR4/NF-κB pathway[1].

   

Psoralidin

5,14-dihydroxy-4-(3-methylbut-2-en-1-yl)-8,17-dioxatetracyclo[8.7.0.0^{2,7}.0^{11,16}]heptadeca-1(10),2,4,6,11(16),12,14-heptaen-9-one

C20H16O5 (336.0998)


Psoralidin is a member of the class of coumestans that is coumestan substituted by hydroxy groups at positions 3 and 9 and a prenyl group at position 2 respectively. It has a role as a plant metabolite and an estrogen receptor agonist. It is a member of coumestans, a polyphenol and a delta-lactone. It is functionally related to a coumestan. Psoralidin is a natural product found in Dolichos trilobus, Phaseolus lunatus, and other organisms with data available. See also: Cullen corylifolium fruit (part of). A member of the class of coumestans that is coumestan substituted by hydroxy groups at positions 3 and 9 and a prenyl group at position 2 respectively. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D020847 - Estrogen Receptor Modulators Constituent of papadi (Dolichos biflorus) and the butter bean (Phaseolus lunatus). Psoralidin is found in pulses, lima bean, and fruits. Psoralidin is found in fruits. Psoralidin is a constituent of papadi (Dolichos biflorus) and the butter bean (Phaseolus lunatus). Psoralidin is a dual inhibitor of COX-2 and 5-LOX, regulates ionizing radiation (IR)-induced pulmonary inflammation.Anti-cancer, anti-bacterial, and anti-inflammatory properties[1]. Psoralidin significantly downregulates NOTCH1 signaling. Psoralidin also greatly induces ROS generation[2]. Psoralidin is a dual inhibitor of COX-2 and 5-LOX, regulates ionizing radiation (IR)-induced pulmonary inflammation.Anti-cancer, anti-bacterial, and anti-inflammatory properties[1]. Psoralidin significantly downregulates NOTCH1 signaling. Psoralidin also greatly induces ROS generation[2]. Psoralidin is a dual inhibitor of COX-2 and 5-LOX, regulates ionizing radiation (IR)-induced pulmonary inflammation.Anti-cancer, anti-bacterial, and anti-inflammatory properties[1]. Psoralidin significantly downregulates NOTCH1 signaling. Psoralidin also greatly induces ROS generation[2].

   

Fumitremorgin C

(1S,12S,15S)-7-methoxy-12-(2-methylprop-1-en-1-yl)-10,13,19-triazapentacyclo[11.7.0.0³,¹¹.0⁴,⁹.0¹⁵,¹⁹]icosa-3(11),4,6,8-tetraene-14,20-dione

C22H25N3O3 (379.1896)


Fumitremorgin C is produced by Aspergillus fumigatus and Neosartorya fischeri. Production by Aspergillus fumigatus and Neosartorya fischeri Fumitremorgin C. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=118974-02-0 (retrieved 2024-08-26) (CAS RN: 118974-02-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Rubiadin

1,3-dihydroxy-2-methyl-9,10-dihydroanthracene-9,10-dione

C15H10O4 (254.0579)


Rubiadin is a dihydroxy anthraquinone isolated from Rubia cordifolia. Rubiadin has a potent antixidant activity[1]. Rubiadin is a dihydroxy anthraquinone isolated from Rubia cordifolia. Rubiadin has a potent antixidant activity[1].

   

2-Furoic acid

furan-2-carboxylic acid

C5H4O3 (112.016)


Furoic acid is a metabolite that appears in the urine of workers occupationally exposed to furfural and is a marker of exposure to this compound. Furfural is a heterocyclic aldehyde that is commonly used as a solvent in industry. It is readily absorbed into the body via the lungs and has significant skin absorption. Furfural is an irritant of the eyes, mucous membranes, and skin and is a central nervous system depressant. Furfural as a confirmed animal carcinogen with unknown relevance to humans (It has been suggested that is a substance that produces hepatic cirrhosis). Once in the body, furfural is metabolized rapidly via oxidation to the metabolite furoic acid, which is then conjugated with glycine and excreted in the urine in both free and conjugated forms. (PMID: 3751566, 4630229, 12587683). 2-Furoic acid is a biomarker for the consumption of beer. 2-Furancarboxylic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=88-14-2 (retrieved 2024-07-10) (CAS RN: 88-14-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). 2-Furoic acid (Furan-2-carboxylic acid) is an organic compound produced through furfural oxidation[1]. 2-Furoic acid exhibits hypolipidemic effet, lowers both serum cholesterol and serum triglyceride levels in rats[2]. 2-Furoic acid (Furan-2-carboxylic acid) is an organic compound produced through furfural oxidation[1]. 2-Furoic acid exhibits hypolipidemic effet, lowers both serum cholesterol and serum triglyceride levels in rats[2]. 2-Furoic acid (Furan-2-carboxylic acid) is an organic compound produced through furfural oxidation[1]. 2-Furoic acid exhibits hypolipidemic effet, lowers both serum cholesterol and serum triglyceride levels in rats[2].

   

Cyclohexylamine

Aminohexahydrobenzene

C6H13N (99.1048)


Cyclohexylamine is a food contaminant arising from its use as a boiler water additive Cyclohexylamine, also called hexahydroaniline, 1-aminocyclohexane, or aminohexahydrobenzene, is an organic chemical, an amine derived from cyclohexane. It is a clear to yellowish liquid with fishy odor, with melting point of 17.7 °C and boiling point 134.5 °C, miscible with water. Like other amines, it is of mildly alkaline nature, compared to strong bases such as NaOH, but it is a stronger base than its aromatic sister compound aniline, which differs only in that its ring is aromatic. It is flammable, with flash point at 28.6 °C. Explosive mixtures with air can be formed above 26 °C. It is toxic by both ingestion and inhalation; the inhalation itself may be fatal. It readily absorbs through skin, which it irritates. It is corrosive. Cyclohexylamine is listed as an extremely hazardous substance as defined by Section 302 of the U.S. Emergency Planning and Community Right-to-Know Act Food contaminant arising from its use as a boiler water additive CONFIDENCE standard compound; INTERNAL_ID 2441 CONFIDENCE standard compound; INTERNAL_ID 8266 KEIO_ID C114

   

Yangambin

1H,3H-Furo(3,4-c)furan, tetrahydro-1,4-bis(3,4,5-trimethoxyphenyl)-, (1S-(1alpha,3aalpha,4beta,6aalpha))-

C24H30O8 (446.1941)


Epiyangambin is a natural product found in Hernandia ovigera, Achillea holosericea, and other organisms with data available.

   

Z-Gly-OH

N-Benzyloxycarbonylglycine

C10H11NO4 (209.0688)


   

Benzyloxycarbonyl-L-leucine

(2S)-4-methyl-2-[[oxo-(phenylmethoxy)methyl]amino]pentanoic acid

C14H19NO4 (265.1314)


N-benzyloxycarbonyl-L-leucine is a L-leucine derivative obtained by the substitution of a benzyloxycarbonyl group on the nitrogen atom. It is a carbamate ester and a L-leucine derivative. It is a conjugate acid of a N-benzyloxycarbonyl-L-leucinate. Benzyloxycarbonyl-L-leucine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=2018-66-8 (retrieved 2024-09-09) (CAS RN: 2018-66-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

3-(3-hydroxyphenyl)propionate

dihydro-3-Coumaric acid, monosodium salt

C9H10O3 (166.063)


3-(3-Hydroxyphenyl)propanoic (hMPP) acid is one of the major metabolites of ingested caffeic acid (PMID: 15479001) and of the phenolic degradation products of proanthocyanidins (the most abundant polyphenol present in chocolate) by the microflora in the colon (PMID: 12663291). mHPP is suspected to have antioxidants properties and is actively absorbed by the monocarboxylic acid transporter (MCT) in intestinal Caco-2 cell monolayers (PMID: 15479001, 12663291). hMPP has been found to be a metabolite of Clostridium, Escherichia, and Eubacterium (PMID: 28393285, 19520845). 3-(3-Hydroxyphenyl)propanoic acid is a flavonoid metabolite. 3-(3-Hydroxyphenyl)propanoic acid is a phenolic acid metabolite formed by the gut microflora detected after the consumption of whole grain. 3-(3-Hydroxyphenyl)propanoic (hMPP) acid is one of the major metabolites of ingested caffeic acid (PMID 15479001) and of the phenolic degradation products of proanthocyanidins (the most abundant polyphenol present in chocolate) by the microflora in the colon (PMID 12663291). mHPP is suspected to have antioxidants properties and is actively absorbed by the monocarboxylic acid transporter (MCT) in intestinal Caco-2 cell monolayers (PMID 15479001, 12663291). [HMDB] 3-(3-Hydroxyphenyl)propionic acid is a flavonoid metabolite formed by human microflora. 3-(3-Hydroxyphenyl)propionic acid shows vasodilatory activity[1]. 3-(3-Hydroxyphenyl)propionic acid is a flavonoid metabolite formed by human microflora. 3-(3-Hydroxyphenyl)propionic acid shows vasodilatory activity[1].

   

Phosphate

Sodium pyrophosphate decahydrate biochemica

H3O4P (97.9769)


Phosphate is a salt of phosphoric acid and is an essential component of life. Organic phosphates are important in biochemistry, biogeochemistry, and ecology. In biological systems, phosphorus is found as a free phosphate ion in solution and is called inorganic phosphate, to distinguish it from phosphates bound in various phosphate esters. Inorganic phosphate is generally denoted Pi and at physiological (neutral) pH primarily consists of a mixture of HPO2-4 and H2PO-4 ions. Phosphates are most commonly found in the form of adenosine phosphates (AMP, ADP, and ATP) and in DNA and RNA, and can be released by the hydrolysis of ATP or ADP. Similar reactions exist for the other nucleoside diphosphates and triphosphates. Phosphoanhydride bonds in ADP and ATP, or other nucleoside diphosphates and triphosphates, contain high amounts of energy which give them their vital role in all living organisms. Phosphate must be actively transported into cells against its electrochemical gradient. In vertebrates, two unrelated families of Na+-dependent Pi transporters carry out this task. Remarkably, the two families transport different Pi species: whereas type II Na+/Pi cotransporters (SCL34) prefer divalent HPO4(2), type III Na+/Pi cotransporters (SLC20) transport monovalent H2PO4. The SCL34 family comprises both electrogenic and electroneutral members that are expressed in various epithelia and other polarized cells. Through regulated activity in apical membranes of the gut and kidney, they maintain body Pi homeostasis, and in salivary and mammary glands, liver, and testes they play a role in modulating the Pi content of luminal fluids. Phosphate levels in the blood play an important role in hormone signalling and in bone homeostasis. In classical endocrine regulation, low serum phosphate induces the renal production of the secosteroid hormone 1,25-dihydroxyvitamin D3 (1,25(OH)2D3). This active metabolite of vitamin D acts to restore circulating mineral (i.e. phosphate and calcium) levels by increasing absorption in the intestine, reabsorption in the kidney, and mobilization of calcium and phosphate from bone. Thus, chronic renal failure is associated with hyperparathyroidism, which in turn contributes to osteomalacia (softening of the bones). Another complication of chronic renal failure is hyperphosphatemia (low levels of phosphate in the blood). Hyperphosphatemia (excess levels of phosphate in the blood) is a prevalent condition in kidney dialysis patients and is associated with increased risk of mortality. Hypophosphatemia (hungry bone syndrome) has been associated with postoperative electrolyte aberrations and after parathyroidectomy (PMID: 17581921, 11169009, 11039261, 9159312, 17625581). Fibroblast growth factor 23 (FGF-23) has recently been recognized as a key mediator of phosphate homeostasis and its most notable effect is the promotion of phosphate excretion. FGF-23 was discovered to be involved in diseases such as autosomal dominant hypophosphatemic rickets, X-linked hypophosphatemia, and tumour-induced osteomalacia in which phosphate wasting was coupled to inappropriately low levels of 1,25(OH)2D3. FGF-23 is regulated by dietary phosphate in humans. In particular, it was found that phosphate restriction decreased FGF-23, and phosphate loading increased FGF-23. In agriculture, phosphate refers to one of the three primary plant nutrients, and it is a component of fertilizers. In ecological terms, because of its important role in biological systems, phosphate is a highly sought after resource. Consequently, it is often a limiting reagent in environments, and its availability may govern the rate of growth of organisms. Addition of high levels of phosphate to environments and to micro-environments in which it is typically rare can have significant ecological consequences. In the context of pollution, phosphates are a principal component of total dissolved solids, a major indicator of water quality. Dihydrogen phosphate is an inorganic sal... Found in fruit juices. It is used in foods as an acidulant for drinks and candies, pH control agent, buffering agent, flavour enhancer, flavouring agent, sequestrant, stabiliser and thickener, and synergist D001697 - Biomedical and Dental Materials > D003764 - Dental Materials

   

Ononin

3-(4-methoxyphenyl)-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4H-chromen-4-one

C22H22O9 (430.1264)


Widely distributed in the Leguminosae subfamily Papilionoideae, e.g. in Medicago sativa (alfalfa) and Trifolium subspecies Formononetin 7-glucoside is found in chickpea, soy bean, and pulses. Ononin is found in chickpea. Ononin is widely distributed in the Leguminosae subfamily Papilionoideae, e.g. in Medicago sativa (alfalfa) and Trifolium species. Acquisition and generation of the data is financially supported in part by CREST/JST. IPB_RECORD: 381; CONFIDENCE confident structure Ononin is an isoflavone that inhibits the growth of Pluchea lanceolata in soil. Ononin is an isoflavone that inhibits the growth of Pluchea lanceolata in soil.

   

Aloin

(R)-1,8-Dihydroxy-3-(hydroxymethyl)-10-[(2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl]anthracen-9(10H)-one

C21H22O9 (418.1264)


Aloin is a constituent of various Aloe species Aloin extracted from natural sources is a mixture of two diastereomers, termed aloin A (also called barbaloin) and aloin B (or isobarbaloin), which have similar chemical properties. Aloin is an anthraquinone glycoside, meaning that its anthraquinone skeleton has been modified by the addition of a sugar molecule. Anthraquinones are a common family of naturally occurring yellow, orange, and red pigments of which many have cathartic properties, attributes shared by aloin. Aloin is related to aloe emodin, which lacks a sugar group but shares aloins biological properties. Aloin, also known as Barbaloin [Reynolds, Aloes - The genus Aloe, 2004], is a bitter, yellow-brown colored compound noted in the exudate of at least 68 Aloe species at levels from 0.1 to 6.6\\\\\% of leaf dry weight (making between 3\\\\\% and 35\\\\\% of the toal exudate) (Groom & Reynolds, 1987), and in another 17 species at indeterminate levels [Reynolds, 1995b]. It is used as a stimulant-laxative, treating constipation by inducing bowel movements. The compound is present in what is commonly referred to as the aloe latex that exudes from cells adjacent to the vascular bundles, found under the rind of the leaf and in between it and the gel. When dried, it has been used as a bittering agent in commerce (alcoholic beverages) [21 CFR 172.510. Scientific names given include Aloe perryi, A. barbadensis (= A. vera), A. ferox, and hybrids of A. ferox with A. africana and A. spicata.]. Aloe is listed in federal regulations as a natural substance that may be safely used in food when used in the minimum quantity required to produce their intended physical or technical effect and in accordance with all the principles of good manufacturing practice. This food application is generally limited to use in quite small quantities as a flavoring in alcoholic beverages and may usually be identified only as a natural flavor. ; In May 2002, the U.S. Aloin is a food and Drug Administration (FDA) issued a ruling that aloe laxatives are no longer generally recognized as safe (GRAS) and effective, meaning that aloin-containing products are no longer available in over-the-counter drug products in the United States. Aloe vera leaf latex is a concentrate of an herb or other botanical, and so meets the statutory description of an ingredient that may be used in dietary supplements Aloin A is a natural product found in Aloe arborescens with data available. D005765 - Gastrointestinal Agents > D002400 - Cathartics Constituent of various Aloe subspecies CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 1 INTERNAL_ID 1; CONFIDENCE Reference Standard (Level 1) Aloin (Aloin-A; Barbaloin-A) is a natural anti-tumor anthraquinone glycoside with iron chelating activity. Aloin (Aloin-A; Barbaloin-A) is a natural anti-tumor anthraquinone glycoside with iron chelating activity. Aloin (mixture of A&B) is anthraquinone derivative isolated from Aloe vera. Aloin (mixture of A&B) has diverse biological activities such as anti-inflammatory, immunity, antidiabetic, antioxidant, antibacterial, antifungal, and antitumor activities. Aloin (mixture of A&B) also an effective inhibitor of stimulated granulocyte matrix metalloproteinases (MMPs)[1][2].

   

2-Cyanopyridine

2-Cyanopyridine

C6H4N2 (104.0374)


KEIO_ID C089

   

Acteoside

6-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-2-(hydroxymethyl)-4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-3-yl (2E)-3-(3,4-dihydroxyphenyl)prop-2-enoate

C29H36O15 (624.2054)


The main hydroxycinnamic deriv. in olives. Acteoside is found in many foods, some of which are olive, lemon verbena, bitter gourd, and common verbena. Acteoside is found in bitter gourd. It is the main hydroxycinnamic derivative in olives Verbascoside is isolated from Acanthus mollis, acts as an ATP-competitive inhibitor of PKC, with an IC50 of 25 μM, and has antitumor, anti-inflammatory and antineuropathic pain activity. Verbascoside is isolated from Acanthus mollis, acts as an ATP-competitive inhibitor of PKC, with an IC50 of 25 μM, and has antitumor, anti-inflammatory and antineuropathic pain activity.

   

Lecanoricacid

4-(2,4-dihydroxy-6-methylbenzoyl)oxy-2-hydroxy-6-methylbenzoic acid

C16H14O7 (318.0739)


D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates Lecanoric acid is a histidine-decarboxylase inhibitor isolated from fungus. The inhibition by lecanoric acid is competitive with histidineand noncompetitive with pyridoxal phosphate. Lecanoric acid did not inhibit aromatic amino acid decarboxylase[1].

   

Geniposidic acid

7-(hydroxymethyl)-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1H,4aH,5H,7aH-cyclopenta[c]pyran-4-carboxylic acid

C16H22O10 (374.1213)


Geniposidic acid is found in beverages. Geniposidic acid is a constituent of Genipa americana (genipap) Constituent of Genipa americana (genipap). Geniposidic acid is found in beverages and fruits. Geniposidic acid has radiation protection and anti-cancer activity. Geniposidic acid has radiation protection and anti-cancer activity.

   

Dicyclohexylamine

Cyclohexanamine, N-cyclohexyl-, sulfate (1:1)

C12H23N (181.183)


INTERNAL_ID 2356; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2356 D004791 - Enzyme Inhibitors

   

dihydro-3-hydroxy-4,4-dimethyl- 2(3H)-Furanone

2,4-Dihydroxy-3,3-dimethylbutyric acid gamma-lactone

C6H10O3 (130.063)


Flavouring compound [Flavornet] DL-Pantolactone can be hydrolyzed to Pantoic acid by the lactonohydrolase of Fusarium oxysporum. DL-Pantolactone also can be used in the preparation of 3,5-dinitrobenzoyl-DL-pantolactone[1][2]. DL-Pantolactone can be hydrolyzed to Pantoic acid by the lactonohydrolase of Fusarium oxysporum. DL-Pantolactone also can be used in the preparation of 3,5-dinitrobenzoyl-DL-pantolactone[1][2]. Pantolactone is an endogenous metabolite.

   

Cyanamide

Ipsen brand OF calcium carbimide

CH2N2 (42.0218)


   

Alendronic acid

(4-amino-1-hydroxy-1-phosphonobutyl)phosphonic acid

C4H13NO7P2 (249.0167)


Alendronate (Fosamax, Merck) is a bisphosphonate drug used for osteoporosis and several other bone diseases. It is marketed alone as well as in combination with vitamin D (2,800 U, under the name Fosavance). [HMDB] Alendronate (Fosamax, Merck) is a bisphosphonate drug used for osteoporosis and several other bone diseases. It is marketed alone as well as in combination with vitamin D (2,800 U, under the name Fosavance). M - Musculo-skeletal system > M05 - Drugs for treatment of bone diseases > M05B - Drugs affecting bone structure and mineralization > M05BA - Bisphosphonates C78281 - Agent Affecting Musculoskeletal System > C67439 - Bone Resorption Inhibitor D050071 - Bone Density Conservation Agents > D004164 - Diphosphonates

   

magnesium hydroxide

magnesium hydroxide

H2MgO2 (57.9905)


C78276 - Agent Affecting Digestive System or Metabolism > C29697 - Laxative D005765 - Gastrointestinal Agents > D000863 - Antacids

   

Calcium phosphate

Calcium phosphate (3:2)

Ca3O8P2 (309.7946)


A - Alimentary tract and metabolism > A12 - Mineral supplements > A12A - Calcium > A12AA - Calcium Component of flour bleaching mixtures, anticaking agent, dietary supplement, flavouring ingredient

   

Tiludronate

{[(4-chlorophenyl)sulfanyl](phosphono)methyl}phosphonic acid

C7H9ClO6P2S (317.9284)


Tiludronate is only found in individuals that have used or taken this drug. It is a bisphosphonate characterized by a (4-chlorophenylthio) group on the carbon atom of the basic P-C-P structure common to all bisphosphonates.The bisphosphonate group binds strongly to the bone mineral, hydroxyapatite. This explains the specific pharmacological action of these compounds on mineralized tissues, especially bone. In vitro studies indicate that tiludronate acts primarily on bone through a mechanism that involves inhibition of osteoclastic activity with a probable reduction in the enzymatic and transport processes that lead to resorption of the mineralized matrix. Bone resorption occurs following recruitment, activation, and polarization of osteoclasts. Tiludronate appears to inhibit osteoclasts by at least two mechanisms: disruption of the cytoskeletal ring structure, possibly by inhibition of protein-tyrosine-phosphatase, thus leading to detachment of osteoclasts from the bone surface and the inhibition of the osteoclastic proton pump. M - Musculo-skeletal system > M05 - Drugs for treatment of bone diseases > M05B - Drugs affecting bone structure and mineralization > M05BA - Bisphosphonates C78281 - Agent Affecting Musculoskeletal System > C67439 - Bone Resorption Inhibitor D050071 - Bone Density Conservation Agents > D004164 - Diphosphonates

   

Doxercalciferol

(1R,3S,5Z)-5-[(2E)-2-[(1R,3aS,7aR)-1-[(E,2R,5S)-5,6-dimethylhept-3-en-2-yl]-7a-methyl-2,3,3a,5,6,7-hexahydro-1H-inden-4-ylidene]ethylidene]-4-methylidenecyclohexane-1,3-diol

C28H44O2 (412.3341)


H - Systemic hormonal preparations, excl. sex hormones and insulins > H05 - Calcium homeostasis > H05B - Anti-parathyroid agents D018977 - Micronutrients > D014815 - Vitamins > D004872 - Ergocalciferols D050071 - Bone Density Conservation Agents

   

Risedronate

[1-hydroxy-1-phosphono-2-(pyridin-3-yl)ethyl]phosphonic acid

C7H11NO7P2 (283.0011)


Risedronate is only found in individuals that have used or taken this drug. It is a bisphosphonate used to strengthen bone, treat or prevent osteoporosis, and treat Pagets disease of bone.The action of risedronate on bone tissue is based partly on its affinity for hydroxyapatite, which is part of the mineral matrix of bone. Risedronate also targets farnesyl pyrophosphate (FPP) synthase. Nitrogen-containing bisphosphonates (such as pamidronate, alendronate, risedronate, ibandronate and zoledronate) appear to act as analogues of isoprenoid diphosphate lipids, thereby inhibiting FPP synthase, an enzyme in the mevalonate pathway. Inhibition of this enzyme in osteoclasts prevents the biosynthesis of isoprenoid lipids (FPP and GGPP) that are essential for the post-translational farnesylation and geranylgeranylation of small GTPase signalling proteins. This activity inhibits osteoclast activity and reduces bone resorption and turnover. In postmenopausal women, it reduces the elevated rate of bone turnover, leading to, on average, a net gain in bone mass. M - Musculo-skeletal system > M05 - Drugs for treatment of bone diseases > M05B - Drugs affecting bone structure and mineralization > M05BA - Bisphosphonates C78281 - Agent Affecting Musculoskeletal System > C67439 - Bone Resorption Inhibitor D050071 - Bone Density Conservation Agents > D004164 - Diphosphonates D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators

   

Resiniferatoxin

Benzeneacetic acid, 4-hydroxy-3-methoxy-, ((2S,3aR,3bS,6aR,9aR,9bR,10R,11aR)-3a,3b,6,6a,9a,10,11,11a-octahydro-6a-hydroxy-8,10-dimethyl-11a-(1-methylethenyl)-7-oxo-2-(phenylmethyl)-7H-2,9b-epoxyazuleno(5,4-e)-1,3-benzodioxol-5-yl)methyl ester

C37H40O9 (628.2672)


Resiniferatoxin is a heteropentacyclic compound found in Euphorbia poissonii with molecular formula C37H40O9. It is an agonist of the transient receptor potential cation channel subfamily V member 1 (TrpV1). It has a role as a TRPV1 agonist, a plant metabolite, a neurotoxin and an analgesic. It is a diterpenoid, an ortho ester, a tertiary alpha-hydroxy ketone, a member of phenols, a monomethoxybenzene, an organic heteropentacyclic compound, a carboxylic ester and an enone. Resiniferatoxin (RTX) is a naturally occurring, ultrapotent capsaicin analog that activates the vanilloid receptor in a subpopulation of primary afferent sensory neurons involved in nociception (the transmission of physiological pain). Resiniferatoxin is a natural product found in Euphorbia resinifera and Euphorbia unispina with data available. Resiniferatoxin is a naturally occurring capsaicin analog found in the latex of the cactus Euphorbia resinifera with analgesic activity. Resiniferatoxin (RTX) binds to and activates the transient receptor potential vanilloid 1 (TRPV1), a non-selective cation channel in the plasma membrane of primary afferent sensory neurons. This increases the permeability to cations, and leads to an influx of calcium and sodium ions. This results in membrane depolarization, causing an irritant effect, followed by desensitization of the sensory neurons thereby inhibiting signal conduction in afferent pain pathways and causing analgesia. TRPV1, a member of the transient receptor potential channel (TRP) superfamily, is a heat- and chemo-sensitive calcium/sodium ion channel that is selectively expressed in a subpopulation of pain-sensing primary afferent neurons. A heteropentacyclic compound found in Euphorbia poissonii with molecular formula C37H40O9. It is an agonist of the transient receptor potential cation channel subfamily V member 1 (TrpV1). C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic

   

quercetagetin

3,3,4,5,6,7-Hexahydroxyflavone

C15H10O8 (318.0376)


D004791 - Enzyme Inhibitors Quercetagetin (6-Hydroxyquercetin) is a flavonoid[1]. Quercetagetin is a moderately potent and selective, cell-permeable pim-1 kinase inhibitor (IC50, 0.34 μM)[2]. Anti-inflammatory and anticancer properties. Quercetagetin (6-Hydroxyquercetin) is a flavonoid[1]. Quercetagetin is a moderately potent and selective, cell-permeable pim-1 kinase inhibitor (IC50, 0.34 μM)[2]. Anti-inflammatory and anticancer properties.

   

Shekanin

5-hydroxy-3-(4-hydroxyphenyl)-6-methoxy-7-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-4-chromenone

C22H22O11 (462.1162)


Tectoridin is a isoflavone isolated from Maackia amurensis. Tectoridin is a phytoestrogen and activates estrogen and thyroid hormone receptors. Tectoridin exerts the estrogenic effects via ER-dependent genomic pathway and GPR30-dependent nongenomic pathway[1][2]. Tectoridin is a isoflavone isolated from Maackia amurensis. Tectoridin is a phytoestrogen and activates estrogen and thyroid hormone receptors. Tectoridin exerts the estrogenic effects via ER-dependent genomic pathway and GPR30-dependent nongenomic pathway[1][2].

   

Diphyllin

9-(1,3-Benzodioxol-5-yl)-4-hydroxy-6,7-dimethoxynaphtho[2,3-c]furan-1(3H)-one; NSC 309691

C21H16O7 (380.0896)


Diphyllin is a lignan. Diphyllin is a natural product found in Haplophyllum alberti-regelii, Haplophyllum bucharicum, and other organisms with data available. Origin: Plant Diphyllin is an arylnaphthalene lignan isolated from Justicia procumbens and is a potent HIV-1 inhibitor with an IC50 of 0.38 μM. Diphyllin is active against vesicular stomatitis virus (VSV) and influenza virus[1]. Diphyllin is a vacuolar type H+-ATPase (V-ATPase) inhibitor with an IC50 value of 17 nM and inhibits lysosomal acidification in human osteoclasts[2]. Diphyllin inhibits NO production with an IC50 of 50 μM and has anticancer and anti-inflammatory activities[3]. Diphyllin is an arylnaphthalene lignan isolated from Justicia procumbens and is a potent HIV-1 inhibitor with an IC50 of 0.38 μM. Diphyllin is active against vesicular stomatitis virus (VSV) and influenza virus[1]. Diphyllin is a vacuolar type H+-ATPase (V-ATPase) inhibitor with an IC50 value of 17 nM and inhibits lysosomal acidification in human osteoclasts[2]. Diphyllin inhibits NO production with an IC50 of 50 μM and has anticancer and anti-inflammatory activities[3].

   
   

Isofenphos

2-[[Ethoxy[(1-methylethyl)amino]phosphinothioyl]oxy]benzoic acid 1-methylethyl ester

C15H24NO4PS (345.1164)


Isofenphos is an Agricultural insecticide with contact and stomach actio C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

Temik

aldicarb

C7H14N2O2S (190.0776)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals

   

Dimethyl sulphone

Methane, 1,1′-sulfonylbis-

C2H6O2S (94.0088)


Dimethyl sulfone, also known as sulfonylbismethane or lignisul MSM, belongs to the class of organic compounds known as sulfones. Sulfones are compounds containing a sulfonyl group, which has the general structure RS(=O)2R (R,R =alkyl, aryl), attached to two carbon atoms. Dimethyl sulfone (DMSO2) is an organic sulfur compound belonging to a class of chemicals known as sulfones. It derives from dietary sources, from intestinal bacterial metabolism and from human endogenous methanethiol metabolism. DMSO2 reflects its close chemical relationship to dimethyl sulfoxide (DMSO), which differs only in the oxidation state of the sulfur atom. Dimethyl sulfone is possibly neutral. Dimethyl sulfone exists in all living organisms, ranging from bacteria to humans. DMSO2 is the primary metabolite of DMSO in humans, and it shares some of the properties of DMSO. Dimethyl sulfone is sulfurous tasting compound. dimethyl sulfone is found on average in the highest concentration in milk (cow). Dimethyl sulfone has also been detected, but not quantified in asparagus and guava. This could make dimethyl sulfone a potential biomarker for the consumption of these foods. Dimethyl sulfone can be found in Afipia. It occurs naturally in some primitive plants and is present in small amounts in many foods and beverages. Dimethyl sulfone can be found in plasma and CSF of normal humans. Methylsulfonylmethane (MSM) is an organosulfur compound with the formula (CH3)2SO2. It is also known by several other names including DMSO2, methyl sulfone, and dimethyl sulfone. This colorless solid features the sulfonyl functional group and is considered relatively inert chemically. It occurs naturally in some primitive plants and is present in small amounts in many foods and beverages and it is marketed as a dietary supplement. Dimethyl sulfone is found in guava. C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D000893 - Anti-Inflammatory Agents Dimethyl sulfone (Methyl Sulfonyl Methane) is a metabolic product of endogenous methanethiol metabolism and intestinal bacterial metabolism. Dimethyl sulfone inhibits choriocapillary endothelial (CCE) cell proliferation, also has many biological effects, including antiinflammatory, antioxidant, and local anesthetic effects that could be neuroprotective[1][2][3]. Dimethyl sulfone (Methyl Sulfonyl Methane) is a metabolic product of endogenous methanethiol metabolism and intestinal bacterial metabolism. Dimethyl sulfone inhibits choriocapillary endothelial (CCE) cell proliferation, also has many biological effects, including antiinflammatory, antioxidant, and local anesthetic effects that could be neuroprotective[1][2][3].

   

Pelanin

(1S,10R,11S,14S,15S)-5-hydroxy-15-methyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadeca-2,4,6-trien-14-yl pentanoate

C23H32O3 (356.2351)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen Isolated from potato. Pelanin is found in potato. Same as: D01413

   

Iodoform

Carbon triiodide

CHI3 (393.7213)


D - Dermatologicals > D09 - Medicated dressings > D09A - Medicated dressings > D09AA - Medicated dressings with antiinfectives C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent Same as: D01910

   

Dihydrogenistein

2,3-Dihydro-5,7-dihydroxy-3-(4-hydroxyphenyl)-4H-1-benzopyran-4-one

C15H12O5 (272.0685)


Dihydrogenistein is a metabolite of the soy isoflavone genistin (the glycoside conjugate of genistein) by intestinal bacteria. Isoflavones are one of the three major classes of phytoestrogens; phytoestrogens are a diverse group of plant-derived compounds that structurally and functionally mimic mammalian estrogen. The isoflavone genistin is one of the most prevalent in soy foods. They are biologically inactive; once ingested, they are cleaved by glucosidases to "aglycones", genistein. Epidemiological studies have associated high soy intake with a lowered risk for certain hormone-dependent disease. Many studies reveal that the incidence of prostate cancer and breast cancer is much lower in Asian people in comparison to people from the West and, and the prevailing contribution to this difference has been attributed to the diet. Soy foods and soy-derived products which contain abundant isoflavones are consumed in large quantities by Asian people. In vitro, isoflavone metabolites have dual functions: they can act as an estrogenic agonist or antagonist depending on the estrogen concentration. (PMID: 17499260, 16965913) [HMDB]. Dihydrogenistein is a biomarker for the consumption of soy beans and other soy products. Dihydrogenistein is a metabolite of the soy isoflavone genistin (the glycoside conjugate of genistein) by intestinal bacteria. Isoflavones are one of the three major classes of phytoestrogens; phytoestrogens are a diverse group of plant-derived compounds that structurally and functionally mimic mammalian estrogen. The isoflavone genistin is one of the most prevalent in soy foods. They are biologically inactive; once ingested, they are cleaved by glucosidases to "aglycones", genistein. Epidemiological studies have associated high soy intake with a lowered risk for certain hormone-dependent disease. Many studies reveal that the incidence of prostate cancer and breast cancer is much lower in Asian people in comparison to people from the West and, and the prevailing contribution to this difference has been attributed to the diet. Soy foods and soy-derived products which contain abundant isoflavones are consumed in large quantities by Asian people. In vitro, isoflavone metabolites have dual functions: they can act as an estrogenic agonist or antagonist depending on the estrogen concentration. (PMID: 17499260, 16965913). Dihydrogenistein is a biomarker for the consumption of soy beans and other soy products.

   

4-chlorochalcone

2-Propen-1-one, 3-(4-chlorophenyl)-1-phenyl-

C15H11ClO (242.0498)


   

1,4-Dihydroxynaphthalene

1,4-Dihydroxynaphthalene

C10H8O2 (160.0524)


   

3-(3-(N-(2-Chloro-3-trifluoromethylbenzyl)(2,2-diphenylethyl)amino)propoxy)phenylacetic acid

2-{3-[3-({[2-chloro-3-(trifluoromethyl)phenyl]methyl}(2,2-diphenylethyl)amino)propoxy]phenyl}acetic acid

C33H31ClF3NO3 (581.1944)


   

cryptophycin

Cryptophycin 1

C35H43ClN2O8 (654.2708)


C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent

   

Azaspiracid

Azaspiracid-1

C47H71NO12 (841.4976)


D009676 - Noxae > D011042 - Poisons > D008387 - Marine Toxins

   

Isofraxidin

7-hydroxy-6,8-dimethoxy-chromen-2-one;Isofraxidin

C11H10O5 (222.0528)


Isofraxidin is a hydroxycoumarin. Isofraxidin is a natural product found in Artemisia alba, Artemisia assoana, and other organisms with data available. Isofraxidin, a coumarin component from Acanthopanax senticosus, inhibits MMP-7 expression and cell invasion of human hepatoma cells. Isofraxidin inhibits the phosphorylation of ERK1/2 in hepatoma cells[1]. Isofraxidin attenuates the expression of iNOS and COX-2, Isofraxidinalso inhibits TLR4/myeloid differentiation protein-2 (MD-2) complex formation[2]. Isofraxidin, a coumarin component from Acanthopanax senticosus, inhibits MMP-7 expression and cell invasion of human hepatoma cells. Isofraxidin inhibits the phosphorylation of ERK1/2 in hepatoma cells[1]. Isofraxidin attenuates the expression of iNOS and COX-2, Isofraxidinalso inhibits TLR4/myeloid differentiation protein-2 (MD-2) complex formation[2].

   

Alizarin

1,2-dihydroxyanthracene-9,10-dione

C14H8O4 (240.0423)


Alizarin is a dihydroxyanthraquinone that is anthracene-9,10-dione in which the two hydroxy groups are located at positions 1 and 2. It has a role as a chromophore, a dye and a plant metabolite. Alizarin is a natural product found in Oldenlandia umbellata, Rubia alata, and other organisms with data available. See also: Rubia tinctorum root (part of). A dihydroxyanthraquinone that is anthracene-9,10-dione in which the two hydroxy groups are located at positions 1 and 2.

   

Genkwanin

4H-1-Benzopyran-4-one, 5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-

C16H12O5 (284.0685)


Genkwanin is a monomethoxyflavone that is apigenin in which the hydroxy group at position 7 is methylated. It has a role as a metabolite. It is a dihydroxyflavone and a monomethoxyflavone. It is functionally related to an apigenin. It is a conjugate acid of a genkwanin(1-). Genkwanin is a natural product found in Odontites viscosus, Eupatorium capillifolium, and other organisms with data available. A monomethoxyflavone that is apigenin in which the hydroxy group at position 7 is methylated. Genkwanin is a major non-glycosylated flavonoid with anti-flammatory activities. Genkwanin is a major non-glycosylated flavonoid with anti-flammatory activities.

   

Rubiadin

9,10-Anthracenedione, 1,3-dihydroxy-2-methyl-

C15H10O4 (254.0579)


Rubiadin is a dihydroxyanthraquinone that is anthracene-9,10-dione substituted by hydroxy groups at positions 1 and 3 and a methyl group at position 2. It has been isolated from Rubia yunnanensis. It has a role as an antibacterial agent, an antioxidant, a hepatoprotective agent and a plant metabolite. Rubiadin is a natural product found in Coprosma tenuicaulis, Prismatomeris tetrandra, and other organisms with data available. A dihydroxyanthraquinone that is anthracene-9,10-dione substituted by hydroxy groups at positions 1 and 3 and a methyl group at position 2. It has been isolated from Rubia yunnanensis. Rubiadin is a dihydroxy anthraquinone isolated from Rubia cordifolia. Rubiadin has a potent antixidant activity[1]. Rubiadin is a dihydroxy anthraquinone isolated from Rubia cordifolia. Rubiadin has a potent antixidant activity[1].

   

Sho-saiko-to

2-[3,5-Dihydroxy-2-[[2-hydroxy-9-(hydroxymethyl)-4,5,9,13,20,20-hexamethyl-24-oxahexacyclo[15.5.2.01,18.04,17.05,14.08,13]tetracos-15-en-10-yl]oxy]-6-methyloxan-4-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

C42H68O13 (780.466)


2-[3,5-Dihydroxy-2-[[2-hydroxy-9-(hydroxymethyl)-4,5,9,13,20,20-hexamethyl-24-oxahexacyclo[15.5.2.01,18.04,17.05,14.08,13]tetracos-15-en-10-yl]oxy]-6-methyloxan-4-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol is a natural product found in Clinopodium vulgare, Bupleurum angustissimum, and other organisms with data available. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000893 - Anti-Inflammatory Agents D000970 - Antineoplastic Agents D018501 - Antirheumatic Agents Saikosaponin A is an active component of Bupleurum chinensis, up-regulates LXRα expression, with potent anti-inflammatory activity[1]. Saikosaponin A is an active component of Bupleurum chinensis, up-regulates LXRα expression, with potent anti-inflammatory activity[1]. Saikosaponin A is an active component of Bupleurum chinensis, up-regulates LXRα expression, with potent anti-inflammatory activity[1]. Saikosaponin D is a triterpene saponin isolated from Bupleurum, with anti-inflammatory, anti-bacterial, anti-tumor, and anti-allergic activities; Saikosaponin D inhibits selectin, STAT3 and NF-kB and activates estrogen receptor-β. Saikosaponin D is a triterpene saponin isolated from Bupleurum, with anti-inflammatory, anti-bacterial, anti-tumor, and anti-allergic activities; Saikosaponin D inhibits selectin, STAT3 and NF-kB and activates estrogen receptor-β.

   

Robinin

5-hydroxy-2-(4-hydroxyphenyl)-7-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-tetrahydropyran-2-yl]oxy-3-[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-[[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-tetrahydropyran-2-yl]oxymethyl]tetrahydropyran-2-yl]oxy-chromen-4-one

C33H40O19 (740.2164)


Robinin is a glycosyloxyflavone that is kaempherol substituted by a 6-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-galactopyranosyl residue at position 3 and a 6-deoxy-alpha-L-mannopyranosyl residue at position 7 via a glycosidic linkage. It has a role as a plant metabolite. It is a glycosyloxyflavone and a dihydroxyflavone. It is functionally related to a kaempferol. Robinin is a natural product found in Aconitum anthora, Astragalus aegobromus, and other organisms with data available. A glycosyloxyflavone that is kaempherol substituted by a 6-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-galactopyranosyl residue at position 3 and a 6-deoxy-alpha-L-mannopyranosyl residue at position 7 via a glycosidic linkage. Robinin is present in?flavonoid?fraction of?Vigna unguiculata?leaf. Robinin inhibits upregulated expression of TLR2 and TLR4. Robinin ameliorates oxidized low density lipoprotein?(Ox-LDL) induced inflammatory insult through TLR4/NF-κB pathway[1]. Robinin is present in?flavonoid?fraction of?Vigna unguiculata?leaf. Robinin inhibits upregulated expression of TLR2 and TLR4. Robinin ameliorates oxidized low density lipoprotein?(Ox-LDL) induced inflammatory insult through TLR4/NF-κB pathway[1].

   

Phosphoric acid

Phosphoric acid

H3O4P (97.9769)


D001697 - Biomedical and Dental Materials > D003764 - Dental Materials

   

Aconine

11-ethyl-6,16,18-trimethoxy-13-(methoxymethyl)-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecane-4,5,7,8,14-pentol

C25H41NO9 (499.2781)


Aconine inhibits receptor activator of nuclear factor (NF)-κB ligand (RANKL)-induced NF-κB activation. Aconine inhibits receptor activator of nuclear factor (NF)-κB ligand (RANKL)-induced NF-κB activation.

   

(6As,11bS)-7,11b-dihydro-6H-indeno[2,1-c]chromene-3,6a,9,10-tetrol

8-oxatetracyclo[8.7.0.0²,⁷.0¹²,¹⁷]heptadeca-2,4,6,12,14,16-hexaene-5,10,14,15-tetrol

C16H14O5 (286.0841)


Brazilin is a red dye precursor obtained from the heartwood of several species of tropical hardwoods. Brazilin inhibits the cells proliferation, promotes apoptosis, and induces autophagy through the AMPK/mTOR pathway. Brazilin shows chondroprotective and anti-inflammatory activities[1][2][3]. Brazilin is a red dye precursor obtained from the heartwood of several species of tropical hardwoods. Brazilin inhibits the cells proliferation, promotes apoptosis, and induces autophagy through the AMPK/mTOR pathway. Brazilin shows chondroprotective and anti-inflammatory activities[1][2][3].

   

Verbascoside

6-[2-(3,4-Dihydroxyphenyl)ethoxy]-5-hydroxy-2-(hydroxymethyl)-4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-3-yl 3-(3,4-dihydroxyphenyl)prop-2-enoic acid

C29H36O15 (624.2054)


   

Fargesin

1H,3H-FURO(3,4-C)FURAN, 1.ALPHA.-(3,4-DIMETHOXYPHENYL)-3A.BETA.,4,6,6A.BETA.-TETRAHYDRO-4.BETA.-((3,4-METHYLENEDIOXY)PHENYL)-

C21H22O6 (370.1416)


Fargesin is a lignan. Planinin is a natural product found in Piper mullesua and Magnolia coco with data available. (+/-)-Fargesin is a natural product found in Piper mullesua, Aristolochia cymbifera, and other organisms with data available. Fargesin is a bioactive neolignan isolated from magnolia plants, with antihypertensive and anti-inflammatory effects[1][2][3]. Fargesin is a bioactive neolignan isolated from magnolia plants, with antihypertensive and anti-inflammatory effects[1][2][3].

   

Geniposidic_acid

(1S,4aS,7aS)-7-(hydroxymethyl)-1-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-1,4a,5,7a-tetrahydrocyclopenta[c]pyran-4-carboxylic acid

C16H22O10 (374.1213)


Geniposidic acid is a terpene glycoside. Geniposidic acid is a natural product found in Avicennia officinalis, Gardenia jasminoides, and other organisms with data available. Geniposidic acid has radiation protection and anti-cancer activity. Geniposidic acid has radiation protection and anti-cancer activity.

   

Yangabin

1H,3H-Furo(3,4-c)furan, tetrahydro-1,4-bis(3,4,5)-trimethoxyphenyl)-, 1alpha,3aalpha,4alpha,6aalpha)-

C24H30O8 (446.1941)


Yangambin is a lignan. Yangambin is a natural product found in Cassytha filiformis, Hernandia ovigera, and other organisms with data available.

   

Tectoridin

5-Hydroxy-3-(4-hydroxyphenyl)-6-methoxy-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C22H22O11 (462.1162)


Tectoridin is a glycosyloxyisoflavone that is tectorigenin substituted by a beta-D-glucopyranosyl residue at position 7 via a glycosidic linkage. It has a role as a plant metabolite. It is a hydroxyisoflavone, a methoxyisoflavone, a monosaccharide derivative and a 7-hydroxyisoflavones 7-O-beta-D-glucoside. It is functionally related to a tectorigenin. Tectoridin is a natural product found in Iris milesii, Iris tectorum, and other organisms with data available. A glycosyloxyisoflavone that is tectorigenin substituted by a beta-D-glucopyranosyl residue at position 7 via a glycosidic linkage. A polyphenol metabolite detected in biological fluids [PhenolExplorer] Tectoridin is a isoflavone isolated from Maackia amurensis. Tectoridin is a phytoestrogen and activates estrogen and thyroid hormone receptors. Tectoridin exerts the estrogenic effects via ER-dependent genomic pathway and GPR30-dependent nongenomic pathway[1][2]. Tectoridin is a isoflavone isolated from Maackia amurensis. Tectoridin is a phytoestrogen and activates estrogen and thyroid hormone receptors. Tectoridin exerts the estrogenic effects via ER-dependent genomic pathway and GPR30-dependent nongenomic pathway[1][2].

   

Phosphoric acid

Hydrogen phosphate

H3O4P (97.9769)


A phosphorus oxoacid that consists of one oxo and three hydroxy groups joined covalently to a central phosphorus atom. D001697 - Biomedical and Dental Materials > D003764 - Dental Materials

   

(+)-Fargesin

2-(3,4-Dimethoxyphenyl)-6-(3,4-methylenedioxyphenyl)-3,7-dioxabicyclo(3,3,0)octane

C21H22O6 (370.1416)


Constituent of Artemisia absinthium (wormwood). (+)-Fargesin is found in alcoholic beverages and herbs and spices. (+)-Spinescin is found in herbs and spices. (+)-Spinescin is a constituent of sassafras root. Kobusin is a bisepoxylignan isolated from the Pnonobio biondii Pamp. Kobusin is an activator of CFTR and CaCCgie chloride channels and a inhibitor of ANO1/CaCC (calcium-activated chloride channel) channel[1][2]. Kobusin is a bisepoxylignan isolated from the Pnonobio biondii Pamp. Kobusin is an activator of CFTR and CaCCgie chloride channels and a inhibitor of ANO1/CaCC (calcium-activated chloride channel) channel[1][2].

   

Astilbin

(2R,3R)-2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-tetrahydropyran-2-yl]oxy-chroman-4-one

C21H22O11 (450.1162)


Neoisoastilbin is a natural product found in Smilax corbularia, Neolitsea sericea, and other organisms with data available. Astilbin is a flavonoid compound and enhances NRF2 activation. Astilbin also suppresses TNF-α expression and NF-κB activation. Astilbin is a flavonoid compound and enhances NRF2 activation. Astilbin also suppresses TNF-α expression and NF-κB activation. Isoastilbin is a dihydroflavonol glycoside compound in Rhizoma Smilacis glabrae and Astragalus membranaceus. Isoastilbin inhibits glucosyltransferase (GTase) with an IC50 value of 54.3 μg/mL, and also inhibits tyrosinase activity. Isoastilbin shows neuroprotective, antioxidation, antimicrobial and anti-apoptotic properties and has the potential for Alzheimer’s disease research[1][21][3]. Isoastilbin is a dihydroflavonol glycoside compound in Rhizoma Smilacis glabrae and Astragalus membranaceus. Isoastilbin inhibits glucosyltransferase (GTase) with an IC50 value of 54.3 μg/mL, and also inhibits tyrosinase activity. Isoastilbin shows neuroprotective, antioxidation, antimicrobial and anti-apoptotic properties and has the potential for Alzheimer’s disease research[1][21][3]. Neoisoastilbin possesses antioxidant, anti-hyperuricemic and anti-Inflammatory activities[1]. Neoisoastilbin possesses antioxidant, anti-hyperuricemic and anti-Inflammatory activities[1].

   

Genkwanin

4H-1-Benzopyran-4-one, 5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-

C16H12O5 (284.0685)


Genkwanin is a major non-glycosylated flavonoid with anti-flammatory activities. Genkwanin is a major non-glycosylated flavonoid with anti-flammatory activities.

   

Quercitrin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-2-tetrahydropyranyl]oxy]-4-chromenone

C21H20O11 (448.1006)


Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2].

   

Gedunin

NCGC00179126-03_C28H34O7_(6R,6aS,6bR,7aS,10S,10aS,12bR)-10-(3-Furyl)-4,4,6a,10a,12b-pentamethyl-3,8-dioxo-3,4,4a,5,6,6a,7a,8,10,10a,11,12,12a,12b-tetradecahydronaphtho[2,1-f]oxireno[d]isochromen-6-yl acetate

C28H34O7 (482.2304)


A natural product found in Azadirachta indica. Gedunin is a pentacyclic triterpenoid natural product found particularly in Azadirachta indica and Cedrela odorata. It has a role as an antimalarial, an antineoplastic agent, a Hsp90 inhibitor and a plant metabolite. It is a limonoid, an acetate ester, an epoxide, an enone, a member of furans, a pentacyclic triterpenoid, an organic heteropentacyclic compound and a lactone. Gedunin is a natural product found in Azadirachta indica, Cedrela odorata, and other organisms with data available. A pentacyclic triterpenoid natural product found particularly in Azadirachta indica and Cedrela odorata.

   

Osthol

InChI=1/C15H16O3/c1-10(2)4-7-12-13(17-3)8-5-11-6-9-14(16)18-15(11)12/h4-6,8-9H,7H2,1-3H

C15H16O3 (244.1099)


Osthole is a member of coumarins and a botanical anti-fungal agent. It has a role as a metabolite. Osthole is a natural product found in Murraya alata, Pentaceras australe, and other organisms with data available. See also: Angelica pubescens root (part of). A natural product found in Peucedanum ostruthium and Angelica pubescens. D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators D007155 - Immunologic Factors Origin: Plant, Coumarins Osthole (Osthol) is a natural antihistamine alternative. Osthole may be a potential inhibitor of histamine H1 receptor activity. Osthole also suppresses the secretion of HBV in cells. Osthole (Osthol) is a natural antihistamine alternative. Osthole may be a potential inhibitor of histamine H1 receptor activity. Osthole also suppresses the secretion of HBV in cells. Osthole (Osthol) is a natural antihistamine alternative. Osthole may be a potential inhibitor of histamine H1 receptor activity. Osthole also suppresses the secretion of HBV in cells.

   

Quercetagetin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-3,5,6,7-tetrahydroxy-

C15H10O8 (318.0376)


Quercetagetin is a hexahydroxyflavone that is flavone substituted by hydroxy groups at positions 3, 5, 6, 7, 3 and 4 respectively. It has a role as an antioxidant, an antiviral agent and a plant metabolite. It is a member of flavonols and a hexahydroxyflavone. It is functionally related to a quercetin. Quercetagetin is a natural product found in Calanticaria bicolor, Tagetes subulata, and other organisms with data available. See also: Chaste tree fruit (part of). A hexahydroxyflavone that is flavone substituted by hydroxy groups at positions 3, 5, 6, 7, 3 and 4 respectively. D004791 - Enzyme Inhibitors Quercetagetin (6-Hydroxyquercetin) is a flavonoid[1]. Quercetagetin is a moderately potent and selective, cell-permeable pim-1 kinase inhibitor (IC50, 0.34 μM)[2]. Anti-inflammatory and anticancer properties. Quercetagetin (6-Hydroxyquercetin) is a flavonoid[1]. Quercetagetin is a moderately potent and selective, cell-permeable pim-1 kinase inhibitor (IC50, 0.34 μM)[2]. Anti-inflammatory and anticancer properties.

   

Loganic acid

(1S,4aS,6S,7R,7aS)-6-hydroxy-7-methyl-1-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-1,4a,5,6,7,7a-hexahydrocyclopenta[d]pyran-4-carboxylic acid

C16H24O10 (376.1369)


8-Epiloganic acid is a natural product found in Plantago atrata, Lonicera japonica, and other organisms with data available. 8-Epiloganic acid, an iridoid glucoside, can be found in Linaria cymbalaria (Scrophulariaceae)[1]. 8-Epiloganic acid, an iridoid glucoside, can be found in Linaria cymbalaria (Scrophulariaceae)[1]. Loganic acid is an iridoid isolated from cornelian cherry fruits. Loganic acid can modulate diet-induced atherosclerosis and redox status. Loganic acid has strong free radical scavenging activity and remarkable cyto-protective effect against heavy metal mediated toxicity[1][2]. Loganic acid is an iridoid isolated from cornelian cherry fruits. Loganic acid can modulate diet-induced atherosclerosis and redox status. Loganic acid has strong free radical scavenging activity and remarkable cyto-protective effect against heavy metal mediated toxicity[1][2].

   

Cilastatin

7-{[(2R)-2-amino-2-carboxyethyl]sulfanyl}-2-{[(1S)-2,2-dimethylcyclopropyl]formamido}hept-2-enoic acid

C16H26N2O5S (358.1562)


The thioether resulting from the formal oxidative coupling of the thiol group of L-cysteine with the 7-position of (2Z)-2-({[(1S)-2,2-dimethylcyclopropyl]carbonyl}amino)hept-2-enoic acid. It is an inhibitor of dehydropeptidase I (membrane dipeptidase, 3.4.13.19), an enzyme found in the brush border of renal tubes and responsible for degrading the antibiotic imipenem. Cilastatin is therefore administered (as the sodium salt) with imipenem to prolong the antibacterial effect of the latter by preventing its renal metabolism to inactive and potentially nephrotoxic products. Cilastatin also acts as a leukotriene D4 dipeptidase inhibitor, preventing the metabolism of leukotriene D4 to leukotriene E4. D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors C471 - Enzyme Inhibitor > C783 - Protease Inhibitor CONFIDENCE standard compound; INTERNAL_ID 2129 CONFIDENCE standard compound; EAWAG_UCHEM_ID 2555 EAWAG_UCHEM_ID 2555; CONFIDENCE standard compound

   

Saikosaponin A

Saikosaponin A

C42H68O13 (780.466)


Annotation level-1 D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000893 - Anti-Inflammatory Agents D000970 - Antineoplastic Agents D018501 - Antirheumatic Agents Saikosaponin A is an active component of Bupleurum chinensis, up-regulates LXRα expression, with potent anti-inflammatory activity[1]. Saikosaponin A is an active component of Bupleurum chinensis, up-regulates LXRα expression, with potent anti-inflammatory activity[1]. Saikosaponin A is an active component of Bupleurum chinensis, up-regulates LXRα expression, with potent anti-inflammatory activity[1].

   

Geniposidic acid

(1S,4aS,7aS)-7-(hydroxymethyl)-1-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-1,4a,5,7a-tetrahydrocyclopenta[d]pyran-4-carboxylic acid

C16H22O10 (374.1213)


Geniposidic acid has radiation protection and anti-cancer activity. Geniposidic acid has radiation protection and anti-cancer activity.

   

Isofraxidin

Isofraxidin

C11H10O5 (222.0528)


Annotation level-1 Isofraxidin, a coumarin component from Acanthopanax senticosus, inhibits MMP-7 expression and cell invasion of human hepatoma cells. Isofraxidin inhibits the phosphorylation of ERK1/2 in hepatoma cells[1]. Isofraxidin attenuates the expression of iNOS and COX-2, Isofraxidinalso inhibits TLR4/myeloid differentiation protein-2 (MD-2) complex formation[2]. Isofraxidin, a coumarin component from Acanthopanax senticosus, inhibits MMP-7 expression and cell invasion of human hepatoma cells. Isofraxidin inhibits the phosphorylation of ERK1/2 in hepatoma cells[1]. Isofraxidin attenuates the expression of iNOS and COX-2, Isofraxidinalso inhibits TLR4/myeloid differentiation protein-2 (MD-2) complex formation[2].

   

Sclareol

1-Naphthalenepropanol, alpha-ethenyldecahydro-2-hydroxy-alpha,2,5,5,8a-pentamethyl-, (alphaR,1R,2R,4aS,8aS)-: (1R,2R,4aS,8aS)-1-[(3R)-3-hydroxy-3-methylpent-4-en-1-yl]-2,5,5,8a-tetramethyldecahydronaphthalen-2-ol

C20H36O2 (308.2715)


Sclareol is a labdane diterpenoid that is labd-14-ene substituted by hydroxy groups at positions 8 and 13. It has been isolated from Salvia sclarea. It has a role as an antimicrobial agent, an apoptosis inducer, a fragrance, an antifungal agent and a plant metabolite. Sclareol is a natural product found in Curcuma aromatica, Curcuma wenyujin, and other organisms with data available. See also: Clary Sage Oil (part of). A labdane diterpenoid that is labd-14-ene substituted by hydroxy groups at positions 8 and 13. It has been isolated from Salvia sclarea. relative retention time with respect to 9-anthracene Carboxylic Acid is 1.468 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.471 Sclareol is isolated from Salvia sclarea with anticarcinogenic activity. Sclareol shows strong cytotoxic activity against mouse leukemia?(P-388), human epidermal?carcinoma?(KB) cells and human?leukemia?cell lines. Sclareol induces cell apoptosis[1]. Sclareol is isolated from Salvia sclarea with anticarcinogenic activity. Sclareol shows strong cytotoxic activity against mouse leukemia?(P-388), human epidermal?carcinoma?(KB) cells and human?leukemia?cell lines. Sclareol induces cell apoptosis[1].

   

Pantolactone

D-(-)-Pantolactone

C6H10O3 (130.063)


Pantolactone is an endogenous metabolite.

   

Poncirin

(2S)-7-[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-tetrahydropyran-2-yl]oxy-tetrahydropyran-2-yl]oxy-5-hydroxy-2-(4-methoxyphenyl)chroman-4-one

C28H34O14 (594.1948)


(2S)-poncirin is a flavanone glycoside that is 4-methoxy-5,7-dihydroxyflavanone attached to a neohesperidose (alpha-L-rhamnopyranosyl-(1->2)-beta-D-glucopyranose) residue via a glycosidic linkage. It has been isolated from the fruits of Poncirus trifoliata and exhibits inhibitory activity against liopolysaccharide (LPS)-induced prostaglandin E2 and interleukin-6 (IL-6) production. It has a role as a plant metabolite. It is a monomethoxyflavanone, a flavanone glycoside, a disaccharide derivative, a neohesperidoside and a member of 4-methoxyflavanones. It is functionally related to a 4-methoxy-5,7-dihydroxyflavanone. Poncirin is a natural product found in Citrus medica, Micromeria graeca, and other organisms with data available. A flavanone glycoside that is 4-methoxy-5,7-dihydroxyflavanone attached to a neohesperidose (alpha-L-rhamnopyranosyl-(1->2)-beta-D-glucopyranose) residue via a glycosidic linkage. It has been isolated from the fruits of Poncirus trifoliata and exhibits inhibitory activity against liopolysaccharide (LPS)-induced prostaglandin E2 and interleukin-6 (IL-6) production. Poncirin is isolated from?Poncirus trifoliata with anti-inflammory activites. Poncirin significantly reduces mechanical hyperalgesia and allodynia in Complete Freund’s Adjuvant (CFA)-induced inflammatory pain models[1]. Poncirin is isolated from?Poncirus trifoliata with anti-inflammory activites. Poncirin significantly reduces mechanical hyperalgesia and allodynia in Complete Freund’s Adjuvant (CFA)-induced inflammatory pain models[1].

   

Herbacetin

4H-1-Benzopyran-4-one, 3,5,7,8-tetrahydroxy-2-(4-hydroxyphenyl)-

C15H10O7 (302.0427)


Herbacetin is a pentahydroxyflavone that is kaempferol substituted by a hydroxy group at position 8. It is a natural flavonoid from flaxseed which exerts antioxidant, anti-inflammatory and anticancer activities. It has a role as an EC 4.1.1.17 (ornithine decarboxylase) inhibitor, an antineoplastic agent, an apoptosis inducer, an angiogenesis inhibitor, a plant metabolite, an antilipemic drug, an anti-inflammatory agent and an EC 3.4.22.69 (SARS coronavirus main proteinase) inhibitor. It is a pentahydroxyflavone and a 7-hydroxyflavonol. It is functionally related to a kaempferol. Herbacetin is a natural product found in Sedum anglicum, Sedum apoleipon, and other organisms with data available. See also: Larrea tridentata whole (part of). A pentahydroxyflavone that is kaempferol substituted by a hydroxy group at position 8. It is a natural flavonoid from flaxseed which exerts antioxidant, anti-inflammatory and anticancer activities. Herbacetin is a natural flavonoid from flaxseed, exerts various pharmacological activities, including antioxidant, anti-inflammatory and anticancer effects[1]. Herbacetin is an Ornithine decarboxylase (ODC) allosteric inhibitor, directly binds to Asp44, Asp243, and Glu384 on ODC. Ornithine decarboxylase (ODC) is a rate-limiting enzyme in the first step of polyamine biosynthesis[2]. Herbacetin is a natural flavonoid from flaxseed, exerts various pharmacological activities, including antioxidant, anti-inflammatory and anticancer effects[1]. Herbacetin is an Ornithine decarboxylase (ODC) allosteric inhibitor, directly binds to Asp44, Asp243, and Glu384 on ODC. Ornithine decarboxylase (ODC) is a rate-limiting enzyme in the first step of polyamine biosynthesis[2].

   

2-FUROIC ACID

2-FUROIC ACID

C5H4O3 (112.016)


A furoic acid having the carboxylic acid group located at position 2. 2-Furoic acid (Furan-2-carboxylic acid) is an organic compound produced through furfural oxidation[1]. 2-Furoic acid exhibits hypolipidemic effet, lowers both serum cholesterol and serum triglyceride levels in rats[2]. 2-Furoic acid (Furan-2-carboxylic acid) is an organic compound produced through furfural oxidation[1]. 2-Furoic acid exhibits hypolipidemic effet, lowers both serum cholesterol and serum triglyceride levels in rats[2]. 2-Furoic acid (Furan-2-carboxylic acid) is an organic compound produced through furfural oxidation[1]. 2-Furoic acid exhibits hypolipidemic effet, lowers both serum cholesterol and serum triglyceride levels in rats[2].

   

ALENDRONIC ACID

ALENDRONIC ACID

C4H13NO7P2 (249.0167)


M - Musculo-skeletal system > M05 - Drugs for treatment of bone diseases > M05B - Drugs affecting bone structure and mineralization > M05BA - Bisphosphonates C78281 - Agent Affecting Musculoskeletal System > C67439 - Bone Resorption Inhibitor D050071 - Bone Density Conservation Agents > D004164 - Diphosphonates

   

Dimethyl sulfone

Sulfonylbismethane

C2H6O2S (94.0088)


C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D000893 - Anti-Inflammatory Agents Dimethyl sulfone (Methyl Sulfonyl Methane) is a metabolic product of endogenous methanethiol metabolism and intestinal bacterial metabolism. Dimethyl sulfone inhibits choriocapillary endothelial (CCE) cell proliferation, also has many biological effects, including antiinflammatory, antioxidant, and local anesthetic effects that could be neuroprotective[1][2][3]. Dimethyl sulfone (Methyl Sulfonyl Methane) is a metabolic product of endogenous methanethiol metabolism and intestinal bacterial metabolism. Dimethyl sulfone inhibits choriocapillary endothelial (CCE) cell proliferation, also has many biological effects, including antiinflammatory, antioxidant, and local anesthetic effects that could be neuroprotective[1][2][3].

   

Alizarin

InChI=1\C14H8O4\c15-10-6-5-9-11(14(10)18)13(17)8-4-2-1-3-7(8)12(9)16\h1-6,15,18

C14H8O4 (240.0423)


COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Rubiadin

9,10-Anthracenedione, 1,3-dihydroxy-2-methyl-

C15H10O4 (254.0579)


Rubiadin is a dihydroxy anthraquinone isolated from Rubia cordifolia. Rubiadin has a potent antixidant activity[1]. Rubiadin is a dihydroxy anthraquinone isolated from Rubia cordifolia. Rubiadin has a potent antixidant activity[1].

   

Fumitremorgin C

Fumitremorgin C

C22H25N3O3 (379.1896)


An organic heteropentacyclic compound that is a mycotoxic indole alkaloid produced by several fungi. A potent and specific inhibitor of the breast cancer resistance protein multidrug transporter.

   

Planinin

5-[4-(3,4-dimethoxyphenyl)-hexahydrofuro[3,4-c]furan-1-yl]-2H-1,3-benzodioxole

C21H22O6 (370.1416)


   

Cyanamide

Cyanamide

CH2N2 (42.0218)


   

IODOFORM

IODOFORM

CHI3 (393.7213)


D - Dermatologicals > D09 - Medicated dressings > D09A - Medicated dressings > D09AA - Medicated dressings with antiinfectives C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent

   

Estradiol valerate

Estradiol valerate

C23H32O3 (356.2351)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen

   

Ostol

InChI=1\C15H16O3\c1-10(2)4-7-12-13(17-3)8-5-11-6-9-14(16)18-15(11)12\h4-6,8-9H,7H2,1-3H

C15H16O3 (244.1099)


D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators D007155 - Immunologic Factors Osthole (Osthol) is a natural antihistamine alternative. Osthole may be a potential inhibitor of histamine H1 receptor activity. Osthole also suppresses the secretion of HBV in cells. Osthole (Osthol) is a natural antihistamine alternative. Osthole may be a potential inhibitor of histamine H1 receptor activity. Osthole also suppresses the secretion of HBV in cells. Osthole (Osthol) is a natural antihistamine alternative. Osthole may be a potential inhibitor of histamine H1 receptor activity. Osthole also suppresses the secretion of HBV in cells.

   

90-18-6

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-3,5,6,7-tetrahydroxy- (9CI)

C15H10O8 (318.0376)


D004791 - Enzyme Inhibitors Quercetagetin (6-Hydroxyquercetin) is a flavonoid[1]. Quercetagetin is a moderately potent and selective, cell-permeable pim-1 kinase inhibitor (IC50, 0.34 μM)[2]. Anti-inflammatory and anticancer properties. Quercetagetin (6-Hydroxyquercetin) is a flavonoid[1]. Quercetagetin is a moderately potent and selective, cell-permeable pim-1 kinase inhibitor (IC50, 0.34 μM)[2]. Anti-inflammatory and anticancer properties.

   

furoic acid

InChI=1\C5H4O3\c6-5(7)4-2-1-3-8-4\h1-3H,(H,6,7

C5H4O3 (112.016)


2-Furoic acid (Furan-2-carboxylic acid) is an organic compound produced through furfural oxidation[1]. 2-Furoic acid exhibits hypolipidemic effet, lowers both serum cholesterol and serum triglyceride levels in rats[2]. 2-Furoic acid (Furan-2-carboxylic acid) is an organic compound produced through furfural oxidation[1]. 2-Furoic acid exhibits hypolipidemic effet, lowers both serum cholesterol and serum triglyceride levels in rats[2]. 2-Furoic acid (Furan-2-carboxylic acid) is an organic compound produced through furfural oxidation[1]. 2-Furoic acid exhibits hypolipidemic effet, lowers both serum cholesterol and serum triglyceride levels in rats[2].

   

Phytodolor

2H-1- Benzopyran-2-one, 7-hydroxy-6,8-dimethoxy-

C11H10O5 (222.0528)


Isofraxidin, a coumarin component from Acanthopanax senticosus, inhibits MMP-7 expression and cell invasion of human hepatoma cells. Isofraxidin inhibits the phosphorylation of ERK1/2 in hepatoma cells[1]. Isofraxidin attenuates the expression of iNOS and COX-2, Isofraxidinalso inhibits TLR4/myeloid differentiation protein-2 (MD-2) complex formation[2]. Isofraxidin, a coumarin component from Acanthopanax senticosus, inhibits MMP-7 expression and cell invasion of human hepatoma cells. Isofraxidin inhibits the phosphorylation of ERK1/2 in hepatoma cells[1]. Isofraxidin attenuates the expression of iNOS and COX-2, Isofraxidinalso inhibits TLR4/myeloid differentiation protein-2 (MD-2) complex formation[2].

   

Dimethyl sulfone

methylsulfonylmethane

C2H6O2S (94.0088)


C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D000893 - Anti-Inflammatory Agents Dimethyl sulfone (Methyl Sulfonyl Methane) is a metabolic product of endogenous methanethiol metabolism and intestinal bacterial metabolism. Dimethyl sulfone inhibits choriocapillary endothelial (CCE) cell proliferation, also has many biological effects, including antiinflammatory, antioxidant, and local anesthetic effects that could be neuroprotective[1][2][3]. Dimethyl sulfone (Methyl Sulfonyl Methane) is a metabolic product of endogenous methanethiol metabolism and intestinal bacterial metabolism. Dimethyl sulfone inhibits choriocapillary endothelial (CCE) cell proliferation, also has many biological effects, including antiinflammatory, antioxidant, and local anesthetic effects that could be neuroprotective[1][2][3].

   

AI3-32395

InChI=1\C9H10O3\c10-8-3-1-2-7(6-8)4-5-9(11)12\h1-3,6,10H,4-5H2,(H,11,12

C9H10O3 (166.063)


3-(3-Hydroxyphenyl)propionic acid is a flavonoid metabolite formed by human microflora. 3-(3-Hydroxyphenyl)propionic acid shows vasodilatory activity[1]. 3-(3-Hydroxyphenyl)propionic acid is a flavonoid metabolite formed by human microflora. 3-(3-Hydroxyphenyl)propionic acid shows vasodilatory activity[1].

   

LS-473

4-12-00-00008 (Beilstein Handbook Reference)

C6H13N (99.1048)


   

Hamaudol 3-glucoside

(S)-5-Hydroxy-2,2,8-trimethyl-3-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-3,4-dihydro-2H,6H-pyrano[3,2-g]chromen-6-one

C21H26O10 (438.1526)


Sec-o-Glucosylhamaudol is a member of chromenes. sec-o-Glucosylhamaudol is a natural product found in Ostericum grosseserratum, Saposhnikovia divaricata, and other organisms with data available. Sec-O-Glucosylhamaudol is a natural compound extracted from Peucedanum japonicum Thunb, decreases levels of μ-opioid receptor, with analgesic effect[1]. Sec-O-Glucosylhamaudol is a natural compound extracted from Peucedanum japonicum Thunb, decreases levels of μ-opioid receptor, with analgesic effect[1]. Sec-O-Glucosylhamaudol is a natural compound extracted from Peucedanum japonicum Thunb, decreases levels of μ-opioid receptor, with analgesic effect[1].

   

CYCLOHEXYLAMINE

CYCLOHEXYLAMINE

C6H13N (99.1048)


A primary aliphatic amine consisting of cyclohexane carrying an amino substituent.

   

Chlorhexidine

Chlorhexidine

C22H30Cl2N10 (504.2032)


A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations > A01AB - Antiinfectives and antiseptics for local oral treatment B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05C - Irrigating solutions > B05CA - Antiinfectives D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants > D08AC - Biguanides and amidines D - Dermatologicals > D09 - Medicated dressings > D09A - Medicated dressings > D09AA - Medicated dressings with antiinfectives S - Sensory organs > S03 - Ophthalmological and otological preparations > S03A - Antiinfectives > S03AA - Antiinfectives R - Respiratory system > R02 - Throat preparations > R02A - Throat preparations > R02AA - Antiseptics S - Sensory organs > S02 - Otologicals > S02A - Antiinfectives > S02AA - Antiinfectives S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D007004 - Hypoglycemic Agents > D001645 - Biguanides D003358 - Cosmetics > D009067 - Mouthwashes D001697 - Biomedical and Dental Materials D000890 - Anti-Infective Agents D004202 - Disinfectants

   

Raloxifene

Raloxifene

C28H27NO4S (473.1661)


G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03X - Other sex hormones and modulators of the genital system > G03XC - Selective estrogen receptor modulators D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D020847 - Estrogen Receptor Modulators D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D004965 - Estrogen Antagonists C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C1821 - Selective Estrogen Receptor Modulator C274 - Antineoplastic Agent > C129818 - Antineoplastic Hormonal/Endocrine Agent > C481 - Antiestrogen C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist D050071 - Bone Density Conservation Agents C1892 - Chemopreventive Agent Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Raloxifene (Keoxifene) is a benzothiophene-derived selective estrogen receptor modulator (SERM). Raloxifene has estrogen-agonistic effects on bone and lipids and estrogen-antagonistic effects on the breast and uterus. Raloxifene is used for breast cancer and osteoporosis research[1].

   

CYCLOHEXANECARBOXYLIC ACID

CYCLOHEXANECARBOXYLIC ACID

C7H12O2 (128.0837)


Cyclohexanecarboxylic acid is a Valproate structural analogue with anticonvulsant action[1].

   

tolmetin

1-Methyl-5-p-toluoylpyrrole-2-acetic acid

C15H15NO3 (257.1052)


M - Musculo-skeletal system > M02 - Topical products for joint and muscular pain > M02A - Topical products for joint and muscular pain > M02AA - Antiinflammatory preparations, non-steroids for topical use M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AB - Acetic acid derivatives and related substances D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D004791 - Enzyme Inhibitors

   

Risedronic acid

Risedronic acid

C7H11NO7P2 (283.0011)


M - Musculo-skeletal system > M05 - Drugs for treatment of bone diseases > M05B - Drugs affecting bone structure and mineralization > M05BA - Bisphosphonates C78281 - Agent Affecting Musculoskeletal System > C67439 - Bone Resorption Inhibitor D050071 - Bone Density Conservation Agents > D004164 - Diphosphonates D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators

   

Tiludronic Acid

Tiludronic Acid

C7H9ClO6P2S (317.9284)


M - Musculo-skeletal system > M05 - Drugs for treatment of bone diseases > M05B - Drugs affecting bone structure and mineralization > M05BA - Bisphosphonates C78281 - Agent Affecting Musculoskeletal System > C67439 - Bone Resorption Inhibitor D050071 - Bone Density Conservation Agents > D004164 - Diphosphonates

   

ST 23:4;O3

17-pentanoyl-estra-1,3,5(10)-triene-3,17beta-diol

C23H32O3 (356.2351)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen Same as: D01413

   

GW 3965

3-(3-(N-(2-Chloro-3-trifluoromethylbenzyl)(2,2-diphenylethyl)amino)propoxy)phenylacetic acid

C33H31ClF3NO3 (581.1944)


   

N-Cyclohexylcyclohexanamine

N-Cyclohexylcyclohexanamine

C12H23N (181.183)


D004791 - Enzyme Inhibitors

   

3-Hydroxyphenylpropanoate

3-(3-hydroxyphenyl)propanoic acid

C9H10O3 (166.063)


A monocarboxylic acid that is propionic acid carrying a 3-hydroxyphenyl substituent at C-3. 3-(3-Hydroxyphenyl)propionic acid is a flavonoid metabolite formed by human microflora. 3-(3-Hydroxyphenyl)propionic acid shows vasodilatory activity[1]. 3-(3-Hydroxyphenyl)propionic acid is a flavonoid metabolite formed by human microflora. 3-(3-Hydroxyphenyl)propionic acid shows vasodilatory activity[1].

   

UNII:0514MAW53A

UNII:0514MAW53A

C15H24NO4PS (345.1164)


C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

DL-Tartaric acid

L-(+)-Tartaric acid

C4H6O6 (150.0164)


DL-Tartaric acid is a non-racemic mixture of L- and D-tartaric acids with antioxidant activities[1][2].

   

BENZOHYDROQUINONE

1,4-Dihydroxynaphthalene

C10H8O2 (160.0524)


   

Dihydrogenistein

4,5,7-Trihydroxyisoflavan-4-one

C15H12O5 (272.0685)


A hydroxyisoflavanone comprising isoflavanone carrying three hydroxy substituents at positions 5, 7 and 4.

   

brasilin

(+)-BRAZILIN

C16H14O5 (286.0841)


Brazilin is a red dye precursor obtained from the heartwood of several species of tropical hardwoods. Brazilin inhibits the cells proliferation, promotes apoptosis, and induces autophagy through the AMPK/mTOR pathway. Brazilin shows chondroprotective and anti-inflammatory activities[1][2][3]. Brazilin is a red dye precursor obtained from the heartwood of several species of tropical hardwoods. Brazilin inhibits the cells proliferation, promotes apoptosis, and induces autophagy through the AMPK/mTOR pathway. Brazilin shows chondroprotective and anti-inflammatory activities[1][2][3].

   

(+)-Fargesin

(+)-Fargesin

C21H22O6 (370.1416)