Exact Mass: 329.1991
Exact Mass Matches: 329.1991
Found 500 metabolites which its exact mass value is equals to given mass value 329.1991
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Sinomenine
Sinomenine is a morphinane alkaloid. Sinomenine is a natural product found in Sinomenium acutum, Stephania cephalantha, and other organisms with data available. Sinomenine is an alkaloid isolated from the root of Sinomenium acutum with immunomodulatory and potential anti-angiogenic and activities. Although the mechanism of action remains to be fully elucidated, sinomenine appears to inhibit endothelial proliferation mediated through basic fibroblast growth factor (bFGF), which may contribute to its anti-angiogenic effect. In Chinese medicine, this agent has a long track-record in treating arthritis, which is accounted by its ability to inhibit proliferation of synovial fibroblasts and lymphocytes. In addition, sinomenine has been shown to suppress expressions of genes involved in inflammation and apoptosis, such as interleukin-6, a pleiotropic inflammatory cytokine and JAK3 (Janus kinase 3), Daxx (death-associated protein 6), plus HSP27 (heat shock 27kDa protein 1), respectively. D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids C274 - Antineoplastic Agent > C1742 - Angiogenesis Inhibitor C308 - Immunotherapeutic Agent > C2139 - Immunostimulant D018501 - Antirheumatic Agents Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.366 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.360 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.362 Sinomenine, an alkaloid extracted from?Sinomenium acutum, is a blocker of the NF-κB activation[1]. Sinomenine also is an activator of μ-opioid receptor[2]. Sinomenine, an alkaloid extracted from?Sinomenium acutum, is a blocker of the NF-κB activation[1]. Sinomenine also is an activator of μ-opioid receptor[2]. Sinomenine, an alkaloid extracted from?Sinomenium acutum, is a blocker of the NF-κB activation[1]. Sinomenine also is an activator of μ-opioid receptor[2].
(S)-Reticuline
(S)-Reticuline is an endogenous precursor of morphine (PMID: 15383669). (S)-Reticuline is a key intermediate in the synthesis of morphine, the major active metabolite of the opium poppy. "Endogenous morphine" has been long isolated and authenticated by mass spectrometry in trace amounts from animal- and human-specific tissue or fluids (PMID: 15874902). Human neuroblastoma cells (SH-SY5Y) were shown capable of synthesizing morphine as well. (S)-Reticuline undergoes a change of configuration at C-1 during its transformation into salutaridinol and thebaine. From thebaine, there is a bifurcate pathway leading to morphine proceeding via codeine or oripavine, in both plants and mammals (PMID 15937106). (S)-reticuline is the (S)-enantiomer of reticuline. It has a role as an EC 2.1.1.116 [3-hydroxy-N-methyl-(S)-coclaurine 4-O-methyltransferase] inhibitor. It is a conjugate base of a (S)-reticulinium(1+). It is an enantiomer of a (R)-reticuline. Reticuline is a natural product found in Fumaria capreolata, Berberis integerrima, and other organisms with data available. See also: Peumus boldus leaf (part of). Alkaloid from Papaver somniferum (opium poppy) and Annona reticulata (custard apple) The (S)-enantiomer of reticuline.
Trilostane
Trilostane is only found in individuals that have used or taken this drug. It is an inhibitor of 3 beta-hydroxysteroid dehydrogenase used in the treatment of Cushings syndrome. It was withdrawn from the United States market in April 1994. [Wikipedia]Trilostane produces suppression of the adrenal cortex by inhibiting enzymatic conversion of steroids by 3-beta-hydroxysteroid dehydrogenase/delta 5,4 ketosteroid isomerase, thus blocking synthesis of adrenal steroids. H - Systemic hormonal preparations, excl. sex hormones and insulins > H02 - Corticosteroids for systemic use > H02C - Antiadrenal preparations > H02CA - Anticorticosteroids C471 - Enzyme Inhibitor > C54678 - Hydroxysteroid Dehydrogenase Inhibitor > C2184 - 3-Hydroxysteroid Dehydrogenase Inhibitor C274 - Antineoplastic Agent > C2189 - Signal Transduction Inhibitor > C129824 - Antineoplastic Protein Inhibitor C274 - Antineoplastic Agent > C129818 - Antineoplastic Hormonal/Endocrine Agent > C481 - Antiestrogen C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C1740 - Aromatase Inhibitor D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist > C2355 - Anti-Adrenal D012102 - Reproductive Control Agents > D000019 - Abortifacient Agents C471 - Enzyme Inhibitor > C129825 - Antineoplastic Enzyme Inhibitor D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors Same as: D01180
Salutaridinol
D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids
Valclavam
D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams
Cinnamoylcocaine
Isosinomenine
D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids
(R)-Reticuline
Pipertipine
Pipertipine is found in herbs and spices. Pipertipine is an alkaloid from the dried seeds of pepper Piper nigrum. Alkaloid from the dried seeds of pepper Piper nigrum. Pipertipine is found in herbs and spices.
(8E)-Piperamide-C9:1
(8E)-Piperamide-C9:1 is found in herbs and spices. (8E)-Piperamide-C9:1 is a constituent of pepper (Piper nigrum). Constituent of pepper (Piper nigrum). (8E)-Piperamide-C9:1 is found in herbs and spices.
Retrofractamide C
Retrofractamide C is an alkaloid from Piper retrofractum (Javanese long pepper). Alkaloid from Piper retrofractum (Javanese long pepper).
xi-Anomuricine
xi-Anomuricine is found in fruits. Minor alkaloid from the root and stem barks of Annona muricata (soursop). Minor alkaloid from the root and stem barks of Annona muricata (soursop). xi-Anomuricine is found in fruits.
6-Keto-decanoylcarnitine
6-Keto-decanoylcarnitine is an acylcarnitine. More specifically, it is an 6-oxodecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 6-Keto-decanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 6-keto-decanoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews]. A human metabolite taken as a putative food compound of mammalian origin [HMDB]
N-desethyloxybutynin
N-desethyloxybutynin is a metabolite of oxybutynin. Oxybutynin (Ditropan, Lyrinel XL) is an anticholinergic medication used to relieve urinary and bladder difficulties, including frequent urination and inability to control urination, by decreasing muscle spasms of the bladder. It competitively antagonizes the M1, M2, and M3 subtypes of the muscarinic acetylcholine receptor. It also has direct spasmolytic effects on bladder smooth muscle as a calcium antagonist and local anesthetic, but at concentrations far above those used clinically. (Wikipedia) D000890 - Anti-Infective Agents > D000892 - Anti-Infective Agents, Urinary > D008333 - Mandelic Acids
Hydroxyethylpromethazine
R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AD - Phenothiazine derivatives Hydroxyethylpromethazine is a first-generation phenothiazine H1-antihistamine.
5-Hydroxydec-3-enoylcarnitine
5-Hydroxydec-3-enoylcarnitine is an acylcarnitine. More specifically, it is an 5-hydroxydec-3-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 5-Hydroxydec-3-enoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 5-Hydroxydec-3-enoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
5-Hydroxydec-8-enoylcarnitine
5-Hydroxydec-8-enoylcarnitine is an acylcarnitine. More specifically, it is an 5-hydroxydec-8-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 5-Hydroxydec-8-enoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 5-Hydroxydec-8-enoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
5-Hydroxydec-5-enoylcarnitine
5-Hydroxydec-5-enoylcarnitine is an acylcarnitine. More specifically, it is an 5-hydroxydec-5-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 5-Hydroxydec-5-enoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 5-Hydroxydec-5-enoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
5-Hydroxydec-6-enoylcarnitine
5-Hydroxydec-6-enoylcarnitine is an acylcarnitine. More specifically, it is an 5-hydroxydec-6-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 5-Hydroxydec-6-enoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 5-Hydroxydec-6-enoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
5-Hydroxydec-7-enoylcarnitine
5-Hydroxydec-7-enoylcarnitine is an acylcarnitine. More specifically, it is an 5-hydroxydec-7-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 5-Hydroxydec-7-enoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 5-Hydroxydec-7-enoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
5-Hydroxydec-4-enoylcarnitine
5-Hydroxydec-4-enoylcarnitine is an acylcarnitine. More specifically, it is an 5-hydroxydec-4-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 5-Hydroxydec-4-enoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 5-Hydroxydec-4-enoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
(2Z)-5-Hydroxydec-2-enoylcarnitine
(2Z)-5-Hydroxydec-2-enoylcarnitine is an acylcarnitine. More specifically, it is an (2Z)-5-hydroxydec-2-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (2Z)-5-Hydroxydec-2-enoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine (2Z)-5-Hydroxydec-2-enoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
3-oxodecanoylcarnitine
3-oxodecanoylcarnitine is an acylcarnitine. More specifically, it is an 3-oxodecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3-oxodecanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 3-oxodecanoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
9-Oxodecanoylcarnitine
9-Oxodecanoylcarnitine is an acylcarnitine. More specifically, it is an 9-oxodecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 9-Oxodecanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 9-Oxodecanoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
7-Oxodecanoylcarnitine
7-Oxodecanoylcarnitine is an acylcarnitine. More specifically, it is an 7-oxodecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 7-Oxodecanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 7-Oxodecanoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
5-Oxodecanoylcarnitine
5-Oxodecanoylcarnitine is an acylcarnitine. More specifically, it is an 5-oxodecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 5-Oxodecanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 5-Oxodecanoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
4-Oxodecanoylcarnitine
4-Oxodecanoylcarnitine is an acylcarnitine. More specifically, it is an 4-oxodecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 4-Oxodecanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 4-Oxodecanoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
8-Oxodecanoylcarnitine
8-Oxodecanoylcarnitine is an acylcarnitine. More specifically, it is an 8-oxodecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 8-Oxodecanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 8-Oxodecanoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Non-5-enedioylcarnitine
Non-5-enedioylcarnitine is an acylcarnitine. More specifically, it is an non-5-enedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. non-5-enedioylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine non-5-enedioylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Non-6-enedioylcarnitine
Non-6-enedioylcarnitine is an acylcarnitine. More specifically, it is an non-6-enedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. non-6-enedioylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine non-6-enedioylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
(2E)-Non-2-enedioylcarnitine
(2E)-non-2-enedioylcarnitine is an acylcarnitine. More specifically, it is an (2E)-non-2-enedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (2E)-non-2-enedioylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine (2E)-non-2-enedioylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
N-Lauroyl Glutamic acid
N-lauroyl glutamic acid, also known as N-lauroyl glutamate belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is a Lauric acid amide of Glutamic acid. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Lauroyl Glutamic acid is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Lauroyl Glutamic acid is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.
14-Methoxymetopon
Dapivirine
G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids C471 - Enzyme Inhibitor > C1589 - Reverse Transcriptase Inhibitor > C97453 - Non-nucleoside Reverse Transcriptase Inhibitor D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D044966 - Anti-Retroviral Agents C254 - Anti-Infective Agent > C281 - Antiviral Agent
6-(4,5-Dihydro-1H-imidazol-2-yl)-2-(4-(4,5-dihydro-1H-imidazol-2-yl)phenyl)-1H-indole
Gabapentin enacarbil
C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic
Modrastane
Oxycodone cr
Prenylamine
C - Cardiovascular system > C01 - Cardiac therapy > C01D - Vasodilators used in cardiac diseases C78274 - Agent Affecting Cardiovascular System > C29707 - Vasodilating Agent D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators
Sinomenine
Sunepitron
1-[(3-Phenyl-3-cyclohexenyl)methyl]-4-phenyl-1,2,3,6-tetrahydropyridine
8-trans-Piperamide-C-9-1
8-trans-piperamide-c-9-1 is a member of the class of compounds known as benzodioxoles. Benzodioxoles are organic compounds containing a benzene ring fused to either isomers of dioxole. Dioxole is a five-membered unsaturated ring of two oxygen atoms and three carbon atoms. 8-trans-piperamide-c-9-1 is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). 8-trans-piperamide-c-9-1 can be found in pepper (spice), which makes 8-trans-piperamide-c-9-1 a potential biomarker for the consumption of this food product.
salutaridinol
Salutaridinol belongs to phenanthrenes and derivatives class of compounds. Those are polycyclic compounds containing a phenanthrene moiety, which is a tricyclic aromatic compound with three non-linearly fused benzene. Salutaridinol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Salutaridinol can be found in a number of food items such as pummelo, cardamom, yellow wax bean, and chinese bayberry, which makes salutaridinol a potential biomarker for the consumption of these food products. Salutaridinol is a modified benzyltetrahydroisoquinoline alkaloid with the formula C19H23NO4. It is produced in the secondary metabolism of the opium poppy Papaver somniferum (Papaveraceae) as an intermediate in the biosynthetic pathway that generates morphine. As an isoquinoline alkaloid, it is fundamentally derived from tyrosine as part of the shikimate pathway of secondary metabolism. Salutaridinol is a product of the enzyme salutaridine: NADPH 7-oxidoreductase and the substrate for the enzyme salutaridinol 7-O-acetyltransferase, which are two of the four enzymes in the morphine biosynthesis pathway that generates morphine from (R)-reticuline. Salutaridinols unique position adjacent to two of the four enzymes in the morphine biosynthesis pathway gives it an important role in enzymatic, genetic, and synthetic biology studies of morphine biosynthesis. Salutaridinol levels are indicative of the flux through the morphine biosynthesis pathway and the efficacy of both salutaridine: NADPH 7-oxidoreductase and salutaridinol 7-O-acetyltransferase .
Ile-Val-Val
(-)-7-Hydroxy-10t,11-dimethyl-(4at,7ac,11ac,13at)-Delta6-hexadecahydro-7r,13c-methano-naphtho[2,1:4,5]cyclohepta[1,2-b]pyridin-5-on|(-)-7-hydroxy-10t,11-dimethyl-(4at,7ac,11ac,13at)-Delta6-hexadecahydro-7r,13c-methano-naphtho[2,1:4,5]cyclohepta[1,2-b]pyridin-5-one|Himbadine
1,2,3,4-Tetrahydro-6-hydroxy-7-methoxy-1-(4-hydroxy-3-methoxybenzyl)-2-methylisoquinoline
nortropane-3alpha,7beta-diol 7-trans-cinnamate 3-propanoate
(1S,17S)-4,5,17-trimethoxy-11-azatetracyclo[9.7.0.0^{1,14.0^{2,7]octadeca-2,4,6,14-tetraene
N-[2-(4-Methoxyphenyl)ethyl]-3-(4-hydroxy-3-methoxyphenyl)propanamide
N-[2-(4-Hydroxyphenyl)ethyl]-3-(3,4-dimethoxyphenyl)propanamide
2,3-methanediyldioxy-6xi-methoxy-17-methyl-morphin-8(14)-en-7xi-ol|5,6-dihydro-amurinol|amurininol|Dihydroundarin
(7Z,10S,12Z,13aS)-7,13-epoxy-2,3,9,10,11,13a-hexahydro-5,6-dimethoxy-1-methyl-1H-cyclodec[ij]isoquinolin-10-ol|stephalonganine B
1-[7-(3,4-methylenedioxyphenyl)-(2E,4E)-heptadienoyl]-N-isobutylamide
3-[(6-Oxodecanoyl)oxy]-4-(trimethylammonio)butanoate
14-Episinomenine
14-Episinomenine is a natural product found in Stephania cephalantha with data available.
Trilostane
H - Systemic hormonal preparations, excl. sex hormones and insulins > H02 - Corticosteroids for systemic use > H02C - Antiadrenal preparations > H02CA - Anticorticosteroids C471 - Enzyme Inhibitor > C54678 - Hydroxysteroid Dehydrogenase Inhibitor > C2184 - 3-Hydroxysteroid Dehydrogenase Inhibitor C274 - Antineoplastic Agent > C2189 - Signal Transduction Inhibitor > C129824 - Antineoplastic Protein Inhibitor C274 - Antineoplastic Agent > C129818 - Antineoplastic Hormonal/Endocrine Agent > C481 - Antiestrogen C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C1740 - Aromatase Inhibitor D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist > C2355 - Anti-Adrenal D012102 - Reproductive Control Agents > D000019 - Abortifacient Agents C471 - Enzyme Inhibitor > C129825 - Antineoplastic Enzyme Inhibitor D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors CONFIDENCE standard compound; INTERNAL_ID 720; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4414; ORIGINAL_PRECURSOR_SCAN_NO 4413 CONFIDENCE standard compound; INTERNAL_ID 720; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4409; ORIGINAL_PRECURSOR_SCAN_NO 4407 CONFIDENCE standard compound; INTERNAL_ID 720; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4370; ORIGINAL_PRECURSOR_SCAN_NO 4368 CONFIDENCE standard compound; INTERNAL_ID 720; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4405; ORIGINAL_PRECURSOR_SCAN_NO 4404 CONFIDENCE standard compound; INTERNAL_ID 720; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4411; ORIGINAL_PRECURSOR_SCAN_NO 4410 CONFIDENCE standard compound; INTERNAL_ID 720; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4413; ORIGINAL_PRECURSOR_SCAN_NO 4412 CONFIDENCE standard compound; INTERNAL_ID 720; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8763; ORIGINAL_PRECURSOR_SCAN_NO 8759 CONFIDENCE standard compound; INTERNAL_ID 720; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9288; ORIGINAL_PRECURSOR_SCAN_NO 9285 CONFIDENCE standard compound; INTERNAL_ID 720; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9297; ORIGINAL_PRECURSOR_SCAN_NO 9293 CONFIDENCE standard compound; INTERNAL_ID 720; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9341; ORIGINAL_PRECURSOR_SCAN_NO 9336 CONFIDENCE standard compound; INTERNAL_ID 720; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8839; ORIGINAL_PRECURSOR_SCAN_NO 8834 CONFIDENCE standard compound; INTERNAL_ID 720; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8911; ORIGINAL_PRECURSOR_SCAN_NO 8909
(1-(5-Fluoropentyl)-1H-indol-3-yl)(2,2,3,3-tetramethylcyclopropyl)methanone
prenylamine
C - Cardiovascular system > C01 - Cardiac therapy > C01D - Vasodilators used in cardiac diseases C78274 - Agent Affecting Cardiovascular System > C29707 - Vasodilating Agent D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators
kukoline
Origin: Plant; Formula(Parent): C19H23NO4; Bottle Name:Sinomenine; PRIME Parent Name:Sinomenine; PRIME in-house No.:V0298; SubCategory_DNP: Isoquinoline alkaloids, Morphine alkaloids D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids C274 - Antineoplastic Agent > C1742 - Angiogenesis Inhibitor C308 - Immunotherapeutic Agent > C2139 - Immunostimulant D018501 - Antirheumatic Agents Sinomenine, an alkaloid extracted from?Sinomenium acutum, is a blocker of the NF-κB activation[1]. Sinomenine also is an activator of μ-opioid receptor[2]. Sinomenine, an alkaloid extracted from?Sinomenium acutum, is a blocker of the NF-κB activation[1]. Sinomenine also is an activator of μ-opioid receptor[2]. Sinomenine, an alkaloid extracted from?Sinomenium acutum, is a blocker of the NF-κB activation[1]. Sinomenine also is an activator of μ-opioid receptor[2].
N-desethyloxybutynin
D000890 - Anti-Infective Agents > D000892 - Anti-Infective Agents, Urinary > D008333 - Mandelic Acids
butyl prop-2-enoate,N-(hydroxymethyl)prop-2-enamide,methyl 2-methylprop-2-enoate
4-[2-[benzyl(tert-butyl)amino]-1-hydroxyethyl]-2-(hydroxymethyl)phenol
(S)-2-TERT-BUTOXYCARBONYLAMINO-3-NAPHTHALEN-2-YL-PROPIONIC ACID METHYL ESTER
2-ethylhexyl (E)-3-(1,3-benzodioxol-5-yl)-2-cyanoprop-2-enoate
1-tert-butyl 4,4-diethyl piperidine-1,4,4-tricarboxylate
Bornaprine
N - Nervous system > N04 - Anti-parkinson drugs > N04A - Anticholinergic agents > N04AA - Tertiary amines D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists
Pramoxine HCl
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent
buta-1,3-diene,prop-2-enenitrile,prop-1-en-2-ylbenzene,styrene
Pivopril
C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent C471 - Enzyme Inhibitor > C783 - Protease Inhibitor > C247 - ACE Inhibitor
(S)-5-METHOXY-N-PROPYL-N-(2-(THIOPHEN-2-YL)ETHYL)-1,2,3,4-TETRAHYDRONAPHTHALEN-2-AMINE
N-(3,4-Dimethoxyphenethyl)-2-(4-methoxyphenyl)acetamide
3,5-Pyridinedicarboxylicacid, 1,4-dihydro-2,6-dimethyl-4-phenyl-, 3,5-diethyl ester
N-[2-(3,4-dimethoxyphenyl)ethyl]-2-(3-methoxyphenyl)acetamide
Methanone, (3-ethyl-5-methyl-4-isoxazolyl)[4-(4-methoxyphenyl)-1-piperazinyl]
tert-butyl 3-(5-phenyl-1,2,4-oxadiazol-3-yl)piperidine-1-carboxylate
(S)-2 Azido-3-(3-indolyl)propionic acid cyclohexylamMonium salt
2-[3-(1-carbamoyl-1-methylethyl)-5-[1,2,4]triazol-1-ylmethylphenyl]-isobutyramide
1-ISOTHIOCYANATO-4-(TRANS-4-OCTYLCYCLO-H EXYL)BENZENE
1-(TERT-BUTOXYCARBONYL)SPIRO[INDENE-1,4-PIPERIDINE]-3-CARBOXYLIC ACID
4-N-BOC-AMINOMETHYL-1-N-BOC-PYRROLIDIN-3-ONE OXIME
TERT-BUTYL 3-(4-METHOXYPHENYL)-6,7-DIHYDRO-1H-PYRAZOLO[4,3-C]PYRIDINE-5(4H)-CARBOXYLATE
2-(TETRAHYDRO-2H-PYRAN-4-YLOXY)-5-(4,4,5,5-TETRAMETHYL-1,3,2-DIOXABOROLAN-2-YL)BENZONITRILE
6,7-dimethoxy-2-(4-prop-2-enylpiperazin-1-yl)quinazolin-4-amine
2,6-Bis[(4R)-4-tert-butyl-2-oxazolin-2-yl]pyridine
cobalt(2+),1,2,3,5,5-pentamethylcyclopenta-1,3-diene
Methanone, (4-methyl-1-piperidinyl)[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]-
2-Benzyl 4-(2-methyl-2-propanyl) 3,5-dimethyl-1H-pyrrole-2,4-dica rboxylate
Malachite green cation
D004396 - Coloring Agents > D012394 - Rosaniline Dyes D000890 - Anti-Infective Agents D016573 - Agrochemicals D010575 - Pesticides
Bavisant
C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant Bavisant (JNJ-31001074) is an orally active, potent, brain-penetrating and highly selective antagonist of the histamine H3 receptor. Bavisant can be used for attention-deficit hyperactivity disorder (ADHD) research[1][2][3].
2-[(Formyl-hydroxy-amino)-methyl]-hexanoic acid (1-dimethylcarbamoyl-2,2-dimethyl-propyl)-amide
Aspyridone A
2-Pyridone carrying as substituents a branched dimethylhexanoyl group, a hydroxy group and a p-hydroxyphenyl group at C-3, -4 and -5 respectively. Secondary metabolite produced by Aspergillus spp.
6-Alpha Naloxol
D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids
1H-2-Benzopyran-5,6-diol, 1-(aminomethyl)-3,4-dihydro-3-tricyclo(3.3.1.13,7)dec-1-yl-, (1R,3S)-
D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018491 - Dopamine Agonists
N-[3-(2-methylcyclohexyl)-2,4-dihydro-1H-1,3,5-triazin-6-yl]-1,3-benzothiazol-2-amine
3-(2-Piperidin-1-yl-acetylamino)-1H-indole-2-carboxylic acid ethyl ester
2-Methyl-4-[2-(4-phenylcyclohexylidene)hydrazin-1-yl]quinoline
(2S)-2-[[(2S)-3-methyl-2-[[(2S)-pyrrolidine-2-carbonyl]amino]butanoyl]amino]butanedioic Acid
6-Amino-2-[(2-Morpholin-4-Ylethyl)amino]-3,7-Dihydro-8h-Imidazo[4,5-G]quinazolin-8-One
Bornaprinum
C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists
Gabapentin enacarbil
C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic
Dapivirine
G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids C471 - Enzyme Inhibitor > C1589 - Reverse Transcriptase Inhibitor > C97453 - Non-nucleoside Reverse Transcriptase Inhibitor D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D044966 - Anti-Retroviral Agents C254 - Anti-Infective Agent > C281 - Antiviral Agent
CHEBI:17428
2,11,12-Trimethoxy-1,2,5,6,8,9-hexahydroindolo[7a,1-a]isoquinolin-3-one
3-[[(E)-4-Methoxy-4-oxo-2-butenoyl]amino]-L-Ala-L-Leu-OH
4-[[(1S)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-1-yl]methyl]-2-methoxyphenol
1-[(8E)-9-(3,4-methylenedioxyphenyl)-8-nonenoyl]pyrrolidine
A natural product found in Piper boehmeriaefolium.
17-Hydroxy-10-methoxy-4-(methylamino)-12-oxapentacyclo[9.6.1.01,13.05,17.07,18]octadeca-7(18),8,10-trien-14-one
Pipercallosine
An alkaloid enamide that is (2E,4E)-N-(2-methylpropyl)nona-2,4-dienamide substituted at position 9 by a 1,3-benzodioxol-5-yl group. Isolated from Piper sarmentosum, it has been found to induce apoptosis in HT-29 cells.
4-[3-(Dimethylamino)propylamino]-7,8-dimethyl-3-quinolinecarboxylic acid ethyl ester
1-[3-[3-(3-Methoxyphenyl)-1,2,4-oxadiazol-5-yl]-1-piperidinyl]-1-butanone
[3-[(2-Methylphenyl)methyl]-1-[(5-methyl-2-thiophenyl)methyl]-3-piperidinyl]methanol
1-(1,5-dimethyl-3-pyrazolyl)-N-[[5-(2-fluoro-4-methoxyphenyl)-1H-pyrazol-4-yl]methyl]methanamine
3,6-Dimethoxy-17-methyl-5,6,8,14-tetradehydromorphinan-4,7-diol
D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids
N-[2-(4-tert-butylphenoxy)ethyl]-2-(4-fluorophenyl)acetamide
1-[1-[Oxo(1-pyrrolidinyl)methyl]cyclohexyl]-3-(phenylmethyl)urea
2-(3-bicyclo[2.2.1]heptanyl)-1-(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)ethanone
3-[5-(4-Methoxyphenyl)-1-(2-oxolanylmethyl)-2-pyrrolyl]propanoic acid
1-methyl-N,N-bis(trimethylsilyl)-5-[(trimethylsilyl)oxy]imidazol-2-amine
(S)-1-(1-(1-(2-amino-9H-purin-6-yl)piperidin-4-yl)-1H-1,2,3-triazol-4-yl)ethanol
(1,2-Dimethyl-3-imidazo[1,2-a]pyridin-4-iumyl)-diphenylmethanol
1-[(1S)-1-(hydroxymethyl)-7-methoxy-9-methyl-1-spiro[2,3-dihydro-1H-pyrido[3,4-b]indole-4,3-azetidine]yl]ethanone
(2E)-11-[(3,6-dideoxy-alpha-L-arabino-hexopyranosyl)oxy]undec-2-enoate
(E,10R)-10-[(2R,3R,5R,6S)-3,5-dihydroxy-6-methyloxan-2-yl]oxyundec-2-enoate
(1S)-1-[(3,4-dimethoxyphenyl)methyl]-6-methoxy-1,2,3,4-tetrahydroisoquinolin-7-ol
[(1R,9aR)-2,3,4,6,7,8,9,9a-octahydro-1H-quinolizin-1-yl]methyl (Z)-3-(2-methoxyphenyl)prop-2-enoate
(1S,3S,5R,8R,9R,10R,11R,14R,16R,19S)-5-methyl-12-methylidene-7-azaheptacyclo[9.6.2.01,8.05,17.07,16.09,14.014,18]nonadecane-3,10,19-triol
(1R,2R,6R,8S,11S,12S,15R,16S)-5,15-dihydroxy-2,16-dimethyl-7-oxapentacyclo[9.7.0.02,8.06,8.012,16]octadec-4-ene-4-carbonitrile
(2S)-2-[4-(1-Ethoxyethoxy)-1-oxobutyl]pyrrolidine-1-carboxylic acid tert-butyl ester
(1S,3S,5R,8R,10R,11R,14R,16R,19S)-5-methyl-12-methylidene-7-azaheptacyclo[9.6.2.01,8.05,17.07,16.09,14.014,18]nonadecane-3,10,19-triol
(1S,3S,5R,8R,9R,10R,11R,14R,16R,17R,19S)-5-methyl-12-methylidene-7-azaheptacyclo[9.6.2.01,8.05,17.07,16.09,14.014,18]nonadecane-3,10,19-triol
methyl (3S,4R)-8-methyl-3-[(E)-3-phenylprop-2-enoyl]oxy-8-azabicyclo[3.2.1]octane-4-carboxylate
Promethazine hydroxyethyl
R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AD - Phenothiazine derivatives
4-Hydroxy-3,7-dimethoxy-17-methyl-7,8-didehydromorphinan-6-one
6,7-dimethoxy-1-[(4-methoxyphenyl)methyl]-1,2,3,4-tetrahydroisoquinolin-5-ol
oscr#17(1-)
A hydroxy fatty acid ascaroside anion that is the conjugate base of oscr#17, obtained by deprotonation of the carboxy group; major species at pH 7.3.
[1-(5-Fluoropentyl)-1H-indol-3-yl](2,2,3,3-tetramethylcyclopropyl)methanone
(1r,4s,5r)-4-hydroxy-5-methoxy-13-methyl-6-oxa-13-azapentacyclo[8.6.2.1¹,⁵.0⁷,¹⁷.0¹⁴,¹⁸]nonadeca-7(17),9,14(18)-trien-8-one
(1s,19s,20r)-20-methoxy-5,7-dioxa-14-azapentacyclo[12.7.0.0¹,¹⁷.0²,¹⁰.0⁴,⁸]henicosa-2,4(8),9,17-tetraen-19-ol
1-[(3-hydroxy-4-methoxyphenyl)methyl]-7-methoxy-2-methyl-3,4-dihydro-1h-isoquinolin-6-ol
5-methyl-12-methylidene-7-azaheptacyclo[9.6.2.0¹,⁸.0⁵,¹⁷.0⁷,¹⁶.0⁹,¹⁴.0¹⁴,¹⁸]nonadecane-3,15,19-triol
7,8,11-trimethoxy-2h,4h,5h,10h,11h-indolo[7a,1-a]isoquinolin-3-ium-3-olate
(1r,9r,10s)-3-hydroxy-4,13-dimethoxy-17-methyl-17-azatetracyclo[7.5.3.0¹,¹⁰.0²,⁷]heptadeca-2,4,6,13-tetraen-12-one
3-hydroxy-4,12-dimethoxy-17-methyl-17-azatetracyclo[8.4.3.0¹,¹⁰.0²,⁷]heptadeca-2,4,6,11-tetraen-13-one
5-methyl-12-methylidene-7-azaheptacyclo[9.6.2.0¹,⁸.0⁵,¹⁷.0⁷,¹⁶.0⁹,¹⁴.0¹⁴,¹⁸]nonadecane-8,13,19-triol
methyl (1r,2r,3s,5s)-8-methyl-3-{[(2e)-3-phenylprop-2-enoyl]oxy}-8-azabicyclo[3.2.1]octane-2-carboxylate
(1s,9s,10r)-5-hydroxy-4,13-dimethoxy-17-methyl-17-azatetracyclo[7.5.3.0¹,¹⁰.0²,⁷]heptadeca-2,4,6,13-tetraen-12-one
(1s,3s,5r,8r,9s,10r,11r,14r,16s,17r,18r,19s)-5-methyl-12-methylidene-7-azaheptacyclo[9.6.2.0¹,⁸.0⁵,¹⁷.0⁷,¹⁶.0⁹,¹⁴.0¹⁴,¹⁸]nonadecane-3,10,19-triol
(1r,4's)-11'-hydroxy-3,10'-dimethoxy-5'-methyl-5'-azaspiro[cyclohexane-1,2'-tricyclo[6.3.1.0⁴,¹²]dodecane]-1'(11'),2,8'(12'),9'-tetraen-4-one
(1s,2r,5r,8r,9s,11r,13r,14r,15s,16r,17r,18s)-5-methyl-12-methylidene-7-azaheptacyclo[9.6.2.0¹,⁸.0⁵,¹⁷.0⁷,¹⁶.0⁹,¹⁴.0¹⁴,¹⁸]nonadecane-2,13,15-triol
4,5,17-trimethoxy-11-azatetracyclo[9.7.0.0¹,¹⁴.0²,⁷]octadeca-2(7),3,5,15-tetraene
(1s,17r)-4,5,17-trimethoxy-11-azatetracyclo[9.7.0.0¹,¹⁴.0²,⁷]octadeca-2(7),3,5,14-tetraene
(1s,9r,10s)-3-hydroxy-4,13-dimethoxy-17-methyl-17-azatetracyclo[7.5.3.0¹,¹⁰.0²,⁷]heptadeca-2,4,6,13-tetraen-12-one
(2r,5e)-2-[(4r)-1-(2,4-dihydroxybutyl)-2-iminoimidazolidin-4-yl]-7-hydroxy-6-methylhept-5-enoic acid
(1s,3ar,3a¹s,4s,5as,5a¹s,10as)-10a-isothiocyanato-1,4,7,7-tetramethyl-1,2,3,3a,3a¹,4,5,5a,5a¹,6,8,10-dodecahydropyrene
(1r,13r,15s,18r)-4,18-dimethoxy-14-oxa-11-azapentacyclo[9.8.0.0¹,¹⁵.0²,⁷.0¹³,¹⁵]nonadeca-2(7),3,5,16-tetraen-5-ol
3-epimethylschelhammericine b
{"Ingredient_id": "HBIN008489","Ingredient_name": "3-epimethylschelhammericine b","Alias": "NA","Ingredient_formula": "C20H27NO3","Ingredient_Smile": "Not Available","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "6968","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
3-vinyl-1,2- dimethyl-1,4-cyclohexadiene
{"Ingredient_id": "HBIN009754","Ingredient_name": "3-vinyl-1,2- dimethyl-1,4-cyclohexadiene","Alias": "NA","Ingredient_formula": "C20H27NO3","Ingredient_Smile": "CC1(COC(=N1)C2=CC=C(C(C2C=C)(C)C(=O)CCC=C)OC)C","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "42372","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}