Gene Association: SLC22A4

UniProt Search: SLC22A4 (PROTEIN_CODING)
Function Description: solute carrier family 22 member 4

found 61 associated metabolites with current gene based on the text mining result from the pubmed database.

Carnitine

(3R)-3-hydroxy-4-(trimethylazaniumyl)butanoate

C7H15NO3 (161.1052)


(R)-carnitine is the (R)-enantiomer of carnitine. It has a role as an antilipemic drug, a water-soluble vitamin (role), a nutraceutical, a nootropic agent and a Saccharomyces cerevisiae metabolite. It is a conjugate base of a (R)-carnitinium. It is an enantiomer of a (S)-carnitine. Constituent of striated muscle and liver. It is used therapeutically to stimulate gastric and pancreatic secretions and in the treatment of hyperlipoproteinemias. L-Carnitine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Levocarnitine is a Carnitine Analog. Levocarnitine is a natural product found in Mucidula mucida, Pseudo-nitzschia multistriata, and other organisms with data available. Levocarnitine is an amino acid derivative. Levocarnitine facilitates long-chain fatty acid entry into mitochondria, delivering substrate for oxidation and subsequent energy production. Fatty acids are utilized as an energy substrate in all tissues except the brain. (NCI04) Carnitine is not an essential amino acid; it can be synthesized in the body. However, it is so important in providing energy to muscles including the heart-that some researchers are now recommending carnitine supplements in the diet, particularly for people who do not consume much red meat, the main food source for carnitine. Carnitine has been described as a vitamin, an amino acid, or a metabimin, i.e., an essential metabolite. Like the B vitamins, carnitine contains nitrogen and is very soluble in water, and to some researchers carnitine is a vitamin (Liebovitz 1984). It was found that an animal (yellow mealworm) could not grow without carnitine in its diet. However, as it turned out, almost all other animals, including humans, do make their own carnitine; thus, it is no longer considered a vitamin. Nevertheless, in certain circumstances-such as deficiencies of methionine, lysine or vitamin C or kidney dialysis--carnitine shortages develop. Under these conditions, carnitine must be absorbed from food, and for this reason it is sometimes referred to as a metabimin or a conditionally essential metabolite. Like the other amino acids used or manufactured by the body, carnitine is an amine. But like choline, which is sometimes considered to be a B vitamin, carnitine is also an alcohol (specifically, a trimethylated carboxy-alcohol). Thus, carnitine is an unusual amino acid and has different functions than most other amino acids, which are most usually employed by the body in the construction of protein. Carnitine is an essential factor in fatty acid metabolism in mammals. Its most important known metabolic function is to transport fat into the mitochondria of muscle cells, including those in the heart, for oxidation. This is how the heart gets most of its energy. In humans, about 25\\\\\% of carnitine is synthesized in the liver, kidney and brain from the amino acids lysine and methionine. Most of the carnitine in the body comes from dietary sources such as red meat and dairy products. Inborn errors of carnitine metabolism can lead to brain deterioration like that of Reyes syndrome, gradually worsening muscle weakness, Duchenne-like muscular dystrophy and extreme muscle weakness with fat accumulation in muscles. Borurn et al. (1979) describe carnitine as an essential nutrient for pre-term babies, certain types (non-ketotic) of hypoglycemics, kidney dialysis patients, cirrhosis, and in kwashiorkor, type IV hyperlipidemia, heart muscle disease (cardiomyopathy), and propionic or organic aciduria (acid urine resulting from genetic or other anomalies). In all these conditions and the inborn errors of carnitine metabolism, carnitine is essential to life and carnitine supplements are valuable. carnitine therapy may also be useful in a wide variety of clinical conditions. carnitine supplementation has improved some patients who have angina secondary to coronary artery disease. It may be worth a trial in any form of hyperlipidemia or muscle weakness. carnitine supplements may... (-)-Carnitine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=541-15-1 (retrieved 2024-06-29) (CAS RN: 541-15-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Carnitine ((R)-Carnitine), a highly polar, small zwitterion, is an essential co-factor for the mitochondrial β-oxidation pathway. L-Carnitine functions to transport long chain fatty acyl-CoAs into the mitochondria for degradation by β-oxidation. L-Carnitine is an antioxidant. L-Carnitine can ameliorate metabolic imbalances in many inborn errors of metabolism[1][2][3]. L-Carnitine ((R)-Carnitine), a highly polar, small zwitterion, is an essential co-factor for the mitochondrial β-oxidation pathway. L-Carnitine functions to transport long chain fatty acyl-CoAs into the mitochondria for degradation by β-oxidation. L-Carnitine is an antioxidant. L-Carnitine can ameliorate metabolic imbalances in many inborn errors of metabolism[1][2][3].

   

Mesaconitine

[(1S,2R,3R,4R,5R,6S,7S,8R,9R,10S,13R,14R,16S,17S,18R)-8-acetyloxy-5,7,14-trihydroxy-6,16,18-trimethoxy-13-(methoxymethyl)-11-methyl-11-azahexacyclo[7.7.2.12,5.01,10.03,8.013,17]nonadecan-4-yl] benzoate

C33H45NO11 (631.2992)


Mesaconitine is a diterpenoid. Mesaconitine is a natural product found in Aconitum anthora, Aconitum napellus, and other organisms with data available. Origin: Plant; SubCategory_DNP: Terpenoid alkaloids, Diterpene alkaloid, Aconitum alkaloid Annotation level-1 Mesaconitine is the main active component of genus aconitum plants. IC50 value: Target: in vitro: In HUVECs, 30 microM mesaconitine increased the [Ca(2+)](i) level in the presence of extracellular CaCl(2) and NaCl, and the response was inhibited by KBR7943. Mesaconitine increased intracellular Na(+) concentration level in HUVECs. The [Ca(2+)](i) response by mesaconitine was inhibited by 100 microM D-tubocurarine [1]. Mesaconitine at 30 microM inhibited 3 microM phenylephrine-induced contraction in the endothelium-intact, but not endothelium-denuded, aortic rings [2]. MA promoted the alpha-MT-induced decrease in NE levels in hippocampus, medulla oblongata plus pons and spinal cord [3]. Mesaconitine is the main active component of genus aconitum plants. IC50 value: Target: in vitro: In HUVECs, 30 microM mesaconitine increased the [Ca(2+)](i) level in the presence of extracellular CaCl(2) and NaCl, and the response was inhibited by KBR7943. Mesaconitine increased intracellular Na(+) concentration level in HUVECs. The [Ca(2+)](i) response by mesaconitine was inhibited by 100 microM D-tubocurarine [1]. Mesaconitine at 30 microM inhibited 3 microM phenylephrine-induced contraction in the endothelium-intact, but not endothelium-denuded, aortic rings [2]. MA promoted the alpha-MT-induced decrease in NE levels in hippocampus, medulla oblongata plus pons and spinal cord [3].

   

Tetrahydropalmatine

(13aS)-2,3,9,10-tetramethoxy-6,8,13,13a-tetrahydro-5H-isoquinolino[2,1-b]isoquinoline

C21H25NO4 (355.1783)


Tetrahydropalmatine is a berberine alkaloid obtained by formal addition of two molecules of hydrogen to the pyridine ring of palmatine. It has a role as an adrenergic agent, a non-narcotic analgesic and a dopaminergic antagonist. It is a berberine alkaloid, an organic heterotetracyclic compound and an an (S)-7,8,13,14-tetrahydroprotoberberine. It is functionally related to a palmatine. Tetrahydropalmatine is under investigation in clinical trial NCT02118610 (Treatment of Schizophrenia With L-tetrahydropalmatine (l-THP): a Novel Dopamine Antagonist With Anti-inflammatory and Antiprotozoal Activity). Tetrahydropalmatine is a natural product found in Corydalis heterocarpa, Ceratocapnos heterocarpa, and other organisms with data available. A berberine alkaloid obtained by formal addition of two molecules of hydrogen to the pyridine ring of palmatine. Tetrahydropalmatine (THP) is an isoquinoline alkaloid found in several different plant species, mainly in the genus Corydalis (Yan Hu Suo),[1][2] but also in other plants such as Stephania rotunda.[3] These plants have traditional uses in Chinese herbal medicine. The pharmaceutical industry has synthetically produced the more potent enantiomer Levo-tetrahydropalmatine (Levo-THP), which has been marketed worldwide under different brand names as an alternative to anxiolytic and sedative drugs of the benzodiazepine group and analgesics such as opiates. It is also sold as a dietary supplement. In 1940, a Vietnamese scientist Sang Dinh Bui extracted an alkaloid from the root of Stephania rotunda with the yield of 1.2–1.5\\\\\\\% and he named this compound rotundine. From 1950 to 1952, two Indian scientists studied and extracted from Stephania glabra another alkaloid named hyndanrine. In 1965, the structure of rotundine and hyndarin was proved to be the same as tetrahydropalmatine. Tetrahydropalmatine has been demonstrated to possess analgesic effects and may be beneficial in the treatment of heart disease and liver damage.[5][6] It is a blocker of voltage-activated L-type calcium channel active potassium channels.[citation needed] It is a potent muscle relaxant.[citation needed] It has also shown potential in the treatment of drug addiction to both cocaine and opiates, and preliminary human studies have shown promising results.[7][8][9] The pharmacological profile of l-THP includes antagonism of dopamine D1, and D2 receptors as well as actions at dopamine D3, alpha adrenergic and serotonin receptors. The Ki values for l-THP at D1 and D2 dopamine receptors are approximately 124 nM (D1) and 388 nM (D2). In addition to the antagonism of post-synaptic dopamine receptors, the blockade of pre-synaptic autoreceptors by l-THP results in increased dopamine release, and it has been suggested that lower affinity of l-THP for D2 receptors may confer some degree of autoreceptor selectivity. Along with dopamine receptors, l-THP has been reported to interact with a number of other receptor types, including alpha-1 adrenergic receptors, at which it functions as an antagonist, and GABA-A receptors, through positive allosteric modulation. Additionally, l-THP displays significant binding to 5-HT1A and alpha-2 adrenergic receptors. In the case of 5-HT1A receptors, l-THP binds with a Ki of approximately 340 nM.[10] Animal experiments have shown that the sedative effect of THP results from blocking dopaminergic neurons in the brain. Dopamine is an important neurotransmitter in the central nervous system where it occurs in several important signaling systems that regulate muscular activity and attention, as well as feelings of joy, enthusiasm, and creativity. Therefore, THP causes no feelings of euphoria, and has been seen as an alternative to addictive drugs for people suffering from anxiety and pain, and as a possibility for relief for people not helped by existing drugs.[citation needed] Several cases of poisoning related to THP have been reported.[11] These cases involved negative effects on respiration, cardiac activity, and the nervous system. In addition, chronic hepatitis has been reported, caused by THP production in East Asia under conditions that were insufficiently sterile. Fatalities started to be reported in 1999 in cases where THP had been used in combination with other drugs having analgesic and anti-anxiety effects. All 1999 deaths could be tied to a single THP-based supplement, sold under the name "Jin Bu Huan Anodyne Tablets". Toxicity with even Jin Bu Huan has been reported.[12] This product was therefore blacklisted by US and European health authorities. In some other countries, such as Singapore, THP is treated as a controlled substance, and license is required to sell it.[citation needed] Rotundine is an antagonist of dopamine D1, D2 and D3 receptors with IC50s of 166 nM, 1.4 μM and 3.3 μM, respectively. Rotundine is also an antagonist of 5-HT1A with an IC50 of 370 nM. Rotundine is an antagonist of dopamine D1, D2 and D3 receptors with IC50s of 166 nM, 1.4 μM and 3.3 μM, respectively. Rotundine is also an antagonist of 5-HT1A with an IC50 of 370 nM. Rotundine is an antagonist of dopamine D1, D2 and D3 receptors with IC50s of 166 nM, 1.4 μM and 3.3 μM, respectively. Rotundine is also an antagonist of 5-HT1A with an IC50 of 370 nM. Tetrahydropalmatine possesses analgesic effects. Tetrahydropalmatine acts through inhibition of amygdaloid release of dopamine to inhibit an epileptic attack in rats[1]. Tetrahydropalmatine possesses analgesic effects. Tetrahydropalmatine acts through inhibition of amygdaloid release of dopamine to inhibit an epileptic attack in rats[1]. Tetrahydropalmatine possesses analgesic effects. Tetrahydropalmatine acts through inhibition of amygdaloid release of dopamine to inhibit an epileptic attack in rats[1].

   

Imperatorin

InChI=1/C16H14O4/c1-10(2)5-7-19-16-14-12(6-8-18-14)9-11-3-4-13(17)20-15(11)16/h3-6,8-9H,7H2,1-2H

C16H14O4 (270.0892)


Imperatorin is a member of the class of psoralens that is psoralen substituted by a prenyloxy group at position 8. Isolated from Angelica dahurica and Angelica koreana, it acts as a acetylcholinesterase inhibitor. It has a role as an EC 3.1.1.7 (acetylcholinesterase) inhibitor and a metabolite. Imperatorin is a natural product found in Allium wallichii, Ammi visnaga, and other organisms with data available. Imperatorin is found in anise. Imperatorin is present in Aegle marmelos (bael fruit) and seeds of Pastinaca sativa (parsnip).Imperatorin is a furocoumarin and a phytochemical that has been isolated from Urena lobata L. (Malvaceae). It is biosynthesized from umbelliferone, a coumarin derivative.Imperatorin has been shown to exhibit anti-hypertrophic and anti-convulsant functions (A7784, A7785).Imperatorin belongs to the family of Furanocoumarins. These are polycyclic aromatic compounds containing a furan ring fused to a coumarin moeity. See also: Angelica Dahurica Root (part of); Aegle marmelos fruit (part of); Ammi majus seed (part of) ... View More ... Imperatorin is found in anise. Imperatorin is present in Aegle marmelos (bael fruit) and seeds of Pastinaca sativa (parsnip).Imperatorin is a furocoumarin and a phytochemical that has been isolated from Urena lobata L. (Malvaceae). It is biosynthesized from umbelliferone, a coumarin derivative A member of the class of psoralens that is psoralen substituted by a prenyloxy group at position 8. Isolated from Angelica dahurica and Angelica koreana, it acts as a acetylcholinesterase inhibitor. D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Present in Aegle marmelos (bael fruit) and seeds of Pastinaca sativa (parsnip) INTERNAL_ID 2244; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2244 Imperatorin is an effective of NO synthesis inhibitor (IC50=9.2 μmol), which also is a BChE inhibitor (IC50=31.4 μmol). Imperatorin is a weak agonist of TRPV1 with EC50 of 12.6±3.2 μM. Imperatorin is an effective of NO synthesis inhibitor (IC50=9.2 μmol), which also is a BChE inhibitor (IC50=31.4 μmol). Imperatorin is a weak agonist of TRPV1 with EC50 of 12.6±3.2 μM.

   

dehydrocorydalin

2,3,9,10-Tetramethoxy-13-methyl-5,6-dihydroisoquinolino[3,2-a]isoquinolin-7-ium

C22H24NO4+ (366.1705)


Dehydrocorydaline is an alkaloid. Dehydrocorydaline is a natural product found in Corydalis turtschaninovii, Corydalis nobilis, and other organisms with data available. Dehydrocorydaline (13-Methylpalmatine) is an alkaloid that regulates protein expression of Bax, Bcl-2; activates caspase-7, caspase-8, and inactivates PARP[1]. Dehydrocorydaline elevates p38 MAPK activation. Anti-inflammatory and anti-cancer activities[2]. Dehydrocorydaline shows strong anti-malarial effects (IC50=38 nM), and low cytotoxicity (cell viability?>?90\\%) using P. falciparum 3D7 strain[3]. Dehydrocorydaline (13-Methylpalmatine) is an alkaloid that regulates protein expression of Bax, Bcl-2; activates caspase-7, caspase-8, and inactivates PARP[1]. Dehydrocorydaline elevates p38 MAPK activation. Anti-inflammatory and anti-cancer activities[2]. Dehydrocorydaline shows strong anti-malarial effects (IC50=38 nM), and low cytotoxicity (cell viability?>?90\%) using P. falciparum 3D7 strain[3].

   

Hypaconitine

(3S,6S,6aS,7R,7aR,8R,9R,10S,11S,11aR,12R,13R,14R)-11a-acetoxy-9,11-dihydroxy-6,10,13-trimethoxy-3-(methoxymethyl)-1-methyltetradecahydro-1H-3,6a,12-(epiethane[1,1,2]triyl)-7,9-methanonaphtho[2,3-b]azocin-8-yl benzoate

C33H45NO10 (615.3043)


Hypaconitine is a diterpenoid. Hypaconitine is a natural product found in Aconitum japonicum, Aconitum firmum, and other organisms with data available. Annotation level-1 Hypaconitine, an active and highly toxic constituent derived from Aconitum species, is widely used to treat rheumatism. IC50 value: Target: In vitro: The present study investigated the metabolism of hypaconitine in vitro using male human liver microsomes. The primary contributors toward HA metabolism were CYP3A4 and 3A5, with secondary contributions by CYP2C19, 2D6 and CYP2E1 [1]. In vivo: Hypaconitine, an active and highly toxic constituent derived from Aconitum species, is widely used to treat rheumatism. IC50 value: Target: In vitro: The present study investigated the metabolism of hypaconitine in vitro using male human liver microsomes. The primary contributors toward HA metabolism were CYP3A4 and 3A5, with secondary contributions by CYP2C19, 2D6 and CYP2E1 [1]. In vivo:

   

omega-COOH-tetranor-LTE3

N-propyl-N-[2-(2,4,6-trichlorophenoxy)ethyl]-1H-imidazole-1-carboxamide

C15H16Cl3N3O2 (375.0308)


omega-COOH-tetranor-LTE3, also known as Prochloraz-MN, is classified as a member of the Phenol ethers. Phenol ethers are aromatic compounds containing an ether group substituted with a benzene ring. omega-COOH-tetranor-LTE3 is considered to be practically insoluble (in water) and basic. omega-COOH-tetranor-LTE3 is a non-carcinogenic (not listed by IARC) potentially toxic compound CONFIDENCE standard compound; INTERNAL_ID 580; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9617; ORIGINAL_PRECURSOR_SCAN_NO 9615 CONFIDENCE standard compound; INTERNAL_ID 580; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9690; ORIGINAL_PRECURSOR_SCAN_NO 9687 CONFIDENCE standard compound; INTERNAL_ID 580; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9587; ORIGINAL_PRECURSOR_SCAN_NO 9585 CONFIDENCE standard compound; INTERNAL_ID 580; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9674; ORIGINAL_PRECURSOR_SCAN_NO 9673 CONFIDENCE standard compound; INTERNAL_ID 580; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9668; ORIGINAL_PRECURSOR_SCAN_NO 9666 CONFIDENCE standard compound; INTERNAL_ID 580; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9637; ORIGINAL_PRECURSOR_SCAN_NO 9635 CONFIDENCE Parent Substance (Level 1); INTERNAL_ID 2000 INTERNAL_ID 2000; CONFIDENCE Parent Substance (Level 1) CONFIDENCE standard compound; EAWAG_UCHEM_ID 96 CONFIDENCE standard compound; INTERNAL_ID 8389 CONFIDENCE standard compound; INTERNAL_ID 4058 CONFIDENCE standard compound; INTERNAL_ID 2566 D016573 - Agrochemicals D010575 - Pesticides

   

Glycylleucine

(2S)-2-(2-aminoacetamido)-4-methylpentanoic acid

C8H16N2O3 (188.1161)


Glycylleucine is a dipeptide composed of glycine and leucine. It is an incomplete breakdown product of protein digestion or protein catabolism. Some dipeptides are known to have physiological or cell-signaling effects although most are simply short-lived intermediates on their way to specific amino acid degradation pathways following further proteolysis. It appears to be a common substrate for glycyl-leucine dipeptidase. A dipeptide that appears to be a common substrate for glycyl-leucine dipeptidase. [HMDB] KEIO_ID G071 Glycyl-l-leucine is a dipeptide that can be a common substrate for?glycyl-leucine?dipeptidase.

   

Diphenhydramine

N-(2-(Diphenylmethoxy)ethyl)-N,N-dimethylamine

C17H21NO (255.1623)


Diphenhydramine is a histamine H1 antagonist used as an antiemetic, antitussive, for dermatoses and pruritus, for hypersensitivity reactions, as a hypnotic, an antiparkinson, and as an ingredient in common cold preparations. It has some undesired antimuscarinic and sedative effects. -- Pubchem; Pseudoephedrine is a phenethylamine, and an isomer of ephedrine. Pseudoephedrine is the International Nonproprietary Name (INN) of the (1S,2S)- diastereomer of ephedrine (which has 1R,2S- configuration). Other names are (+)-pseudoephedrine and D-pseudoephedrine (Reynolds, 1989). The enantiomer (-)-(1R,2R)-Pseudoephedrine has fewer side-effects, fewer central nervous system (CNS) stimulatory effects, does not reduce to d-methamphetamine, yet retains its efficacy as a decongestant.[citation needed] However, the patent holder for (-)-Pseudoephedrine (Pfizer/Warner-Lambert) has not yet sought or received government approval for its sale to the public.(US Patent 6,495,529); Treatment for urinary incontinence is an unlabeled use for these medications. Unlabeled use means doctors can use the medication to treat a condition other than that for which it was first approved by the U.S. Food and Drug Administration (FDA). These medications are approved by the FDA for the treatment of nasal congestion caused by colds or allergies. However it has also been successful in treating stress incontinence by increasing the pressure (tension) exerted by the muscles of the bladder neck and the urethra, which helps retain the urine within the bladder. Despite being one of the oldest antihistamines on the market, it is by and large the most effective antihistamine available, either by prescription or over-the-counter, and has been shown to exceed the effectiveness of even the latest prescription drugs. Consequently, it is frequently used when an allergic reaction requires fast, effective reversal of the (often dangerous) effects of a massive histamine release. However, it is not always the drug of choice for treating allergies. Like many other first generation antihistamines, is also a potent anticholinergic agent. This leads to profound drowsiness as a very common side-effect, along with the possibilities of motor impairment (ataxia), dry mouth and throat, flushed skin, rapid or irregular heartbeat (tachycardia), blurred vision at near point due to lack of accommodation (cycloplegia), abnormal sensitivity to bright light (photophobia), pupil dilatation, urinary retention, constipation, difficulty concentrating, short-term memory loss, visual disturbances, hallucinations, confusion, erectile dysfunction, and delirium. -- Wikipedia;. A histamine H1 antagonist used as an antiemetic, antitussive, for dermatoses and pruritus, for hypersensitivity reactions, as a hypnotic, an antiparkinson, and as an ingredient in common cold preparations. It has some undesired antimuscarinic and sedative effects. -- Pubchem; Pseudoephedrine is a phenethylamine, and an isomer of ephedrine. Pseudoephedrine is the International Nonproprietary Name (INN) of the (1S,2S)- diastereomer of ephedrine (which has 1R,2S- configuration). Other names are (+)-pseudoephedrine and D-pseudoephedrine (Reynolds, 1989). The enantiomer (-)-(1R,2R)-Pseudoephedrine has fewer side-effects, fewer central nervous system (CNS) stimulatory effects, does not reduce to d-methamphetamine, yet retains its efficacy as a decongestant.[citation needed] However, the patent holder for (-)-Pseudoephedrine (Pfizer/Warner-Lambert) has not yet sought or received government approval for its sale to the public.(US Patent 6,495,529); Treatment for urinary incontinence is an unlabeled use for these medications. Unlabeled use means doctors can use the medication to treat a condition other than that for which it was first approved by the U.S. Food and Drug Administration (FDA). These medications are approved by the FDA for the treatment of nasal congestion caused by colds or allergies. However it has also been successful in treating stress incontinence by increasing the pressure (tension) exerted by the muscles of the bladder neck and the urethra, which helps retain the urine within the bladder.; Despite being one of the oldest antihistamines on the market, it is by and large the most effective antihistamine available, either by prescription or over-the-counter, and has been shown to exceed the effectiveness of even the latest prescription drugs. Consequently, it is frequently used when an allergic reaction requires fast, effective reversal of the (often dangerous) effects of a massive histamine release. However, it is not always the drug of choice for treating allergies. Like many other first generation antihistamines, is also a potent anticholinergic agent. This leads to profound drowsiness as a very common side-effect, along with the possibilities of motor impairment (ataxia), dry mouth and throat, flushed skin, rapid or irregular heartbeat (tachycardia), blurred vision at near point due to lack of accommodation (cycloplegia), abnormal sensitivity to bright light (photophobia), pupil dilatation, urinary retention, constipation, difficulty concentrating, short-term memory loss, visual disturbances, hallucinations, confusion, erectile dysfunction, and delirium. -- Wikipedia [HMDB] D - Dermatologicals > D04 - Antipruritics, incl. antihistamines, anesthetics, etc. > D04A - Antipruritics, incl. antihistamines, anesthetics, etc. > D04AA - Antihistamines for topical use R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AA - Aminoalkyl ethers D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent D005765 - Gastrointestinal Agents > D000932 - Antiemetics CONFIDENCE standard compound; EAWAG_UCHEM_ID 3352 D018926 - Anti-Allergic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Diphenhydramine is a first-generation histamine H1-receptor antagonist with anti-cholinergic effect. Diphenhydramine hydrochloride can across the ovine blood-brain barrier (BBB) [1][2][3].

   

Gabapentin

2-[1-(aminomethyl)cyclohexyl]acetic acid

C9H17NO2 (171.1259)


Gabapentin was originally developed as a chemical analogue of gamma-aminobutyric acid (GABA) to reduce the spinal reflex for the treatment of spasticity and was found to have anticonvulsant activity in various seizure models. In addition, it also displays antinociceptive activity in various animal pain models. Clinically, gabapentin is indicated as an add-on medication for the treatment of partial seizures, and neuropathic pain. It was also claimed to be beneficial in several other clinical disorders such as anxiety, bipolar disorder, and hot flashes. The possible mechanisms or targets involved in the multiple therapeutic actions of gabapentin have been actively studied. Since gabapentin was developed, several hypotheses had been proposed for its action mechanisms. They include selectively activating the heterodimeric GABA(B) receptors consisting of GABA(B1a) and GABA(B2) subunits, selectively enhancing the NMDA current at GABAergic interneurons, or blocking AMPA-receptor-mediated transmission in the spinal cord, binding to the L-alpha-amino acid transporter, activating ATP-sensitive K(+) channels, activating hyperpolarization-activated cation channels, and modulating Ca(2+) current by selectively binding to the specific binding site of [(3)H]gabapentin, the alpha(2)delta subunit of voltage-dependent Ca(2+) channels. Different mechanisms might be involved in different therapeutic actions of gabapentin. In this review, we summarized the recent progress in the findings proposed for the antinociceptive action mechanisms of gabapentin and suggest that the alpha(2)delta subunit of spinal N-type Ca(2+) channels is very likely the analgesic action target of gabapentin. (PMID: 16474201) [HMDB] Gabapentin was originally developed as a chemical analogue of gamma-aminobutyric acid (GABA) to reduce the spinal reflex for the treatment of spasticity and was found to have anticonvulsant activity in various seizure models. In addition, it also displays antinociceptive activity in various animal pain models. Clinically, gabapentin is indicated as an add-on medication for the treatment of partial seizures, and neuropathic pain. It was also claimed to be beneficial in several other clinical disorders such as anxiety, bipolar disorder, and hot flashes. The possible mechanisms or targets involved in the multiple therapeutic actions of gabapentin have been actively studied. Since gabapentin was developed, several hypotheses had been proposed for its action mechanisms. They include selectively activating the heterodimeric GABA(B) receptors consisting of GABA(B1a) and GABA(B2) subunits, selectively enhancing the NMDA current at GABAergic interneurons, or blocking AMPA-receptor-mediated transmission in the spinal cord, binding to the L-alpha-amino acid transporter, activating ATP-sensitive K(+) channels, activating hyperpolarization-activated cation channels, and modulating Ca(2+) current by selectively binding to the specific binding site of [(3)H]gabapentin, the alpha(2)delta subunit of voltage-dependent Ca(2+) channels. Different mechanisms might be involved in different therapeutic actions of gabapentin. In this review, we summarized the recent progress in the findings proposed for the antinociceptive action mechanisms of gabapentin and suggest that the alpha(2)delta subunit of spinal N-type Ca(2+) channels is very likely the analgesic action target of gabapentin. (PMID: 16474201). D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D018692 - Antimanic Agents N - Nervous system > N02 - Analgesics > N02B - Other analgesics and antipyretics > N02BF - Gabapentinoids D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D002491 - Central Nervous System Agents > D000700 - Analgesics

   

Naltrexone

(1S,5R,13R,17S)-4-(cyclopropylmethyl)-10,17-dihydroxy-12-oxa-4-azapentacyclo[9.6.1.0¹,¹³.0⁵,¹⁷.0⁷,¹⁸]octadeca-7(18),8,10-trien-14-one

C20H23NO4 (341.1627)


Derivative of noroxymorphone that is the N-cyclopropylmethyl congener of naloxone. It is a narcotic antagonist that is effective orally, longer lasting and more potent than naloxone, and has been proposed for the treatment of heroin addiction. The FDA has approved naltrexone for the treatment of alcohol dependence. [PubChem] N - Nervous system > N07 - Other nervous system drugs > N07B - Drugs used in addictive disorders > N07BB - Drugs used in alcohol dependence D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D009292 - Narcotic Antagonists D002491 - Central Nervous System Agents > D000427 - Alcohol Deterrents C78272 - Agent Affecting Nervous System > C681 - Opiate Antagonist CONFIDENCE standard compound; EAWAG_UCHEM_ID 2830 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Procainamide

Bristol-myers squibb brand OF procainamide hydrochloride

C13H21N3O (235.1685)


Procainamide is only found in individuals that have used or taken this drug. It is a derivative of procaine with less CNS action. [PubChem]Procainamide is sodium channel blocker. It stabilizes the neuronal membrane by inhibiting the ionic fluxes required for the initiation and conduction of impulses thereby effecting local anesthetic action. C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BA - Antiarrhythmics, class ia D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers > D061567 - Voltage-Gated Sodium Channel Blockers C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

Verapamil

2-(3,4-dimethoxyphenyl)-5-{[2-(3,4-dimethoxyphenyl)ethyl](methyl)amino}-2-(propan-2-yl)pentanenitrile

C27H38N2O4 (454.2831)


Verapamil is only found in individuals that have used or taken this drug. Verapamil is a calcium channel blocker that is a class IV anti-arrhythmia agent. [PubChem]Verapamil inhibits voltage-dependent calcium channels. Specifically, its effect on L-type calcium channels in the heart causes a reduction in ionotropy and chronotropy, thuis reducing heart rate and blood pressure. Verapamils mechanism of effect in cluster headache is thought to be linked to its calcium-channel blocker effect, but which channel subtypes are involved is presently not known. [PubChem] Calcium channel antagonists can be quite toxic. In the management of poisoning, early recognition is critical. Calcium channel antagonists are frequently prescribed, and the potential for serious morbidity and mortality with over dosage is significant. Ingestion of these agents should be suspected in any patient who presents in an overdose situation with unexplained hypotension and conduction abnormalities. The potential for toxicity should be noted in patients with underlying hepatic or renal dysfunction who are receiving therapeutic doses. (PMID 8213877). C - Cardiovascular system > C08 - Calcium channel blockers > C08D - Selective calcium channel blockers with direct cardiac effects > C08DA - Phenylalkylamine derivatives C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker A calcium channel blocker that is a class IV anti-arrhythmia agent. -- Pubchem; COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000077264 - Calcium-Regulating Hormones and Agents CONFIDENCE standard compound; INTERNAL_ID 8557 CONFIDENCE standard compound; INTERNAL_ID 2260 CONFIDENCE standard compound; INTERNAL_ID 4081 D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker KEIO_ID V021; [MS2] KO009311 Corona-virus KEIO_ID V021 Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Hexaconazole

Pesticide6_Hexaconazole_C14H17Cl2N3O_2-(2,4-Dichlorophenyl)-1-(1H-1,2,4-triazol-1-yl)-2-hexanol

C14H17Cl2N3O (313.0749)


CONFIDENCE standard compound; INTERNAL_ID 1269; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9950; ORIGINAL_PRECURSOR_SCAN_NO 9948 CONFIDENCE standard compound; INTERNAL_ID 1269; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9938; ORIGINAL_PRECURSOR_SCAN_NO 9937 CONFIDENCE standard compound; INTERNAL_ID 1269; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9900; ORIGINAL_PRECURSOR_SCAN_NO 9899 CONFIDENCE standard compound; INTERNAL_ID 1269; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9947; ORIGINAL_PRECURSOR_SCAN_NO 9942 CONFIDENCE standard compound; INTERNAL_ID 1269; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9912; ORIGINAL_PRECURSOR_SCAN_NO 9911 CONFIDENCE standard compound; INTERNAL_ID 1269; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9988; ORIGINAL_PRECURSOR_SCAN_NO 9986

   

Tramadol

(1R,2R)-2-[(dimethylamino)methyl]-1-(3-methoxyphenyl)cyclohexan-1-ol

C16H25NO2 (263.1885)


Tramadol is only found in individuals that have used or taken this drug. It is a narcotic analgesic proposed for moderate to severe pain. It may be habituating (PubChem). Tramadol and its O-desmethyl metabolite (M1) are selective, weak OP3-receptor agonists. Opiate receptors are coupled with G-protein receptors and function as both positive and negative regulators of synaptic transmission via G-proteins that activate effector proteins. As the effector system is adenylate cyclase and cAMP is located at the inner surface of the plasma membrane, opioids decrease intracellular cAMP by inhibiting adenylate cyclase. Subsequently, the release of nociceptive neurotransmitters such as substance P, GABA, dopamine, acetylcholine, and noradrenaline is inhibited. The analgesic properties of tramadol can be attributed to norepinephrine and serotonin reuptake blockade in the CNS, which inhibits pain transmission in the spinal cord. The (+) enantiomer has a higher affinity for the OP3 receptor and preferentially inhibits serotonin uptake and enhances serotonin release. The (-) enantiomer preferentially inhibits norepinephrine reuptake by stimulating alpha(2)-adrenergic receptors. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent D002491 - Central Nervous System Agents > D000700 - Analgesics N - Nervous system > N02 - Analgesics > N02A - Opioids CONFIDENCE standard compound; EAWAG_UCHEM_ID 2567 CONFIDENCE standard compound; INTERNAL_ID 4103 CONFIDENCE standard compound; INTERNAL_ID 1117 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Estrone 3-sulfate

[(8R,9S,13S,14S)-13-methyl-17-oxo-7,8,9,11,12,14,15,16-octahydro-6H-cyclopenta[a]phenanthren-3-yl] hydrogen sulfate

C18H22O5S (350.1188)


Estrone sulfate is a sulfated estrone derivative. Estrone sulfate acts as a long-lived reservoir that can be converted as needed to the more active estradiol (from estrone via 17 beta-hydroxysteroid dehydrogenase). Estrone Sulfate (E1S) is the most abundant circulating estrogen in non-pregnant women as well as normal men. Estrone is primarily synthesized from estrone sulfate. Estrone is an estrogenic hormone secreted by the ovaries and adipose tissues. Estrone is one of the three estrogens found in humans. The other two are estriol and estradiol. Estrone is the least prevalent of the three. Estradiol plays a critical role on reproductive and sexual functioning in women and it also affects other organs including the bones. Estriol is an estrogen that is prevalent primarily during pregnancy. [HMDB] Estrone sulfate is a sulfated estrone derivative. Estrone sulfate acts as a long-lived reservoir that can be converted as needed to the more active estradiol (from estrone via 17 beta-hydroxysteroid dehydrogenase). Estrone Sulfate (E1S) is the most abundant circulating estrogen in non-pregnant women as well as normal men. Estrone is primarily synthesized from estrone sulfate. Estrone is an estrogenic hormone secreted by the ovaries and adipose tissues. Estrone is one of the three estrogens found in humans. The other two are estriol and estradiol. Estrone is the least prevalent of the three. Estradiol plays a critical role on reproductive and sexual functioning in women and it also affects other organs including the bones. Estriol is an estrogen that is prevalent primarily during pregnancy. C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

Amantadine

Pharmascience brand OF amantadine hydrochloride

C10H17N (151.1361)


An antiviral that is used in the prophylactic or symptomatic treatment of influenza A. It is also used as an antiparkinsonian agent, to treat extrapyramidal reactions, and for postherpetic neuralgia. The mechanisms of its effects in movement disorders are not well understood but probably reflect an increase in synthesis and release of dopamine, with perhaps some inhibition of dopamine uptake. [PubChem] N - Nervous system > N04 - Anti-parkinson drugs > N04B - Dopaminergic agents > N04BB - Adamantane derivatives D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C38149 - Antiparkinsonian Agent D002491 - Central Nervous System Agents > D000700 - Analgesics D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents D000890 - Anti-Infective Agents > D000998 - Antiviral Agents C254 - Anti-Infective Agent > C281 - Antiviral Agent C93038 - Cation Channel Blocker KEIO_ID A061 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Triticonazole

Pesticide6_Triticonazole_C17H20ClN3O_(5E)-5-(4-Chlorobenzylidene)-2,2-dimethyl-1-(1H-1,2,4-triazol-1-ylmethyl)cyclopentanol

C17H20ClN3O (317.1295)


   

Formoterol

3-formylamino-4-Hydroxy-alpha-(N-1-methyl-2-P-methoxyphenethylaminomethyl)benzyl alcohol.hemifumarate

C19H24N2O4 (344.1736)


Formoterol is a long-acting (12 hours) beta2-agonist used in the management of asthma and/or chronic obstructive pulmonary disease (COPD). Inhaled formoterol works like other beta2-agonists, causing bronchodilatation through relaxation of the smooth muscle in the airway so as to treat the exacerbation of asthma. R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03C - Adrenergics for systemic use > R03CC - Selective beta-2-adrenoreceptor agonists R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03A - Adrenergics, inhalants > R03AC - Selective beta-2-adrenoreceptor agonists D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Mepyramine

N-[(4-Methoxyphenyl)methyl]-n,n-dimethyl-N-2-pyridinyl-1,2-ethanediamine

C17H23N3O (285.1841)


Mepyramine (also known as pyrilamine) is a first generation antihistamine, targeting the H1 receptor. However, it rapidly permeates the brain and so often causes drowsiness as a side effect. It is used in over-the-counter combination products for colds and menstrual symptoms. D - Dermatologicals > D04 - Antipruritics, incl. antihistamines, anesthetics, etc. > D04A - Antipruritics, incl. antihistamines, anesthetics, etc. > D04AA - Antihistamines for topical use R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AC - Substituted ethylene diamines D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist CONFIDENCE standard compound; EAWAG_UCHEM_ID 3006 D018926 - Anti-Allergic Agents

   

Propafenone

1-(2-(2-Hydroxy-3-(propylamino)propoxy)phenyl)-3-phenyl-1-propanone

C21H27NO3 (341.1991)


Propafenone is only found in individuals that have used or taken this drug. It is an antiarrhythmia agent that is particularly effective in ventricular arrhythmias. It also has weak beta-blocking activity. The drug is generally well tolerated. [PubChem]The electrophysiological effect of propafenone manifests itself in a reduction of upstroke velocity (Phase 0) of the monophasic action potential. In Purkinje fibers, and to a lesser extent myocardial fibers, propafenone reduces the fast inward current carried by sodium ions, which is responsible for the drugs antiarrhythmic actions. Diastolic excitability threshold is increased and effective refractory period prolonged. Propafenone reduces spontaneous automaticity and depresses triggered activity. At very high concentrations in vitro, propafenone can inhibit the slow inward current carried by calcium but this calcium antagonist effect probably does not contribute to antiarrhythmic efficacy. C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BC - Antiarrhythmics, class ic D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers > D061567 - Voltage-Gated Sodium Channel Blockers C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents CONFIDENCE standard compound; INTERNAL_ID 2285 D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker Propafenone (SA-79), a sodium-channel blocker, acts an antiarrhythmic agent. Propafenone also has high affinity for the β receptor (IC50=32 nM)[1]. Propafenone blocks the transient outward current (Ito) and the sustained delayed rectifier K current (Isus) with IC50 values of 4.9?μm and 8.6?μm, respectively[2]. Propafenone suppresses esophageal cancer proliferation through inducing mitochondrial dysfunction and induce apoptosis[3].

   

Penconazole

1-(2,4-dichloro-beta-Propylphenethyl)-1H-1,2,4-triazole

C13H15Cl2N3 (283.0643)


CONFIDENCE standard compound; INTERNAL_ID 411; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9666; ORIGINAL_PRECURSOR_SCAN_NO 9664 CONFIDENCE standard compound; INTERNAL_ID 411; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9722; ORIGINAL_PRECURSOR_SCAN_NO 9721 CONFIDENCE standard compound; INTERNAL_ID 411; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9751; ORIGINAL_PRECURSOR_SCAN_NO 9750 CONFIDENCE standard compound; INTERNAL_ID 411; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9670; ORIGINAL_PRECURSOR_SCAN_NO 9668 CONFIDENCE standard compound; INTERNAL_ID 411; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9676; ORIGINAL_PRECURSOR_SCAN_NO 9675 CONFIDENCE standard compound; INTERNAL_ID 411; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9793; ORIGINAL_PRECURSOR_SCAN_NO 9792 CONFIDENCE standard compound; EAWAG_UCHEM_ID 3107 D016573 - Agrochemicals D010575 - Pesticides

   

Moxonidine

4-chloro-N-(4,5-dihydro-1H-imidazol-2-yl)-6-methoxy-2-methylpyrimidin-5-amine

C9H12ClN5O (241.073)


Moxonidine (INN) is a new generation centrally acting antihypertensive drug licensed for the treatment of mild to moderate essential hypertension. It may have a role when thiazides, beta-blockers, ACE inhibitors and calcium channel blockers are not appropriate or have failed to control blood pressure. In addition, it demonstrates favourable effects on parameters of the insulin resistance syndrome, apparently independent of blood pressure reduction. It is manufactured by Solvay Pharmaceuticals under the brand name Physiotens. Moxonidine is a selective agonist at the imidazoline receptor subtype 1 (I1). This receptor subtype is found in both the rostral ventro-lateral pressor and ventromedial depressor areas of the medulla oblongata. Moxonidine therefore causes a decrease in sympathetic nervous system activity and, therefore, a decrease in blood pressure. C - Cardiovascular system > C02 - Antihypertensives > C02A - Antiadrenergic agents, centrally acting > C02AC - Imidazoline receptor agonists C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents

   

Ipratropium bromide

(endo,Syn)-(+-)-3-(3-hydroxy-1-oxo-2-phenylpropoxy)-8-methyl-8-(1-methylethyl)-8-azoniabicyclo[3.2.1]octane bromide

C20H30NO3+ (332.2226)


Ipratropium bromide is only found in individuals that have used or taken this drug. It is a muscarinic antagonist structurally related to atropine but often considered safer and more effective for inhalation use. It is used for various bronchial disorders, in rhinitis, and as an antiarrhythmic. [PubChem]Ipratropium bromide is an anticholinergic agent. It blocks muscarinic cholinergic receptors, without specificity for subtypes, resulting in a decrease in the formation of cyclic guanosine monophosphate (cGMP). Most likely due to actions of cGMP on intracellular calcium, this results in decreased contractility of smooth muscle. D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents

   

(S)-Homostachydrine

(2S)-1,1-Dimethylpiperidin-1-ium-2-carboxylic acid

C8H15NO2 (157.1103)


(S)-Homostachydrine (also known as pipecolic acid betaine or homostachydrine) can be found in green coffee beans of Robusta and Arabica species (PMID: 27006213). (S)-Homostachydrine content is unaffected by coffee bean roasting treatment because of its remarkable heat stability. This makes it a good candidate marker for determining the content of Robusta and Arabica species in roasted coffee blends. (S)-Homostachydrine is also a potential marker of coffee consumption as it can be found in both human serum and human urine. It is also found in alfalfa seeds and leaves. More specifically, (S)-homostachydrine can be isolated from the seeds of Medicago sativa (alfalfa) as well as from Achillea millefolium (yarrow). (S)-Homostachydrine is also found in the fruits, seeds, and leaves of orange, lemon, and bergamot (PMID: 22208890). Isolated from seeds of Medicago sativa (alfalfa)and is also from Achillea millefolium (yarrow). (S)-Homostachydrine is found in alfalfa, herbs and spices, and pulses.

   

Stachydrine

(2S)-1,1-dimethylpyrrolidin-1-ium-2-carboxylate

C7H13NO2 (143.0946)


Proline betaine is an osmoprotective compound found in urine. It is thought to serve an osmoprotective role for the kidney. Proline betaine is a glycine betaine analogue found in many citrus foods. Elevated levels of proline betaine in human urine are found after the consumption of citrus fruits and juices (PMID: 18060588). Proline betaine is a biomarker for the consumption of citrus fruits. Alkaloid from Citrus spp Medicago sativa and Stachys subspecies(alfalfa). L-Stachydrine or also called proline betaine is a biomarker for the consumption of citrus fruits. L-Stachydrine is found in many foods, some of which are capers, pulses, lemon, and alfalfa. Proline betaine, also known as stachydrine, belongs to the class of organic compounds known as proline and derivatives. Proline and derivatives are compounds containing proline or a derivative thereof resulting from reaction of proline at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. Proline betaine exists in all living organisms, ranging from bacteria to humans. Proline betaine is found, on average, in the highest concentration within capers (Capparis spinosa). Proline betaine has also been detected, but not quantified in, several different foods, such as soy beans (Glycine max), crosnes (Stachys affinis), domestic pigs (Sus scrofa domestica), limes (Citrus aurantiifolia), and triticales (X Triticosecale rimpaui). This could make proline betaine a potential biomarker for the consumption of these foods. Proline betaine is a secondary metabolite. Secondary metabolites are metabolically or physiologically non-essential metabolites that may serve a role as defense or signalling molecules. In some cases they are simply molecules that arise from the incomplete metabolism of other secondary metabolites. Based on a literature review a significant number of articles have been published on Proline betaine. Stachydrine is a major constituent of Chinese herb leonurus heterophyllus sweet used to promote blood circulation and dispel blood stasis. Stachydrine can inhibit the NF-κB signal pathway. Stachydrine is a major constituent of Chinese herb leonurus heterophyllus sweet used to promote blood circulation and dispel blood stasis. Stachydrine can inhibit the NF-κB signal pathway.

   

beta-Alanyl-L-lysine

(2S)-6-amino-2-[(3-amino-1-hydroxypropylidene)amino]hexanoic acid

C9H19N3O3 (217.1426)


This compound belongs to the family of Hybrid Peptides. These are compounds containing at least two different types of amino acids (alpha, beta, gamma, delta). KEIO_ID A127

   

7,4'-Dihydroxyflavone

7-Hydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one

C15H10O4 (254.0579)


7,4-dihydroxyflavone, also known as 7-hydroxy-2-(4-hydroxyphenyl)-4h-chromen-4-one, is a member of the class of compounds known as flavones. Flavones are flavonoids with a structure based on the backbone of 2-phenylchromen-4-one (2-phenyl-1-benzopyran-4-one). Thus, 7,4-dihydroxyflavone is considered to be a flavonoid lipid molecule. 7,4-dihydroxyflavone is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 7,4-dihydroxyflavone can be found in alfalfa, broad bean, and fenugreek, which makes 7,4-dihydroxyflavone a potential biomarker for the consumption of these food products. Like many other flavonoids, 4,7-dihydroxyflavone has been found to possess activity at the opioid receptors. Specifically, it acts as an antagonist of the μ-opioid receptor and, with lower affinity, of the κ- and δ-opioid receptors . 7,4'-Dihydroxyflavone (7,4'-DHF) is a flavonoid isolated from Glycyrrhiza uralensis, the eotaxin/CCL11 inhibitor, has the ability to consistently suppress eotaxin production and prevent dexamethasone (Dex)‐paradoxical adverse effects on eotaxin production[1]. 7,4'-Dihydroxyflavone (7,4'-DHF) inhibits MUC5AC gene expression, mucus production and secretion via regulation of NF-κB, STAT6 and HDAC2. 7,4'-Dihydroxyflavone (7,4'-DHF) decreases phorbol 12-myristate 13-acetate (PMA) stimulated NCI-H292 human airway epithelial cell MUC5AC gene expression and mucus production with IC50 value of 1.4 μM[1]. 7,4'-Dihydroxyflavone (7,4'-DHF) is a flavonoid isolated from Glycyrrhiza uralensis, the eotaxin/CCL11 inhibitor, has the ability to consistently suppress eotaxin production and prevent dexamethasone (Dex)‐paradoxical adverse effects on eotaxin production[1]. 7,4'-Dihydroxyflavone (7,4'-DHF) inhibits MUC5AC gene expression, mucus production and secretion via regulation of NF-κB, STAT6 and HDAC2. 7,4'-Dihydroxyflavone (7,4'-DHF) decreases phorbol 12-myristate 13-acetate (PMA) stimulated NCI-H292 human airway epithelial cell MUC5AC gene expression and mucus production with IC50 value of 1.4 μM[1].

   

Tetraethylammonium

Tetraethylammonium

C8H20N+ (130.1596)


D002317 - Cardiovascular Agents > D026902 - Potassium Channel Blockers D049990 - Membrane Transport Modulators

   

Ibutilide

N-(4-{4-[ethyl(heptyl)amino]-1-hydroxybutyl}phenyl)methanesulfonamide

C20H36N2O3S (384.2447)


Ibutilide is only found in individuals that have used or taken this drug. It is a Class III antiarrhythmic agent that is indicated for acute cardioconversion of atrial fibrillation and atrial flutter of a recent onset to sinus rhythm. [Wikipedia]Ibutilide is a pure class III antiarrhythmic drug, used intravenously against atrial flutter and fibrillation. At a cellular level it exerts two main actions: induction of a persistent Na+ current sensitive to dihydropyridine Ca2+ channel blockers and potent inhibition of the cardiac rapid delayed rectifier K+ current, by binding within potassium channel pores. In other words, Ibutilide binds to and alters the activity of hERG potassium channels, delayed inward rectifier potassium (IKr) channels and L-type (dihydropyridine sensitive) calcium channels C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BD - Antiarrhythmics, class iii C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents C93038 - Cation Channel Blocker

   

D-Carnitine

D-Carnitine hydrochloride salt

C7H15NO3 (161.1052)


The (S)-enantiomer of carnitine. Acquisition and generation of the data is financially supported in part by CREST/JST.

   

4\\%27,7-Dihydroxyflavone

4H-1-Benzopyran-4-one, 7-hydroxy-2-(4-hydroxyphenyl)-

C15H10O4 (254.0579)


4,7-dihydroxyflavone is a dihydroxyflavone in which the two hydroxy substituents are located at positions 4 and 7. It has a role as a metabolite. 7,4-Dihydroxyflavone is a natural product found in Dracaena cinnabari, Thermopsis macrophylla, and other organisms with data available. See also: Glycyrrhiza uralensis Root (part of); Glycyrrhiza inflata root (part of). A dihydroxyflavone in which the two hydroxy substituents are located at positions 4 and 7. 7,4'-Dihydroxyflavone (7,4'-DHF) is a flavonoid isolated from Glycyrrhiza uralensis, the eotaxin/CCL11 inhibitor, has the ability to consistently suppress eotaxin production and prevent dexamethasone (Dex)‐paradoxical adverse effects on eotaxin production[1]. 7,4'-Dihydroxyflavone (7,4'-DHF) inhibits MUC5AC gene expression, mucus production and secretion via regulation of NF-κB, STAT6 and HDAC2. 7,4'-Dihydroxyflavone (7,4'-DHF) decreases phorbol 12-myristate 13-acetate (PMA) stimulated NCI-H292 human airway epithelial cell MUC5AC gene expression and mucus production with IC50 value of 1.4 μM[1]. 7,4'-Dihydroxyflavone (7,4'-DHF) is a flavonoid isolated from Glycyrrhiza uralensis, the eotaxin/CCL11 inhibitor, has the ability to consistently suppress eotaxin production and prevent dexamethasone (Dex)‐paradoxical adverse effects on eotaxin production[1]. 7,4'-Dihydroxyflavone (7,4'-DHF) inhibits MUC5AC gene expression, mucus production and secretion via regulation of NF-κB, STAT6 and HDAC2. 7,4'-Dihydroxyflavone (7,4'-DHF) decreases phorbol 12-myristate 13-acetate (PMA) stimulated NCI-H292 human airway epithelial cell MUC5AC gene expression and mucus production with IC50 value of 1.4 μM[1].

   

gabapentin

gabapentin

C9H17NO2 (171.1259)


D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D018692 - Antimanic Agents N - Nervous system > N02 - Analgesics > N02B - Other analgesics and antipyretics > N02BF - Gabapentinoids D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D002491 - Central Nervous System Agents > D000700 - Analgesics CONFIDENCE standard compound; EAWAG_UCHEM_ID 2561

   

Verapamil

Verapamil

C27H38N2O4 (454.2831)


C - Cardiovascular system > C08 - Calcium channel blockers > C08D - Selective calcium channel blockers with direct cardiac effects > C08DA - Phenylalkylamine derivatives C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000077264 - Calcium-Regulating Hormones and Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 674 EAWAG_UCHEM_ID 674; CONFIDENCE standard compound D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Stachydrine

Pyrrolidinium, 2-carboxy-1,1-dimethyl-, inner salt, (2S)-

C7H13NO2 (143.0946)


L-proline betaine is an amino acid betaine that is L-proline zwitterion in which both of the hydrogens attached to the nitrogen are replaced by methyl groups. It has a role as a food component, a plant metabolite and a human blood serum metabolite. It is a N-methyl-L-alpha-amino acid, an alkaloid and an amino-acid betaine. It is functionally related to a L-prolinium. It is a conjugate base of a N,N-dimethyl-L-prolinium. It is an enantiomer of a D-proline betaine. Stachydrine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Stachydrine is a natural product found in Teucrium polium, Halopithys incurva, and other organisms with data available. Proline betaine is an osmoprotective compound found in urine. It is thought to serve an osmoprotective role for the kidney. Proline betaine is a glycine betaine analogue found in many citrus foods. Elevated levels of proline betaine in human urine are found after the consumption of citrus fruits and juices (PMID: 18060588). Proline betaine is a biomarker for the consumption of citrus fruits. Alkaloid from Citrus spp Medicago sativa and Stachys subspecies(alfalfa). L-Stachydrine or also called proline betaine is a biomarker for the consumption of citrus fruits. L-Stachydrine is found in many foods, some of which are capers, pulses, lemon, and alfalfa. An amino acid betaine that is L-proline zwitterion in which both of the hydrogens attached to the nitrogen are replaced by methyl groups. Stachydrine is a major constituent of Chinese herb leonurus heterophyllus sweet used to promote blood circulation and dispel blood stasis. Stachydrine can inhibit the NF-κB signal pathway. Stachydrine is a major constituent of Chinese herb leonurus heterophyllus sweet used to promote blood circulation and dispel blood stasis. Stachydrine can inhibit the NF-κB signal pathway.

   

Dehydrocorydaline

13-Methylpalmatine

C22H24NO4+ (366.1705)


Dehydrocorydaline (13-Methylpalmatine) is an alkaloid that regulates protein expression of Bax, Bcl-2; activates caspase-7, caspase-8, and inactivates PARP[1]. Dehydrocorydaline elevates p38 MAPK activation. Anti-inflammatory and anti-cancer activities[2]. Dehydrocorydaline shows strong anti-malarial effects (IC50=38 nM), and low cytotoxicity (cell viability?>?90\\%) using P. falciparum 3D7 strain[3]. Dehydrocorydaline (13-Methylpalmatine) is an alkaloid that regulates protein expression of Bax, Bcl-2; activates caspase-7, caspase-8, and inactivates PARP[1]. Dehydrocorydaline elevates p38 MAPK activation. Anti-inflammatory and anti-cancer activities[2]. Dehydrocorydaline shows strong anti-malarial effects (IC50=38 nM), and low cytotoxicity (cell viability?>?90\%) using P. falciparum 3D7 strain[3].

   

4,7-Dihydroxyflavone

7,4-dihydroxyflavone 7-O-glucoside

C15H10O4 (254.0579)


7,4'-Dihydroxyflavone (7,4'-DHF) is a flavonoid isolated from Glycyrrhiza uralensis, the eotaxin/CCL11 inhibitor, has the ability to consistently suppress eotaxin production and prevent dexamethasone (Dex)‐paradoxical adverse effects on eotaxin production[1]. 7,4'-Dihydroxyflavone (7,4'-DHF) inhibits MUC5AC gene expression, mucus production and secretion via regulation of NF-κB, STAT6 and HDAC2. 7,4'-Dihydroxyflavone (7,4'-DHF) decreases phorbol 12-myristate 13-acetate (PMA) stimulated NCI-H292 human airway epithelial cell MUC5AC gene expression and mucus production with IC50 value of 1.4 μM[1]. 7,4'-Dihydroxyflavone (7,4'-DHF) is a flavonoid isolated from Glycyrrhiza uralensis, the eotaxin/CCL11 inhibitor, has the ability to consistently suppress eotaxin production and prevent dexamethasone (Dex)‐paradoxical adverse effects on eotaxin production[1]. 7,4'-Dihydroxyflavone (7,4'-DHF) inhibits MUC5AC gene expression, mucus production and secretion via regulation of NF-κB, STAT6 and HDAC2. 7,4'-Dihydroxyflavone (7,4'-DHF) decreases phorbol 12-myristate 13-acetate (PMA) stimulated NCI-H292 human airway epithelial cell MUC5AC gene expression and mucus production with IC50 value of 1.4 μM[1].

   

gabapentin

gabapentin

C9H17NO2 (171.1259)


D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D018692 - Antimanic Agents N - Nervous system > N02 - Analgesics > N02B - Other analgesics and antipyretics > N02BF - Gabapentinoids D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D002491 - Central Nervous System Agents > D000700 - Analgesics CONFIDENCE standard compound; INTERNAL_ID 1678 CONFIDENCE standard compound; INTERNAL_ID 4114 CONFIDENCE Reference Standard (Level 1)

   

amantadine

Adamantan-1-amine

C10H17N (151.1361)


N - Nervous system > N04 - Anti-parkinson drugs > N04B - Dopaminergic agents > N04BB - Adamantane derivatives D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C38149 - Antiparkinsonian Agent D002491 - Central Nervous System Agents > D000700 - Analgesics D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents D000890 - Anti-Infective Agents > D000998 - Antiviral Agents C254 - Anti-Infective Agent > C281 - Antiviral Agent C93038 - Cation Channel Blocker Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 2670 INTERNAL_ID 2670; CONFIDENCE standard compound CONFIDENCE standard compound; INTERNAL_ID 4147 CONFIDENCE standard compound; EAWAG_UCHEM_ID 3124

   

Tramadol

(R,R)-tramadol

C16H25NO2 (263.1885)


A racemate consisting of equal amounts of (R,R)- and (S,S)-tramadol. A centrally acting synthetic opioid analgesic, used (as the hydrochloride salt) to treat moderately severe pain. The (R,R)-enantiomer exhibits ten-fold higher analgesic potency than the (S,S)-enantiomer. Subsequently isolated from the root bark of Nauclea latifolia D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent D002491 - Central Nervous System Agents > D000700 - Analgesics N - Nervous system > N02 - Analgesics > N02A - Opioids Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE Reference Standard (Level 1)

   

diphenhydramine

diphenhydramine

C17H21NO (255.1623)


D - Dermatologicals > D04 - Antipruritics, incl. antihistamines, anesthetics, etc. > D04A - Antipruritics, incl. antihistamines, anesthetics, etc. > D04AA - Antihistamines for topical use R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AA - Aminoalkyl ethers D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent D005765 - Gastrointestinal Agents > D000932 - Antiemetics D018926 - Anti-Allergic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 2671 CONFIDENCE standard compound; INTERNAL_ID 8588 CONFIDENCE standard compound; INTERNAL_ID 4116 Diphenhydramine is a first-generation histamine H1-receptor antagonist with anti-cholinergic effect. Diphenhydramine hydrochloride can across the ovine blood-brain barrier (BBB) [1][2][3].

   

pyrilamine

PYR_286.1915_11.5

C17H23N3O (285.1841)


D - Dermatologicals > D04 - Antipruritics, incl. antihistamines, anesthetics, etc. > D04A - Antipruritics, incl. antihistamines, anesthetics, etc. > D04AA - Antihistamines for topical use R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AC - Substituted ethylene diamines D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D018926 - Anti-Allergic Agents CONFIDENCE Parent Substance with Reference Standard (Level 1); INTERNAL_ID 1700

   

Dehydrocorydaline

Dehydrocorydaline

[C22H24NO4]+ (366.1705)


Annotation level-1 Dehydrocorydaline (13-Methylpalmatine) is an alkaloid that regulates protein expression of Bax, Bcl-2; activates caspase-7, caspase-8, and inactivates PARP[1]. Dehydrocorydaline elevates p38 MAPK activation. Anti-inflammatory and anti-cancer activities[2]. Dehydrocorydaline shows strong anti-malarial effects (IC50=38 nM), and low cytotoxicity (cell viability?>?90\\%) using P. falciparum 3D7 strain[3]. Dehydrocorydaline (13-Methylpalmatine) is an alkaloid that regulates protein expression of Bax, Bcl-2; activates caspase-7, caspase-8, and inactivates PARP[1]. Dehydrocorydaline elevates p38 MAPK activation. Anti-inflammatory and anti-cancer activities[2]. Dehydrocorydaline shows strong anti-malarial effects (IC50=38 nM), and low cytotoxicity (cell viability?>?90\%) using P. falciparum 3D7 strain[3].

   

Verapamil

Verapamil aka "Benzeneacetonitrile, Alpha-[3-[[2-(3,4-dimethoxyphenyl)ethyl]methylamino]propyl]-3,4-dimethoxy-Alpha-(1-methylethyl)-, (R)- [CAS]"

C27H38N2O4 (454.2831)


C - Cardiovascular system > C08 - Calcium channel blockers > C08D - Selective calcium channel blockers with direct cardiac effects > C08DA - Phenylalkylamine derivatives C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS relative retention time with respect to 9-anthracene Carboxylic Acid is 0.907 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.908

   

Levocarnitine

L-Carnitine hydrochloride

C7H15NO3 (161.1052)


Used in sport and infant nutrition. Carnitine is a quaternary ammonium compound biosynthesized from the amino acids lysine and methionine. In living cells, it is required for the transport of fatty acids from the cytosol into the mitochondria during the breakdown of lipids (or fats) for the generation of metabolic energy. It is often sold as a nutritional supplement. Carnitine was originally found as a growth factor for mealworms and labeled vitamin Bt. Carnitine exists in two stereoisomers: its biologically active form is L-carnitine, while its enantiomer, D-carnitine, is biologically inactive.; Carnitine is not an essential amino acid; Levocarnitine is a carrier molecule in the transport of long chain fatty acids across the inner mitochondrial membrane. It also exports acyl groups from subcellular organelles and from cells to urine before they accumulate to toxic concentrations. Lack of carnitine can lead to liver, heart, and muscle problems. Carnitine deficiency is defined biochemically as abnormally low plasma concentrations of free carnitine, less than 20 µmol/L at one week post term and may be associated with low tissue and/or urine concentrations. Further, this condition may be associated with a plasma concentration ratio of acylcarnitine/levocarnitine greater than 0.4 or abnormally elevated concentrations of acylcarnitine in the urine. Only the L isomer of carnitine (sometimes called vitamin BT) affects lipid metabolism. The "vitamin BT" form actually contains D,L-carnitine, which competitively inhibits levocarnitine and can cause deficiency. Levocarnitine can be used therapeutically to stimulate gastric and pancreatic secretions and in the treatment of hyperlipoproteinemias.; There is a close correlation between changes in plasma levels of osteocalcin and osteoblast activity and a reduction in osteocalcin plasma levels is an indicator of reduced osteoblast activity, which appears to underlie osteoporosis in elderly subjects and in postmenopausal women. Administration of a carnitine mixture or propionyl-L-carnitine is capable of increasing serum osteocalcin concentrations of animals thus treated, whereas serum osteocalcin levels tend to decrease with age in control animals.; it can be synthesized in the body. However, it is so important in providing energy to muscles including the heart-that some researchers are now recommending carnitine supplements in the diet, particularly for people who do not consume much red meat, the main food source for carnitine. Carnitine has been described as a vitamin, an amino acid, or a metabimin, i.e., an essential metabolite. Like the B vitamins, carnitine contains nitrogen and is very soluble in water, and to some researchers carnitine is a vitamin (Liebovitz 1984). It was found that an animal (yellow mealworm) could not grow without carnitine in its diet. However, as it turned out, almost all other animals, including humans, do make their own carnitine; thus, it is no longer considered a vitamin. Nevertheless, in certain circumstances-such as deficiencies of methionine, lysine or vitamin C or kidney dialysis--carnitine shortages develop. Under these conditions, carnitine must be absorbed from food, and for this reason it is sometimes referred to as a "metabimin" or a conditionally essential metabolite. Like the other amino acids used or manufactured by the body, carnitine is an amine. But like choline, which is sometimes considered to be a B vitamin, carnitine is also an alcohol (specifically, a trimethylated carboxy-alcohol). Thus, carnitine is an unusual amino acid and has different functions than most other amino acids, which are most usually employed by the body in the construction of protein. Carnitine is an essential factor in fatty acid metabolism in mammals. Its most important known metabolic function is to transport fat into the mitochondria of muscle cells, including those in the heart, for oxidation. This is how the heart gets most of its energy. In humans, about 25\\\\\%... MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; PHIQHXFUZVPYII_STSL_0119_Carnitine hydrochrolide_0125fmol_180430_S2_LC02_MS02_131; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. L-Carnitine ((R)-Carnitine), a highly polar, small zwitterion, is an essential co-factor for the mitochondrial β-oxidation pathway. L-Carnitine functions to transport long chain fatty acyl-CoAs into the mitochondria for degradation by β-oxidation. L-Carnitine is an antioxidant. L-Carnitine can ameliorate metabolic imbalances in many inborn errors of metabolism[1][2][3]. L-Carnitine ((R)-Carnitine), a highly polar, small zwitterion, is an essential co-factor for the mitochondrial β-oxidation pathway. L-Carnitine functions to transport long chain fatty acyl-CoAs into the mitochondria for degradation by β-oxidation. L-Carnitine is an antioxidant. L-Carnitine can ameliorate metabolic imbalances in many inborn errors of metabolism[1][2][3].

   

formoterol

N-[2-Hydroxy-5-[1-hydroxy-2-[1-(4-methoxyphenyl)propan-2-ylamino]ethyl]phenyl]formamide

C19H24N2O4 (344.1736)


R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03C - Adrenergics for systemic use > R03CC - Selective beta-2-adrenoreceptor agonists R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03A - Adrenergics, inhalants > R03AC - Selective beta-2-adrenoreceptor agonists D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

MOXONIDINE

MOXONIDINE

C9H12ClN5O (241.073)


C - Cardiovascular system > C02 - Antihypertensives > C02A - Antiadrenergic agents, centrally acting > C02AC - Imidazoline receptor agonists C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents

   

propafenone

propafenone

C21H27NO3 (341.1991)


C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BC - Antiarrhythmics, class ic D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers > D061567 - Voltage-Gated Sodium Channel Blockers C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker Propafenone (SA-79), a sodium-channel blocker, acts an antiarrhythmic agent. Propafenone also has high affinity for the β receptor (IC50=32 nM)[1]. Propafenone blocks the transient outward current (Ito) and the sustained delayed rectifier K current (Isus) with IC50 values of 4.9?μm and 8.6?μm, respectively[2]. Propafenone suppresses esophageal cancer proliferation through inducing mitochondrial dysfunction and induce apoptosis[3].

   

Homostachydrine

Homostachydrine

C8H15NO2 (157.1103)


An ammonium betaine that is pipecolic acid zwitterion with methyl groups substituted for the two hydrogens at the nitrogen. It is found in in fruits, seeds, and leaves of orange, lemon, and bergamot. MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; XULZWQRXYTVUTE-ZETCQYMHSA-N_STSL_0043_pipecolic acid betaine_0125fmol_180407_S2_LC02_MS02_96; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I.

   

PROCAINAMIDE

PROCAINAMIDE

C13H21N3O (235.1685)


C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BA - Antiarrhythmics, class ia D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers > D061567 - Voltage-Gated Sodium Channel Blockers C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

Penconazole

Pesticide6_Penconazole_C13H15Cl2N3_1H-1,2,4-Triazole, 1-[2-(2,4-dichlorophenyl)pentyl]-

C13H15Cl2N3 (283.0643)


D016573 - Agrochemicals D010575 - Pesticides

   

estrone sulfate

3-hydroxyestra-1,3,5(10)-trien-17-one hydrogen sulfate

C18H22O5S (350.1188)


C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

Ammidin

InChI=1\C16H14O4\c1-10(2)5-7-19-16-14-12(6-8-18-14)9-11-3-4-13(17)20-15(11)16\h3-6,8-9H,7H2,1-2H

C16H14O4 (270.0892)


D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Imperatorin is an effective of NO synthesis inhibitor (IC50=9.2 μmol), which also is a BChE inhibitor (IC50=31.4 μmol). Imperatorin is a weak agonist of TRPV1 with EC50 of 12.6±3.2 μM. Imperatorin is an effective of NO synthesis inhibitor (IC50=9.2 μmol), which also is a BChE inhibitor (IC50=31.4 μmol). Imperatorin is a weak agonist of TRPV1 with EC50 of 12.6±3.2 μM.

   

2196-14-7

4H-1-Benzopyran-4-one, 7-hydroxy-2-(4-hydroxyphenyl)-

C15H10O4 (254.0579)


7,4'-Dihydroxyflavone (7,4'-DHF) is a flavonoid isolated from Glycyrrhiza uralensis, the eotaxin/CCL11 inhibitor, has the ability to consistently suppress eotaxin production and prevent dexamethasone (Dex)‐paradoxical adverse effects on eotaxin production[1]. 7,4'-Dihydroxyflavone (7,4'-DHF) inhibits MUC5AC gene expression, mucus production and secretion via regulation of NF-κB, STAT6 and HDAC2. 7,4'-Dihydroxyflavone (7,4'-DHF) decreases phorbol 12-myristate 13-acetate (PMA) stimulated NCI-H292 human airway epithelial cell MUC5AC gene expression and mucus production with IC50 value of 1.4 μM[1]. 7,4'-Dihydroxyflavone (7,4'-DHF) is a flavonoid isolated from Glycyrrhiza uralensis, the eotaxin/CCL11 inhibitor, has the ability to consistently suppress eotaxin production and prevent dexamethasone (Dex)‐paradoxical adverse effects on eotaxin production[1]. 7,4'-Dihydroxyflavone (7,4'-DHF) inhibits MUC5AC gene expression, mucus production and secretion via regulation of NF-κB, STAT6 and HDAC2. 7,4'-Dihydroxyflavone (7,4'-DHF) decreases phorbol 12-myristate 13-acetate (PMA) stimulated NCI-H292 human airway epithelial cell MUC5AC gene expression and mucus production with IC50 value of 1.4 μM[1].

   

Hyndarin

InChI=1\C21H25NO4\c1-23-18-6-5-13-9-17-15-11-20(25-3)19(24-2)10-14(15)7-8-22(17)12-16(13)21(18)26-4\h5-6,10-11,17H,7-9,12H2,1-4H3\t17-\m0\s

C21H25NO4 (355.1783)


D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators Rotundine is an antagonist of dopamine D1, D2 and D3 receptors with IC50s of 166 nM, 1.4 μM and 3.3 μM, respectively. Rotundine is also an antagonist of 5-HT1A with an IC50 of 370 nM. Rotundine is an antagonist of dopamine D1, D2 and D3 receptors with IC50s of 166 nM, 1.4 μM and 3.3 μM, respectively. Rotundine is also an antagonist of 5-HT1A with an IC50 of 370 nM. Rotundine is an antagonist of dopamine D1, D2 and D3 receptors with IC50s of 166 nM, 1.4 μM and 3.3 μM, respectively. Rotundine is also an antagonist of 5-HT1A with an IC50 of 370 nM.

   

Ibutilide

Ibutilide

C20H36N2O3S (384.2447)


C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BD - Antiarrhythmics, class iii C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents C93038 - Cation Channel Blocker

   

ipratropium

ipratropium

C20H30NO3+ (332.2226)


D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents

   

H-Gly-Leu-OH

Glycyl-L-leucine

C8H16N2O3 (188.1161)


Glycyl-l-leucine is a dipeptide that can be a common substrate for?glycyl-leucine?dipeptidase.

   

beta-Alanyl-L-lysine

beta-Alanyl-L-lysine

C9H19N3O3 (217.1426)


   

Prochloraz

Prochloraz

C15H16Cl3N3O2 (375.0308)


D016573 - Agrochemicals D010575 - Pesticides

   

3-(cyclopropylmethyl)-4a,9-dihydroxy-2,4,5,6,7a,13-hexahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-7-one

3-(cyclopropylmethyl)-4a,9-dihydroxy-2,4,5,6,7a,13-hexahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-7-one

C20H23NO4 (341.1627)