Gene Association: ITPK1

UniProt Search: ITPK1 (PROTEIN_CODING)
Function Description: inositol-tetrakisphosphate 1-kinase

found 11 associated metabolites with current gene based on the text mining result from the pubmed database.

Phytic acid

(2,3,4,5,6-pentaphosphonooxycyclohexyl) dihydrogen phosphate

C6H18O24P6 (659.8614)


myo-Inositol hexakisphosphate is an intermediate in inositol phosphate metabolism. It can be generated from D-myo-inositol 1,3,4,5,6-pentakisphosphate via the enzyme inositol-pentakisphosphate 2-kinase (EC 2.7.1.158). myo-Inositol hexakisphosphate is also known as phytic acid. It can be used clinically as a complexing agent for the removal of traces of heavy metal ions. It acts also as a hypocalcemic agent. Phytic acid is a strong chelator of important minerals such as calcium, magnesium, iron, and zinc and can, therefore, contribute to mineral deficiencies in developing countries. For people with a particularly low intake of essential minerals, especially young children and those in developing countries, this effect can be undesirable. However, dietary mineral chelators help prevent over-mineralization of joints, blood vessels, and other parts of the body, which is most common in older persons. Phytic acid is a plant antioxidant (PMID: 3040709). Myo-inositol hexakisphosphate is a myo-inositol hexakisphosphate in which each hydroxy group of myo-inositol is monophosphorylated. It has a role as an iron chelator, an antineoplastic agent, a signalling molecule, an Escherichia coli metabolite, a mouse metabolite and a cofactor. It is a conjugate acid of a myo-inositol hexakisphosphate(12-). Phytic acid is under investigation in clinical trial NCT01000233 (Value of Oral Phytate (InsP6) in the Prevention of Progression of the Cardiovascular Calcifications). Myo-inositol hexakisphosphate is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Phytic acid is a natural product found in Chloris gayana, Vachellia nilotica, and other organisms with data available. Myo-Inositol hexakisphosphate is a metabolite found in or produced by Saccharomyces cerevisiae. Complexing agent for removal of traces of heavy metal ions. It acts also as a hypocalcemic agent. Widely distributed in many higher plants. The Ca salt is used as a sequestrant in food flavouring C26170 - Protective Agent > C275 - Antioxidant

   

Inositol 1,3,4-trisphosphate

(2,3,5-Trihydroxy-4,6-diphosphonooxycyclohexyl) dihydrogen phosphate

C6H15O15P3 (419.9624)


Inositol 1,3,4-trisphosphate (CAS: 98102-63-7), also known as Ins(1,3,4)P3 or I3S, belongs to the class of organic compounds known as inositol phosphates. Inositol phosphates are compounds containing a phosphate group attached to an inositol (or cyclohexanehexol) moiety. Within humans, inositol 1,3,4-trisphosphate participates in several enzymatic reactions. In particular, inositol 1,3,4-trisphosphate can be converted into 1D-myo-inositol 1,3,4,6-tetrakisphosphate through the action of the enzyme inositol-tetrakisphosphate 1-kinase. In addition, inositol 1,3,4-trisphosphate can be converted into inositol 1,3,4,5-tetraphosphate through its interaction with the enzyme inositol-tetrakisphosphate 1-kinase. In humans, inositol 1,3,4-trisphosphate is involved in inositol metabolism. Inositol 1,3,4-trisphosphate is a specific regulator of cellular signalling. A specific regulator of cellular signaling [HMDB]

   

myo-Inositol 1,3,4,5,6-pentakisphosphate

{[(1R,2S,3r,4R,5S,6r)-3-hydroxy-2,4,5,6-tetrakis(phosphonooxy)cyclohexyl]oxy}phosphonic acid

C6H17O21P5 (579.895)


myo-Inositol 1,3,4,5,6-pentakisphosphate, also known as Ins(1,3,4,5,6)P5 or inositol pentaphosphate, is an inositol polyphosphate of emerging significance in cellular signalling. Both Ins(1,3,4,5,6)P5 and its C-2 epimer scyllo-inositol pentakisphosphate (scyllo-InsP(5)) were synthesized from the same myo-inositol-based precursor (PMID: 16755629). InsP6, Ins(1,3,4,5,6)P5, and their close metabolic relatives are amongst the more abundant intracellular inositol polyphosphates. They are involved in chromatin organization, DNA maintenance, gene transcription, nuclear mRNA transport, membrane trafficking, and control of cell proliferation (PMID: 14992690). myo-Inositol 1,3,4,5,6-pentakisphosphate (Ins(1,3,4,5,6)P(5)), an inositol polyphosphate of emerging significance in cellular signalling, and its C-2 epimer scyllo-inositol pentakisphosphate (scyllo-InsP(5)) were synthesised from the same myo-inositol-based precursor. (PMID: 16755629)

   

D-myo-Inositol 1,3,4,6-tetrakisphosphate

{[(1R,2s,3S,4S,5r,6R)-2,5-dihydroxy-3,4,6-tris(phosphonooxy)cyclohexyl]oxy}phosphonic acid

C6H16O18P4 (499.9287)


D-myo-Inositol 1,3,4,6-tetrakisphosphate, also known as Ins(1,3,4,6)P4, belongs to the class of organic compounds known as inositol phosphates. Inositol phosphates are compounds containing a phosphate group attached to an inositol (or cyclohexanehexol) moiety. D-myo-Inositol 1,3,4,6-tetrakisphosphate is an extremely strong acidic compound (based on its pKa). D-myo-Inositol 1,3,4,6-tetrakisphosphate participates in a number of enzymatic reactions. In particular, D-myo-inositol 1,3,4,6-tetrakisphosphate can be converted into D-myo-inositol 1,3,4,5,6-pentakisphosphate through the action of the enzyme inositol polyphosphate multikinase. In addition, D-myo-inositol 1,3,4,6-tetrakisphosphate can be biosynthesized from inositol 1,3,4-trisphosphate; which is mediated by the enzyme inositol-tetrakisphosphate 1-kinase. In humans, D-myo-inositol 1,3,4,6-tetrakisphosphate is involved in inositol phosphate metabolism and is a substrate for the tyrosine-protein kinase BTK. 1D-Myo-inositol 1,3,4,6-tetrakisphosphate is a substrate for Tyrosine-protein kinase BTK and Inositol polyphosphate multikinase. [HMDB]

   

D-myo-Inositol 3,4,5,6-tetrakisphosphate

{[(1R,2S,3R,4S,5S,6R)-3,4-dihydroxy-2,5,6-tris(phosphonooxy)cyclohexyl]oxy}phosphonic acid

C6H16O18P4 (499.9287)


Inositol phosphates are a family of water-soluble intracellular signalling molecules derived from membrane inositol phospholipids. They undergo a variety of complex interconversion pathways, and their levels are dynamically regulated within the cytosol in response to a variety of agonists. D-myo-Inositol 3,4,5,6-tetrakisphosphate, also known as Ins(3,4,5,6)P4, has a direct biphasic (activation/inhibition) effect on an epithelial Ca2+-activated chloride channel. The effect of Ins(3,4,5,6)P4 is not mimicked by other inositol tetrakisphosphate isomers, is dependent on the prevailing calcium concentration, and is influenced when channels are phosphorylated by calmodulin kinase II. The predominant effect of Ins(3,4,5,6)P4 on phosphorylated channels is inhibitory at levels of intracellular calcium observed in stimulated cells. Ins(3,4,5,6)P4 activity acts to inhibit calcium-dependent chloride secretion. The secretion of fluid and electrolytes across intestinal epithelial cells in response to Ca2+-dependent secretagogues is a tightly regulated process that is subject to both positive and negative influences. Agonists of Gq protein-coupled receptor (GqPCRs) appear to have the ability to evoke antisecretory mechanisms. One is mediated by the generation of Ins(3,4,5,6)P4 and serves to chronically downregulate epithelial responsiveness to subsequent challenges with Ca2+-dependent agonists (PMID: 12388102, 11408264). Inositol phosphates are a family of water-soluble intracellular signaling molecules derived from membrane inositol phospholipids. They undergo a variety of complex interconversion pathways, and their levels are dynamically regulated within the cytosol in response to a variety of agonists. D-Myo-inositol (3,4,5,6) tetrakisphosphate (Ins(3,4,5,6)P4) has a direct biphasic (activation/inhibition) effect on an epithelial Ca2+-activated chloride channel. The effect of Ins(3,4,5,6)P4 is not mimicked by other inositol tetrakisphosphate isomers, is dependent on the prevailing calcium concentration, and is influenced when channels are phosphorylated by calmodulin kinase II. The predominant effect of Ins(3,4,5,6)P4 on phosphorylated channels is inhibitory at levels of intracellular calcium observed in stimulated cells. Ins(3,4,5,6)P4 activity acts to inhibit calcium-dependent chloride secretion. The secretion of fluid and electrolytes across intestinal epithelial cells in response to Ca2+-dependent secretagogues is a tightly regulated process that is subject to both positive and negative influences. Agonists of Gq protein-coupled receptor (GqPCRs) appear to have the ability to evoke antisecretory mechanisms. One is mediated by the generation of Ins(3,4,5,6)P4 and serves to chronically downregulate epithelial responsiveness to subsequent challenge with Ca2+-dependent agonists. (PMID: 12388102, 11408264) [HMDB]

   

Phytic acid

1D-myo-Inositol 1,2,3,4,5,6-hexakisphosphate

C6H18O24P6 (659.8614)


1d-myo-inositol 1,2,3,4,5,6-hexakisphosphate, also known as phytate or phytic acid, is a member of the class of compounds known as inositol phosphates. Inositol phosphates are compounds containing a phosphate group attached to an inositol (or cyclohexanehexol) moiety. 1d-myo-inositol 1,2,3,4,5,6-hexakisphosphate is soluble (in water) and an extremely strong acidic compound (based on its pKa). 1d-myo-inositol 1,2,3,4,5,6-hexakisphosphate can be found in a number of food items such as scarlet bean, arrowroot, salmonberry, and roman camomile, which makes 1d-myo-inositol 1,2,3,4,5,6-hexakisphosphate a potential biomarker for the consumption of these food products. 1d-myo-inositol 1,2,3,4,5,6-hexakisphosphate can be found primarily in blood and urine, as well as throughout most human tissues. In humans, 1d-myo-inositol 1,2,3,4,5,6-hexakisphosphate is involved in a couple of metabolic pathways, which include inositol metabolism and inositol phosphate metabolism. C26170 - Protective Agent > C275 - Antioxidant

   

Phytic_acid

1,2,3,4,5,6-cyclohexanehexol, hexakis(dihydrogen phosphate), (1alpha,2alpha,3alpha,4beta,5alpha,6beta)-

C6H18O24P6 (659.8614)


Myo-inositol hexakisphosphate is a myo-inositol hexakisphosphate in which each hydroxy group of myo-inositol is monophosphorylated. It has a role as an iron chelator, an antineoplastic agent, a signalling molecule, an Escherichia coli metabolite, a mouse metabolite and a cofactor. It is a conjugate acid of a myo-inositol hexakisphosphate(12-). Phytic acid is under investigation in clinical trial NCT01000233 (Value of Oral Phytate (InsP6) in the Prevention of Progression of the Cardiovascular Calcifications). Myo-inositol hexakisphosphate is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Phytic acid is a natural product found in Chloris gayana, Vachellia nilotica, and other organisms with data available. Myo-Inositol hexakisphosphate is a metabolite found in or produced by Saccharomyces cerevisiae. Complexing agent for removal of traces of heavy metal ions. It acts also as a hypocalcemic agent. C26170 - Protective Agent > C275 - Antioxidant

   

Inositol 1,3,4-trisphosphate

1D-Myo-inositol 1,3,4-trisphosphate

C6H15O15P3 (419.9624)


   

1D-myo-Inositol 3,4,5,6-tetrakisphosphate

1D-myo-Inositol 3,4,5,6-tetrakisphosphate

C6H16O18P4 (499.9287)


A myo-inositol tetrakisphosphate having the four phosphate groups placed at the 3-, 4-, 5- and 6-positions.

   

Inositol 1,3,4,5,6-pentakisphosphate

Inositol 1,3,4,5,6-pentakisphosphate

C6H17O21P5 (579.895)


   

Myo-inositol 1,3,4,6-tetrakisphosphate

Myo-inositol 1,3,4,6-tetrakisphosphate

C6H16O18P4 (499.9287)


A myo-inositol tetrakisphosphate having the phosphate groups placed at the 1-, 3-, 4- and 6-positions.