alpha-D-Glucose 1,6-bisphosphate (BioDeep_00000001833)
Secondary id: BioDeep_00000400268
natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite
代谢物信息卡片
化学式: C6H14O12P2 (339.9961)
中文名称: 葡萄糖-1,6-二磷酸,4CHA盐
谱图信息:
最多检出来源 Homo sapiens(natural_products) 32.47%
分子结构信息
SMILES: C(C1C(C(C(C(O1)OP(=O)(O)O)O)O)O)OP(=O)(O)O
InChI: InChI=1S/C6H14O12P2/c7-3-2(1-16-19(10,11)12)17-6(5(9)4(3)8)18-20(13,14)15/h2-9H,1H2,(H2,10,11,12)(H2,13,14,15)/t2-,3-,4+,5-,6-/m1/s1
描述信息
Glucose 1,6-diphosphate (G-1,6-P2) is considered to be a major regulator of carbohydrate metabolism. It has been demonstrated that G-1,6-P2 is a potent activator (deinhibitor) of skeletal muscle phosphofructokinase (PFK) and phosphoglucomutase, while being an inhibitor of hexokinase (see Ref. 2). In addition, G-1,6-P2 has been shown to inhibit 6-phosphogluconate dehydrogenase in various rat tissues and fructose 1,6-bisphosphatase in bovine liver. Various factors and conditions affect the tissue content of G-1,6-P2. Specifically, anoxia induces a rapid fall in the content of G-l,6-P2 in the brain. Glucose 1,6-diphosphate has been recognized as a regulatory signal implicated in the control of metabolism, oxygen affinity of red cells, and other cellular functions. The levels of G 1,6-P2 are reduced in the liver and in the muscle of rats with experimentally induced diabetes. In muscle of genetically dystrophic mice, a decrease in the levels of G 1,6-P2 has been found, probably resulting from enhancement of glucose 1,6-P2 phosphatase activity. G 1,6-P2 is an inhibitor of hexokinase and its level is increased significantly after 5 min of exercise (~25\\%) and then decreased continuously. G 1,6-P2 is a potent allosteric activator of phosphofructokinase, and is markedly decreased in muscles of patients with glycogenosis type VII (muscle phosphofructokinase deficiency) and type V (muscle phosphorylase deficiency). Chronic alcohol intake produces an increase in the concentration of G 1,6-P2 in human muscle before the first sign of myopathy appears. When myopathy is present the level decreases to be similar to healthy humans. These changes could contribute to the decline in skeletal muscle performance (PMID:1449560, 2018547, 2003594, 3407759).
Glucose 1,6-diphosphate is considered to be a major regulator of carbohydrate metabolism. It has been demonstrated that G-1,6-P2 is a potent activator (deinhibitor) of skeletal muscle phosphofructokinase (PFK) and phosphoglucomutase, while being an inhibitor of hexokinase (see Ref. 2). In addition, G-1,6 P2 has been shown to inhibit 6-phosphogluconate dehydrogenase in various rat tissues and fructose 1,6-bisphosphatase in bovine liver. Various factors and conditions affect the tissue content of G-1,6-P2. Specifically, anoxia induce a rapid fall in the content of G-l,6-P2 in brain. Glucose 1,6-diphosphate (G 1,6-P2 )have been recognized as a regulatory signal implicated in the control of metabolism, oxygen affinity of red cells and other cellular functions. The levels of G 1,6-P2 are reduced in the liver and in the muscle of rats with experimentally induced diabetes. In muscle of genetically dystrophic mice a decrease in the levels of G 1,6-P2 has been found, probably resulting from enhancement of glucose 1,6-P2 phosphatase activity. G 1,6-P2 is an inhibitor of hexokinase and its level is increased significantly after 5 min of exercise (~ 25\\%) and then decreased continuously. G 1,6-P2 is a potent allosteric activator of phosphofructokinase, and is markedly decreased in muscles of patients with glycogenosis type VII (muscle phosphofructokinase deficiency) and type V (muscle phosphorylase deficiency).
Acquisition and generation of the data is financially supported in part by CREST/JST.
同义名列表
43 个代谢物同义名
{[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[(phosphonooxy)methyl]oxan-2-yl]oxy}phosphonic acid; [(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[(phosphonooxy)methyl]oxan-2-yl]oxyphosphonic acid; alpha-delta-1,6-Bis(dihydrogen phosphate) glucopyranose; alpha-D-1,6-Bis(dihydrogen phosphate) glucopyranose; alpha-delta-Glucose 1,6-bis(dihydrogen phosphate); alpha-D-Glucose 1,6-bis(dihydrogen phosphate); a-D-Glucose 1,6-bis(dihydrogen phosphate); alpha-D-Glucose 1,6-bisphosphoric acid; alpha-D-Glucose 1,6-biphosphoric acid; alpha-delta-Glucose 1,6-bisphosphate; alpha-delta-Glucose 1,6-diphosphate; a-D-Glucose 1,6-bisphosphoric acid; Α-D-glucose 1,6-bisphosphoric acid; Α-D-glucose 1,6-biphosphoric acid; a-D-Glucose 1,6-biphosphoric acid; beta-D-Glucose 1,6-(bis)phosphate; alpha-D-Glucose-1,6-bisphosphate; alpha-D-Glucose 1,6-bisphosphate; D-Glucose 1,6-bisphosphoric acid; alpha-D-Glucose 1,6-diphosphate; D-Glucose 1,6-biphosphoric acid; alpha-D-Glucose 1,6-biphosphate; alpha-Glucose 1,6-diphosphate; delta-Glucose 1,6-diphosphate; a-D-Glucose 1,6-bisphosphate; Α-D-glucose 1,6-bisphosphate; Α-D-glucose 1,6-biphosphate; a-D-Glucose 1,6-diphosphate; Α-D-glucose 1,6-diphosphate; a-D-Glucose 1,6-biphosphate; D-glucose 1,6-bisphosphate; Α-glucose 1,6-diphosphate; D-Glucose 1,6-biphosphate; D-Glucose 1,6-diphosphate; Glucose-1,6-bisphosphate; Glucose 1,6-bisphosphate; Glucose 1,6-diphosphate; Glucose-1,6-diphosphate; [(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(phosphonooxymethyl)oxan-2-yl]dihydrogen phosphate; alpha-D-Glucose-1,6-diphosphate potassium salt hydrate; alpha-D-Glucose-1,6-diphosphate; D-GLUCOSE-1,6-DIPHOSPHATE; alpha-D-Glucose 1,6-bisphosphate
数据库引用编号
23 个数据库交叉引用编号
- ChEBI: CHEBI:18148
- KEGG: C01231
- PubChem: 82400
- PubChem: 737
- HMDB: HMDB0003514
- Metlin: METLIN154
- DrugBank: DB02835
- MetaCyc: ALPHA-GLUCOSE-16-BISPHOSPHATE
- foodb: FDB023185
- chemspider: 74362
- CAS: 10139-18-1
- MoNA: PS037703
- MoNA: PR100628
- MoNA: PS037709
- MoNA: PS037708
- MoNA: PS037707
- PMhub: MS000001253
- PubChem: 4453
- PDB-CCD: G16
- 3DMET: B01418
- NIKKAJI: J40.064E
- RefMet: Glucose 1,6-bisphosphate
- KNApSAcK: 18148
分类词条
相关代谢途径
BioCyc(0)
PlantCyc(0)
代谢反应
87 个相关的代谢反应过程信息。
Reactome(64)
- Carbohydrate metabolism:
Glu + OAA ⟶ 2OG + L-Asp
- Glucose metabolism:
Glu + OAA ⟶ 2OG + L-Asp
- Glycolysis:
ADP + H+ + PEP ⟶ ATP + PYR
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glucose metabolism:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Glycolysis:
ATP + Fru(6)P ⟶ ADP + F1,6PP
- Metabolism:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Carbohydrate metabolism:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Glucose metabolism:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Glycolysis:
ATP + Fru(6)P ⟶ ADP + F1,6PP
- Glycolysis:
ATP + Fru(6)P ⟶ ADP + F1,6PP
- Metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Glucose metabolism:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Glycolysis:
ATP + Fru(6)P ⟶ ADP + F1,6PP
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Carbohydrate metabolism:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Glucose metabolism:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Glycolysis:
ATP + Fru(6)P ⟶ ADP + F1,6PP
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glucose metabolism:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Glycolysis:
ATP + Fru(6)P ⟶ ADP + F1,6PP
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glucose metabolism:
ADP + Glc ⟶ AMP + G6P
- Glycolysis:
ADP + Glc ⟶ AMP + G6P
- Glycolysis:
ATP + Fru(6)P ⟶ ADP + F1,6PP
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glucose metabolism:
ATP + Fru(6)P ⟶ ADP + F1,6PP
- Glycolysis:
ATP + Fru(6)P ⟶ ADP + F1,6PP
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Carbohydrate metabolism:
L-gulonate + NAD ⟶ 3-dehydro-L-gulonate + H+ + NADH
- Glucose metabolism:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Glycolysis:
ATP + Fru(6)P ⟶ ADP + F1,6PP
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glucose metabolism:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Glycolysis:
ATP + Fru(6)P ⟶ ADP + F1,6PP
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glucose metabolism:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Carbohydrate metabolism:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Carbohydrate metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- Glucose metabolism:
ATP + Fru(6)P ⟶ ADP + F1,6PP
- Glycolysis:
ATP + Fru(6)P ⟶ ADP + F1,6PP
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carbohydrate metabolism:
L-gulonate + NAD ⟶ 3-dehydro-L-gulonate + H+ + NADH
- Glucose metabolism:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Glycolysis:
ATP + Fru(6)P ⟶ ADP + F1,6PP
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glucose metabolism:
ATP + Fru(6)P ⟶ ADP + F1,6PP
- Glycolysis:
ATP + Fru(6)P ⟶ ADP + F1,6PP
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glucose metabolism:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glucose metabolism:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Glycolysis:
ATP + Fru(6)P ⟶ ADP + F1,6PP
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(23)
- Starch and Sucrose Metabolism:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Glycogen Synthetase Deficiency:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Glycogenosis, Type III. Cori Disease, Debrancher Glycogenosis:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Glycogenosis, Type IV. Amylopectinosis, Anderson Disease:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Glycogenosis, Type VI. Hers Disease:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Mucopolysaccharidosis VII. Sly Syndrome:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Sucrase-Isomaltase Deficiency:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Starch and Sucrose Metabolism:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- Starch and Sucrose Metabolism:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Glycogen Synthetase Deficiency:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Glycogenosis, Type IV. Amylopectinosis, Anderson Disease:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Glycogenosis, Type VI. Hers Disease:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Mucopolysaccharidosis VII. Sly Syndrome:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Sucrase-Isomaltase Deficiency:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Starch and Sucrose Metabolism:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Starch and Sucrose Metabolism:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Glycogen Synthetase Deficiency:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Glycogenosis, Type III. Cori Disease, Debrancher Glycogenosis:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Glycogenosis, Type IV. Amylopectinosis, Anderson Disease:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Glycogenosis, Type VI. Hers Disease:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Mucopolysaccharidosis VII. Sly Syndrome:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Sucrase-Isomaltase Deficiency:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Glycogenosis, Type III. Cori Disease, Debrancher Glycogenosis:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
PharmGKB(0)
1 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Eva Morava, Ulrich A Schatz, Pernille M Torring, Mary-Alice Abbott, Matthias Baumann, Charlotte Brasch-Andersen, Nathalie Chevalier, Ulrike Dunkhase-Heinl, Martin Fleger, Tobias B Haack, Stephen Nelson, Sven Potelle, Silvia Radenkovic, Guido T Bommer, Emile Van Schaftingen, Maria Veiga-da-Cunha. Impaired glucose-1,6-biphosphate production due to bi-allelic PGM2L1 mutations is associated with a neurodevelopmental disorder.
American journal of human genetics.
2021 06; 108(6):1151-1160. doi:
10.1016/j.ajhg.2021.04.017
. [PMID: 33979636] - Henry P Wood, F Aaron Cruz-Navarrete, Nicola J Baxter, Clare R Trevitt, Angus J Robertson, Samuel R Dix, Andrea M Hounslow, Matthew J Cliff, Jonathan P Waltho. Allomorphy as a mechanism of post-translational control of enzyme activity.
Nature communications.
2020 11; 11(1):5538. doi:
10.1038/s41467-020-19215-9
. [PMID: 33139716] - Yoko Sekiguchi, Naoto Mitsuhashi, Tetsuo Kokaji, Hidekazu Miyakoda, Tetsuro Mimura. Development of a comprehensive analytical method for phosphate metabolites in plants by ion chromatography coupled with tandem mass spectrometry.
Journal of chromatography. A.
2005 Aug; 1085(1):131-6. doi:
10.1016/j.chroma.2005.01.098
. [PMID: 16106859] - Emma J Davies, Ian J Tetlow, Caroline G Bowsher, Michael J Emes. Molecular and biochemical characterization of cytosolic phosphoglucomutase in wheat endosperm (Triticum aestivum L. cv. Axona).
Journal of experimental botany.
2003 May; 54(386):1351-60. doi:
10.1093/jxb/erg151
. [PMID: 12709481] - W W Winder, J M Carling, C Duan, J P Jones, S L Palmer, M C Walker. Muscle fructose-2,6-bisphosphate and glucose-1,6-bisphosphate during insulin-induced hypoglycemia.
Journal of applied physiology (Bethesda, Md. : 1985).
1994 Feb; 76(2):853-8. doi:
10.1152/jappl.1994.76.2.853
. [PMID: 8175599] - C Duan, W W Winder. Effect of endurance training on activators of glycolysis in muscle during exercise.
Journal of applied physiology (Bethesda, Md. : 1985).
1994 Feb; 76(2):846-52. doi:
10.1152/jappl.1994.76.2.846
. [PMID: 8175598] - A Katz, C Bogardus. Insulin-mediated increase in glucose 1,6-bisphosphate is attenuated in skeletal muscle of insulin-resistant man.
Metabolism: clinical and experimental.
1990 Dec; 39(12):1300-4. doi:
10.1016/0026-0495(90)90187-h
. [PMID: 2246971] - A Katz, B L Nyomba, C Bogardus. Euglycemic hyperinsulinemia increases glucose 1,6-bisphosphate in human skeletal muscle.
The International journal of biochemistry.
1989; 21(10):1079-82. doi:
10.1016/0020-711x(89)90046-3
. [PMID: 2684699] - A Katz, A D Lee. G-1,6-P2 in human skeletal muscle after isometric contraction.
The American journal of physiology.
1988 Aug; 255(2 Pt 1):C145-8. doi:
10.1152/ajpcell.1988.255.2.c145
. [PMID: 3407760] - A Katz. G-1,6-P2, glycolysis, and energy metabolism during circulatory occlusion in human skeletal muscle.
The American journal of physiology.
1988 Aug; 255(2 Pt 1):C140-4. doi:
10.1152/ajpcell.1988.255.2.c140
. [PMID: 3407759] - A Katz, K Sahlin, J Henriksson. Carbohydrate metabolism in human skeletal muscle during exercise is not regulated by G-1,6-P2.
Journal of applied physiology (Bethesda, Md. : 1985).
1988 Jul; 65(1):487-9. doi:
10.1152/jappl.1988.65.1.487
. [PMID: 2969883] - R S Rana, M C Sekar, L E Hokin, M J MacDonald. A possible role for glucose metabolites in the regulation of inositol-1,4,5-trisphosphate 5-phosphomonoesterase activity in pancreatic islets.
The Journal of biological chemistry.
1986 Apr; 261(12):5237-40. doi:
. [PMID: 3007495]
- C Niederau, J H Grendell, S S Rothman. Digestive end products release pancreatic enzymes from particulate cellular pools, particularly zymogen granules.
Biochimica et biophysica acta.
1986 Apr; 881(2):281-91. doi:
10.1016/0304-4165(86)90015-2
. [PMID: 2420368]