Methanethiol (BioDeep_00000004420)
Secondary id: BioDeep_00000825634, BioDeep_00000868699
human metabolite Endogenous blood metabolite
代谢物信息卡片
化学式: CH4S (48.0034)
中文名称: 甲硫醇
谱图信息:
最多检出来源 Homo sapiens(blood) 39.52%
分子结构信息
SMILES: CS
InChI: InChI=1S/CH4S/c1-2/h2H,1H3
描述信息
Methanethiol (also known as methyl mercaptan) is a colorless gas that smells like rotten cabbage. It is a natural substance found in the blood, brain, and other tissues of people and animals. It is released from animal feces. It occurs naturally in certain foods, such as some nuts and cheese. It is also one of the main chemicals responsible for bad breath and flatulence. At very high concentrations methanethiol is highly toxic and affects the central nervous system. The chemical formula for methanethiol is CH3SH; it is classified as a thiol. Methanethiol is also considered to be a weak acid, with a pKa of ~10.4. This acidic property makes it reactive with dissolved metals in aqueous solutions. The environmental chemistry of these interactions in seawater or fresh water environments such as lakes has yet to be fully investigated. -- Wikipedia.
Flavouring agent. Isolated from higher plants, e.g. radish (Raphanus sativus), also present in orange juice, pineapple, strawberries, asparagus, wheatbread, gruyere cheese, hop oil, coffee, roasted filberts, cooked rice and other foods
同义名列表
21 个代谢物同义名
Methylmercaptan, mercury (2+) salt; Methylmercaptan, lead (2+) salt; Methylmercaptan, sodium salt; Mercaptan methylique; Methyl thioalcohol; Methyl sulfhydrate; Methylmercaptaan; Methyl mercaptan; Methylmercaptan; Metilmercaptano; Mercaptomethane; Methanethiolate; Methanethiole; methanethiol; Thiomethanol; Thiomethane; Methanthiol; Methvtiolo; CH3SH; Methanethiol; Methanethiol
数据库引用编号
19 个数据库交叉引用编号
- ChEBI: CHEBI:86315
- ChEBI: CHEBI:16007
- KEGG: C00409
- PubChem: 878
- HMDB: HMDB0003227
- Wikipedia: Methanethiol
- MetaCyc: CPD-7671
- KNApSAcK: C00001258
- foodb: FDB011886
- chemspider: 855
- CAS: 17719-48-1
- CAS: 74-93-1
- PMhub: MS000016862
- PubChem: 3699
- PDB-CCD: MEE
- 3DMET: B00105
- NIKKAJI: J1.432J
- RefMet: Methanethiol
- KNApSAcK: 16007
分类词条
相关代谢途径
Reactome(0)
BioCyc(4)
PlantCyc(0)
代谢反应
138 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(18)
- ethylene biosynthesis III (microbes):
4-(methylsulfanyl)-2-oxobutanoate + hydroxyl radical ⟶ CO2 + ethene + methanethiol
- ethylene biosynthesis:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- dimethyl sulfide biosynthesis from methionine:
SAM + methanethiol ⟶ H+ + SAH + dimethyl sulfide
- methanogenesis from dimethylsulfide:
H+ + a [Co(I) methanethiol-specific corrinoid protein] + dimethyl sulfide ⟶ a [methyl-Co(III) methanethiol-specific corrinoid protein] + methanethiol
- superpathway of dimethylsulfone degradation:
H+ + NADH + O2 + dimethyl sulfide ⟶ H2O + NAD+ + formaldehyde + methanethiol
- dimethyl sulfide degradation I:
H+ + NADH + O2 + dimethyl sulfide ⟶ H2O + NAD+ + formaldehyde + methanethiol
- superpathway of dimethylsulfoniopropanoate degradation:
DMSP ⟶ H+ + acrylate + dimethyl sulfide
- methylthiopropanoate degradation I (cleavage):
3-(methylsulfanyl)acryloyl-CoA + H2O ⟶ CO2 + acetaldehyde + coenzyme A + methanethiol
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation II:
1-(methylsulfanyl)xylulose 5-phosphate + A(H2) ⟶ 1-deoxy-D-xylulose 5-phosphate + A + methanethiol
- L-methionine degradation II:
met ⟶ (2Z)-2-aminobut-2-enoate + H+ + methanethiol
- methanogenesis from methanethiol:
a [Co(I) methanethiol-specific corrinoid protein] + methanethiol ⟶ HS- + a [methyl-Co(III) methanethiol-specific corrinoid protein]
- L-methionine degradation II:
met ⟶ (2Z)-2-aminobut-2-enoate + H+ + methanethiol
- methionine degradation II:
H2O + met ⟶ 2-oxobutanoate + ammonium + methanethiol
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
met ⟶ (2Z)-2-aminobut-2-enoate + H+ + methanethiol
- methionine degradation II:
H2O + L-methionine ⟶ 2-oxobutanoate + H+ + ammonia + methanethiol
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation II:
O-acetyl-L-homoserine + methanethiol ⟶ H+ + acetate + met
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(119)
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
met ⟶ (2Z)-2-aminobut-2-enoate + H+ + methanethiol
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation II:
O-acetyl-L-homoserine + methanethiol ⟶ H+ + acetate + met
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation II:
O-acetyl-L-homoserine + methanethiol ⟶ H+ + acetate + met
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
met ⟶ (2Z)-2-aminobut-2-enoate + H+ + methanethiol
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
2-iminobutanoate + H+ + H2O ⟶ 2-oxobutanoate + ammonium
- L-methionine degradation II:
met ⟶ (2Z)-2-aminobut-2-enoate + H+ + methanethiol
- L-methionine degradation II:
met ⟶ (2Z)-2-aminobut-2-enoate + H+ + methanethiol
- L-methionine degradation II:
met ⟶ (2Z)-2-aminobut-2-enoate + H+ + methanethiol
- L-methionine degradation II:
met ⟶ (2Z)-2-aminobut-2-enoate + H+ + methanethiol
- L-methionine degradation II:
met ⟶ (2Z)-2-aminobut-2-enoate + H+ + methanethiol
- L-methionine degradation II:
met ⟶ (2Z)-2-aminobut-2-enoate + H+ + methanethiol
- L-methionine degradation II:
met ⟶ (2Z)-2-aminobut-2-enoate + H+ + methanethiol
- L-methionine degradation II:
met ⟶ (2Z)-2-aminobut-2-enoate + H+ + methanethiol
- L-methionine degradation II:
met ⟶ (2Z)-2-aminobut-2-enoate + H+ + methanethiol
- L-methionine degradation II:
met ⟶ (2Z)-2-aminobut-2-enoate + H+ + methanethiol
- L-methionine degradation II:
met ⟶ (2Z)-2-aminobut-2-enoate + H+ + methanethiol
- L-methionine degradation II:
met ⟶ (2Z)-2-aminobut-2-enoate + H+ + methanethiol
- L-methionine degradation II:
met ⟶ (2Z)-2-aminobut-2-enoate + H+ + methanethiol
- L-methionine degradation II:
met ⟶ (2Z)-2-aminobut-2-enoate + H+ + methanethiol
- L-methionine degradation II:
met ⟶ (2Z)-2-aminobut-2-enoate + H+ + methanethiol
- L-methionine degradation II:
met ⟶ (2Z)-2-aminobut-2-enoate + H+ + methanethiol
- L-methionine degradation II:
met ⟶ (2Z)-2-aminobut-2-enoate + H+ + methanethiol
- L-methionine degradation II:
met ⟶ (2Z)-2-aminobut-2-enoate + H+ + methanethiol
- L-methionine degradation II:
met ⟶ (2Z)-2-aminobut-2-enoate + H+ + methanethiol
- L-methionine degradation II:
met ⟶ (2Z)-2-aminobut-2-enoate + H+ + methanethiol
- L-methionine degradation II:
met ⟶ (2Z)-2-aminobut-2-enoate + H+ + methanethiol
- L-methionine degradation II:
met ⟶ (2Z)-2-aminobut-2-enoate + H+ + methanethiol
- L-methionine degradation II:
met ⟶ (2Z)-2-aminobut-2-enoate + H+ + methanethiol
- L-methionine degradation II:
met ⟶ (2Z)-2-aminobut-2-enoate + H+ + methanethiol
- L-methionine degradation II:
met ⟶ (2Z)-2-aminobut-2-enoate + H+ + methanethiol
- L-methionine degradation II:
met ⟶ (2Z)-2-aminobut-2-enoate + H+ + methanethiol
- L-methionine degradation II:
met ⟶ (2Z)-2-aminobut-2-enoate + H+ + methanethiol
- L-methionine degradation II:
met ⟶ (2Z)-2-aminobut-2-enoate + H+ + methanethiol
- L-methionine degradation II:
met ⟶ (2Z)-2-aminobut-2-enoate + H+ + methanethiol
- L-methionine degradation II:
met ⟶ (2Z)-2-aminobut-2-enoate + H+ + methanethiol
- L-methionine degradation II:
met ⟶ (2Z)-2-aminobut-2-enoate + H+ + methanethiol
- L-methionine degradation II:
met ⟶ (2Z)-2-aminobut-2-enoate + H+ + methanethiol
- L-methionine degradation II:
met ⟶ (2Z)-2-aminobut-2-enoate + H+ + methanethiol
- L-methionine degradation II:
met ⟶ (2Z)-2-aminobut-2-enoate + H+ + methanethiol
- L-methionine degradation II:
met ⟶ (2Z)-2-aminobut-2-enoate + H+ + methanethiol
- L-methionine degradation II:
met ⟶ (2Z)-2-aminobut-2-enoate + H+ + methanethiol
- L-methionine degradation II:
met ⟶ (2Z)-2-aminobut-2-enoate + H+ + methanethiol
COVID-19 Disease Map(0)
PathBank(1)
- Methionine Metabolism:
2-iminobutanoate + Hydrogen Ion + Water ⟶ 2-Ketobutyric acid + Ammonium
PharmGKB(0)
7 个相关的物种来源信息
- 4681 - Allium ampeloprasum: 10.1080/10412905.1991.9697935
- 991028 - Biflustra perfragilis: 10.1016/0305-1978(92)90046-G
- 1703 - Brevibacterium linens: 10.1021/JF00067A028
- 13443 - Coffea arabica: 10.1021/JF60160A010
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
- 5353 - Lentinula edodes: 10.1021/JF00071A016
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Shyamal Jana, Sankhadeep Basu, Ujjaini Sarkar. Odour impact assessment using kinetics and optimization: case studies on removal of multiple volatile organo-sulphur compounds from sewage wastewater using porous functional materials.
Environmental monitoring and assessment.
2022 Dec; 195(1):226. doi:
10.1007/s10661-022-10828-9
. [PMID: 36562856] - Juping You, Jie Shao, Jianmeng Chen, Dongzhi Chen. Super enhancement of methanethiol biodegradation by new isolated Pseudomonas sp. coupling silicone particles.
Chemosphere.
2022 Nov; 306(?):135420. doi:
10.1016/j.chemosphere.2022.135420
. [PMID: 35738410] - Hamid Shirkhanloo, Masoud Khaleghi Abbasabadi, Farnaz Hosseini, Ali Faghihi Zarandi. Nanographene oxide modified phenyl methanethiol nanomagnetic composite for rapid separation of aluminum in wastewaters, foods, and vegetable samples by microwave dispersive magnetic micro solid-phase extraction.
Food chemistry.
2021 Jun; 347(?):129042. doi:
10.1016/j.foodchem.2021.129042
. [PMID: 33482488] - Tara B Hendry-Hofer, Patrick C Ng, Alison M McGrath, Kirsten Soules, David S Mukai, Adriano Chan, Joseph K Maddry, Carl W White, Jangwoen Lee, Sari B Mahon, Matthew Brenner, Gerry R Boss, Vikhyat S Bebarta. Intramuscular cobinamide as an antidote to methyl mercaptan poisoning.
Inhalation toxicology.
2021 01; 33(1):25-32. doi:
10.1080/08958378.2020.1866123
. [PMID: 33356664] - Naoki Nanashima, Maiko Kitajima, Shizuka Takamagi, Miyuki Fujioka, Toshiko Tomisawa. Comparison of Chemical Composition between Kuromoji (Lindera umbellata) Essential Oil and Hydrosol and Determination of the Deodorizing Effect.
Molecules (Basel, Switzerland).
2020 Sep; 25(18):. doi:
10.3390/molecules25184195
. [PMID: 32933154] - Tipei Jia, Shihao Sun, Kaiqi Chen, Liang Zhang, Yongzhen Peng. Simultaneous methanethiol and dimethyl sulfide removal in a single-stage biotrickling filter packed with polyurethane foam: Performance, parameters and microbial community analysis.
Chemosphere.
2020 Apr; 244(?):125460. doi:
10.1016/j.chemosphere.2019.125460
. [PMID: 31809922] - Hasmik Grigoryan, Courtney Schiffman, Marc J Gunter, Alessio Naccarati, Silvia Polidoro, Sonia Dagnino, Sandrine Dudoit, Paolo Vineis, Stephen M Rappaport. Cys34 Adductomics Links Colorectal Cancer with the Gut Microbiota and Redox Biology.
Cancer research.
2019 12; 79(23):6024-6031. doi:
10.1158/0008-5472.can-19-1529
. [PMID: 31641032] - Jingjing Feng, Song Gao, Qingyan Fu, Xiaojia Chen, Xiaolin Chen, Demin Han, Jinping Cheng. Indirect source apportionment of methyl mercaptan using CMB and PMF models: a case study near a refining and petrochemical plant.
Environmental science and pollution research international.
2019 Aug; 26(23):24305-24312. doi:
10.1007/s11356-019-05728-4
. [PMID: 31256395] - Hendrik Schäfer, Özge Eyice. Microbial Cycling of Methanethiol.
Current issues in molecular biology.
2019; 33(?):173-182. doi:
10.21775/cimb.033.173
. [PMID: 31166191] - Arjan Pol, G Herma Renkema, Albert Tangerman, Edwin G Winkel, Udo F Engelke, Arjan P M de Brouwer, Kent C Lloyd, Renee S Araiza, Lambert van den Heuvel, Heymut Omran, Heike Olbrich, Marijn Oude Elberink, Christian Gilissen, Richard J Rodenburg, Jörn Oliver Sass, K Otfried Schwab, Hendrik Schäfer, Hanka Venselaar, J Silvia Sequeira, Huub J M Op den Camp, Ron A Wevers. Mutations in SELENBP1, encoding a novel human methanethiol oxidase, cause extraoral halitosis.
Nature genetics.
2018 01; 50(1):120-129. doi:
10.1038/s41588-017-0006-7
. [PMID: 29255262] - Jing Zhao, William L Boatright. Static headspace analysis of odorants in commercial rice proteins.
Food chemistry.
2017 Apr; 221(?):345-350. doi:
10.1016/j.foodchem.2016.10.086
. [PMID: 27979212] - E Jacobi-Gresser, S Schütt, K Huesker, V Von Baehr. Methyl mercaptan and hydrogen sulfide products stimulate proinflammatory cytokines in patients with necrotic pulp tissue and endodontically treated teeth.
Journal of biological regulators and homeostatic agents.
2015 Jan; 29(1):73-84. doi:
. [PMID: 25864743]
- Ayse Gulsahi, Sehrazat Evirgen, Bengi Öztaş, Yasemin Genç, Yasemin Çetinel. Volatile sulphur compound levels and related factors in patients with chronic renal failure.
Journal of clinical periodontology.
2014 Aug; 41(8):814-9. doi:
10.1111/jcpe.12280
. [PMID: 24923904] - Benoît Anet, Marguerite Lemasle, Catherine Couriol, Thomas Lendormi, Abdeltif Amrane, Pierre Le Cloirec, Gilles Cogny, Romain Fillières. Characterization of gaseous odorous emissions from a rendering plant by GC/MS and treatment by biofiltration.
Journal of environmental management.
2013 Oct; 128(?):981-7. doi:
10.1016/j.jenvman.2013.06.028
. [PMID: 23895910] - Muthuraman Govindan, Il-Shik Moon. A single catalyst of aqueous CoIII for deodorization of mixture odor gases: a development and reaction pathway study at electro-scrubbing process.
Journal of hazardous materials.
2013 Sep; 260(?):1064-72. doi:
10.1016/j.jhazmat.2013.06.055
. [PMID: 23892315] - Minmin Tian, Anthony Bryan Hanley, Michael W J Dodds, Ken Yaegaki. Chewing gum containing allyl isothiocyanate from mustard seed extract is effective in reducing volatile sulfur compounds responsible for oral malodor.
American journal of dentistry.
2013 Aug; 26(4):180-4. doi:
. [PMID: 24693626]
- N Fani, A K Bordbar, Y Ghayeb. A combined spectroscopic, docking and molecular dynamics simulation approach to probing binding of a Schiff base complex to human serum albumin.
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.
2013 Feb; 103(?):11-7. doi:
10.1016/j.saa.2012.11.003
. [PMID: 23228826] - Kristin Barkve Andersen, Michael Jørgen Hansen, Anders Feilberg. Minimisation of artefact formation of dimethyl disulphide during sampling and analysis of methanethiol in air using solid sorbent materials.
Journal of chromatography. A.
2012 Jul; 1245(?):24-31. doi:
10.1016/j.chroma.2012.05.020
. [PMID: 22658137] - Albert Tangerman. Measurement and biological significance of the volatile sulfur compounds hydrogen sulfide, methanethiol and dimethyl sulfide in various biological matrices.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2009 Oct; 877(28):3366-77. doi:
10.1016/j.jchromb.2009.05.026
. [PMID: 19505855] - Gaëlle Ducom, Daniela Radu-Tirnoveanu, Christophe Pascual, Belkacem Benadda, Patrick Germain. Biogas--municipal solid waste incinerator bottom ash interactions: sulphur compounds removal.
Journal of hazardous materials.
2009 Jul; 166(2-3):1102-8. doi:
10.1016/j.jhazmat.2008.12.024
. [PMID: 19147284] - Kohji Miyazaki, Chagan Irbis, Junya Takada, Aya Matsuura. An ability of isolated strains to efficiently cooperate in ethanolic fermentation of agricultural plant refuse under initially aerobic thermophilic conditions: oxygen deletion process appended to consolidated bioprocessing (CBP).
Bioresource technology.
2008 Apr; 99(6):1768-75. doi:
10.1016/j.biortech.2007.03.045
. [PMID: 17507216] - Martine Besouw, Henk Blom, Albert Tangerman, Adriana de Graaf-Hess, Elena Levtchenko. The origin of halitosis in cystinotic patients due to cysteamine treatment.
Molecular genetics and metabolism.
2007 Jul; 91(3):228-33. doi:
10.1016/j.ymgme.2007.04.002
. [PMID: 17513151] - Kazuhiko Tamaki, Takeshi Tamaki, Takashi Yamazaki. Studies on the deodorization by mushroom (Agaricus bisporus) extract of garlic extract-induced oral malodor.
Journal of nutritional science and vitaminology.
2007 Jun; 53(3):277-86. doi:
10.3177/jnsv.53.277
. [PMID: 17874834] - F A M de Bok, R C van Leerdam, B P Lomans, H Smidt, P N L Lens, A J H Janssen, A J M Stams. Degradation of methanethiol by methylotrophic methanogenic archaea in a lab-scale upflow anaerobic sludge blanket reactor.
Applied and environmental microbiology.
2006 Dec; 72(12):7540-7. doi:
10.1128/aem.01133-06
. [PMID: 17012592] - Stephanie Willig, Dorothea Lösel, Rolf Claus. Effects of resistant potato starch on odor emission from feces in Swine production units.
Journal of agricultural and food chemistry.
2005 Feb; 53(4):1173-8. doi:
10.1021/jf048658+
. [PMID: 15713036] - R Iranpour, F Alatriste-Mondragon, H H J Cox, R T Haug. Effects of transient temperature increases on odor production from thermophilic anaerobic digestion.
Water science and technology : a journal of the International Association on Water Pollution Research.
2005; 52(1-2):229-35. doi:
10.2166/wst.2005.0522
. [PMID: 16180433] - C Chavez, C D Coufal, J B Carey, R E Lacey, R C Beier, J A Zahn. The impact of supplemental dietary methionine sources on volatile compound concentrations in broiler excreta.
Poultry science.
2004 Jun; 83(6):901-10. doi:
10.1093/ps/83.6.901
. [PMID: 15206616] - Niranjan Ramji, Nivedita Ramji, Ritu Iyer, S Chandrasekaran. Phenolic antibacterials from Piper betle in the prevention of halitosis.
Journal of ethnopharmacology.
2002 Nov; 83(1-2):149-52. doi:
10.1016/s0378-8741(02)00194-0
. [PMID: 12413722] - K Yaegaki, J M Coil, T Kamemizu, H Miyazaki. Tongue brushing and mouth rinsing as basic treatment measures for halitosis.
International dental journal.
2002 Jun; 52 Suppl 3(?):192-6. doi:
10.1002/j.1875-595x.2002.tb00923.x
. [PMID: 12090451] - Kazunari Ushid, Makiko Maekawa, Tsutomu Arakawa. Influence of dietary supplementation of herb extracts on volatile sulfur production in pig large intestine.
Journal of nutritional science and vitaminology.
2002 Feb; 48(1):18-23. doi:
10.3177/jnsv.48.18
. [PMID: 12026183] - J Furne, J Springfield, T Koenig, E DeMaster, M D Levitt. Oxidation of hydrogen sulfide and methanethiol to thiosulfate by rat tissues: a specialized function of the colonic mucosa.
Biochemical pharmacology.
2001 Jul; 62(2):255-9. doi:
10.1016/s0006-2952(01)00657-8
. [PMID: 11389886] - T Jiang, F L Suarez, M D Levitt, S E Nelson, E E Ziegler. Gas production by feces of infants.
Journal of pediatric gastroenterology and nutrition.
2001 May; 32(5):534-41. doi:
10.1097/00005176-200105000-00009
. [PMID: 11429513] - F L Suarez, J Furne, J Springfield, M D Levitt. Failure of activated charcoal to reduce the release of gases produced by the colonic flora.
The American journal of gastroenterology.
1999 Jan; 94(1):208-12. doi:
10.1111/j.1572-0241.1999.00798.x
. [PMID: 9934757] - J Levine, C J Ellis, J K Furne, J Springfield, M D Levitt. Fecal hydrogen sulfide production in ulcerative colitis.
The American journal of gastroenterology.
1998 Jan; 93(1):83-7. doi:
10.1111/j.1572-0241.1998.083_c.x
. [PMID: 9448181] - V Walker, G A Mills, P M Fortune, R Wheeler. Neonatal encephalopathy with a pungent body odour.
Archives of disease in childhood. Fetal and neonatal edition.
1997 Jul; 77(1):F65-6. doi:
10.1136/fn.77.1.f65
. [PMID: 9279187] - N A Taranenko, V B Dorogova, N M Meshchakova, L A Gorbunova. [Determination of methyl sulfide compounds in biological fluids].
Gigiena i sanitariia.
1997 May; ?(3):57-9. doi:
NULL
. [PMID: 9244797] - E Bugianesi, A Tangerman, M Ronchi, G Bianchi, G Marchesini. Transamination of methionine after loading in patients with cirrhosis.
Journal of hepatology.
1996 Jan; 24(1):95-100. doi:
10.1016/s0168-8278(96)80192-9
. [PMID: 8834031] - W Boerjan, G Bauw, M Van Montagu, D Inzé. Distinct phenotypes generated by overexpression and suppression of S-adenosyl-L-methionine synthetase reveal developmental patterns of gene silencing in tobacco.
The Plant cell.
1994 Oct; 6(10):1401-14. doi:
10.1105/tpc.6.10.1401
. [PMID: 7994174] - A Tangerman, M T Meuwese-Arends, J B Jansen. Foetor hepaticus.
Lancet (London, England).
1994 Jun; 343(8912):1569. doi:
10.1016/s0140-6736(94)92969-6
. [PMID: 7911889] - M Hiele, Y Ghoos, P Rutgeerts, G Vantrappen, D Schoorens. Influence of nutritional substrates on the formation of volatiles by the fecal flora.
Gastroenterology.
1991 Jun; 100(6):1597-602. doi:
10.1016/0016-5085(91)90658-8
. [PMID: 2019366] - H J Blom, P Ferenci, G Grimm, S H Yap, A Tangerman. The role of methanethiol in the pathogenesis of hepatic encephalopathy.
Hepatology (Baltimore, Md.).
1991 Mar; 13(3):445-54. doi:
. [PMID: 1999315]
- S Persson, M B Edlund, R Claesson, J Carlsson. The formation of hydrogen sulfide and methyl mercaptan by oral bacteria.
Oral microbiology and immunology.
1990 Aug; 5(4):195-201. doi:
10.1111/j.1399-302x.1990.tb00645.x
. [PMID: 2082242] - H J Blom, R A Chamuleau, J Rothuizen, N E Deutz, A Tangerman. Methanethiol metabolism and its role in the pathogenesis of hepatic encephalopathy in rats and dogs.
Hepatology (Baltimore, Md.).
1990 Apr; 11(4):682-9. doi:
10.1002/hep.1840110424
. [PMID: 2328960] - H J Blom, G H Boers, J P van den Elzen, W A Gahl, A Tangerman. Transamination of methionine in humans.
Clinical science (London, England : 1979).
1989 Jan; 76(1):43-9. doi:
10.1042/cs0760043
. [PMID: 2920533] - H J Blom, G H Boers, J P van den Elzen, J J van Roessel, J M Trijbels, A Tangerman. Differences between premenopausal women and young men in the transamination pathway of methionine catabolism, and the protection against vascular disease.
European journal of clinical investigation.
1988 Dec; 18(6):633-8. doi:
10.1111/j.1365-2362.1988.tb01279.x
. [PMID: 3147189] - H J Blom, A Tangerman. Methanethiol metabolism in whole blood.
The Journal of laboratory and clinical medicine.
1988 Jun; 111(6):606-10. doi:
NULL
. [PMID: 3373106] - J G Moore, L D Jessop, D N Osborne. Gas-chromatographic and mass-spectrometric analysis of the odor of human feces.
Gastroenterology.
1987 Dec; 93(6):1321-9. doi:
10.1016/0016-5085(87)90262-9
. [PMID: 3678751] - A Finkelstein, N J Benevenga. The effect of methanethiol and methionine toxicity on the activities of cytochrome c oxidase and enzymes involved in protection from peroxidative damage.
The Journal of nutrition.
1986 Feb; 116(2):204-15. doi:
10.1093/jn/116.2.204
. [PMID: 3003292] - A Tangerman, M T Meuwese-Arends, J H van Tongeren. New methods for the release of volatile sulfur compounds from human serum: its determination by Tenax trapping and gas chromatography and its application in liver diseases.
The Journal of laboratory and clinical medicine.
1985 Aug; 106(2):175-82. doi:
. [PMID: 4020245]
- R F Derr, K Draves. The time course of methanethiol in the rat.
Research communications in chemical pathology and pharmacology.
1984 Dec; 46(3):363-9. doi:
NULL
. [PMID: 6515127] - H Kaji, N Saito, M Hisamura, M Murao, M Ishimoto, H Kondo, K Saito. Nutritional aspect of methionine isomers studied by pulmonary exhalation of dimethyl sulfide and urinary excretion of alpha-keto-gamma-methiolbutyrate in humans.
Japanese journal of medicine.
1983 Apr; 22(2):106-11. doi:
10.2169/internalmedicine1962.22.106
. [PMID: 6865103] - R F Derr, K Draves. Methanethiol metabolism in the rat.
Research communications in chemical pathology and pharmacology.
1983 Mar; 39(3):503-6. doi:
. [PMID: 6407074]
- T S Lie, M Ukigusa, F G Scherf, K Olek, S Uhlhaas, K Rommelsheim. [Possibilities and limits of temporary liver substitution by hemoperfusion with biological material].
Research in experimental medicine. Zeitschrift fur die gesamte experimentelle Medizin einschliesslich experimenteller Chirurgie.
1983; 183(1):19-33. doi:
10.1007/bf01851760
. [PMID: 6635336] - T SAKAGUCHI. [PHARMACOLOGICAL STUDIES ON L-(-)ERYTHRO L-PHENYL-2-METHYL AMINO PROPANE THIOL (S-EPHEDRINE) AND ITS DISULFIDE].
Nihon yakurigaku zasshi. Folia pharmacologica Japonica.
1963 Sep; 59(?):355-81. doi:
10.1254/fpj.59.355
. [PMID: 14098970] - J A KRAL, L SCHMID, A ZENISEK, I STOLZ. [An attempt at explanation of the activity of heteroauxin in the urine after athletic exertion].
Die Medizinische Welt.
1960 Jul; 31(?):1595-8. doi:
NULL
. [PMID: 13753906] - F CHALLENGER, J M WALSHE. Methyl mercaptan in relation to foetor hepaticus.
The Biochemical journal.
1955 Mar; 59(3):372-5. doi:
NULL
. [PMID: 14363103] - J LIMBERK. [Effect of heteroauxin on movement of Alke strain of tobacco mosaic virus in tobacco plant].
Chekhoslovatskaia biologiia.
1954 Nov; 3(5):322-4. doi:
"
. [PMID: 14364647] - F CHALLENGER, J M WALSHE. Methyl mercaptan in relation to foetor hepaticus.
The Biochemical journal.
1954 Sep; 58(332nd Meeting):xxviii-xxix. doi:
NULL
. [PMID: 13208648]