Chemical Formula: C26H42N7O17P3S
Chemical Formula C26H42N7O17P3S
Found 31 metabolite its formula value is C26H42N7O17P3S
3-Methylcrotonyl-CoA
C26H42N7O17P3S (849.1570672000001)
3-Methylcrotonyl-CoA, also known as beta-methylcrotonyl-coenzyme A or dimethylacryloyl-CoA, belongs to the class of organic compounds known as acyl-CoAs. These are organic compounds containing a coenzyme A substructure linked to an acyl chain. Thus, 3-methylcrotonyl-CoA is considered to be a fatty ester lipid molecule. 3-Methylcrotonyl-CoA is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. 3-Methylcrotonyl-CoA is an essential metabolite for leucine metabolism, is a substrate of 3-methylcrotonyl-CoA carboxylase (EC 6.4.1.4), and is a biotin-dependent mitochondrial enzyme in the catabolism of leucine (OMIM: 609010). 3-Methylcrotonyl-CoA is an essential metabolite for leucine metabolism, a substrate of 3-methylcrotonyl-CoA carboxylase (EC 6.4.1.4), a biotin-dependent mitochondrial enzyme in the catabolism of leucine. (OMIM 609010) [HMDB]. 3-Methylcrotonyl-CoA is found in many foods, some of which are summer savory, lupine, blackcurrant, and soft-necked garlic.
(2E)-Pentenoyl-CoA
C26H42N7O17P3S (849.1570672000001)
(2E)-Pentenoyl-CoA is also known as (2E)-Pent-2-enoyl-coenzyme A(4-). (2E)-Pentenoyl-CoA is considered to be slightly soluble (in water) and acidic
Tiglyl-CoA
C26H42N7O17P3S (849.1570672000001)
Tiglyl-CoA is a metabolite in the degradation of isoleucine to propionic acid pathway. A defect in the conversion of tiglyl-CoA to alpha-methyl-beta-hydroxybutyryl-CoA, results in episodic abdominal pain and acidosis in patients with Tiglic acidemia (OMIM 275190). Tiglyl-CoA is a metabolite in the degradation of isoleucine to propionic acid pathway.
2-methylcrotonoyl-CoA(4-)
C26H42N7O17P3S (849.1570672000001)
2-methylcrotonoyl-CoA(4-) is also known as (2E)-2-Methylbutenoyl-CoA. 2-methylcrotonoyl-CoA(4-) is considered to be slightly soluble (in water) and acidic. 2-methylcrotonoyl-CoA(4-) can be found throughout numerous foods such as Spinachs, Acorns, Great horned owls, and Persimmons
4-Tiglyl-CoA
C26H42N7O17P3S (849.1570672000001)
4-tiglyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a pent-4-enoic acid thioester of coenzyme A. 4-tiglyl-coa is an acyl-CoA with 5 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 4-tiglyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 4-tiglyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 4-Tiglyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 4-Tiglyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 4-Tiglyl-CoA into 4-Tiglylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 4-Tiglylcarnitine is converted back to 4-Tiglyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 4-Tiglyl-CoA occurs in four steps. First, since 4-Tiglyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 4-Tiglyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydroxyacyl-CoA dehydrogenase oxidizes the alcohol group to a ketone and NADH is produced from NAD+. Finally, Thiolase cleaves between the alpha carbon and ketone to release one mole...
(3E)-Tiglyl-CoA
C26H42N7O17P3S (849.1570672000001)
(3e)-tiglyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a (3E)-pent-3-enoic acid thioester of coenzyme A. (3e)-tiglyl-coa is an acyl-CoA with 5 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. (3e)-tiglyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. (3e)-tiglyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, (3E)-Tiglyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of (3E)-Tiglyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts (3E)-Tiglyl-CoA into (3E)-Tiglylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, (3E)-Tiglylcarnitine is converted back to (3E)-Tiglyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of (3E)-Tiglyl-CoA occurs in four steps. First, since (3E)-Tiglyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of (3E)-Tiglyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydroxyacyl-CoA dehydrogenase oxidizes the alcohol group to a ketone and NADH is produced from NAD+. Finally, Thiolase cleaves between the...
3-methylbut-2-enoyl-CoA
C26H42N7O17P3S (849.1570672000001)
3-methylbut-2-enoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a 3-methylbut-2-enoic acid thioester of coenzyme A. 3-methylbut-2-enoyl-coa is an acyl-CoA with 4 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 3-methylbut-2-enoyl-coa is therefore classified as a short chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 3-methylbut-2-enoyl-coa, being a short chain acyl-CoA is a substrate for short chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 3-methylbut-2-enoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 3-methylbut-2-enoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 3-methylbut-2-enoyl-CoA into 3-methylbut-2-enoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 3-methylbut-2-enoylcarnitine is converted back to 3-methylbut-2-enoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 3-methylbut-2-enoyl-CoA occurs in four steps. First, since 3-methylbut-2-enoyl-CoA is a short chain acyl-CoA it is the substrate for a short chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 3-methylbut-2-enoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydroxyacyl-CoA dehydrogenase oxidize...
CoA 5:1
C26H42N7O17P3S (849.1570672000001)
S-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] (E)-pent-3-enethioate
C26H42N7O17P3S (849.1570672000001)
S-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] 2-methylbut-3-enethioate
C26H42N7O17P3S (849.1570672000001)
S-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] 2-methylidenebutanethioate
C26H42N7O17P3S (849.1570672000001)
{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[3-hydroxy-2,2-dimethyl-3-({2-[(2-{[(2E)-2-methylbut-2-enoyl]sulfanyl}ethyl)carbamoyl]ethyl}carbamoyl)propoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid
C26H42N7O17P3S (849.1570672000001)
pent-2-enoyl-CoA; (Acyl-CoA); [M+H]+
C26H42N7O17P3S (849.1570672000001)
3-methylbut-2-enoyl-CoA
C26H42N7O17P3S (849.1570672000001)
An unsaturated fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of 3-methylbut-2-enoic acid.
3-methylbut-3-enoyl-CoA
C26H42N7O17P3S (849.1570672000001)
A hydroxy fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of 3-methylbut-3-enoic acid.
2-Methylbut-2-enoyl-coenzyme A
C26H42N7O17P3S (849.1570672000001)
An alk-2-enoyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of 2-methylbut-2-enoic acid.
(2E)-Pentenoyl-CoA
C26H42N7O17P3S (849.1570672000001)
A pent-2-enoyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of (2E)-pentenoic acid.