Gene Association: SLC6A14

UniProt Search: SLC6A14 (PROTEIN_CODING)
Function Description: solute carrier family 6 member 14

found 13 associated metabolites with current gene based on the text mining result from the pubmed database.

Berbamine

16H-1,24:6,9-dietheno-11,15-metheno-2H-pyrido(2,3:17,18)(1,11)dioxacycloeicosino(2,3,4-ij)isoquinolin-12-ol, 3,4,4a,5,16a,17,18,19-octahydro-21,22,26-trimethoxy-4,17-dimethyl-, hydrochloride, hydrate (1:1:4), (4aS,16aR)-

C37H40N2O6 (608.2886)


Berbamine is a member of isoquinolines and a bisbenzylisoquinoline alkaloid. Berbamine is a natural product found in Berberis poiretii, Berberis integerrima Berbamine inhibits the proliferation of KM3 cells in a dose- and time-dependent manner. Combination of berbamine with dexamethasone (Dex), doxorubicin (Dox) or arsenic trioxide (ATO) resulted in enhanced inhibition of cell growth. Flow cytometric analysis revealed that KM3 cells were arrested at G1 phase and apoptotic cells increased from 0.54\\\% to 51.83\\\% for 36 h. Morphological changes of cells undergoing apoptosis were observed under light microscope. Berbamine treatment led to increased expression of A20, down-regulation of IKKα, p-IκBα, and followed by inhibition of p65 nuclear localization. As a result, NF-κB downstream targets such as cyclinD1, Bcl-xL, Bid and survivin were down-regulated. Berbamine inhibits SARS-CoV-2 infection by compromising TRPMLs-mediated endolysosomal trafficking of ACE2. (+)-Berbamine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=478-61-5 (retrieved 2024-06-29) (CAS RN: 478-61-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Berbamine is a natural compound extracted from traditional Chinese medicine?Phellodendron amurense Rupr. with anti-tumor, immunomodulatory and cardiovascular effects. Berbamine?is a calcium channel blocker. Berbamine is a natural compound extracted from traditional Chinese medicine?Phellodendron amurense Rupr. with anti-tumor, immunomodulatory and cardiovascular effects. Berbamine?is a calcium channel blocker.

   

D-alpha-Aminobutyric acid

alpha-Aminobutyric acid, (+-)-isomer

C4H9NO2 (103.0633)


D-alpha-Aminobutyric acid (AABA), also known as alpha-aminobutyrate, (R)-2-aminobutanoic acid or D-homoalanine, belongs to the class of organic compounds known as D-alpha-amino acids. These are alpha amino acids which have the D-configuration of the alpha-carbon atom. D-alpha-aminobutyric acid is an optically active form of alpha-aminobutyric acid having D-configuration. It is an enantiomer of a L-alpha-aminobutyric acid and a non-proteinogenic amino acid. Alpha-aminobutyric acid is one of the three isomers of aminobutyric acid. The two others are the neurotransmitter Gamma-Aminobutyric acid (GABA) and Beta-Aminobutyric acid (BABA) which is known for inducing plant disease resistance. Optically active organic compounds found in meteorites typically exist in racemic form, yet life on Earth has almost exclusively selected for L- over D-enantiomers of amino acids. D-enantiomers of non-proteinogenic amino acids are known to inhibit aerobic microorganisms. D-alpha-aminobutyric acid has been shown to inhibit microbial iron reduction by a number of Geobacter strains including Geobacter bemidjiensis, Geobacter metallireducens and Geopsychrobacter electrodiphilus (PMID: 25695622). D-alpha-Aminobutyric acid is a known substrate of D-amino acid oxidase (PMID: 6127341). Constituent of seedlings of Glycine max (soybean), Dolichos lablab (hyacinth bean), Canavalia gladiata (swordbean), Arachis hypogaea (peanut), Pisum sativum (pea), Phaseolus vulgaris (kidney bean) and Vigna sesquipedalis (asparagus bean) after hydrolysis D(-)-2-Aminobutyric acid is a substrate of D-amino acid oxidase. D(-)-2-Aminobutyric acid is a substrate of D-amino acid oxidase.

   

1,5-anhydroglucitol (1,5-AG)

(2R,3S,4R,5S)-2-(hydroxymethyl)oxane-3,4,5-triol

C6H12O5 (164.0685)


1,5-Anhydrosorbitol or 1,5-anhydroglucitol (1,5-AG) is a validated marker of short-term glycemic control. This substance is derived mainly from food, is well absorbed in the intestine, and is distributed to all organs and tissues. It is metabolically stable, being excreted in the urine when its level exceeds the renal threshold. It is reabsorbed in the renal tubules, and is competitively inhibited by glucosuria, which leads to a reduction in its level in serum. The correlation between this reduction and the amount of glucose present in urine is so close that 1,5 AG can be used as a sensitive, day-to-day, real-time marker of glycemic control. It provides useful information on current glycemic control and is superior to both hemoglobin A1C and fructosamine in detecting near-normoglycemia. 1,5-AG in human plasma has been proposed for several years as a short-term, retrospective marker of glycaemic control and seems to be the most suitable parameter for monitoring glucose excursions. The decrease in serum 1,5-AG is very sensitive to urinary glucose excretion. It is a metabolically inert polyol that competes with glucose for reabsorption in the kidneys. Otherwise stable levels of 1,5-AG are rapidly depleted as blood glucose levels exceed the renal threshold for glucosuria. 1,5-AG is also more tightly associated with glucose fluctuations and postprandial glucose. (PMID: 18088226, 12166605, 7783360, 8940824) [HMDB] 1, 5-Anhydrosorbitol or 1,5-anhydroglucitol (1,5-AG) is a validated marker of short-term glycemic control. This substance is derived mainly from food, is well absorbed in the intestine, and is distributed to all organs and tissues. It is metabolically stable, being excreted in the urine when its level exceeds the renal threshold. It is reabsorbed in the renal tubules and is competitively inhibited by glucosuria, which leads to a reduction in its level in serum. The correlation between this reduction and the amount of glucose present in urine is so close that 1,5 AG can be used as a sensitive, day-to-day, real-time marker of glycemic control. It provides useful information on current glycemic control and is superior to both hemoglobin A1C and fructosamine in detecting near-normoglycemia. 1,5-AG in human plasma has been proposed for several years as a short-term, retrospective marker of glycemic control and seems to be the most suitable parameter for monitoring glucose excursions. The decrease in serum 1,5-AG is very sensitive to urinary glucose excretion. It is a metabolically inert polyol that competes with glucose for reabsorption in the kidneys. Otherwise stable levels of 1,5-AG are rapidly depleted as blood glucose levels exceed the renal threshold for glucosuria. 1,5-AG is also more tightly associated with glucose fluctuations and postprandial glucose (PMID:18088226, 12166605, 7783360, 8940824). 1,5-Anhydrosorbitol is a short-term marker for glycemic control. 1,5-Anhydrosorbitol is a short-term marker for glycemic control.

   

L-Arginine

(S)-2-Amino-5-[(aminoiminomethyl)amino]-pentanoic acid

C6H14N4O2 (174.1117)


Arginine (Arg), also known as L-argninine, belongs to the class of organic compounds known as L-alpha-amino acids. These are alpha amino acids which have the L-configuration of the alpha-carbon atom. Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-asparagine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Arginine is found in all organisms ranging from bacteria to plants to animals. Arginine is an essential amino acid that is physiologically active in the L-form. It is classified as a charged, basic, aliphatic amino acid. Arginine is considered to be a basic amino acid as it has a strongly basic guanidinium group. With a pKa of 12.48, the guanidinium group is positively charged in neutral, acidic, and even most basic environments. Because of the conjugation between the double bond and the nitrogen lone pairs, the positive charge is delocalized. This group is able to form multiple H-bonds. In mammals, arginine is formally classified as a semi-essential or conditionally essential amino acid, depending on the developmental stage and health status of the individual. Infants are unable to effectively synthesize arginine, making it nutritionally essential for infants. Adults, however, are able to synthesize arginine in the urea cycle. L-Arginine is an amino acid that has numerous functions in the body. It helps dispose of ammonia, is used to make compounds such as nitric oxide, creatine, L-glutamate, and L-proline, and it can be converted into glucose and glycogen if needed. Arginine also plays an important role in cell division, immunity and wound healing. Arginine is the immediate precursor of nitric oxide (NO), an important signaling molecule which can act as a second messenger, as well as an intercellular messenger which regulates vasodilation, and also has functions in the immune systems reaction to infection. Nitric oxide is made via the enzyme nitric oxide synthase (PMID 10690324). Arginine is also a precursor for several important nitrogen-containing compounds including urea, ornithine, and agmatine. Arginine is necessary for the synthesis of creatine and can be used for the synthesis of polyamines (mainly through ornithine and to a lesser degree through agmatine, citrulline, and glutamate.) The presence of asymmetric dimethylarginine (ADMA) in serum or plasma, a close relative of argninine, inhibits the nitric oxide synthase reaction. ADMA is considered a marker for vascular disease, just as L-arginine is considered a sign of a healthy endothelium. In large doses, L-arginine also stimulates the release of the hormones growth hormone and prolactin. Arginine is a known inducer of mTOR (mammalian target of rapamycin) and is responsible for inducing protein synthesis through the mTOR pathway. mTOR inhibition by rapamycin partially reduces arginine-induced protein synthesis (PMID: 20841502). Catabolic disease states such as sepsis, injury, and cancer cause an increase in arginine utilization, which can exceed normal body production, leading to arginine depletion. Arginine also activates AMP kinase (AMPK) which then stimulates skeletal muscle fatty acid oxidation and muscle glucose uptake, thereby increasing insulin secretion by pancreatic beta-cells (PMID: 21311355). Arginine is found in plant and animal proteins, such as dairy products, meat, poultry, fish, and nuts. The ratio of L-arginine to lysine is also important: soy and other plant proteins have more L-arginine than animal sources of protein. [Spectral] L-Arginine (exact mass = 174.11168) and L-Histidine (exact mass = 155.06948) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. L-Arginine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=74-79-3 (retrieved 2024-06-29) (CAS RN: 74-79-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Arginine ((S)-(+)-Arginine) is the substrate for the endothelial nitric oxide synthase (eNOS) to generate NO. L-Arginine is transported into vascular smooth muscle cells by the cationic amino acid transporter family of proteins where it is metabolized to nitric oxide (NO), polyamines, or L-proline[1][2]. L-Arginine ((S)-(+)-Arginine) is the substrate for the endothelial nitric oxide synthase (eNOS) to generate NO. L-Arginine is transported into vascular smooth muscle cells by the cationic amino acid transporter family of proteins where it is metabolized to nitric oxide (NO), polyamines, or L-proline[1][2].

   

Ipratropium bromide

(endo,Syn)-(+-)-3-(3-hydroxy-1-oxo-2-phenylpropoxy)-8-methyl-8-(1-methylethyl)-8-azoniabicyclo[3.2.1]octane bromide

C20H30NO3+ (332.2226)


Ipratropium bromide is only found in individuals that have used or taken this drug. It is a muscarinic antagonist structurally related to atropine but often considered safer and more effective for inhalation use. It is used for various bronchial disorders, in rhinitis, and as an antiarrhythmic. [PubChem]Ipratropium bromide is an anticholinergic agent. It blocks muscarinic cholinergic receptors, without specificity for subtypes, resulting in a decrease in the formation of cyclic guanosine monophosphate (cGMP). Most likely due to actions of cGMP on intracellular calcium, this results in decreased contractility of smooth muscle. D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents

   

DL-Arginine

2-amino-5-[(diaminomethylidene)amino]pentanoic acid

C6H14N4O2 (174.1117)


DL-Arginine is used in physicochemical analysis of amino acid complexation dynamics and crystal structure formations. DL-Arginine is used in physicochemical analysis of amino acid complexation dynamics and crystal structure formations.

   

1,5-Anhydrosorbitol

1,5-anhydro-D-Glucitol

C6H12O5 (164.0685)


An anhydro sugar of D-glucitol. 1,5-Anhydrosorbitol is a short-term marker for glycemic control. 1,5-Anhydrosorbitol is a short-term marker for glycemic control.

   

H-D-Abu-OH

(R)-2-Aminobutanoic acid

C4H9NO2 (103.0633)


[Spectral] D-2-Aminobutyrate (exact mass = 103.06333) and 4-Aminobutanoate (exact mass = 103.06333) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] D-2-Aminobutyrate (exact mass = 103.06333) and L-Cysteine (exact mass = 121.01975) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. D(-)-2-Aminobutyric acid is a substrate of D-amino acid oxidase. D(-)-2-Aminobutyric acid is a substrate of D-amino acid oxidase.

   

1,5-Anhydroglucitol

1,5-anhydro-D-Glucitol

C6H12O5 (164.0685)


1,5-Anhydrosorbitol is a short-term marker for glycemic control. 1,5-Anhydrosorbitol is a short-term marker for glycemic control.

   

H-D-Abu-OH

D-alpha-Aminobutyric acid

C4H9NO2 (103.0633)


An optically active form of alpha-aminobutyric acid having D-configuration. D(-)-2-Aminobutyric acid is a substrate of D-amino acid oxidase. D(-)-2-Aminobutyric acid is a substrate of D-amino acid oxidase.

   

Polygalytol

(2R,3S,4R,5S)-2-(hydroxymethyl)tetrahydropyran-3,4,5-triol

C6H12O5 (164.0685)


1,5-Anhydrosorbitol is a short-term marker for glycemic control. 1,5-Anhydrosorbitol is a short-term marker for glycemic control.

   

ipratropium

ipratropium

C20H30NO3+ (332.2226)


D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents

   

DL-Arginine

DL-Arginine

C6H14N4O2 (174.1117)


DL-Arginine is used in physicochemical analysis of amino acid complexation dynamics and crystal structure formations. DL-Arginine is used in physicochemical analysis of amino acid complexation dynamics and crystal structure formations.