Jatrorrhizine

2,9,10-Trimethoxy-5,6-dihydro-7lambda~5~-isoquino[3,2-a]isoquinolin-3-ol hydrochloride

C20H20NO4+ (338.1392)


Jatrorrhizine is an alkaloid.

   

Kaempferol_3-O-rutinoside

5,7-Dihydroxy-2-(4-hydroxyphenyl)-3-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C27H30O15 (594.1585)


Kaempferol-3-rutinoside is a kaempferol O-glucoside that is kaempferol attached to a rutinosyl [6-deoxy-alpha-L-mannosyl-(1->6)-beta-D-glucosyl] residue at position 3 via a glycosidic linkage. It has been isolated from the leaves of Solanum campaniforme. It has a role as a metabolite, a radical scavenger and a plant metabolite. It is a rutinoside, a trihydroxyflavone, a disaccharide derivative and a kaempferol O-glucoside. Nicotiflorin is a natural product found in Visnea mocanera, Eupatorium cannabinum, and other organisms with data available. See also: Cocoa (part of). A kaempferol O-glucoside that is kaempferol attached to a rutinosyl [6-deoxy-alpha-L-mannosyl-(1->6)-beta-D-glucosyl] residue at position 3 via a glycosidic linkage. It has been isolated from the leaves of Solanum campaniforme. Nicotiflorin is a flavonoid glycoside extracted from a traditional Chinese medicine Carthamus tinctorius. Nicotiflorin shows potent antiglycation activity and neuroprotection effects. Nicotiflorin is a flavonoid glycoside extracted from a traditional Chinese medicine Carthamus tinctorius. Nicotiflorin shows potent antiglycation activity and neuroprotection effects.

   

Taurochenodesoxycholic acid

2-[[(4R)-4-[(3R,5S,7R,8R,9S,10S,13R,14S,17R)-3,7-dihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoyl]amino]ethanesulfonic acid

C26H45NO6S (499.2967)


Taurochenodesoxycholic acid is a bile acid formed in the liver by conjugation of chenodeoxycholate with taurine, usually as the sodium salt. Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, depending only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). Taurochenodesoxycholic acid has been found to be a microbial metabolite. Taurochenodesoxycholic acid is a bile acid formed in the liver by conjugation of chenodeoxycholate with taurine, usually as the sodium salt. Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g., membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues. (PMID: 11316487, 16037564, 12576301, 11907135) [HMDB] Taurochenodeoxycholic acid is a bile acid taurine conjugate of chenodeoxycholic acid. It has a role as a mouse metabolite and a human metabolite. It is functionally related to a chenodeoxycholic acid. It is a conjugate acid of a taurochenodeoxycholate. Taurochenodeoxycholic acid is an experimental drug that is normally produced in the liver. Its physiologic function is to emulsify lipids such as cholesterol in the bile. As a medication, taurochenodeoxycholic acid reduces cholesterol formation in the liver, and is likely used as a choleretic to increase the volume of bile secretion from the liver and as a cholagogue to increase bile discharge into the duodenum. It is also being investigated for its role in inflammation and cancer therapy. Taurochenodeoxycholic acid is a natural product found in Trypanosoma brucei and Homo sapiens with data available. A bile salt formed in the liver by conjugation of chenodeoxycholate with taurine, usually as the sodium salt. It acts as detergent to solubilize fats in the small intestine and is itself absorbed. It is used as a cholagogue and choleretic. Taurochenodeoxycholic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=516-35-8 (retrieved 2024-07-01) (CAS RN: 516-35-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Taurochenodeoxycholic acid (12-Deoxycholyltaurine) is one of the main bioactive substances of animals' bile acid. Taurochenodeoxycholic acid induces apoptosis and shows obvious anti-inflammatory and immune regulation properties[1][2].

   

L-2-Amino-3-(oxalylamino)propanoic acid

N-Oxalyl-L-alpha-beta-diaminopropionic acid (BOAA,ODAP)

C5H8N2O5 (176.0433)


L-2-Amino-3-(oxalylamino)propanoic acid is found in grass pea. L-2-Amino-3-(oxalylamino)propanoic acid is isolated from Panax notoginseng (sanchi Isolated from Panax notoginseng (sanchi). L-2-Amino-3-(oxalylamino)propanoic acid is found in tea and grass pea. L-2-Amino-3-(oxalylamino)propanoic acid is an alpha-amino acid. N(3)-oxalyl-L-2,3-diaminopropionic acid is an N(beta)-acyl-L-2,3-diaminopropionic acid in which the acyl group is oxalyl. It is functionally related to a propionic acid. It is a conjugate acid of a N(3)-(carboxylatoformyl)-L-2,3-diaminopropionate(1-). Dencichin is a natural product found in Lathyrus latifolius and Lathyrus sativus with data available. See also: Panax notoginseng root (part of). Dencichin is a non-protein amino acid originally extracted from Panax notoginseng, and can inhibit HIF-prolyl hydroxylase-2 (PHD-2) activity.

   

Sudan_III

1-((4-(Phenyldiazenyl)phenyl)diazenyl)naphthalen-2-ol, tech grade

C22H16N4O (352.1324)


Sudan III is a bis(azo) compound that is 2-naphthol substituted at position 1 by a 4-{[(2-methylphenyl)diazenyl]phenyl}diazenyl group. A fat-soluble dye predominantly used for demonstrating triglycerides in frozen sections, but which may also stain some protein bound lipids in paraffin sections. It has a role as a fluorochrome, a histological dye and a carcinogenic agent. It is a member of azobenzenes, a bis(azo) compound and a member of naphthols. It is functionally related to a 2-naphthol. D004396 - Coloring Agents

   

Mitraphylline

SPIRO(3H-INDOLE-3,6(4AH)-(1H)PYRANO(3,4-F)INDOLIZINE)-4-CARBOXYLIC ACID, 1,2,5,5A,7,8,10,10A-OCTAHYDRO-1-METHYL-2-OXO-, METHYL ESTER, (1S,3R,4AS,5AS,10AR)-

C21H24N2O4 (368.1736)


Mitraphylline is a member of indolizines. Mitraphylline is a natural product found in Uncaria tomentosa, Mitragyna parvifolia, and other organisms with data available. See also: Cats Claw (part of); Mitragyna speciosa leaf (part of). Annotation level-1 Mitraphylline is the major pentacyclic oxindolic alkaloid presented in Uncaria tomentosa. Mitraphylline inhibits lipopolysaccharide-mediated activation of primary human neutrophils[1]. Mitraphylline is the major pentacyclic oxindolic alkaloid presented in Uncaria tomentosa. Mitraphylline inhibits lipopolysaccharide-mediated activation of primary human neutrophils[1].

   

Senecionine

(1,6)Dioxacyclododecino(2,3,4-gh)pyrrolizine-2,7-dione, 3-ethylidene-3,4,5,6,9,11,13,14,14a,14b-decahydro-6-hydroxy-5,6-dimethyl-, (3Z,5R,6R,14aR,14bR)-

C18H25NO5 (335.1733)


Senecionine is a pyrrolizidine alkaloid isolated from the plant species of the genus Senecio. It has a role as a plant metabolite. It is a lactone, a pyrrolizidine alkaloid and a tertiary alcohol. It is functionally related to a senecionan. It is a conjugate base of a senecionine(1+). Senecionine is a natural product found in Dorobaea pimpinellifolia, Crotalaria micans, and other organisms with data available. Senecionine is an organic compound with the chemical formula C18H25NO5. It is classified as a pyrrolizidine alkaloid. See also: Petasites hybridus root (part of); Tussilago farfara flower (part of); Tussilago farfara leaf (part of). A pyrrolizidine alkaloid isolated from the plant species of the genus Senecio. D000970 - Antineoplastic Agents Annotation level-1 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2251 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 122 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 102 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 142 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 152 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 162 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 172 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 132 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 112 [Raw Data] CB082a_Senecionine_pos_40eV_CB000034.txt [Raw Data] CB082a_Senecionine_pos_10eV_CB000034.txt [Raw Data] CB082a_Senecionine_pos_30eV_CB000034.txt [Raw Data] CB082a_Senecionine_pos_20eV_CB000034.txt [Raw Data] CB082a_Senecionine_pos_50eV_CB000034.txt Senecionine (Senecionan-11,16-dione, 12-hydroxy-) is a pyrrolizidine alkaloid could be isolated from Senecio vulgaris. Senecionine decreases the activities of glutathione S-transferase, aminopyrine demethylase and arylhydrocarbon hydroxylase (AHH)[1][2][3]. Senecionine (Senecionan-11,16-dione, 12-hydroxy-) is a pyrrolizidine alkaloid could be isolated from Senecio vulgaris. Senecionine decreases the activities of glutathione S-transferase, aminopyrine demethylase and arylhydrocarbon hydroxylase (AHH)[1][2][3].

   

Uncarine

SPIRO(3H-INDOLE-3,6(4AH)-(1H)PYRANO(3,4-F)INDOLIZINE)-4-CARBOXYLIC ACID, 1,2,5,5A,7,8,10,10A-OCTAHYDRO-1-METHYL-2-OXO-, METHYL ESTER, (1S,3S,4AS,5AS,10AS)-

C21H24N2O4 (368.1736)


Uncarine E is a member of indolizines. Isopteropodine is a natural product found in Uncaria lanosa, Uncaria tomentosa, and other organisms with data available. See also: Cats Claw (part of). Isopteropodine is heteroyohimbine-type oxindole alkaloid components of Uncaria tomentosa (Willd.) DC. Isopteropodine acts as positive modulators of muscarinic M1 and 5-HT2 receptors[1]. Isopteropodine is heteroyohimbine-type oxindole alkaloid components of Uncaria tomentosa (Willd.) DC. Isopteropodine acts as positive modulators of muscarinic M1 and 5-HT2 receptors[1]. Isopteropodine is heteroyohimbine-type oxindole alkaloid components of Uncaria tomentosa (Willd.) DC. Isopteropodine acts as positive modulators of muscarinic M1 and 5-HT2 receptors[1].

   

Columbamine

2-Hydroxy-3,9,10-trimethoxy-5,6-dihydroisoquinolino[3,2-a]isoquinolin-7-ium

C20H20NO4+ (338.1392)


Columbamine is a berberine alkaloid and an organic heterotetracyclic compound. Columbamine is a natural product found in Thalictrum podocarpum, Berberis thunbergii, and other organisms with data available.

   

Nervonic acid

(15Z)-tetracos-15-enoic acid

C24H46O2 (366.3498)


Nervonic acid is a long chain unsaturated fatty acid that is enriched in sphingomyelin. It consists of choline, sphingosine, phosphoric acid, and fatty acid. Nervonic acid may enhance the brain functions and prevent demyelination (Chemical Land21). Research shows that there is negative relationship between nervonic acid and obesity-related risk factors (PMID:16394593). Demyelination in adrenoleukodystrophy (ALD) is associated with an accumulation of very long chain saturated fatty acids stemming from a genetic defect in the peroxisomal beta oxidation system responsible for the chain shortening of these fatty acids. Sphingolipids from post mortem ALD brain have decreased levels of nervonic acid, 24:1(n-9), and increased levels of stearic acid, 18:0. (PMID:8072429). (15Z)-tetracosenoic acid is a tetracosenoic acid having a cis-double bond at position 15. It is a conjugate acid of a (15Z)-tetracosenoate. Nervonic acid is a natural product found in Tropaeolum speciosum, Calophyllum inophyllum, and other organisms with data available. Nervonic Acid is a monounsaturated fatty acid with a 24-carbon backbone and the sole double bond originating from the 9th carbon from the methyl end, with this bond in the cis- configuration. See also: Borage Seed Oil (part of). A tetracosenoic acid having a cis-double bond at position 15. Present in fish and rape seed oils Nervonic acid is a monounsaturated fatty acid important in the biosynthesis of myelin. Nervonic acid is a monounsaturated fatty acid important in the biosynthesis of myelin.

   

Prunin

(S)-5-Hydroxy-2-(4-hydroxyphenyl)-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)chroman-4-one

C21H22O10 (434.1213)


Naringenin 7-O-beta-D-glucoside is a flavanone 7-O-beta-D-glucoside that is (S)-naringenin substituted by a beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as a metabolite, a hypoglycemic agent, an antilipemic drug and an antibacterial agent. It is a flavanone 7-O-beta-D-glucoside, a dihydroxyflavanone, a monosaccharide derivative, a member of 4-hydroxyflavanones and a (2S)-flavan-4-one. It is functionally related to a (S)-naringenin. Prunin is a natural product found in Prunus mume, Podocarpus nivalis, and other organisms with data available. Acquisition and generation of the data is financially supported in part by CREST/JST. Prunin is a potent inhibitor of human enterovirus A71 (HEVA71). Prunin shows strong inhibitory activity against protein tyrosine phosphatase 1B (PTP1B), with an IC50 of 5.5 μM[1][2]. Prunin is a potent inhibitor of human enterovirus A71 (HEVA71). Prunin shows strong inhibitory activity against protein tyrosine phosphatase 1B (PTP1B), with an IC50 of 5.5 μM[1][2].

   

Bruceantin

methyl (1R,2S,3R,6R,8R,13S,14R,15R,16S,17S)-3-[(E)-3,4-dimethylpent-2-enoyl]oxy-10,15,16-trihydroxy-9,13-dimethyl-4,11-dioxo-5,18-dioxapentacyclo[12.5.0.01,6.02,17.08,13]nonadec-9-ene-17-carboxylate

C28H36O11 (548.2258)


Bruceantin is a triterpenoid. Bruceantin is a natural product found in Brucea javanica and Brucea antidysenterica with data available. Bruceantin is a triterpene quassinoid antineoplastic antibiotic isolated from the plant Brucea antidysenterica. Bruceantin inhibits the peptidyl transferase elongation reaction, resulting in decreased protein and DNA synthesis. Bruceantin also has antiamoebic and antimalarial activity. (NCI04) C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product > C1974 - Quassinoid Agent C784 - Protein Synthesis Inhibitor C1907 - Drug, Natural Product Bruceantin (NSC165563) can be extracted from B. javanica and has inhibitory effects on B16 melanoma, colon cancer 38, L1210 and leukemia P388. Bruceantin (NSC165563) can be extracted from B. javanica and has inhibitory effects on B16 melanoma, colon cancer 38, L1210 and leukemia P388.

   

K-Strophanthidin

(3S,5S,8R,9S,10S,13R,14S,17R)-3,5,14-trihydroxy-13-methyl-17-(5-oxo-2H-furan-3-yl)-2,3,4,6,7,8,9,11,12,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthrene-10-carbaldehyde

C23H32O6 (404.2199)


Strophanthidin is a 3beta-hydroxy steroid, a 14beta-hydroxy steroid, a 5beta-hydroxy steroid, a 19-oxo steroid, a member of cardenolides and a steroid aldehyde. It is functionally related to a 5beta-cardanolide. Strophanthidin is a natural product found in Crossosoma bigelovii, Adonis aestivalis, and other organisms with data available. 3 beta,5,14-Trihydroxy-19-oxo-5 beta-card-20(22)-enolide. The aglycone cardioactive agent isolated from Strophanthus Kombe, S. gratus and other species; it is a very toxic material formerly used as digitalis. Synonyms: Apocymarin; Corchorin; Cynotoxin; Corchorgenin. D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D013328 - Strophanthins Strophanthidin is a naturally available cardiac glycoside[1]. Strophanthidin 0.1 and 1 nmol/L increases and 1~100 μmol/L inhibits the Na+/K+-ATPase activities, but Strophanthidin 10 and 100 nmol/L does not affect Na+/K+-ATPase activities in cardiac sarcolemmal[2]. Strophanthidin increases both diastolic and systolic intracellular Ca2+ concentration[3]. Strophanthidin is a naturally available cardiac glycoside[1]. Strophanthidin 0.1 and 1 nmol/L increases and 1~100 μmol/L inhibits the Na+/K+-ATPase activities, but Strophanthidin 10 and 100 nmol/L does not affect Na+/K+-ATPase activities in cardiac sarcolemmal[2]. Strophanthidin increases both diastolic and systolic intracellular Ca2+ concentration[3].

   

indicine

BUTANOIC ACID, 2,3-DIHYDROXY-2-(1-METHYLETHYL)-, (2,3,5,7A-TETRAHYDRO-1-HYDROXY-1H-PYRROLIZIN-7-YL)METHYL ESTER, (1S-(1.ALPHA.,7(2R*,3S*),7A.ALPHA.))-

C15H25NO5 (299.1733)


Rinderine is a member of pyrrolizines. Rinderine is a natural product found in Chromolaena odorata, Eupatorium japonicum, and other organisms with data available.

   

D-Malic acid

(2R)-2-HYDROXYBUTANEDIOIC ACID; 2-HYDROXY-SUCCINIC ACID

C4H6O5 (134.0215)


(R)-malic acid is an optically active form of malic acid having (R)-configuration. It is a conjugate acid of a (R)-malate(2-). It is an enantiomer of a (S)-malic acid. (R)-Malate is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). D-malate is a natural product found in Vaccinium macrocarpon, Pogostemon cablin, and other organisms with data available. D-Malic acid is found in herbs and spices. This enantiomer of rare occurrence; reported from fruits and leaves of Hibiscus sabdariffa (roselle) although there are many more isolations of malic acid with no opt. rotn. given and some may be of the R-for An optically active form of malic acid having (R)-configuration. COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Acquisition and generation of the data is financially supported in part by CREST/JST. D-(+)-Malic acid (D-Malic acid), an active enantiomer of Malic acid, is a competitive inhibitor of L(--)malic acid transport[1]. D-(+)-Malic acid (D-Malic acid), an active enantiomer of Malic acid, is a competitive inhibitor of L(--)malic acid transport[1].

   

Cis-Hydroxyproline

cis-4-hydroxyproline;(2S)-4-hydroxypyrrolidine-2-carboxylic acid

C5H9NO3 (131.0582)


Cis 4-hydroxyproline, also known as L-allo-hydroxyproline or (2s,4s)-4-hydroxy-2-pyrrolidinecarboxylic acid, belongs to proline and derivatives class of compounds. Those are compounds containing proline or a derivative thereof resulting from reaction of proline at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. Cis 4-hydroxyproline is soluble (in water) and a moderately acidic compound (based on its pKa). Cis 4-hydroxyproline can be found in a number of food items such as green bell pepper, wheat, nanking cherry, and oat, which makes cis 4-hydroxyproline a potential biomarker for the consumption of these food products. Cis-4-hydroxy-L-proline is l-Proline in which a hydrogen at the 4-position of the pyrrolidine ring is substituted by a hydroxy group (S-configuration). It has a role as a metabolite. It is a non-proteinogenic L-alpha-amino acid and a 4-hydroxyproline. It is a tautomer of a cis-4-hydroxy-L-proline zwitterion. A hydroxylated form of the imino acid proline. A deficiency in ASCORBIC ACID can result in impaired hydroxyproline formation. cis-4-Hydroxyproline is classified as a proline derivative. It is considered to be a soluble (in water), acidic compound. cis-4-Hydroxyproline can be found in numerous foods such as dills, green zucchinis, saskatoon berries, and Japanese pumpkins. L-Proline in which a hydrogen at the 4-position of the pyrrolidine ring is substituted by a hydroxy group (S-configuration). [Spectral] 4-Hydroxy-L-proline (exact mass = 131.05824) and L-Threonine (exact mass = 119.05824) and Taurine (exact mass = 125.01466) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. KEIO_ID H004 cis-4-Hydroxy-L-proline, a proline analogue, is an inhibitor of collagen production. cis-4-Hydroxy-L-proline could inhibit fibroblast growth by preventing the deposition of triple-helical collagen on the cell layer. cis-4-Hydroxy-L-proline also depresses the growth of primary N-nitrosomethylurea-induced rat mammary tumors[1][2][3][4]. cis-4-Hydroxy-L-proline, a proline analogue, is an inhibitor of collagen production. cis-4-Hydroxy-L-proline could inhibit fibroblast growth by preventing the deposition of triple-helical collagen on the cell layer. cis-4-Hydroxy-L-proline also depresses the growth of primary N-nitrosomethylurea-induced rat mammary tumors[1][2][3][4]. L-Hydroxyproline, one of the hydroxyproline (Hyp) isomers, is a useful chiral building block in the production of many pharmaceuticals. L-Hydroxyproline, one of the hydroxyproline (Hyp) isomers, is a useful chiral building block in the production of many pharmaceuticals.

   

Coptisine

5,7,17,19-tetraoxa-13-azoniahexacyclo[11.11.0.02,10.04,8.015,23.016,20]tetracosa-1(13),2,4(8),9,14,16(20),21,23-octaene

C19H14NO4+ (320.0923)


Coptisine is an alkaloid. It has a role as a metabolite. Coptisine is a natural product found in Fumaria capreolata, Fumaria muralis, and other organisms with data available. See also: Sanguinaria canadensis root (part of); Chelidonium majus flowering top (part of). A natural product found in Coptis japonica.

   

Trehalose

(2R,3S,4S,5R,6R)-2-(hydroxymethyl)-6-{[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxane-3,4,5-triol

C12H22O11 (342.1162)


Trehalose, also known as mycose, is a 1-alpha (disaccharide) sugar found extensively but not abundantly in nature. It is thought to be implicated in anhydrobiosis - the ability of plants and animals to withstand prolonged periods of desiccation. The sugar is thought to form a gel phase as cells dehydrate, which prevents disruption of internal cell organelles by effectively splinting them in position. Rehydration then allows normal cellular activity to be resumed without the major, generally lethal damage that would normally follow a dehydration/reyhdration cycle. Trehalose is a non-reducing sugar formed from two glucose units joined by a 1-1 alpha bond giving it the name of alpha-D-glucopyranoglucopyranosyl-1,1-alpha-D-glucopyranoside. The bonding makes trehalose very resistant to acid hydrolysis, and therefore stable in solution at high temperatures even under acidic conditions. The bonding also keeps non-reducing sugars in closed-ring form, such that the aldehyde or ketone end-groups do not bind to the lysine or arginine residues of proteins (a process called glycation). The enzyme trehalase, present but not abundant in most people, breaks it into two glucose molecules, which can then be readily absorbed in the gut. Trehalose is an important components of insects circulating fluid. It acts as a storage form of insect circulating fluid and it is important in respiration. Trehalose has also been found to be a metabolite of Burkholderia, Escherichia and Propionibacterium (PMID:12105274; PMID:25479689) (krishikosh.egranth.ac.in/bitstream/1/84382/1/88571\\\\%20P-1257.pdf). Alpha,alpha-trehalose is a trehalose in which both glucose residues have alpha-configuration at the anomeric carbon. It has a role as a human metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite, a mouse metabolite and a geroprotector. Cabaletta has been used in trials studying the treatment of Oculopharyngeal Muscular Dystrophy. Trehalose is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Trehalose is a natural product found in Cora pavonia, Selaginella nothohybrida, and other organisms with data available. Trehalose is a metabolite found in or produced by Saccharomyces cerevisiae. Occurs in fungi. EU and USA approved sweetener Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 149 D-(+)-Trehalose,which is widespread, can be used as a food ingredient and pharmaceutical excipient. D-(+)-Trehalose,which is widespread, can be used as a food ingredient and pharmaceutical excipient.

   

Canthin-6-one

1,6-diazatetracyclo[7.6.1.0⁵,¹⁶.0¹⁰,¹⁵]hexadeca-3,5,7,9(16),10(15),11,13-heptaen-2-one

C14H8N2O (220.0637)


Canthin-6-one is an indole alkaloid that is 6H-indolo[3,2,1-de][1,5]naphthyridine substituted by an oxo group at position 6. It has a role as a metabolite and an antimycobacterial drug. It is an indole alkaloid, an organic heterotetracyclic compound and an enone. Canthin-6-one is a natural product found in Zanthoxylum mayu, Zanthoxylum ovalifolium, and other organisms with data available. D016573 - Agrochemicals D010575 - Pesticides Canthin-6-one displays a wide range of biological activities, such as antimycobacterial activity[1]. Canthin-6-one displays a wide range of biological activities, such as antimycobacterial activity[1].

   

9,10-Dihydroxystearic acid

Calcium (9 or 10)-hydroxy-(10 or 9)-oxidooctadecanoate

C18H36O4 (316.2613)


9,10-dihydroxystearic acid, also known as 9,10-dhsa or 9,10-dioh 18:0, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, 9,10-dihydroxystearic acid is considered to be an octadecanoid lipid molecule. 9,10-dihydroxystearic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). 9,10-dihydroxystearic acid can be found in peanut, which makes 9,10-dihydroxystearic acid a potential biomarker for the consumption of this food product. 9,10-dihydroxyoctadecanoic acid is a hydroxy-fatty acid formally derived from octacecanoic (stearic) acid by hydroxy substitution at positions 9 and 10. It is a dihydroxy monocarboxylic acid and a hydroxyoctadecanoic acid. It is a conjugate acid of a 9,10-dihydroxystearate. 9,10-Dihydroxystearic acid is a natural product found in Trypanosoma brucei and Apis cerana with data available.

   

Alachlor

2-Chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl)acetamide, 9ci

C14H20ClNO2 (269.1182)


CONFIDENCE standard compound; INTERNAL_ID 803; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9585; ORIGINAL_PRECURSOR_SCAN_NO 9582 CONFIDENCE standard compound; INTERNAL_ID 803; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9550; ORIGINAL_PRECURSOR_SCAN_NO 9545 CONFIDENCE standard compound; INTERNAL_ID 803; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9512; ORIGINAL_PRECURSOR_SCAN_NO 9510 CONFIDENCE standard compound; INTERNAL_ID 803; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9542; ORIGINAL_PRECURSOR_SCAN_NO 9539 CONFIDENCE standard compound; INTERNAL_ID 803; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9490; ORIGINAL_PRECURSOR_SCAN_NO 9488 CONFIDENCE standard compound; INTERNAL_ID 803; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9540; ORIGINAL_PRECURSOR_SCAN_NO 9537 Selective preemergent herbicide used on food crop CONFIDENCE standard compound; EAWAG_UCHEM_ID 274 CONFIDENCE standard compound; INTERNAL_ID 3225 D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

Diethyltoluamide

N,N-Diethyl-2,5-dimethylbenzamide

C12H17NO (191.131)


P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03B - Insecticides and repellents D010575 - Pesticides > D007302 - Insect Repellents CONFIDENCE standard compound; EAWAG_UCHEM_ID 213 CONFIDENCE standard compound; INTERNAL_ID 3353 CONFIDENCE standard compound; INTERNAL_ID 4176 CONFIDENCE standard compound; INTERNAL_ID 8223 CONFIDENCE standard compound; INTERNAL_ID 8797 D020011 - Protective Agents D016573 - Agrochemicals Same as: D02379

   

Epoxiconazole

Pesticide6_Epoxiconazole_C17H13ClFN3O_1H-1,2,4-Triazole, 1-[[3-(2-chlorophenyl)-2-(4-fluorophenyl)oxiranyl]methyl]-

C17H13ClFN3O (329.0731)


D016573 - Agrochemicals D010575 - Pesticides CONFIDENCE standard compound; INTERNAL_ID 238; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9422; ORIGINAL_PRECURSOR_SCAN_NO 9420 CONFIDENCE standard compound; INTERNAL_ID 238; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9436; ORIGINAL_PRECURSOR_SCAN_NO 9433 CONFIDENCE standard compound; INTERNAL_ID 238; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9461; ORIGINAL_PRECURSOR_SCAN_NO 9459 CONFIDENCE standard compound; INTERNAL_ID 238; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9474; ORIGINAL_PRECURSOR_SCAN_NO 9472 CONFIDENCE standard compound; INTERNAL_ID 238; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9445; ORIGINAL_PRECURSOR_SCAN_NO 9444 CONFIDENCE standard compound; INTERNAL_ID 238; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9488; ORIGINAL_PRECURSOR_SCAN_NO 9486 CONFIDENCE standard compound; INTERNAL_ID 2574 CONFIDENCE standard compound; INTERNAL_ID 8407 CONFIDENCE standard compound; EAWAG_UCHEM_ID 95

   

Flusilazole

bis(4-fluorophenyl)-methyl-(1,2,4-triazol-1-ylmethyl)silane

C16H15F2N3Si (315.1003)


Flusilazole is an organosilicon compound that is dimethylsilane in which the hydrogens attached to the silicon are replaced by p-fluorophenyl groups and a hydrogen attached to one of the methyl groups is replaced by a 1H-1,2,4-triazol-1-yl group. It is a broad-sepctrum fungicide used to protect a variety of crops. It has a role as a xenobiotic, an environmental contaminant, an EC 1.14.13.70 (sterol 14alpha-demethylase) inhibitor and an antifungal agrochemical. It is a member of monofluorobenzenes, a member of triazoles, an organosilicon compound, a conazole fungicide and a triazole fungicide. CONFIDENCE standard compound; INTERNAL_ID 555; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9550; ORIGINAL_PRECURSOR_SCAN_NO 9549 CONFIDENCE standard compound; INTERNAL_ID 555; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9630; ORIGINAL_PRECURSOR_SCAN_NO 9627 CONFIDENCE standard compound; INTERNAL_ID 555; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9444; ORIGINAL_PRECURSOR_SCAN_NO 9441 CONFIDENCE standard compound; INTERNAL_ID 555; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9499; ORIGINAL_PRECURSOR_SCAN_NO 9497 CONFIDENCE standard compound; INTERNAL_ID 555; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9537; ORIGINAL_PRECURSOR_SCAN_NO 9535 Highly potent broad-spectrum fungicide. Controls broad spectrum of diseases on economically important crops. Flusilazole is found in cereals and cereal products. Flusilazole is found in cereals and cereal products. Highly potent broad-spectrum fungicide. Controls broad spectrum of diseases on economically important crops. CONFIDENCE standard compound; INTERNAL_ID 4011 CONFIDENCE standard compound; INTERNAL_ID 2564 CONFIDENCE standard compound; INTERNAL_ID 8385 D016573 - Agrochemicals D010575 - Pesticides

   

Monuron

3-(p-Chlorophenyl)-1,1-dimethylurea

C9H11ClN2O (198.056)


CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7858; ORIGINAL_PRECURSOR_SCAN_NO 7856 CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7928; ORIGINAL_PRECURSOR_SCAN_NO 7925 CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7944; ORIGINAL_PRECURSOR_SCAN_NO 7942 CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3857; ORIGINAL_PRECURSOR_SCAN_NO 3854 CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7900; ORIGINAL_PRECURSOR_SCAN_NO 7898 CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3846; ORIGINAL_PRECURSOR_SCAN_NO 3844 CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7885; ORIGINAL_PRECURSOR_SCAN_NO 7882 CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3870; ORIGINAL_PRECURSOR_SCAN_NO 3866 CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7933; ORIGINAL_PRECURSOR_SCAN_NO 7931 CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3859; ORIGINAL_PRECURSOR_SCAN_NO 3857 CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3877; ORIGINAL_PRECURSOR_SCAN_NO 3875 CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3866; ORIGINAL_PRECURSOR_SCAN_NO 3861

   

2-Chlorobenzoic acid

2-Chlorobenzoic acid, copper (2+) salt

C7H5ClO2 (155.9978)


KEIO_ID C088

   

Desaminotyrosine

3-(4-hydroxyphenyl)propanoic acid

C9H10O3 (166.063)


Desaminotyrosine, also known as 4-hydroxyphenylpropionic acid, is a normal constituent of human urine. It is a product of tyrosine metabolism; its concentration in urine increases in patients with gastrointestinal diseases. Desaminotyrosine is a major phenolic acid breakdown product of proanthocyanidin metabolism (PMID:15315398). Urinary desaminotyrosine is produced by Clostridium sporogenes and C. botulinum (PMID:29168502). Desaminotyrosine is also found in Acinetobacter, Bacteroides, Bifidobacteria, Bifidobacterium, Clostridium, Enterococcus, Escherichia, Eubacterium, Klebsiella, Lactobacillus, Pseudomonas, and Staphylococcus (PMID:29168502, 28393285, 19961416). Desaminotyrosine is a phenolic acid metabolite formed by the gut microflora detected after the consumption of whole grain. A normal constituent of human urine. A product of tyrosine metabolism; concentration in urine increases in patients with gastrointestinal diseases. (Dictionary of Organic Compounds) May also result from phenolic acid metabolism by colonic bacteria. (PMID 15315398) [HMDB]. Phloretic acid is found in many foods, some of which are arrowroot, olive, avocado, and peanut. Desaminotyrosine is a microbially associated metabolite protecting from influenza through augmentation of type I interferon signaling. Desaminotyrosine is a microbially associated metabolite protecting from influenza through augmentation of type I interferon signaling.

   

1-Methylhistidine

(2S)-2-Amino-3-(1-methyl-1H-imidazol-4-yl)propanoic acid

C7H11N3O2 (169.0851)


1-Methylhistidine, also known as 1-MHis or 1MH, belongs to the class of organic compounds known as histidine and derivatives. 1MH is also classified as a methylamino acid. Methylamino acids are primarily proteogenic amino acids (found in proteins) which have been methylated (in situ) on their side chains by various methyltransferase enzymes. Histidine can be methylated at either the N1 or N3 position of its imidazole ring, yielding the isomers 1-methylhistidine (1MH; also referred to as pi-methylhistidine) or 3-methylhistidine (3MH; tau-methylhistidine), respectively. There is considerable confusion with regard to the nomenclature of the methylated nitrogen atoms on the imidazole ring of histidine and other histidine-containing peptides such as anserine. In particular, older literature (mostly prior to the year 2000) designated anserine (Npi methylated) as beta-alanyl-N1-methyl-histidine, whereas according to standard IUPAC nomenclature, anserine is correctly named as beta-alanyl-N3-methyl-histidine. As a result, many papers published prior to the year 2000 incorrectly identified 1MH as a specific marker for dietary consumption or various pathophysiological effects when they really were referring to 3MH (PMID: 24137022). Recent discoveries have shown that 1MH is produced in essentially all mammals (and other vertebrates) via the enzyme known as METTL9 (PMID: 33563959). METTL9 is a broad-specificity methyltransferase that mediates the formation of the majority of 1MH present in mammalian proteomes. METTL9-catalyzed methylation requires a His-x-His (HxH) motif, where "x" is a small amino acid. This HxH motif is found in a number of abundant mammalian proteins such as ARMC6, S100A9, and NDUFB3 (PMID: 33563959). Because of its abundance in many muscle-related proteins, 1MH has been found to be a good biomarker for the consumption of meat (PMID: 21527577). Dietary studies have shown that poultry consumption (p-trend = 0.0006) and chicken consumption (p-trend = 0.0003) are associated with increased levels of 1MH in human plasma (PMID: 30018457). The consumption of fish, especially salmon and cod, has also been shown to increase the levels of 1MH in serum and urine (PMID: 31401679). As a general rule, urinary 1MH is associated with white meat intake (p< 0.001), whereas urinary 3MH is associated with red meat intake (p< 0.001) (PMID: 34091671). 1-Methyl-L-histidine is an objective indicator of meat ingestion and exogenous 3-methylhistidine (3MH) intake. 1-Methyl-L-histidine is an objective indicator of meat ingestion and exogenous 3-methylhistidine (3MH) intake. 3-Methyl-L-histidine is a biomarker for meat consumption, especially chicken. It is also a biomarker for the consumption of soy products.

   

Cholestenone

(1S,2R,10S,11S,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-6-en-5-one

C27H44O (384.3392)


Cholestenone belongs to the class of organic compounds known as cholesterols and derivatives. Cholesterols and derivatives are compounds containing a 3-hydroxylated cholestane core. Thus, cholestenone is considered to be a sterol lipid molecule. Cholestenone is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Cholestenone is a dehydrocholestanone. It is a product of cholesterol oxidase {EC 1.1.3.6] in the Bile acid biosynthesis pathway (KEGG). [HMDB] Cholestenone (4-Cholesten-3-one), the intermediate oxidation product of cholesterol, is metabolized primarily in the liver. Cholestenone is highly mobile in membranes and influences cholesterol flip-flop and efflux. Cholestenone may cause long-term functional defects in cells[1][2]. Cholestenone (4-Cholesten-3-one), the intermediate oxidation product of cholesterol, is metabolized primarily in the liver. Cholestenone is highly mobile in membranes and influences cholesterol flip-flop and efflux. Cholestenone may cause long-term functional defects in cells[1][2].

   

21-Deoxycortisol

(1S,2R,10S,11S,14R,15S,17R)-14-acetyl-14,17-dihydroxy-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-6-en-5-one

C21H30O4 (346.2144)


Plasma 21-deoxycortisol (21DF) is an excellent marker of 21-hydroxylase deficiency. Currently, it is the only marker able to detect heterozygous carriers with 21-hydroxylase deficiency after Adrenocorticotropic Hormone (ACTH) stimulation. The syndrome of congenital adrenal hyperplasia (CAH) comprises the spectrum of autosomal recessive enzymatic disorders that impair cortisol biosynthesis. The hormonal pattern and clinical manifestations result from hyperstimulation of the adrenal cortex by excessive production of ACTH, untied from the negative feedback exerted by reduced cortisol levels, and the ultimate accumulation of F precursors and androgens. These abnormalities predispose the female newborn to ambiguous genitalia (female pseudohermaphroditism) and precocious puberty that may occur in both sexes. CAH due to 21-hydroxylase deficiency (21OHD) comprises nearly 90\\% of all cases, with an estimated worldwide incidence of 1 in 14,000 live births. Because 21-deoxycortisol (21DF) is an 11b-hydroxylase (11bOH) derivative of 17-hydroxyprogesterone (17OHP), its serum levels are parallel and proportionally elevated in patients with 21OHD but decreased or undetectable in those with 11b-hydroxylase deficiency (11bOHD), another genetic disorder. Due to the marked buildup of 17OHP in 21OHD, this precursor steroid can proceed directly to 11-hydroxylation, producing distinct elevations of 21DF (PMID: 16551734, 10731638). Plasma 21-deoxycortisol (21DF) is an excellent marker of 21-hydroxylase deficiency. Currently, it is the only marker able to detect heterozygous carriers with 21-hydroxylase deficiency after Adrenocorticotropic Hormone (ACTH) stimulation. The syndrome of congenital adrenal hyperplasia (CAH) comprises the spectrum of autosomal recessive enzymatic disorders that impair cortisol biosynthesis. The hormonal pattern and clinical manifestations result from hyperstimulation of the adrenal cortex by excessive production of ACTH, untied from the negative feedback exerted by reduced cortisol levels, and the ultimate accumulation of F precursors and androgens. These abnormalities predispose the female newborn to ambiguous genitalia (female pseudohermaphroditism) and precocious puberty that may occur in both sexes. CAH due to 21-hydroxylase deficiency (21OHD) comprises nearly 90\\% of all cases, with an estimated worldwide incidence of 1 in 14,000 live births. Because 21-deoxycortisol (21DF) is an 11b-hydroxylase (11bOH) derivative of 17-hydroxyprogesterone (17OHP), its serum levels are parallel and proportionally elevated in patients with 21OHD but decreased or undetectable in those with 11b-hydroxylase deficiency (11bOHD). Due to the marked buildup of 17OHP in 21OHD, this precursor steroid can proceed directly to 11-hydroxylation, producing distinct elevations of 21DF. (PMID: 16551734, 10731638) [HMDB] D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

L-3-Phenyllactic acid

(2R)-2-hydroxy-3-phenylpropanoic acid

C9H10O3 (166.063)


L-3-Phenyllactic acid (or PLA) is a chiral aromatic compound involved in phenylalanine metabolism. It is likely produced from phenylpyruvate via the action of lactate dehydrogenase. The D-form of this organic acid is typically derived from bacterial sources while the L-form is almost certainly endogenous. Levels of phenyllactate are normally very low in blood or urine. High levels of PLA in the urine or blood are often indicative of phenylketonuria (PKU) and hyperphenylalaninemia (HPA). PKU is due to lack of the enzyme phenylalanine hydroxylase (PAH), so that phenylalanine is converted not to tyrosine but to phenylpyruvic acid (a precursor of phenylactate). In particular, excessive phenylalanine is typically metabolized into phenylketones through, a transaminase pathway route involving glutamate. Metabolites of this transamination reaction include phenylacetate, phenylpyruvate and phenethylamine. In persons with PKU, dietary phenylalanine either accumulates in the body or some of it is converted to phenylpyruvic acid and then to phenyllactate through the action of lactate dehydrogenase. Individuals with PKU tend to excrete large quantities of phenylpyruvate, phenylacetate and phenyllactate, along with phenylalanine, in their urine. If untreated, mental retardation effects and microcephaly are evident by the first year along with other symptoms which include: unusual irritability, epileptic seizures and skin lesions. Hyperactivity, EEG abnormalities and seizures, and severe learning disabilities are major clinical problems later in life. A "musty or mousy" odor of skin, hair, sweat and urine (due to phenylacetate accumulation); and a tendency to hypopigmentation and eczema are also observed. The neural-development effects of PKU are primarily due to the disruption of neurotransmitter synthesis. In particular, phenylalanine is a large, neutral amino acid which moves across the blood-brain barrier (BBB) via the large neutral amino acid transporter (LNAAT). Excessive phenylalanine in the blood saturates the transporter. Thus, excessive levels of phenylalanine significantly decrease the levels of other LNAAs in the brain. But since these amino acids are required for protein and neurotransmitter synthesis, phenylalanine accumulation disrupts brain development, leading to mental retardation. [HMDB] L-3-Phenyllactic acid (or PLA) is a chiral aromatic compound involved in phenylalanine metabolism. It is likely produced from phenylpyruvate via the action of lactate dehydrogenase. The D-form of this organic acid is typically derived from bacterial sources while the L-form is almost certainly endogenous. Levels of phenyllactate are normally very low in blood or urine. High levels of PLA in the urine or blood are often indicative of phenylketonuria (PKU) and hyperphenylalaninemia (HPA). PKU is due to lack of the enzyme phenylalanine hydroxylase (PAH), so that phenylalanine is converted not to tyrosine but to phenylpyruvic acid (a precursor of phenylactate). In particular, excessive phenylalanine is typically metabolized into phenylketones through, a transaminase pathway route involving glutamate. Metabolites of this transamination reaction include phenylacetate, phenylpyruvate and phenethylamine. In persons with PKU, dietary phenylalanine either accumulates in the body or some of it is converted to phenylpyruvic acid and then to phenyllactate through the action of lactate dehydrogenase. Individuals with PKU tend to excrete large quantities of phenylpyruvate, phenylacetate and phenyllactate, along with phenylalanine, in their urine. If untreated, mental retardation effects and microcephaly are evident by the first year along with other symptoms which include: unusual irritability, epileptic seizures and skin lesions. Hyperactivity, EEG abnormalities and seizures, and severe learning disabilities are major clinical problems later in life. A "musty or mousy" odor of skin, hair, sweat and urine (due to phenylacetate accumulation); and a tendency to hypopigmentation and eczema are also observed. The neural-development effects of PKU are primarily due to the disruption of neurotransmitter synthesis. In particular, phenylalanine is a large, neutral amino acid which moves across the blood-brain barrier (BBB) via the large neutral amino acid transporter (LNAAT). Excessive phenylalanine in the blood saturates the transporter. Thus, excessive levels of phenylalanine significantly decrease the levels of other LNAAs in the brain. But since these amino acids are required for protein and neurotransmitter synthesis, phenylalanine accumulation disrupts brain development, leading to mental retardation. (±)-3-Phenyllactic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=828-01-3 (retrieved 2024-07-04) (CAS RN: 828-01-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (S)-2-Hydroxy-3-phenylpropanoic acid is a product of phenylalanine catabolism. An elevated level of phenyllactic acid is found in body fluids of patients with or phenylketonuria. D-?(+)?-?Phenyllactic acid is an anti-bacterial agent, excreted by Geotrichum candidum, inhibits a range of Gram-positive from humans and foodstuffs and Gram-negative bacteria found in humans[1]. DL-3-Phenyllactic acid is a broad-spectrum antimicrobial compound. DL-3-Phenyllactic acid is a broad-spectrum antimicrobial compound.

   

Crotonoyl-CoA

(2R)-4-({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-N-[2-({2-[(2E)-but-2-enoylsulfanyl]ethyl}-C-hydroxycarbonimidoyl)ethyl]-2-hydroxy-3,3-dimethylbutanimidic acid

C25H40N7O17P3S (835.1414)


Crotonoyl-CoA is an important component in several metabolic pathways, notably fatty acid and amino acid metabolism. It is the substrate of a group of enzymes acyl-Coenzyme A oxidases 1, 2, 3 (E.C.: 1.3.3.6) corresponding to palmitoyl, branched chain, and pristanoyl, respectively, in the peroxisomal fatty acid beta-oxidation, producing hydrogen peroxide. Abnormality of this group of enzymes is linked to coma, dehydration, diabetes, fatty liver, hyperinsulinemia, hyperlipidemia, and leukodystrophy. It is also a substrate of a group of enzymes called acyl-Coenzyme A dehydrogenase (E.C.:1.3.99-, including 1.3.99.2, 1.3.99.3) in the metabolism of fatty acids or branched chain amino acids in the mitochondria (Rozen et al., 1994). Acyl-Coenzyme A dehydrogenase (1.3.99.3) has shown to contribute to kidney-associated diseases, such as adrenogential syndrome, kidney failure, kidney tubular necrosis, homocystinuria, as well as other diseases including cretinism, encephalopathy, hypoglycemia, medium chain acyl-CoA dehydrogenase deficiency. The gene (ACADS) also plays a role in theta oscillation during sleep. In addition, crotonoyl-CoA is the substrate of enoyl coenzyme A hydratase (E.C.4.2.1.17) in the mitochondria during lysine degradation and tryptophan metabolism, benzoate degradation via CoA ligation; in contrast it is the product of this enzyme in the butanoate metabolism. Moreover, it is produced from multiple enzymes in the butanoate metabolism pathway, including 3-Hydroxybutyryl-CoA dehydratase (E.C.:4.2.1.55), glutaconyl-CoA decarboxylase (E.C.: 4.1.1.70), vinylacetyl-CoA Δ-isomerase (E.C.: 5.3.3.3), and trans-2-enoyl-CoA reductase (NAD+) (E.C.: 1.3.1.44). In lysine degradation and tryptophan metabolism, crotonoyl CoA is produced by glutaryl-Coenzyme A dehydrogenase (E.C.:1.3.99.7) lysine and tryptophan metabolic pathway. This enzyme is linked to type-1glutaric aciduria, metabolic diseases, movement disorders, myelinopathy, and nervous system diseases. [HMDB] Crotonoyl-CoA (CAS: 992-67-6) is an important component in several metabolic pathways, notably fatty acid and amino acid metabolism. It is the substrate of acyl-coenzyme A oxidases 1, 2, and 3 (EC 1.3.3.6) corresponding to palmitoyl, branched-chain, and pristanoyl, respectively. In peroxisomal fatty acid beta-oxidation, these enzymes produce hydrogen peroxide. Abnormalities in this group of enzymes are linked to coma, dehydration, diabetes, fatty liver, hyperinsulinemia, hyperlipidemia, and leukodystrophy. Crotonoyl-CoA is also a substrate of a group of enzymes called acyl-coenzyme A dehydrogenases (EC 1.3.99-, 1.3.99.2, 1.3.99.3) in the metabolism of fatty acids or branched-chain amino acids in the mitochondria (PMID: 7698750). Acyl-coenzyme A dehydrogenase has been shown to contribute to kidney-associated diseases, such as adrenogential syndrome, kidney failure, kidney tubular necrosis, homocystinuria, as well as other diseases including cretinism, encephalopathy, hypoglycemia, and medium-chain acyl-CoA dehydrogenase deficiency. The gene (ACADS) also plays a role in theta oscillation during sleep. In addition, crotonoyl-CoA is the substrate of enoyl-coenzyme A hydratase (EC 4.2.1.17) in the mitochondria during lysine degradation and tryptophan metabolism as well as benzoate degradation via CoA ligation. Crotonoyl-CoA is the product of this enzyme in butanoate metabolism. Moreover, it is produced from multiple enzymes in the butanoate metabolism pathway, including 3-hydroxybutyryl-CoA dehydratase (EC 4.2.1.55), glutaconyl-CoA decarboxylase (EC 4.1.1.70), vinylacetyl-CoA delta-isomerase (EC 5.3.3.3), and trans-2-enoyl-CoA reductase (NAD+) (EC 1.3.1.44). In lysine degradation and tryptophan metabolism, crotonoyl-CoA is produced by glutaryl-coenzyme A dehydrogenase (EC 1.3.99.7). This enzyme is linked to glutaric aciduria type I, metabolic diseases, movement disorders, myelinopathy, and nervous system diseases.

   

butanoyl-CoA

(2R)-4-({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-N-(2-{[2-(butanoylsulfanyl)ethyl]-C-hydroxycarbonimidoyl}ethyl)-2-hydroxy-3,3-dimethylbutanimidic acid

C25H42N7O17P3S (837.1571)


Butyryl-coa, also known as 4:0-coa or butanoyl-coa, is a member of the class of compounds known as acyl coas. Acyl coas are organic compounds containing a coenzyme A substructure linked to an acyl chain. Thus, butyryl-coa is considered to be a fatty ester lipid molecule. Butyryl-coa is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). Butyryl-coa can be synthesized from coenzyme A and butyric acid. Butyryl-coa is also a parent compound for other transformation products, including but not limited to, (2S,3S)-3-hydroxy-2-methylbutanoyl-CoA, acetoacetyl-CoA, and 2-methylacetoacetyl-CoA. Butyryl-coa can be found in a number of food items such as wild carrot, persian lime, redcurrant, and arrowroot, which makes butyryl-coa a potential biomarker for the consumption of these food products. Butyryl-coa may be a unique E.coli metabolite.

   

Fenpyroximate

Pesticide4_Fenpyroximate_C24H27N3O4_tert-Butyl 4-[({[(1E)-(1,3-dimethyl-5-phenoxy-1H-pyrazol-4-yl)methylidene]amino}oxy)methyl]benzoate

C24H27N3O4 (421.2001)


CONFIDENCE standard compound; INTERNAL_ID 254; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10501; ORIGINAL_PRECURSOR_SCAN_NO 10500 CONFIDENCE standard compound; INTERNAL_ID 254; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10529; ORIGINAL_PRECURSOR_SCAN_NO 10528 CONFIDENCE standard compound; INTERNAL_ID 254; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10568; ORIGINAL_PRECURSOR_SCAN_NO 10566 CONFIDENCE standard compound; INTERNAL_ID 254; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10573; ORIGINAL_PRECURSOR_SCAN_NO 10568 CONFIDENCE standard compound; INTERNAL_ID 254; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10546; ORIGINAL_PRECURSOR_SCAN_NO 10545 CONFIDENCE standard compound; INTERNAL_ID 254; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10595; ORIGINAL_PRECURSOR_SCAN_NO 10594

   

N-Acetylleucine

(2S)-2-acetamido-4-methylpentanoic acid

C8H15NO3 (173.1052)


N-Acetyl-L-leucine or N-Acetylleucine, belongs to the class of organic compounds known as N-acyl-alpha amino acids. N-acyl-alpha amino acids are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. N-Acetylleucine can also be classified as an alpha amino acid or a derivatized alpha amino acid. Technically, N-Acetylleucine is a biologically available N-terminal capped form of the proteinogenic alpha amino acid L-lecuine. N-acetyl amino acids can be produced either via direct synthesis of specific N-acetyltransferases or via the proteolytic degradation of N-acetylated proteins by specific hydrolases. N-terminal acetylation of proteins is a widespread and highly conserved process in eukaryotes that is involved in protection and stability of proteins (PMID: 16465618). About 85\\\\% of all human proteins and 68\\\\% of all yeast proteins are acetylated at their N-terminus (PMID: 21750686). Several proteins from prokaryotes and archaea are also modified by N-terminal acetylation. The majority of eukaryotic N-terminal-acetylation reactions occur through N-acetyltransferase enzymes or NAT’s (PMID: 30054468). These enzymes consist of three main oligomeric complexes NatA, NatB, and NatC, which are composed of at least a unique catalytic subunit and one unique ribosomal anchor. The substrate specificities of different NAT enzymes are mainly determined by the identities of the first two N-terminal residues of the target protein. The human NatA complex co-translationally acetylates N-termini that bear a small amino acid (A, S, T, C, and occasionally V and G) (PMID: 30054468). NatA also exists in a monomeric state and can post-translationally acetylate acidic N-termini residues (D-, E-). NatB and NatC acetylate N-terminal methionine with further specificity determined by the identity of the second amino acid. N-acetylated amino acids, such as N-acetylleucine can be released by an N-acylpeptide hydrolase from peptides generated by proteolytic degradation (PMID: 16465618). In addition to the NAT enzymes and protein-based acetylation, N-acetylation of free leucine can also occur. In particular, N-Acetylleucine can be biosynthesized from L-leucine and acetyl-CoA by the enzyme leucine N-acetyltransferase (EC 2.3.1.66). Excessive amounts N-acetyl amino acids including N-acetylleucine (as well as N-acetylglycine, N-acetylserine, N-acetylglutamine, N-acetylglutamate, N-acetylalanine, N-acetylmethionine and smaller amounts of N-acetylthreonine, N-acetylisoleucine, and N-acetylvaline) can be detected in the urine with individuals with acylase I deficiency, a genetic disorder (PMID: 16465618). Aminoacylase I is a soluble homodimeric zinc binding enzyme that catalyzes the formation of free aliphatic amino acids from N-acetylated precursors. In humans, Aminoacylase I is encoded by the aminoacylase 1 gene (ACY1) on chromosome 3p21 that consists of 15 exons (OMIM 609924). Individuals with aminoacylase I deficiency will experience convulsions, hearing loss and difficulty feeding (PMID: 16465618). ACY1 can also catalyze the reverse reaction, the synthesis of acetylated amino acids. Many N-acetylamino acids, including N-acetylleucine are classified as uremic toxins if present in high abundance in the serum or plasma (PMID: 26317986; PMID: 20613759). Uremic toxins are a diverse group of endogenously produced molecules that, if not properly cleared or eliminated by the kidneys, can cause kidney damage, cardiovascular disease and neurological deficits (PMID: 18287557). N-Acetyl-L-leucine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=1188-21-2 (retrieved 2024-07-02) (CAS RN: 1188-21-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). N-Acetyl-L-leucine is an endogenous metabolite.

   

Orotic acid

2,6-Dioxo-1,2,3,6-tetrahydro-pyrimidine-4-carboxylic acid

C5H4N2O4 (156.0171)


Orotic acid is classified as a pyrimidinemonocarboxylic acid. That is it is a uracil bearing a carboxy substituent at position C-6. It is also classified as a pyrimidinedione and a carboxylic acid. Orotic acid is a minor dietary constituent. Indeed, until it was realized that it could be synthesized by humans, orotic acid was known as vitamin B-13. The richest dietary sources of orotic acid are cows milk and other dairy products as well as root vegetables such as carrots and beets. Dietary intake probably contributes to a basal rate of orotic acid excretion in urine because fasting decreases excretion by ~50\\\\%. However, it is now apparent that most urinary orotic acid is synthesized in the body, where it arises as an intermediate in the pathway for the synthesis of pyrimidine nucleotides. Orotic acid is converted to UMP by UMP synthase, a multifunctional protein with both orotate phosphoribosyltransferase and orotidylate decarboxylase activity. The most frequently observed inborn error of pyrimidine nucleotide synthesis is a mutation of the multifunctional protein UMP synthase (UMP synthase deficiency or orotic aciduria). This disorder prevents the conversion of orotic acid to UMP, and thus to other pyrimidines. As a result, plasma orotic acid accumulates to high concentrations, and increased quantities appear in the urine. Indeed, urinary orotic acid is so markedly increased in individuals harboring a mutation in UMP synthase that orotic acid crystals can form in the urine. The urinary concentration of orotic acid in individuals suffering from orotic aciduria can be of the order of millimoles of orotic acid per millimole creatinine. By comparison, the urinary level in unaffected individuals is ~ 1 ¬umol/mmol creatinine (PMID: 17513443). Orotic aciduria is characterized by megaloblastic anemia and orotic acid crystalluria that is frequently associated with some degree of physical and mental retardation. These features respond to appropriate pyrimidine replacement therapy and most cases appear to have a good prognosis. When present in sufficiently high levels, orotic acid can act as an acidogen and a metabotoxin. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of orotic acid are associated with at least seven inborn errors of metabolism, including argininemia, LPI syndrome (lysinuric protein intolerance), hyperornithinemia-hyperammonemia-homocitrullinuria (HHH), OTC deficiency, citrullinemia type I, purine nucleoside phosphorylase deficiency, and orotic aciduria. Orotic acid is broadly classified as an organic acid. Abnormally high levels of organic acids in the blood (organic acidemia), urine (organic aciduria), the brain, and other tissues lead to general metabolic acidosis. Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis, the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). These can progress to heart abnormalities, seizures, coma, and possibly death. These are also the characteristic symptoms of the untreated IEMs mentioned above. Many affected children with organic acidemias experience intellectual disability or delayed development. In adults, acidosis or acidemia is characterized by headaches, confusion, feeling tired, tremors, sleepiness, and seizures. Orotic acid, also known as orotate or orotsaeure, is a member of the class of compounds known as pyrimidinecarboxylic acids. Pyrimidinecarboxylic acids are pyrimidines with a structure containing a carboxyl group attached to the pyrimidine ring. Orotic acid is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Orotic acid can be synthesized from uracil. Orotic acid can also be synthesized into dihydroorotic acid. Orotic acid can be found in a number of food items such as okra, atlantic herring, black chokeberry, and prunus (cherry, plum), which makes orotic acid a potential biomarker for the consumption of these food products. Orotic acid can be found primarily in most biofluids, including saliva, amniotic fluid, blood, and urine, as well as in human liver and pancreas tissues. Orotic acid exists in all living species, ranging from bacteria to humans. In humans, orotic acid is involved in the pyrimidine metabolism. Orotic acid is also involved in few metabolic disorders, which include beta ureidopropionase deficiency, dihydropyrimidinase deficiency, MNGIE (mitochondrial neurogastrointestinal encephalopathy), and UMP synthase deficiency (orotic aciduria). Moreover, orotic acid is found to be associated with hyperornithinemia-hyperammonemia-homocitrullinuria, orotic aciduria I, ornithine transcarbamylase deficiency, and n-acetylglutamate synthetase deficiency. Orotic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. The compound is manufactured in the body via a mitochondrial enzyme, dihydroorotate dehydrogenase or a cytoplasmic enzyme of pyrimidine synthesis pathway. It is sometimes used as a mineral carrier in some dietary supplements (to increase their bioavailability), most commonly for lithium orotate . Chronically high levels of orotic acid are associated with at least 4 inborn errors of metabolism including: Argininemia, Citrullinemia Type I, Purine nucleoside phosphorylase deficiency and Orotic Aciduria (T3DB). Orotic acid (6-Carboxyuracil), a precursor in biosynthesis of pyrimidine nucleotides and RNA, is released from the mitochondrial dihydroorotate dehydrogenase (DHODH) for conversion to UMP by the cytoplasmic UMP synthase enzyme. Orotic acid is a marker for measurement in routine newborn screening for urea cycle disorders. Orotic acid can induce hepatic steatosis and hepatomegaly in rats[1][2][3].

   

Tolmetin

2-[1-methyl-5-(4-methylbenzoyl)-1H-pyrrol-2-yl]acetic acid

C15H15NO3 (257.1052)


Tolmetin is only found in individuals that have used or taken this drug. It is a non-steroidal anti-inflammatory agent (anti-inflammatory agents, NON-steroidal) similar in mode of action to indomethacin. [PubChem]The mode of action of tolmetin is not known. However, studies in laboratory animals and man have demonstrated that the anti-inflammatory action of tolmetin is not due to pituitary-adrenal stimulation. Tolmetin inhibits prostaglandin synthetase in vitro and lowers the plasma level of prostaglandin E in man. This reduction in prostaglandin synthesis may be responsible for the anti-inflammatory action. Tolmetin does not appear to alter the course of the underlying disease in man. M - Musculo-skeletal system > M02 - Topical products for joint and muscular pain > M02A - Topical products for joint and muscular pain > M02AA - Antiinflammatory preparations, non-steroids for topical use M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AB - Acetic acid derivatives and related substances D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents KEIO_ID T044; [MS2] KO009288 D004791 - Enzyme Inhibitors KEIO_ID T044

   

mescaline

1-Amino-2-(3,4,5-trimethoxyphenyl)ethane

C11H17NO3 (211.1208)


D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D006213 - Hallucinogens

   

3,5-Diiodo-L-tyrosine

(2S)-2-Amino-3-(4-hydroxy-3,5-diiodophenyl)propanoic acid

C9H9I2NO3 (432.8672)


3,5-Diiodo-L-tyrosine, also known as diiy or DIT, belongs to the class of organic compounds known as tyrosine and derivatives. Tyrosine and derivatives are compounds containing tyrosine or a derivative thereof resulting from reaction of tyrosine at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. 3,5-Diiodo-L-tyrosine exists in all living organisms, ranging from bacteria to humans. In humans, 3,5-diiodo-L-tyrosine is involved in thyroid hormone synthesis. 3,5-Diiodo-L-tyrosine is a product from the iodination of monoiodotyrosine. A product from the iodination of monoiodotyrosine. In the biosynthesis of thyroid hormones, diiodotyrosine residues are coupled with other monoiodotyrosine or diiodotyrosine residues to form T4 or T3 thyroid hormones (thyroxine and triiodothyronine). [HMDB] H - Systemic hormonal preparations, excl. sex hormones and insulins > H03 - Thyroid therapy > H03B - Antithyroid preparations D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones KEIO_ID D056

   

Metsulfuron-methyl

Benzoic acid, 2-(((((4-methoxy-6-methyl-1,3,5-triazin-2- yl)methylamino)carbonyl)amino)sulfonyl)-, methyl ester

C14H15N5O6S (381.0743)


CONFIDENCE standard compound; EAWAG_UCHEM_ID 128

   

Nicosulfuron

nicosulfuron [ANSI]

C15H18N6O6S (410.1008)


CONFIDENCE standard compound; EAWAG_UCHEM_ID 129 CONFIDENCE standard compound; INTERNAL_ID 2532

   

Thifensulfuron-methyl

methyl 3-{[N-(6-methoxy-4-methyl-1,2-dihydro-1,3,5-triazin-2-ylidene)-(C-hydroxycarbonimidoyl)amino]sulfonyl}thiophene-2-carboxylate

C12H13N5O6S2 (387.0307)


CONFIDENCE standard compound; EAWAG_UCHEM_ID 124 CONFIDENCE standard compound; INTERNAL_ID 3688

   

N-acetylneuraminate

(4S,5R,6R)-5-acetamido-2,4-dihydroxy-6-[(1R,2R)-1,2, 3-trihydroxypropyl]oxane-2-carboxylic acid

C11H19NO9 (309.106)


Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID A018; [MS2] KO008824 KEIO_ID A018 N-Acetylneuraminic acid is a sialic acid monosaccharide ubiquitous on cell membrane glycoproteins and glycolipids of mammalian cell ganglioglycerides, which plays a biological role in neurotransmission, leukocyte vasodilation, and viral or bacterial infection.

   

Deoxycholic acid glycine conjugate

2-[[4-(3,12-dihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)-1-oxopentyl]amino]acetic acid

C26H43NO5 (449.3141)


Deoxycholic acid glycine conjugate, or or Deoxyglycocholic acid or Deoxygcholylglycine is a bile salt formed in the liver by conjugation of deoxycholate with glycine. It usually exists as the sodium salt. Deoxygcholylglycine is a secondary bile acid produced by the action of enzymes existing in the microbial flora of the colonic environment. In hepatocytes, both primary and secondary bile acids undergo amino acid conjugation at the C-24 carboxylic acid on the side chain, and almost all bile acids in the bile duct therefore exist in a glycine conjugated form (PMID: 16949895). As a bile acid Deoxyglycocholic acid acts as a detergent to solubilize fats for absorption and is itself absorbed. Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, and depends only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine, and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH, and consequently require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). Deoxyglycocholic acid is used as a cholagogue and choleretic. Deoxycholic acid glycine conjugate, or Deoxygcholylglycine, is an acyl glycine and a bile acid-glycine conjugate. It is a secondary bile acid produced by the action of enzymes existing in the microbial flora of the colonic environment. In hepatocytes, both primary and secondary bile acids undergo amino acid conjugation at the C-24 carboxylic acid on the side chain, and almost all bile acids in the bile duct therefore exist in a glycine conjugated form (PMID:16949895). As a bile salt it acts as a detergent to solubilize fats for absorption and is itself absorbed. It is used as a cholagogue and choleretic. [HMDB] D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids D013501 - Surface-Active Agents > D003902 - Detergents Glycodeoxycholic Acid is an endogenous metabolite. Glycodeoxycholic Acid is an endogenous metabolite.

   

Arachidate (20:0)

n-Eicosanoic acid

C20H40O2 (312.3028)


Arachidic acid, also known as icosanoic acid, is a saturated fatty acid with a 20-carbon chain. It is a minor constituent of butter, perilla oil, peanut oil, corn oil, and cocoa butter. It also constitutes 7.08\\\\% of the fats from the fruit of the durian species Durio graveolens. The salts and esters of arachidic acid are known as arachidates. Its name derives from the Latin arachis that means peanut. It can be formed by the hydrogenation of arachidonic acid. The reduction of arachidic acid yields arachidyl alcohol. Arachidic acid is used for the production of detergents, photographic materials and lubricants. Arachidic acid belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Arachidic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Arachidonic acid (Icosanoic acid), a long-chain fatty acid, is present in all mammalian cells, typically esterified to membrane phospholipids, and is one of the most abundant polyunsaturated fatty acids present in human tissue[1][2]. Arachidonic acid (Icosanoic acid), a long-chain fatty acid, is present in all mammalian cells, typically esterified to membrane phospholipids, and is one of the most abundant polyunsaturated fatty acids present in human tissue[1][2].

   

Dephospho-CoA

[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy][(3R)-3-hydroxy-2,2-dimethyl-3-({2-[(2-sulfanylethyl)carbamoyl]ethyl}carbamoyl)propoxy]phosphinic acid

C21H35N7O13P2S (687.1489)


Dephospho-CoA, also known as 3-dephospho-CoA, belongs to the class of organic compounds known as purine ribonucleoside diphosphates. These are purine ribonucleosides with a diphosphate group linked to the ribose moiety. Thus, dephospho-CoA is considered to be a fatty ester lipid molecule. Dephospho-CoA is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Outside of the human body, dephospho-CoA has been detected, but not quantified in, several different foods, such as wild leeks, summer savouries, arctic blackberries, biscuits, and persimmons. This could make dephospho-CoA a potential biomarker for the consumption of these foods. Dephospho-CoA is an intermediate in pantothenate and CoA biosynthesis. It is a substrate for bifunctional coenzyme A synthase which contains the dephospho-CoA kinase (EC 2.7.1.24). This enzyme catalyzes the final step in CoA biosynthesis: the phosphorylation of the 3-hydroxyl group of ribose using ATP as a phosphate donor. The reaction is ATP + 3-dephospho-CoA = ADP + CoA. Dephospho-CoA is a substrate for Ectonucleotide pyrophosphatase/phosphodiesterase 1, Ectonucleotide pyrophosphatase/phosphodiesterase 3 and Ectonucleotide pyrophosphatase/phosphodiesterase 2. [HMDB]. Dephospho-CoA is found in many foods, some of which are cardamom, epazote, lemon balm, and mammee apple. Acquisition and generation of the data is financially supported in part by CREST/JST.

   

α-D-Glucose-1-phosphate

[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] dihydrogen phosphate

C6H13O9P (260.0297)


Glucose 1-phosphate (also called cori ester) is a glucose molecule with a phosphate group on the 1-carbon. It can exist in either the α- or β-anomeric form. Glucose 1-phosphate belongs to the class of organic compounds known as monosaccharide phosphates. These are monosaccharides comprising a phosphated group linked to the carbohydrate unit. Glucose 1-phosphate is the direct product of the reaction in which glycogen phosphorylase cleaves off a molecule of glucose from a greater glycogen structure. It cannot travel down many metabolic pathways and must be interconverted by the enzyme phosphoglucomutase in order to become glucose 6-phosphate. Free glucose 1-phosphate can also react with UTP to form UDP-glucose. It can then return to the greater glycogen structure via glycogen synthase. *Found widely in both plants and animals. A precursor of starch in plants and of glycogen in animals. [CCD] Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from COVID-19 Disease Map KEIO_ID G020 Corona-virus KEIO_ID G115 Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Fluazinam

Pesticide4_Fluazinam_C13H4Cl2F6N4O4_2-Pyridinamine, 3-chloro-N-[3-chloro-2,6-dinitro-4-(trifluoromethyl)phenyl]-5-(trifluoromethyl)-

C13H4Cl2F6N4O4 (463.9514)


CONFIDENCE standard compound; EAWAG_UCHEM_ID 119

   

Fenfuram

2-methyl-2-furanilide

C12H11NO2 (201.079)


   

Fenoprop

2-(2,4,5-trichlorophenoxy)propanoic acid

C9H7Cl3O3 (267.9461)


   

Cefamandole

(6R,7R)-7-[(2R)-2-hydroxy-2-phenylacetamido]-3-{[(1-methyl-1H-1,2,3,4-tetrazol-5-yl)sulfanyl]methyl}-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid

C18H18N6O5S2 (462.078)


Cefamandole is only found in individuals that have used or taken this drug. It is a broad-spectrum cephalosporin antibiotic. The clinically used form of cefamandole is the formate ester cefamandole nafate, a prodrug which is administered parenterally. Cefamandole is no longer available in the United States.Like all beta-lactam antibiotics, cefamandole binds to specific penicillin-binding proteins (PBPs) located inside the bacterial cell wall, causing the inhibition of the third and last stage of bacterial cell wall synthesis. Cell lysis is then mediated by bacterial cell wall autolytic enzymes such as autolysins; it is possible that cefamandole interferes with an autolysin inhibitor. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DC - Second-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   

Fumonisin B2

2-[2-({19-amino-6-[(3,4-dicarboxybutanoyl)oxy]-16,18-dihydroxy-5,9-dimethylicosan-7-yl}oxy)-2-oxoethyl]butanedioic acid

C34H59NO14 (705.3935)


Fumonisin B2 is from Fusarium moniliforme Fumonisin B2 is a fumonisin mycotoxin produced by the fungi Fusarium verticillioides and Fusarium moniliforme. It is a structural analog of fumonisin B1. Fumonisin B2 is more cytotoxic than fumonisin B1. Fumonisin B2 inhibits sphingosine acyltransferase D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins D009676 - Noxae > D011042 - Poisons > D037341 - Fumonisins D009676 - Noxae > D002273 - Carcinogens From Fusarium moniliforme

   

Alfentanil

N-{1-[2-(4-ethyl-5-oxo-4,5-dihydro-1H-1,2,3,4-tetrazol-1-yl)ethyl]-4-(methoxymethyl)piperidin-4-yl}-N-phenylpropanamide

C21H32N6O3 (416.2536)


A short-acting opioid anesthetic and analgesic derivative of fentanyl. It produces an early peak analgesic effect and fast recovery of consciousness. Alfentanil is effective as an anesthetic during surgery, for supplementation of analgesia during surgical procedures, and as an analgesic for critically ill patients. [PubChem] D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general > N01AH - Opioid anesthetics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D000700 - Analgesics

   

BENSULFURON-METHYL

2-((((((4,6-Dimethoxy-2-pyrimidinyl)amino)carbonyl)amino)sulfonyl)methyl)benzoic acid methyl ester

C16H18N4O7S (410.0896)


   

Butorphanol

(1S,9R,10S)-17-(cyclobutylmethyl)-17-azatetracyclo[7.5.3.0^{1,10}.0^{2,7}]heptadeca-2(7),3,5-triene-4,10-diol

C21H29NO2 (327.2198)


Butorphanol is only found in individuals that have used or taken this drug. It is a synthetic morphinan analgesic with narcotic antagonist action. It is used in the management of severe pain. [PubChem]The exact mechanism of action is unknown, but is believed to interact with an opiate receptor site in the CNS (probably in or associated with the limbic system). The opiate antagonistic effect may result from competitive inhibition at the opiate receptor, but may also be a result of other mechanisms. Butorphanol is a mixed agonist-antagonist that exerts antagonistic or partially antagonistic effects at mu opiate receptor sites, but is thought to exert its agonistic effects principally at the kappa and sigma opiate receptors. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids N - Nervous system > N02 - Analgesics > N02A - Opioids > N02AF - Morphinan derivatives D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D009292 - Narcotic Antagonists D019141 - Respiratory System Agents > D000996 - Antitussive Agents C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent D002491 - Central Nervous System Agents > D000700 - Analgesics

   

Aristospan

Triamcinolone hexacetonide

C30H41FO7 (532.2836)


C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D000893 - Anti-Inflammatory Agents

   

Thiobencarb

N,N-diethyl{[(4-chlorophenyl)methyl]sulfanyl}formamide

C12H16ClNOS (257.0641)


CONFIDENCE standard compound; INTERNAL_ID 645; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9919; ORIGINAL_PRECURSOR_SCAN_NO 9915 CONFIDENCE standard compound; INTERNAL_ID 645; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9872; ORIGINAL_PRECURSOR_SCAN_NO 9867 CONFIDENCE standard compound; INTERNAL_ID 645; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9934; ORIGINAL_PRECURSOR_SCAN_NO 9929 D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

Flupentixol

cis-(Z)-Flupenthixol

C23H25F3N2OS (434.164)


D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AF - Thioxanthene derivatives D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C66885 - Serotonin Antagonist C78272 - Agent Affecting Nervous System > C66883 - Dopamine Antagonist

   

Fluphenazine

2-(4-{3-[2-(trifluoromethyl)-10H-phenothiazin-10-yl]propyl}piperazin-1-yl)ethan-1-ol

C22H26F3N3OS (437.1749)


Fluphenazine is only found in individuals that have used or taken this drug. It is a phenothiazine used in the treatment of psychoses. Its properties and uses are generally similar to those of chlorpromazine. [PubChem]Fluphenazine blocks postsynaptic mesolimbic dopaminergic D1 and D2 receptors in the brain; depresses the release of hypothalamic and hypophyseal hormones and is believed to depress the reticular activating system thus affecting basal metabolism, body temperature, wakefulness, vasomotor tone, and emesis. N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AB - Phenothiazines with piperazine structure D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent

   

Guanabenz

2-{[(2,6-dichlorophenyl)methylidene]amino}guanidine

C8H8Cl2N4 (230.0126)


Guanabenz is only found in individuals that have used or taken this drug. It is an alpha-2 selective adrenergic agonist used as an antihypertensive agent. [PubChem]Guanabenzs antihypertensive effect is thought to be due to central alpha-adrenergic stimulation, which results in a decreased sympathetic outflow to the heart, kidneys, and peripheral vasculature in addition to a decreased systolic and diastolic blood pressure and a slight slowing of pulse rate. Chronic administration of guanabenz also causes a decrease in peripheral vascular resistance. C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents

   

L-Hypoglycin A

alpha-amino-beta-(2-Methylenecyclopropyl)propionic acid

C7H11NO2 (141.079)


Isolated from the unripe fruit of akee apple (Blighia sapida). L-Hypoglycin A is found in many foods, some of which are fox grape, biscuit, mamey sapote, and chinese chives. L-Hypoglycin A is found in fruits. L-Hypoglycin A is isolated from the unripe fruit of akee apple (Blighia sapida D009676 - Noxae > D011042 - Poisons > D007005 - Hypoglycins

   

spirodiclofen

Pesticide7_Spirodiclofen_C21H24Cl2O4_Butanoic acid, 2,2-dimethyl-, 3-(2,4-dichlorophenyl)-2-oxo-1-oxaspiro[4.5]dec-3-en-4-yl ester

C21H24Cl2O4 (410.1052)


   

Prochlorperazine

2-chloro-10-[3-(4-methylpiperazin-1-yl)propyl]-10H-phenothiazine

C20H24ClN3S (373.1379)


Prochlorperazine is only found in individuals that have used or taken this drug. It is a phenothiazine antipsychotic used principally in the treatment of nausea; vomiting; and vertigo. It is more likely than chlorpromazine to cause extrapyramidal disorders. (From Martindale, The Extra Pharmacopoeia, 30th ed, p612)The mechanism of action of prochlorperazine has not been fully determined, but may be primarily related to its antidopaminergic effects. Prochlorperazine blocks the D2 somatodendritic autoreceptor, resulting in the blockade of postsynaptic dopamine receptors in the mesolimbic system and an increased dopamine turnover. Prochlorperazine also has anti-emetic effects, which can be attributed to dopamine blockade in the chemoreceptor trigger zone. Prochlorperazine also blocks anticholinergic and alpha-adrenergic receptors, the blockade of alpha(1)-adrenergic receptors resulting in sedation, muscle relaxation, and hypotension. N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AB - Phenothiazines with piperazine structure D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent > C740 - Phenothiazine D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents D005765 - Gastrointestinal Agents > D000932 - Antiemetics

   

Ordram

MOLINATE

C9H17NOS (187.1031)


D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents D009676 - Noxae > D000988 - Antispermatogenic Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3714 D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

OMETHOATE

2-dimethoxyphosphorylsulfanyl-N-methylacetamide

C5H12NO4PS (213.0225)


C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor CONFIDENCE standard compound; INTERNAL_ID 3027

   

1-Naphthaleneacetic acid

1-Naphthaleneacetic acid, plant cell culture tested, BioReagent, >=95\\%, crystalline

C12H10O2 (186.0681)


Plant growth regulator. 1-Naphthaleneacetic acid is used for control of preharvest fruit drop, flower induction and fruit thinning in various crops such as apples, potatoes, olives and citrus fruits.1-Naphthaleneacetic acid (NAA) is a plant hormone in the auxin family. It is a rooting agent and used for the vegetative propagation of plants from stem and leaf cutting. It is also used for plant tissue culture. NAA does not occur naturally. Under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA), products containing NAA require registration with the Environmental Protection Agency (EPA) as pesticides. (Wikipedia 1-naphthaleneacetic acid is a naphthylacetic acid substituted by a carboxymethyl group at position 1. It has a role as a synthetic auxin. It is a conjugate acid of a 1-naphthaleneacetate. 1-Naphthylacetic acid is a natural product found in Cocos nucifera, Humulus lupulus, and other organisms with data available. 1-Naphthaleneacetic acid (1-Naphthylacetic acid), a auxin, can promote plant growth. 1-Naphthaleneacetic acid is also an inhibitor of PLA2, with an IC50 of 13.16 μM[1][2]. 1-Naphthaleneacetic acid (1-Naphthylacetic acid), a auxin, can promote plant growth. 1-Naphthaleneacetic acid is also an inhibitor of PLA2, with an IC50 of 13.16 μM[1][2].

   

Oleic acid

Emersol 221 low titer white oleic acid

C18H34O2 (282.2559)


Oleic acid (or 9Z)-Octadecenoic acid) is an unsaturated C-18 or an omega-9 fatty acid that is the most widely distributed and abundant fatty acid in nature. It occurs naturally in various animal and vegetable fats and oils. It is an odorless, colorless oil, although commercial samples may be yellowish. The name derives from the Latin word oleum, which means oil. Oleic acid is the most abundant fatty acid in human adipose tissue, and the second most abundant in human tissues overall, following palmitic acid. Oleic acid is a component of the normal human diet, being a part of animal fats and vegetable oils. Triglycerides of oleic acid represent the majority of olive oil (about 70\\\\%). Oleic acid triglycerides also make up 59–75\\\\% of pecan oil, 61\\\\% of canola oil, 36–67\\\\% of peanut oil, 60\\\\% of macadamia oil, 20–80\\\\% of sunflower oil, 15–20\\\\% of grape seed oil, sea buckthorn oil, 40\\\\% of sesame oil, and 14\\\\% of poppyseed oil. High oleic variants of plant sources such as sunflower (~80\\\\%) and canola oil (70\\\\%) also have been developed. consumption has been associated with decreased low-density lipoprotein (LDL) cholesterol, and possibly with increased high-density lipoprotein (HDL) cholesterol, however, the ability of oleic acid to raise HDL is still debated. Oleic acid may be responsible for the hypotensive (blood pressure reducing) effects of olive oil that is considered a health benefit. Oleic acid is used in manufacturing of surfactants, soaps, plasticizers. It is also used as an emulsifying agent in foods and pharmaceuticals. Oleic acid is used commercially in the preparation of oleates and lotions, and as a pharmaceutical solvent. Major constituent of plant oils e.g. olive oil (ca. 80\\\\%), almond oil (ca. 80\\\\%) and many others, mainly as glyceride. Constituent of tall oiland is also present in apple, melon, raspberry oil, tomato, banana, roasted peanuts, black tea, rice bran, cardamon, plum brandy, peated malt, dairy products and various animal fats. Component of citrus fruit coatings. Emulsifying agent in foods CONFIDENCE standard compound; INTERNAL_ID 290 COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2]. Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2].

   

m-chlorophenylpiperazine (m-CPP)

1-(3-Chlorophenyl)piperazine monohydrochloride

C10H13ClN2 (196.0767)


m-chlorophenylpiperazine (m-CPP) is a metabolite of trazodone. Trazodone (also sold under the brand names Desyrel, Oleptro, Beneficat, Deprax, Desirel, Molipaxin, Thombran, Trazorel, Trialodine, Trittico, and Mesyrel) is an antidepressant of the serotonin antagonist and reuptake inhibitor (SARI) class. It is a phenylpiperazine compound. Trazodone also has anxiolytic and hypnotic effects. Trazodone has considerably fewer prominent anticholinergic and sexual side effects than most of the tricyclic antidepressants (TCAs). (Wikipedia) D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists CONFIDENCE Parent Substance with Reference Standard (Level 1); INTERNAL_ID 1300 EAWAG_UCHEM_ID 2818; CONFIDENCE standard compound CONFIDENCE standard compound; EAWAG_UCHEM_ID 2818

   

N-PHENYL-1-NAPHTHYLAMINE

N-phenylnaphthalen-1-amine

C16H13N (219.1048)


CONFIDENCE standard compound; INTERNAL_ID 1239; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10077; ORIGINAL_PRECURSOR_SCAN_NO 10074 CONFIDENCE standard compound; INTERNAL_ID 1239; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10054; ORIGINAL_PRECURSOR_SCAN_NO 10051 CONFIDENCE standard compound; INTERNAL_ID 1239; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10017; ORIGINAL_PRECURSOR_SCAN_NO 10013 CONFIDENCE standard compound; INTERNAL_ID 1239; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10109; ORIGINAL_PRECURSOR_SCAN_NO 10106 CONFIDENCE standard compound; INTERNAL_ID 1239; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10083; ORIGINAL_PRECURSOR_SCAN_NO 10080 CONFIDENCE standard compound; INTERNAL_ID 1239; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10041; ORIGINAL_PRECURSOR_SCAN_NO 10037 D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D004396 - Coloring Agents > D005456 - Fluorescent Dyes CONFIDENCE standard compound; INTERNAL_ID 4139 CONFIDENCE standard compound; INTERNAL_ID 2426 CONFIDENCE standard compound; INTERNAL_ID 8127 D009676 - Noxae > D002273 - Carcinogens

   

Undecanoic acid

1-Decanecarboxylic acid

C11H22O2 (186.162)


Undecanoic acid, also known as N-undecylic acid or N-undecanoate, belongs to the class of organic compounds known as medium-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 4 and 12 carbon atoms. Undecanoic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Undecanoic acid is a potentially toxic compound. Undecylic acid (systematically named undecanoic acid) is a flavouring ingredient. It is a naturally-occurring carboxylic acid with chemical formula CH3(CH2)9COOH (Wikipedia). Undecanoic acid is found in many foods, some of which are coconut, fruits, fats and oils, and rice. C254 - Anti-Infective Agent > C514 - Antifungal Agent Undecanoic acid (Undecanoate) is a monocarboxylic acid with antimycotic property, which inhibits the production of exocellular keratinase, lipase and the biosynthesis of several phospholipids in T. rubrum[1]. Undecanoic acid (Undecanoate) is a monocarboxylic acid with antimycotic property, which inhibits the production of exocellular keratinase, lipase and the biosynthesis of several phospholipids in T. rubrum[1].

   

Linoleic acid

C18:2 9C, 12C Omega6 todos cis-9,12-octadienoico

C18H32O2 (280.2402)


Linoleic acid is a doubly unsaturated fatty acid, also known as an omega-6 fatty acid, occurring widely in plant glycosides. In this particular polyunsaturated fatty acid (PUFA), the first double bond is located between the sixth and seventh carbon atom from the methyl end of the fatty acid (n-6). Linoleic acid is an essential fatty acid in human nutrition because it cannot be synthesized by humans. It is used in the biosynthesis of prostaglandins (via arachidonic acid) and cell membranes (From Stedman, 26th ed). Linoleic acid is found to be associated with isovaleric acidemia, which is an inborn error of metabolism. Linoleic acid (LA) is an organic compound with the formula HOOC(CH2)7CH=CHCH2CH=CH(CH2)4CH3. Both alkene groups (−CH=CH−) are cis. It is a fatty acid sometimes denoted 18:2 (n-6) or 18:2 cis-9,12. A linoleate is a salt or ester of this acid.[5] Linoleic acid is a polyunsaturated, omega-6 fatty acid. It is a colorless liquid that is virtually insoluble in water but soluble in many organic solvents.[2] It typically occurs in nature as a triglyceride (ester of glycerin) rather than as a free fatty acid.[6] It is one of two essential fatty acids for humans, who must obtain it through their diet,[7] and the most essential, because the body uses it as a base to make the others. The word "linoleic" derives from Latin linum 'flax', and oleum 'oil', reflecting the fact that it was first isolated from linseed oil.

   

4,4'-Diphenylmethane diisocyanate

1-isocyanato-4-[(4-isocyanatophenyl)methyl]benzene

C15H10N2O2 (250.0742)


COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

2,4-Toluenediamine

2,4-Diaminotoluene, monohydrochloride

C7H10N2 (122.0844)


2,4-toluenediamine belongs to the family of Toluenes. These are compounds containing a benzene ring which bears a methane group. D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens

   

trifluralin

alpha,alpha,alpha-Trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine

C13H16F3N3O4 (335.1093)


D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 123 D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

Heptanoic acid

1-Hexanecarboxylic acid

C7H14O2 (130.0994)


Heptanoic acid, or C7:0 also known as enanthic acid or heptylic acid, belongs to the class of organic compounds known as medium-chain fatty acids. Medium-chain fatty acids (MCFA) are fatty acids with aliphatic tails of 6 to 12 carbons, which can form medium-chain triglycerides Heptanoic acid is an oily liquid with an unpleasant, rancid odor. It contributes to the odor of some rancid oils. It is slightly soluble in water, but very soluble in ethanol and ether. Its name derives from the Latin oenanthe which is in turn derived from the Ancient Greek oinos "wine" and anthos "blossom." Heptanoic acid is used in the preparation of esters, such as ethyl enanthate, which are used in fragrances and as artificial flavors. The triglyceride ester of heptanoic acid is the triheptanoin, which is used in certain medical conditions as a nutritional supplement. Present in essential oils, e.g. violet leaf oil, palm oiland is also present in apple, feijoa fruit, strawberry jam, clove bud, ginger, black tea, morello cherry, grapes, rice bran and other foodstuffs. Flavouring ingredient. It is used as one of the components in washing solns. used to assist lye peeling of fruit and vegetables

   

1,5-Naphthalenediamine

naphthalene-1,5-diamine

C10H10N2 (158.0844)


CONFIDENCE standard compound; INTERNAL_ID 543; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1321; ORIGINAL_PRECURSOR_SCAN_NO 1317 CONFIDENCE standard compound; INTERNAL_ID 543; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1306; ORIGINAL_PRECURSOR_SCAN_NO 1305 CONFIDENCE standard compound; INTERNAL_ID 543; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1313; ORIGINAL_PRECURSOR_SCAN_NO 1311 CONFIDENCE standard compound; INTERNAL_ID 543; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1314; ORIGINAL_PRECURSOR_SCAN_NO 1311 CONFIDENCE standard compound; INTERNAL_ID 543; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1302; ORIGINAL_PRECURSOR_SCAN_NO 1298

   

Tetraconazole

2-(2,4-Dichlorophenyl)-3-(1H-1,2,4-triazol-1-yl)propyl-1,1,2,2-tetrafluoroethylether

C13H11Cl2F4N3O (371.0215)


CONFIDENCE standard compound; INTERNAL_ID 1352; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9343; ORIGINAL_PRECURSOR_SCAN_NO 9342 CONFIDENCE standard compound; INTERNAL_ID 1352; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9319; ORIGINAL_PRECURSOR_SCAN_NO 9317 CONFIDENCE standard compound; INTERNAL_ID 1352; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9334; ORIGINAL_PRECURSOR_SCAN_NO 9331 CONFIDENCE standard compound; INTERNAL_ID 1352; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9370; ORIGINAL_PRECURSOR_SCAN_NO 9366 CONFIDENCE standard compound; INTERNAL_ID 1352; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9361; ORIGINAL_PRECURSOR_SCAN_NO 9360 CONFIDENCE standard compound; INTERNAL_ID 1352; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9358; ORIGINAL_PRECURSOR_SCAN_NO 9356 CONFIDENCE standard compound; EAWAG_UCHEM_ID 3723 D016573 - Agrochemicals D010575 - Pesticides

   

Etoxazole

2-(2,6-Difluorophenyl)-4-(4-(1,1-dimethylethyl)-2-ethoxyphenyl)-4,5-dihydrooxazole

C21H23F2NO2 (359.1697)


CONFIDENCE standard compound; INTERNAL_ID 1180; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10356; ORIGINAL_PRECURSOR_SCAN_NO 10354 CONFIDENCE standard compound; INTERNAL_ID 1180; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10360; ORIGINAL_PRECURSOR_SCAN_NO 10358 CONFIDENCE standard compound; INTERNAL_ID 1180; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10425; ORIGINAL_PRECURSOR_SCAN_NO 10424 CONFIDENCE standard compound; INTERNAL_ID 1180; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10345; ORIGINAL_PRECURSOR_SCAN_NO 10344 CONFIDENCE standard compound; INTERNAL_ID 1180; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10415; ORIGINAL_PRECURSOR_SCAN_NO 10413 CONFIDENCE standard compound; INTERNAL_ID 1180; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10391; ORIGINAL_PRECURSOR_SCAN_NO 10390 D010575 - Pesticides > D056810 - Acaricides D016573 - Agrochemicals

   

Procymidone

3-(3,5-dichlorophenyl)-1,5-dimethyl-3-azabicyclo[3.1.0]hexane-2,4-dione

C13H11Cl2NO2 (283.0167)


CONFIDENCE standard compound; EAWAG_UCHEM_ID 3102 CONFIDENCE standard compound; INTERNAL_ID 8485 D016573 - Agrochemicals D010575 - Pesticides

   

Pyrodone

4-(2-ethylhexyl)-4-azatricyclo[5.2.1.0²,⁶]dec-8-ene-3,5-dione

C17H25NO2 (275.1885)


   

Isoxaben

N-(3-(1-Ethyl-1-methylpropyl)-5-isoxazolyl)-2,6-dimethoxybenzamide

C18H24N2O4 (332.1736)


CONFIDENCE standard compound; INTERNAL_ID 1345; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9075; ORIGINAL_PRECURSOR_SCAN_NO 9073 CONFIDENCE standard compound; INTERNAL_ID 1345; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9024; ORIGINAL_PRECURSOR_SCAN_NO 9022 CONFIDENCE standard compound; INTERNAL_ID 1345; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9028; ORIGINAL_PRECURSOR_SCAN_NO 9026 CONFIDENCE standard compound; INTERNAL_ID 1345; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9053; ORIGINAL_PRECURSOR_SCAN_NO 9051 CONFIDENCE standard compound; INTERNAL_ID 1345; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4422; ORIGINAL_PRECURSOR_SCAN_NO 4418 CONFIDENCE standard compound; INTERNAL_ID 1345; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4419; ORIGINAL_PRECURSOR_SCAN_NO 4415 CONFIDENCE standard compound; INTERNAL_ID 1345; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4405; ORIGINAL_PRECURSOR_SCAN_NO 4403 CONFIDENCE standard compound; INTERNAL_ID 1345; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9051; ORIGINAL_PRECURSOR_SCAN_NO 9050 CONFIDENCE standard compound; INTERNAL_ID 1345; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4412; ORIGINAL_PRECURSOR_SCAN_NO 4407 CONFIDENCE standard compound; INTERNAL_ID 1345; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9060; ORIGINAL_PRECURSOR_SCAN_NO 9059 CONFIDENCE standard compound; INTERNAL_ID 1345; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4422; ORIGINAL_PRECURSOR_SCAN_NO 4419 CONFIDENCE standard compound; INTERNAL_ID 1345; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4387; ORIGINAL_PRECURSOR_SCAN_NO 4384 CONFIDENCE standard compound; EAWAG_UCHEM_ID 3602 CONFIDENCE standard compound; INTERNAL_ID 2599

   

temephos

O-4-[(4-{[dimethoxy(sulfanylidene)-λ⁵-phosphanyl]oxy}phenyl)sulfanyl]phenyl O,O-dimethyl phosphorothioate

C16H20O6P2S3 (465.9897)


D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

Fluocinonide

2-[(1S,2S,4R,8S,9S,11S,12R,13S,19S)-12,19-difluoro-11-hydroxy-6,6,9,13-tetramethyl-16-oxo-5,7-dioxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosa-14,17-dien-8-yl]-2-oxoethyl acetate

C26H32F2O7 (494.2116)


Fluocinonide is only found in individuals that have used or taken this drug. It is a topical glucocorticoid used in the treatment of eczema. [PubChem]Fluocinonide is a potent glucocorticoid steroid used topically as anti-inflammatory agent for the treatment of skin disorders such as eczema. It relieves itching, redness, dryness, crusting, scaling, inflammation, and discomfort. Fluocinonide binds to the cytosolic glucocorticoid receptor. After binding the receptor the newly formed receptor-ligand complex translocates itself into the cell nucleus, where it binds to many glucocorticoid response elements (GRE) in the promoter region of the target genes. The DNA bound receptor then interacts with basic transcription factors, causing the increase in expression of specific target genes. The anti-inflammatory actions of corticosteroids are thought to involve lipocortins, phospholipase A2 inhibitory proteins which, through inhibition arachidonic acid, control the biosynthesis of prostaglandins and leukotrienes. Specifically glucocorticoids induce lipocortin-1 (annexin-1) synthesis, which then binds to cell membranes preventing the phospholipase A2 from coming into contact with its substrate arachidonic acid. This leads to diminished eicosanoid production. Cyclooxygenase (both COX-1 and COX-2) expression is also suppressed, potentiating the effect. In another words, the two main products in inflammation Prostaglandins and Leukotrienes are inhibited by the action of Glucocorticoids. Glucocorticoids also stimulate the lipocortin-1 escaping to the extracellular space, where it binds to the leukocyte membrane receptors and inhibits various inflammatory events: epithelial adhesion, emigration, chemotaxis, phagocytosis, respiratory burst and the release of various inflammatory mediators (lysosomal enzymes, cytokines, tissue plasminogen activator, chemokines etc.) from neutrophils, macrophages and mastocytes. Additionally the immune system is suppressed by corticosteroids due to a decrease in the function of the lymphatic system, a reduction in immunoglobulin and complement concentrations, the precipitation of lymphocytopenia, and interference with antigen-antibody binding. Like other glucocorticoid agents Fluocinolone acetonide acts as a physiological antagonist to insulin by decreasing glycogenesis (formation of glycogen). It also promotes the breakdown of lipids (lipolysis), and proteins, leading to the mobilization of extrahepatic amino acids and ketone bodies. This leads to increased circulating glucose concentrations (in the blood). There is also decreased glycogen formation in the liver. C - Cardiovascular system > C05 - Vasoprotectives > C05A - Agents for treatment of hemorrhoids and anal fissures for topical use > C05AA - Corticosteroids D - Dermatologicals > D07 - Corticosteroids, dermatological preparations > D07A - Corticosteroids, plain > D07AC - Corticosteroids, potent (group iii) D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D005938 - Glucocorticoids C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D000893 - Anti-Inflammatory Agents D018926 - Anti-Allergic Agents

   

Benzatropine

(1R,3R,5S)-3-(diphenylmethoxy)-8-methyl-8-azabicyclo[3.2.1]octane

C21H25NO (307.1936)


Benzotropine is a centrally-acting, antimuscarinic agent used as an adjunct in the treatment of Parkinsons disease. It may also be used to treat extrapyramidal reactions, such as dystonia and Parkinsonism, caused by antipsychotics (e.g. phenothiazines). Symptoms of Parkinsons disease and extrapyramidal reactions arise from decreases in dopaminergic activity which creates an imbalance between dopaminergic and cholinergic activity. Anticholinergic therapy is thought to aid in restoring this balance leading to relief of symptoms. In addition to its anticholinergic effects, benztropine also inhibits the reuptake of dopamine at nerve terminals via the dopamine transporter. Benzotropine also produces antagonistic effects at the histamine H1 receptor. N - Nervous system > N04 - Anti-parkinson drugs > N04A - Anticholinergic agents > N04AC - Ethers of tropine or tropine derivatives D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018765 - Dopamine Uptake Inhibitors D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents D049990 - Membrane Transport Modulators

   

Trihexyphenidyl

Pharmaceutical associates brand OF trihexyphenidyl hydrochloride

C20H31NO (301.2406)


Trihexyphenidyl is only found in individuals that have used or taken this drug. It is one of the centrally acting muscarinic antagonists used for treatment of parkinsonian disorders and drug-induced extrapyramidal movement disorders and as an antispasmodic. [PubChem]Trihexyphenidyl is a selective M1 muscarinic acetylcholine receptor antagonist. It is able to discriminate between the M1 (cortical or neuronal) and the peripheral muscarinic subtypes (cardiac and glandular). Trihexyphenidyl partially blocks cholinergic activity in the CNS, which is responsible for the symptoms of Parkinsons disease. It is also thought to increase the availability of dopamine, a brain chemical that is critical in the initiation and smooth control of voluntary muscle movement. D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents N - Nervous system > N04 - Anti-parkinson drugs > N04A - Anticholinergic agents > N04AA - Tertiary amines C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists C78272 - Agent Affecting Nervous System > C38149 - Antiparkinsonian Agent

   

Dicyclomine

2-(Diethylamino)ethyl 1-cyclohexylcyclohexanecarboxylic acid

C19H35NO2 (309.2668)


Dicyclomine is only found in individuals that have used or taken this drug. It is a muscarinic antagonist used as an antispasmodic and in urinary incontinence. It has little effect on glandular secretion or the cardiovascular system. It does have some local anesthetic properties and is used in gastrointestinal, biliary, and urinary tract spasms. [PubChem]Action is achieved via a dual mechanism: (1) a specific anticholinergic effect (antimuscarinic) at the acetylcholine-receptor sites and (2) a direct effect upon smooth muscle (musculotropic). A - Alimentary tract and metabolism > A03 - Drugs for functional gastrointestinal disorders > A03A - Drugs for functional gastrointestinal disorders > A03AA - Synthetic anticholinergics, esters with tertiary amino group C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists

   

Trichloromethylthio-1,2,5,6-tetrahydrophthalamide

2-[(trichloromethyl)sulfanyl]-2,3,3a,4,7,7a-hexahydro-1H-isoindole-1,3-dione

C9H8Cl3NO2S (298.9341)


D016573 - Agrochemicals D010575 - Pesticides

   

Clofentezine

3,6-Bis(O-chlorophenyl)-1,2,4,5-tetrazine

C14H8Cl2N4 (302.0126)


   

Fluvastatin

(3S,5R,6E)-7-[3-(4-fluorophenyl)-1-(propan-2-yl)-1H-indol-2-yl]-3,5-dihydroxyhept-6-enoic acid

C24H26FNO4 (411.1846)


Fluvastatin is an antilipemic agent that competitively inhibits hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase. HMG-CoA reducuase catalyzes the conversion of HMG-CoA to mevalonic acid, the rate-limiting step in cholesterol biosynthesis. Fluvastatin belongs to a class of medications called statins and is used to reduce plasma cholesterol levels and prevent cardiovascular disease. C78276 - Agent Affecting Digestive System or Metabolism > C29703 - Antilipidemic Agent C471 - Enzyme Inhibitor > C1655 - HMG-CoA Reductase Inhibitor Fluvastatin (XU 62-320 free acid) is a first fully synthetic, competitive HMG-CoA reductase inhibitor with an IC50 of 8 nM. Fluvastatin protects vascular smooth muscle cells against oxidative stress through the Nrf2-dependent antioxidant pathway[1][2][3].

   

NSC 204421

N-1-Naphthylphthalamic acid

C18H13NO3 (291.0895)


D006133 - Growth Substances > D010937 - Plant Growth Regulators D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals CONFIDENCE standard compound; EAWAG_UCHEM_ID 3097

   

Lapachol

4-hydroxy-3-(3-methylbut-2-en-1-yl)-1,2-dihydronaphthalene-1,2-dione

C15H14O3 (242.0943)


Lapachol is a hydroxy-1,4-naphthoquinone that is 1,4-naphthoquinone substituted by hydroxy and 3-methylbut-2-en-1-yl groups at positions 2 and 3, respectively. It is a natural compound that exhibits antibacterial and anticancer properties, first isolated in 1882 from the bark of Tabebuia avellanedae. It has a role as a plant metabolite, an antineoplastic agent, an antibacterial agent and an anti-inflammatory agent. It is a hydroxy-1,4-naphthoquinone and an olefinic compound. NA is a natural product found in Plenckia populnea, Stereospermum colais, and other organisms with data available. A hydroxy-1,4-naphthoquinone that is 1,4-naphthoquinone substituted by hydroxy and 3-methylbut-2-en-1-yl groups at positions 2 and 3, respectively. It is a natural compound that exhibits antibacterial and anticancer properties, first isolated in 1882 from the bark of Tabebuia avellanedae. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000970 - Antineoplastic Agents [Raw Data] CB290_Lapachol_pos_40eV_CB000086.txt [Raw Data] CB290_Lapachol_pos_50eV_CB000086.txt [Raw Data] CB290_Lapachol_pos_10eV_CB000086.txt [Raw Data] CB290_Lapachol_pos_30eV_CB000086.txt [Raw Data] CB290_Lapachol_pos_20eV_CB000086.txt [Raw Data] CB290_Lapachol_neg_10eV_000049.txt [Raw Data] CB290_Lapachol_neg_20eV_000049.txt [Raw Data] CB290_Lapachol_neg_40eV_000049.txt [Raw Data] CB290_Lapachol_neg_50eV_000049.txt [Raw Data] CB290_Lapachol_neg_30eV_000049.txt Lapachol is a naphthoquinone that was first isolated from Tabebuia avellanedae (Bignoniaceae)[1]. Lapachol shows anti-abscess, anti-ulcer, antileishmanial, anticarcinomic, antiedemic, anti-inflammatory, antimalarial, antiseptic, antitumor, antiviral, antibacterial, antifungal and pesticidal activities[2]. Lapachol is a naphthoquinone that was first isolated from Tabebuia avellanedae (Bignoniaceae)[1]. Lapachol shows anti-abscess, anti-ulcer, antileishmanial, anticarcinomic, antiedemic, anti-inflammatory, antimalarial, antiseptic, antitumor, antiviral, antibacterial, antifungal and pesticidal activities[2].

   

Ronilan

3-(3,5-dichlorophenyl)-5-ethenyl-5-methyl-1,3-oxazolidine-2,4-dione

C12H9Cl2NO3 (284.9959)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D000726 - Androgen Antagonists CONFIDENCE standard compound; EAWAG_UCHEM_ID 3119 D016573 - Agrochemicals D010575 - Pesticides

   

N,N-Dimethylsphingosine

(S-(R,S-(e)))-2-(dimethylamino)-4-Octadecene-1,3-diol

C20H41NO2 (327.3137)


N,N-Dimethylsphingosine is an inhibitor of sphingosine kinase. It is a natural metabolite of sphingosine in some cancer cell lines and tissues. N,N-Dimethylsphingosine inhibited U937 cell sphingosine kinase with a Ki value of 3.1 µM. N,N-Dimethylsphingosine induces apoptosis, but it is not an inhibitor of protein kinase C. N,N-Dimethylsphingosine (DMS) has recently been identified as an inducer of pain in a rat model of chronic pain. (PMID: 22267119) It has properties similar to capsaicin (PMID: 16740613). Other studies have indicated that DMS inhibits airway inflammation in asthma (PMID: 18359884) and is cardioprotective (PMID: 16831409). N,N-Dimethylsphingosine is an inhibitor of sphingosine kinase. It is a natural metabolite of sphingosine in some cancer cell lines and tissues.1 N,N-Dimethylsphingosine inhibited U937 cell sphingosine kinase with a Ki value of 3.1 ?M.2 N,N-Dimethylsphingosine induces apoptosis, but it is not an inhibitor of protein kinase C. [HMDB] D004791 - Enzyme Inhibitors

   

methapyrilene

N-[2-(dimethylamino)ethyl]-N-[(thiophen-2-yl)methyl]pyridin-2-amine

C14H19N3S (261.13)


R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AC - Substituted ethylene diamines D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D018926 - Anti-Allergic Agents

   

Salicylhydroxamic acid

2-Hydroxybenzohydroxamic acid

C7H7NO3 (153.0426)


D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Vindoline

Methyl (1S,9S,10R,11S,12S,19S)-11-acetyloxy-12-ethyl-10-hydroxy-5-methoxy-8-methyl-8,16-diazapentacyclo[10.6.1.01,9.02,7.016,19]nonadeca-2(7),3,5,13-tetraene-10-carboxylate

C25H32N2O6 (456.226)


Vindoline is a vinca alkaloid, an alkaloid ester, an organic heteropentacyclic compound, a methyl ester, an acetate ester, a tertiary amino compound and a tertiary alcohol. It is a conjugate base of a vindolinium(1+). Vindoline is a natural product found in Catharanthus ovalis, Catharanthus trichophyllus, and other organisms with data available. Vindoline is an indole alkaloid that exhibits antimitotic activity by inhibiting microtubule assembly. (NCI) D000970 - Antineoplastic Agents > D014748 - Vinca Alkaloids C1744 - Multidrug Resistance Modulator Vindoline, a vinca alkaloid extracted from the leaves of Catharanthus roseus, weakly inhibits tubulin self-assembly[1]. Vindoline, a vinca alkaloid extracted from the leaves of Catharanthus roseus, weakly inhibits tubulin self-assembly[1].

   

Myriocin

(2S,3R,4R,6E)-2-Amino-3,4-dihydroxy-2-(hydroxymethyl)-14-oxo-6-eicosenoic acid;ISP-I;Thermozymocidin

C21H39NO6 (401.2777)


An amino acid-based antibiotic derived from certain thermophilic fungi; acts as a potent inhibitor of serine palmitoyltransferase, the first step in sphingosine biosynthesis. Myriocin also possesses immunosuppressant activity. D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents [Raw Data] CBA29_Myriocin_pos_20eV_1-3_01_1557.txt [Raw Data] CBA29_Myriocin_neg_40eV_1-3_01_1590.txt [Raw Data] CBA29_Myriocin_pos_10eV_1-3_01_1546.txt [Raw Data] CBA29_Myriocin_neg_30eV_1-3_01_1589.txt [Raw Data] CBA29_Myriocin_pos_40eV_1-3_01_1559.txt [Raw Data] CBA29_Myriocin_pos_30eV_1-3_01_1558.txt [Raw Data] CBA29_Myriocin_pos_50eV_1-3_01_1560.txt [Raw Data] CBA29_Myriocin_neg_10eV_1-3_01_1578.txt [Raw Data] CBA29_Myriocin_neg_20eV_1-3_01_1588.txt Myriocin (Thermozymocidin), a fungal metabolite could be isolated from Myriococcum albomyces, Isaria sinclairi and Mycelia sterilia, is a potent inhibitor of serine-palmitoyl-transferase (SPT) and a key enzyme in de novo synthesis of sphingolipids. Myriocin suppresses replication of both the subgenomic HCV-1b replicon and the JFH-1 strain of genotype 2a infectious HCV, with an IC50 of 3.5 μg/mL for inhibiting HCV infection[1][2][3].

   

Tiagabine

(R)-(4,4-Bis(3-methyl-2-thienyl)-3-butenyl)-3-piperidinecarboxylic acid, hydrochloride

C20H25NO2S2 (375.1327)


Tiagabine is an anti-convulsive medication. It is also used in the treatment for panic disorder as are a few other anticonvulsants. Though the exact mechanism by which tiagabine exerts its effect on the human body is unknown, it does appear to operate as a selective GABA reuptake inhibitor. D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D058805 - GABA Uptake Inhibitors N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics > N03AG - Fatty acid derivatives C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D018377 - Neurotransmitter Agents > D018682 - GABA Agents D049990 - Membrane Transport Modulators

   

Bitolterol

4-[2-(tert-butylamino)-1-hydroxyethyl]-2-(4-methylbenzoyloxy)phenyl 4-methylbenzoate

C28H31NO5 (461.2202)


R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03A - Adrenergics, inhalants > R03AC - Selective beta-2-adrenoreceptor agonists D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents C78273 - Agent Affecting Respiratory System > C29712 - Anti-asthmatic Agent > C319 - Bronchodilator C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents

   

Thiethylperazine

2-(ethylsulfanyl)-10-[3-(4-methylpiperazin-1-yl)propyl]-10H-phenothiazine

C22H29N3S2 (399.1803)


A dopamine antagonist that is particularly useful in treating the nausea and vomiting associated with anesthesia, mildly emetic cancer chemotherapy agents, radiation therapy, and toxins. This piperazine phenothiazine does not prevent vertigo or motion sickness. (From AMA Drug Evaluations Annual, 1994, p457) R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AD - Phenothiazine derivatives D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent D005765 - Gastrointestinal Agents > D000932 - Antiemetics D002491 - Central Nervous System Agents Thiethylperazine, a phenothiazine derivate, is an orally active and potent dopamine D2-receptor and histamine H1-receptor antagonist. Thiethylperazine is also a selective ABCC1activator that reduces amyloid-β (Aβ) load in mice. Thiethylperazine has anti-emetic, antipsychotic and antimicrobial effects[1][2][3].

   

Diflunisal

2,4-Difluoro-4-hydroxy-3-biphenylcarboxylic acid

C13H8F2O3 (250.0441)


Diflunisal, a salicylate derivative, is a nonsteroidal anti-inflammatory agent (NSAIA) with pharmacologic actions similar to other prototypical NSAIAs. Diflunisal possesses anti-inflammatory, analgesic and antipyretic activity. Though its mechanism of action has not been clearly established, most of its actions appear to be associated with inhibition of prostaglandin synthesis via the arachidonic acid pathway. Diflunisal is used to relieve pain accompanied with inflammation and in the symptomatic treatment of rheumatoid arthritis and osteoarthritis. N - Nervous system > N02 - Analgesics > N02B - Other analgesics and antipyretics > N02BA - Salicylic acid and derivatives D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D004791 - Enzyme Inhibitors KEIO_ID D058

   

Etidocaine

N-(2,6-dimethylphenyl)-2-[ethyl(propyl)amino]butanimidic acid

C17H28N2O (276.2202)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics N - Nervous system > N01 - Anesthetics > N01B - Anesthetics, local > N01BB - Amides D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent

   

2-Furoic acid

furan-2-carboxylic acid

C5H4O3 (112.016)


Furoic acid is a metabolite that appears in the urine of workers occupationally exposed to furfural and is a marker of exposure to this compound. Furfural is a heterocyclic aldehyde that is commonly used as a solvent in industry. It is readily absorbed into the body via the lungs and has significant skin absorption. Furfural is an irritant of the eyes, mucous membranes, and skin and is a central nervous system depressant. Furfural as a confirmed animal carcinogen with unknown relevance to humans (It has been suggested that is a substance that produces hepatic cirrhosis). Once in the body, furfural is metabolized rapidly via oxidation to the metabolite furoic acid, which is then conjugated with glycine and excreted in the urine in both free and conjugated forms. (PMID: 3751566, 4630229, 12587683). 2-Furoic acid is a biomarker for the consumption of beer. 2-Furancarboxylic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=88-14-2 (retrieved 2024-07-10) (CAS RN: 88-14-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). 2-Furoic acid (Furan-2-carboxylic acid) is an organic compound produced through furfural oxidation[1]. 2-Furoic acid exhibits hypolipidemic effet, lowers both serum cholesterol and serum triglyceride levels in rats[2]. 2-Furoic acid (Furan-2-carboxylic acid) is an organic compound produced through furfural oxidation[1]. 2-Furoic acid exhibits hypolipidemic effet, lowers both serum cholesterol and serum triglyceride levels in rats[2]. 2-Furoic acid (Furan-2-carboxylic acid) is an organic compound produced through furfural oxidation[1]. 2-Furoic acid exhibits hypolipidemic effet, lowers both serum cholesterol and serum triglyceride levels in rats[2].

   

Gluconolactone

(3R,4S,5S,6R)-3,4,5-Trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-one

C6H10O6 (178.0477)


Gluconolactone, also known as glucono-delta-lactone or GDL (gluconate), belongs to the class of organic compounds known as gluconolactones. These are polyhydroxy acids (PHAs) containing a gluconolactone molecule, which is characterized by a tetrahydropyran substituted by three hydroxyl groups, one ketone group, and one hydroxymethyl group. Gluconolactone is a lactone of D-gluconic acid. Gluconolactone can be produced by enzymatic oxidation of D-glucose via the enzyme glucose oxidase. It is a fundamental metabolite found in all organisms ranging from bacteria to plants to animals. Gluconolactone has metal chelating, moisturizing and antioxidant activities. Its ability in free radicals scavenging accounts for its antioxidant properties. Gluconolactone, is also used as a food additive with the E-number E575. In foods it is used as a sequestrant, an acidifier or a curing, pickling, or leavening agent. Gluconolactone is also used as a coagulant in tofu processing. Gluconolactone is widely used as a skin exfoliant in cosmetic products, where it is noted for its mild exfoliating and hydrating properties. Pure gluconolactone is a white odorless crystalline powder. It is pH-neutral, but hydrolyses in water to gluconic acid which is acidic, adding a tangy taste to foods. Gluconic acid has roughly a third of the sourness of citric acid. One gram of gluconolactone yields roughly the same amount of metabolic energy as one gram of sugar. Food additive; uses include acidifier, pH control agent, sequestrant C26170 - Protective Agent > C275 - Antioxidant D-(+)-Glucono-1,5-lactone is a polyhydroxy (PHA) that is capable of metal chelating, moisturizing and antioxidant activity.

   

4-Chloro-3-methylphenol

1-Chloro-2-methyl-4-hydroxybenzene

C7H7ClO (142.0185)


C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D016573 - Agrochemicals D010575 - Pesticides Same as: D03468

   

Dichlorprop

2-Methyl-2-(2,4-dichlorophenoxy)acetic acid

C9H8Cl2O3 (233.985)


CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 8393 CONFIDENCE standard compound; EAWAG_UCHEM_ID 270

   

3'-AMP

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-(hydroxymethyl)oxolan-3-yl]oxy}phosphonic acid

C10H14N5O7P (347.0631)


Adenylic acid. Adenine nucleotide containing one phosphate group esterified to the sugar moiety in the 2-, 3-, or 5-position. 3-AMP has been identified in the human placenta (PMID: 32033212). Adenylic acid. Adenine nucleotide containing one phosphate group esterified to the sugar moiety in the 2-, 3-, or 5-position. [HMDB] Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; ML_ID 11

   

N-Acetyl-glucosamine 1-phosphate

{[(3R,4R,5S,6R)-3-acetamido-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phosphonic acid

C8H16NO9P (301.0563)


N-Acetyl-glucosamine 1-phosphate is an intermediate in aminosugar metabolism. It is a substrate for the enzymes phosphoglucomutase 3 [EC:5.4.2.2 and EC:5.4.2.3] and UDP-N-acteylglucosamine pyrophosphorylase 1 [EC:2.7.7.23] (KEGG). It is involved in UDP-N-acetyl-D-glucosamine biosynthesis and UDP-N-acetylgalactosamine biosynthesis (BioCyc). N-Acetyl-glucosamine 1-phosphate is an intermeiate in the Aminosugars metabolism, a substrate for the enzymes phosphoglucomutase 3 [EC:5.4.2.2 5.4.2.3] and UDP-N-acteylglucosamine pyrophosphorylase 1 [EC:2.7.7.23] (KEGG), in UDP-N-acetyl-D-glucosamine biosynthesis and UDP-N-acetylgalactosamine biosynthesis (BioCyc) [HMDB] COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Propantheline

methylbis(propan-2-yl)[2-(9H-xanthene-9-carbonyloxy)ethyl]azanium

C23H30NO3+ (368.2226)


Propantheline is only found in individuals that have used or taken this drug. It is a muscarinic antagonist used as an antispasmodic, in rhinitis, in urinary incontinence, and in the treatment of ulcers. At high doses it has nicotinic effects resulting in neuromuscular blocking. [PubChem]The action of propantheline is achieved via a dual mechanism: (1) a specific anticholinergic effect (antimuscarinic) at the acetylcholine-receptor sites and (2) a direct effect upon smooth muscle (musculotropic). A - Alimentary tract and metabolism > A03 - Drugs for functional gastrointestinal disorders > A03A - Drugs for functional gastrointestinal disorders > A03AB - Synthetic anticholinergics, quaternary ammonium compounds C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents

   

Pyridostigmine

3-[(dimethylcarbamoyl)oxy]-1-methylpyridin-1-ium

C9H13N2O2+ (181.0977)


Pyridostigmine is only found in individuals that have used or taken this drug. It is a cholinesterase inhibitor with a slightly longer duration of action than neostigmine. It is used in the treatment of myasthenia gravis and to reverse the actions of muscle relaxants. [PubChem]Pyridostigmine inhibits acetylcholinesterase in the synaptic cleft by competing with acetylcholine for attachment to acetylcholinesterase, thus slowing down the hydrolysis of acetylcholine, and thereby increases efficiency of cholinergic transmission in the neuromuscular junction and prolonges the effects of acetylcholine. N - Nervous system > N07 - Other nervous system drugs > N07A - Parasympathomimetics > N07AA - Anticholinesterases D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D004791 - Enzyme Inhibitors

   

N-Acetylimidazole

1-(1H-imidazol-1-yl)ethan-1-one

C5H6N2O (110.048)


   

Nalpha-Methylhistidine

Nalpha-Methylhistidine

C7H11N3O2 (169.0851)


   

Phenelzine

Warner chilcott brand OF phenelzine sulfate

C8H12N2 (136.1)


Phenelzine is only found in individuals that have used or taken this drug. It is an irreversible non-selective inhibitor of monoamine oxidase. May be used to treat major depressive disorder.Although the exact mechanism of action has not been determined, it appears that the irreversible, nonselective inhibition of MAO by phenelzine relieves depressive symptoms by causing an increase in the levels of serotonin, norepinephrine, and dopamine in the neuron. N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AF - Monoamine oxidase inhibitors, non-selective D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent D004791 - Enzyme Inhibitors > D008996 - Monoamine Oxidase Inhibitors C471 - Enzyme Inhibitor > C667 - Monoamine Oxidase Inhibitor

   

3-methyl-2-oxovalerate

alpha-keto-beta-Methyl-n-valeric acid

C6H10O3 (130.063)


3-Methyl-2-oxovaleric acid (CAS: 1460-34-0) is an abnormal metabolite that arises from the incomplete breakdown of branched-chain amino acids. 3-Methyl-2-oxovaleric acid is a neurotoxin, an acidogen, and a metabotoxin. A neurotoxin causes damage to nerve cells and nerve tissues. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of 3-methyl-2-oxovaleric acid are associated with maple syrup urine disease. MSUD is a metabolic disorder caused by a deficiency of the branched-chain alpha-keto acid dehydrogenase complex (BCKDC), leading to a buildup of the branched-chain amino acids (leucine, isoleucine, and valine) and their toxic by-products (ketoacids) in the blood and urine. The symptoms of MSUD often show in infancy and lead to severe brain damage if untreated. MSUD may also present later depending on the severity of the disease. If left untreated in older individuals, during times of metabolic crisis, symptoms of the condition include uncharacteristically inappropriate, extreme, or erratic behaviour and moods, hallucinations, anorexia, weight loss, anemia, diarrhea, vomiting, dehydration, lethargy, oscillating hypertonia and hypotonia, ataxia, seizures, hypoglycemia, ketoacidosis, opisthotonus, pancreatitis, rapid neurological decline, and coma. In maple syrup urine disease, the brain concentration of branched-chain ketoacids can increase 10- to 20-fold. This leads to a depletion of glutamate and a consequent reduction in the concentration of brain glutamine, aspartate, alanine, and other amino acids. The result is a compromise of energy metabolism because of a failure of the malate-aspartate shuttle and a diminished rate of protein synthesis (PMID: 15930465). 3-Methyl-2-oxovaleric acid is a keto-acid, which is a subclass of organic acids. Abnormally high levels of organic acids in the blood (organic acidemia), urine (organic aciduria), the brain, and other tissues lead to general metabolic acidosis. Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis, the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). These can progress to heart, liver, and kidney abnormalities, seizures, coma, and possibly death. These are also the characteristic symptoms of untreated MSUD. Many affected children with organic acidemias experience intellectual disability or delayed development. (s)-3-methyl-2-oxopentanoate, also known as (3s)-2-oxo-3-methyl-N-valeric acid or (S)-omv, belongs to short-chain keto acids and derivatives class of compounds. Those are keto acids with an alkyl chain the contains less than 6 carbon atoms. Thus, (s)-3-methyl-2-oxopentanoate is considered to be a fatty acid lipid molecule (s)-3-methyl-2-oxopentanoate is slightly soluble (in water) and a weakly acidic compound (based on its pKa). (s)-3-methyl-2-oxopentanoate can be found in a number of food items such as bean, prickly pear, wild leek, and nutmeg, which makes (s)-3-methyl-2-oxopentanoate a potential biomarker for the consumption of these food products (s)-3-methyl-2-oxopentanoate may be a unique S.cerevisiae (yeast) metabolite.

   

Vanillylmandelic acid (VMA)

(2S)-2-Hydroxy-2-(4-hydroxy-3-methoxyphenyl)acetic acid

C9H10O5 (198.0528)


Vanillylmandelic acid, also known as vanillylmandelate or VMA, belongs to the class of organic compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. Vanillylmandelic acid is a sweet and vanilla tasting compound. Vanillylmandelic acid (VMA) is a chemical intermediate in the synthesis of artificial vanilla flavorings and is an end-stage metabolite of the catecholamines (dopamine, epinephrine, and norepinephrine). Vanillylmandelic acid exists in all living organisms, ranging from bacteria to plants to humans. Within humans, vanillylmandelic acid participates in a number of enzymatic reactions. In particular, vanillylmandelic acid can be biosynthesized from 3-methoxy-4-hydroxyphenylglycolaldehyde through its interaction with the enzyme aldehyde dehydrogenase. In addition, vanillylmandelic acid and pyrocatechol can be biosynthesized from 3,4-dihydroxymandelic acid and guaiacol through the action of the enzyme catechol O-methyltransferase. Urinary VMA is elevated in patients with tumors that secrete catecholamines. Urinary VMA tests may also be used to diagnose neuroblastomas, and to monitor treatment of these conditions. VMA urinalysis tests can be used to diagnose an adrenal gland tumor called pheochromocytoma, a tumor of catecholamine-secreting chromaffin cells. Vanillylmandelic acid (VMA) is produced in the liver and is a major product of norepinephrine and epinephrine metabolism excreted in the urine. Vanillylmandelic acid is one of the products of the catabolism of catecholamines (epinephrine, norepinephrine and dopamine). High levels of vanillylmandelic acid can indicate an adrenal gland tumor (pheochromocytoma) or another type of tumor that produces catecholamines. (WebMD) [HMDB] D000890 - Anti-Infective Agents > D000892 - Anti-Infective Agents, Urinary > D008333 - Mandelic Acids Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID H056 Vanillylmandelic acid is the endproduct of epinephrine and norepinephrine metabolism. Vanillylmandelic acid can be used as an indication of the disorder in neurotransmitter metabolism as well. Vanillylmandelic acid has antioxidant activity towards DPPH radical with an IC50 value of 33 μM[1].

   

Ketoleucine

4-methyl-2-oxopentanoic acid

C6H10O3 (130.063)


Ketoleucine is an abnormal metabolite that arises from the incomplete breakdown of branched-chain amino acids. Ketoleucine is both a neurotoxin and a metabotoxin. A neurotoxin causes damage to nerve cells and nerve tissues. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of ketoleucine are associated with maple syrup urine disease (MSUD). MSUD is a metabolic disorder caused by a deficiency of the branched-chain alpha-keto acid dehydrogenase complex (BCKDC), leading to a buildup of the branched-chain amino acids (leucine, isoleucine, and valine) and their toxic by-products (ketoacids) in the blood and urine. The symptoms of MSUD often show in infancy and lead to severe brain damage if untreated. MSUD may also present later depending on the severity of the disease. If left untreated in older individuals, during times of metabolic crisis, symptoms of the condition include uncharacteristically inappropriate, extreme, or erratic behaviour and moods, hallucinations, anorexia, weight loss, anemia, diarrhea, vomiting, dehydration, lethargy, oscillating hypertonia and hypotonia, ataxia, seizures, hypoglycemia, ketoacidosis, opisthotonus, pancreatitis, rapid neurological decline, and coma. In maple syrup urine disease, the brain concentration of branched-chain ketoacids can increase 10- to 20-fold. This leads to a depletion of glutamate and a consequent reduction in the concentration of brain glutamine, aspartate, alanine, and other amino acids. The result is a compromise of energy metabolism because of a failure of the malate-aspartate shuttle and a diminished rate of protein synthesis (PMID: 15930465). Ketoleucine, also known as alpha-ketoisocaproic acid or 2-oxoisocaproate, belongs to short-chain keto acids and derivatives class of compounds. Those are keto acids with an alkyl chain the contains less than 6 carbon atoms. Ketoleucine is slightly soluble (in water) and a weakly acidic compound (based on its pKa). Ketoleucine can be found in a number of food items such as arctic blackberry, sesame, sea-buckthornberry, and soft-necked garlic, which makes ketoleucine a potential biomarker for the consumption of these food products. Ketoleucine can be found primarily in most biofluids, including saliva, blood, cerebrospinal fluid (CSF), and urine, as well as in human muscle, neuron and prostate tissues. Ketoleucine exists in all living species, ranging from bacteria to humans. In humans, ketoleucine is involved in the valine, leucine and isoleucine degradation. Ketoleucine is also involved in several metabolic disorders, some of which include methylmalonate semialdehyde dehydrogenase deficiency, propionic acidemia, 3-methylglutaconic aciduria type IV, and 3-methylglutaconic aciduria type I. Ketoleucine is a non-carcinogenic (not listed by IARC) potentially toxic compound. Ketoleucine is a metabolite that accumulates in Maple Syrup Urine Disease (MSUD) and shown to compromise brain energy metabolism by blocking the respiratory chain (T3DB). 4-Methyl-2-oxopentanoic acid (α-Ketoisocaproic acid), an abnormal metabolite, is both a neurotoxin and a metabotoxin.

   

Glycoprotein-phospho-D-mannose

(2S,3S,4R,5R)-2,3,4,5,6-Pentahydroxyhexanal

C6H12O6 (180.0634)


Glycoprotein-phospho-D-mannose, also known as (2S,3S,4R,5R)-2,3,4,5,6-Pentahydroxyhexanal or Mannose homopolymer, is classified as a member of the Hexoses. Hexoses are monosaccharides in which the sugar unit is a is a six-carbon containing moeity. Glycoprotein-phospho-D-mannose is considered to be soluble (in water) and acidic

   

Melibiose

(2S,3R,4S,5S,6R)-6-({[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxane-2,3,4,5-tetrol

C12H22O11 (342.1162)


Melibiose (CAS: 585-99-9) is a disaccharide consisting of one galactose and one glucose moiety in an alpha (1-6) glycosidic linkage. This sugar is produced and metabolized only by enteric and lactic acid bacteria and other microbes, such as Dickeya dadantii, Escherichia, Leuconostoc, and Saccharomyces (PMID: 19734309, 28453942). It is not an endogenous metabolite but may be obtained from the consumption of partially fermented molasses, brown sugar, or honey. Antibodies to melibiose will appear in individuals affected by Chagas disease (Trypanosoma cruzi infection). Melibiose is not metabolized by humans but can be broken down by gut microflora, such as E. coli. In fact, E. coli is able to utilize melibiose as a sole source of carbon. Melibiose is first imported by the melibiose permease, MelB and then converted into β-D-glucose and β-D-galactose by the α-galactosidase encoded by melA. Because of its poor digestibility, melibiose (along with rhamnose) can be used together for noninvasive intestinal mucosa barrier testing. This test can be used to assess malabsorption or impairment of intestinal permeability. Recent studies with dietary melibiose have shown that it can strongly affect the Th cell responses to an ingested antigen. It has been suggested that melibiose could be used to enhance the induction of oral tolerance (PMID: 17986780). Isomaltose is composed of two glucose units and suitable as a non-cariogenic sucrose replacement and is favorable in products for diabetics and prediabetic dispositions. Isomaltose is composed of two glucose units and suitable as a non-cariogenic sucrose replacement and is favorable in products for diabetics and prediabetic dispositions.

   

Methyl beta-D-glucopyranoside

(2R,3S,4S,5R,6R)-2-(hydroxymethyl)-6-methoxyoxane-3,4,5-triol

C7H14O6 (194.079)


Methyl beta-D-glucopyranoside is found in cereals and cereal products. Methyl beta-D-glucopyranoside is present in Medicago sativa (alfalfa Methyl β-D-Galactopyranoside is an endogenous metabolite.

   

Methyl acetate

Ethyl ester OF monoacetic acid

C3H6O2 (74.0368)


Methyl acetate belongs to the class of organic compounds known as carboxylic acid esters. These are carboxylic acid derivatives in which the carbon atom from the carbonyl group is attached to an alkyl or an aryl moiety through an oxygen atom (forming an ester group). Methyl acetate is present in apple, grape, banana and other fruits. Methyl acetate is a flavouring ingredient and it is an ester that, in the laboratory, is synthesized from acetic acid and methanol in the presence of strong acids such as sulfuric acid in an esterification reaction. In the presence of strong bases such as sodium hydroxide or strong acids such as hydrochloric acid or sulfuric acid it is hydrolyzed back into methanol and acetic acid, especially at elevated temperature. Methyl acetate, also known as acetic acid methyl ester or methyl ethanoate, is a clear, flammable liquid with a characteristic, not unpleasant smell like certain glues or nail polish removers. Methyl acetate has characteristics very similar to its analog ethyl acetate. Methyl acetate is used as a solvent in glues, paints, and nail polish removers, in chemical reactions, and for extractions. Methyl acetate is a non-polar (lipophilic) to weakly polar (hydrophilic) aprotic solvent. Methyl acetate has a solubility of 25\\% in water at room temperature. At elevated temperature its solubility in water is much higher. Methyl acetate is not stable in the presence of strong aqueous bases or acids. The conversion of methyl acetate back into its components, by an acid, is a first-order reaction with respect to the ester. The reaction of methyl acetate and a base, for example sodium hydroxide, is a second-order reaction with respect to both reactants Methyl acetate is an ester that is synthesized from acetic acid and methanol in the presence of strong acids such as sulfuric acid in an esterification reaction. In the presence of strong bases such as sodium hydroxide or strong acids such as hydrochloric acid or sulfuric acid it is hydrolyzed back into methanol and acetic acid, especially at elevated temperature.; Methyl acetate, also known as acetic acid methyl ester or methyl ethanoate, is a clear, flammable liquid with a characteristic, not unpleasant smell like certain glues or nail polish removers. Methyl acetate has characteristics very similar to its analog ethyl acetate. Methyl acetate is used as a solvent in glues, paints, and nail polish removers, in chemical reactions, and for extractions. Methyl acetate is a non-polar (lipophilic) to weakly polar (hydrophilic) aprotic solvent. Methyl acetate has a solubility of 25\\% in water at room temperature. At elevated temperature its solubility in water is much higher. Methyl acetate is not stable in the presence of strong aqueous bases or acids. Methyl acetate is VOC exempt.; The conversion of methyl acetate back into its components, by an acid, is a first-order reaction with respect to the ester. The reaction of methyl acetate and a base, for example sodium hydroxide, is a second-order reaction with respect to both reactants. Methyl acetate is a flavouring agent and can be found in many foods, some of which are apple, grape, banana, orange mint, and ginger.

   

trans-Piceid

(2S,3R,4S,5S,6R)-2-{3-hydroxy-5-[(E)-2-(4-hydroxyphenyl)ethenyl]phenoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C20H22O8 (390.1315)


trans-Piceid is found in alcoholic beverages. trans-Piceid is present in grapeskins and red wine. It is isolated from Polygonum cuspidatum (Japanese knotweed).Piceid is a stilbenoid glucoside and is a major resveratrol derivative in grape juices (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses. Polydatin (Standard) is the analytical standard of Polydatin. This product is intended for research and analytical applications. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses.

   

Neoglucobrassicin

{[(E)-[2-(1-methoxy-1H-indol-3-yl)-1-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]sulfanyl}ethylidene]amino]oxy}sulfonic acid

C17H22N2O10S2 (478.0716)


Neoglucobrassicin, also known as MIMG, belongs to the class of organic compounds known as alkylglucosinolates. These are organic compounds containing a glucosinolate moiety that carries an alkyl chain. Outside of the human body, neoglucobrassicin has been detected, but not quantified in, several different foods, such as swedes, garden cress, Brussel sprouts, Chinese cabbages, and kohlrabis. This could make neoglucobrassicin a potential biomarker for the consumption of these foods. Neoglucobrassicin is widespread in Brassica species and found in the Cruciferae, Tovariaceae, Capparidaceae, and Resedaceae. Widespread in Brassica subspecies and found in the Cruciferae, Tovariaceae, Capparidaceae and Resedaceae

   

Benzo[k]fluoranthene

pentacyclo[10.7.1.0^{2,11}.0^{4,9}.0^{16,20}]icosa-1(19),2,4,6,8,10,12,14,16(20),17-decaene

C20H12 (252.0939)


   

Dicamba

3,6-dichloro-2-methoxybenzoic acid

C8H6Cl2O3 (219.9694)


CONFIDENCE standard compound; INTERNAL_ID 990; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4181; ORIGINAL_PRECURSOR_SCAN_NO 4178 CONFIDENCE standard compound; INTERNAL_ID 990; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4186; ORIGINAL_PRECURSOR_SCAN_NO 4183 CONFIDENCE standard compound; INTERNAL_ID 990; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4196; ORIGINAL_PRECURSOR_SCAN_NO 4194 CONFIDENCE standard compound; INTERNAL_ID 990; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4200; ORIGINAL_PRECURSOR_SCAN_NO 4198 CONFIDENCE standard compound; INTERNAL_ID 990; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4207; ORIGINAL_PRECURSOR_SCAN_NO 4205 CONFIDENCE standard compound; INTERNAL_ID 990; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4198; ORIGINAL_PRECURSOR_SCAN_NO 4196 D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

Etidronic acid

(1-Hydroxyethylene)diphosphonic acid, tetrapotassium salt

C2H8O7P2 (205.9745)


Etidronic acid is only found in individuals that have used or taken this drug. It is a diphosphonate which affects calcium metabolism. It inhibits ectopic calcification and slows down bone resorption and bone turnover. [PubChem]Bisphosphonates, when attached to bone tissue, are absorbed by osteoclasts, the bone cells that breaks down bone tissue. Although the mechanism of action of non-nitrogenous bisphosphonates has not been fully elucidated, available data suggest that they bind strongly to hydroxyapatite crystals in the bone matrix, preferentially at the sites of increased bone turnover and inhibit the formation and dissolution of the crystals. Other actions may include direct inhibition of mature osteoclast function, promotion of osteoclast apoptosis, and interference with osteoblast-mediated osteoclast activation. Etidronic acid does not interfere with bone mineralization. In malignancy-related hypercalcemia, etidronic acid decreases serum calcium by inhibiting tumour-induced bone resorption and reducing calcium flow from the resorbing bone into the blood. Etidronic acid also reduces morbidity of osteolytic bone metastases by inhibiting tumour-induced bone resorption. Etidronic acid may promote osteoclast apoptosis by competing with adenosine triphosphate (ATP) in the cellular energy metabolism. The osteoclast initiates apoptosis and dies, leading to an overall decrease in the breakdown of bone. Food contaminant arising from its use as a boiler water additive for prepn. of steam used in food processing. Component of antimicrobial washes for poultry carcasses and fruit M - Musculo-skeletal system > M05 - Drugs for treatment of bone diseases > M05B - Drugs affecting bone structure and mineralization > M05BA - Bisphosphonates C78281 - Agent Affecting Musculoskeletal System > C67439 - Bone Resorption Inhibitor D050071 - Bone Density Conservation Agents > D004164 - Diphosphonates KEIO_ID E010

   

4-Hydroxyphenyl-2-propionic acid

4-Hydroxy-α-methylbenzeneacetic acid

C9H10O3 (166.063)


4-Hydroxyphenyl-2-propionic acid belongs to the class of organic compounds known as phenylpropanoic acids. Phenylpropanoic acids are compounds with a structure containing a benzene ring conjugated to a propanoic acid. 4-Hydroxyphenyl-2-propionic acid has been detected in multiple biofluids, such as urine and blood (PMID: 20428313). Within the cell, 4-hydroxyphenyl-2-propionic acid is primarily located in the cytoplasm. A polyphenol metabolite detected in biological fluids [PhenolExplorer] KEIO_ID H099

   

Glycerophosphorylcholine

2-(((R)-2,3-Dihydroxypropyl)phosphoryloxy)-N,N,N-trimethylethanaminium

[C8H21NO6P]+ (258.1106)


Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID G069; [MS2] KO009112 KEIO_ID G069

   

Neomycin

(2S,3S,4R,5R,6R)-5-amino-2-(aminomethyl)-6-{[(2R,3S,4R,5S)-5-{[(1R,2R,3S,5R,6S)-3,5-diamino-2-{[(2R,3R,4R,5S,6R)-3-amino-6-(aminomethyl)-4,5-dihydroxyoxan-2-yl]oxy}-6-hydroxycyclohexyl]oxy}-4-hydroxy-2-(hydroxymethyl)oxolan-3-yl]oxy}oxane-3,4-diol

C23H46N6O13 (614.3123)


A component of neomycin that is produced by Streptomyces fradiae. On hydrolysis it yields neamine and neobiosamine B. (From Merck Index, 11th ed). Neomycin is a bactericidal aminoglycoside antibiotic that binds to the 30S ribosome of susceptible organisms. Binding interferes with mRNA binding and acceptor tRNA sites and results in the production of non-functional or toxic peptides. A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations > A01AB - Antiinfectives and antiseptics for local oral treatment A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07A - Intestinal antiinfectives > A07AA - Antibiotics B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05C - Irrigating solutions > B05CA - Antiinfectives D - Dermatologicals > D09 - Medicated dressings > D09A - Medicated dressings > D09AA - Medicated dressings with antiinfectives D - Dermatologicals > D06 - Antibiotics and chemotherapeutics for dermatological use > D06A - Antibiotics for topical use S - Sensory organs > S03 - Ophthalmological and otological preparations > S03A - Antiinfectives > S03AA - Antiinfectives R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01G - Aminoglycoside antibacterials R - Respiratory system > R02 - Throat preparations > R02A - Throat preparations > R02AB - Antibiotics S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives > S01AA - Antibiotics S - Sensory organs > S02 - Otologicals > S02A - Antiinfectives > S02AA - Antiinfectives C784 - Protein Synthesis Inhibitor > C2363 - Aminoglycoside Antibiotic D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C254 - Anti-Infective Agent > C258 - Antibiotic KEIO_ID N022

   

Picolinamide

pyridine-2-carboximidic acid

C6H6N2O (122.048)


KEIO_ID P099

   

Clupanodonic acid

(7Z,10Z,13Z,16Z,19Z)-Docosa-7,10,13,16,19-pentaenoic acid

C22H34O2 (330.2559)


Docosapentaenoic acid (also known as clupanodonic acid) is an essential omega-3 fatty acid (EFA) which is prevalent in fish oils. Docosapentaenoic acid, commonly called DPA, is an intermediary between eicosapentaenoic acid (EPA, 20:5 ω-3) and docosahexaenoic acid (DHA, 22:6 ω-3). Seal oil is a rich source. There are three functions of docosapentaenoic acid. The most important is as part of phospholipids in all animal cellular membranes: a deficiency of docosapentaenoic acid leads to faulty membranes being formed. A second is in the transport and oxidation of cholesterol: clupanodonic acid tends to lower plasma cholesterol. A third function is as a precursor of prostanoids which are only formed from docosapentaenoic acid. Deficiency of this in experimental animals causes lesions mainly attributable to faulty cellular membranes: sudden failure of growth, lesions of skin and kidney and connective tissue, erythrocyte fragility, impaired fertility, uncoupling of oxidation and phosphorylation. In man pure deficiency of docosapentaenoic acid has been studied particularly in persons fed intravenously. A relative deficiency (that is, a low ratio in the body of docosapentaenoic to long-chain saturated fatty acids and isomers of docosapentaenoate) is common on Western diets and plays an important part in the causation of atherosclerosis, coronary thrombosis, multiple sclerosis, the triopathy of diabetes mellitus, hypertension and certain forms of malignant disease. Various factors affect the dietary requirement of docosapentaenoic acid. (PMID: 6469703) [HMDB]. 7Z,10Z,13Z,16Z,19Z-Docosapentaenoic acid is found in many foods, some of which are green zucchini, green bell pepper, green bean, and red bell pepper. Docosapentaenoic acid (22n-3) (also known as clupanodonic acid) is an essential omega-3 fatty acid (EFA) which is prevalent in fish oils. Docosapentaenoic acid, commonly called DPA, is an intermediary between eicosapentaenoic acid (EPA, 20:5 ω-3) and docosahexaenoic acid (DHA, 22:6 ω-3). Seal oil is a rich source of this metabolite. There are three functions of docosapentaenoic acid. Most importantly, it is a component of phospholipids found in all animal cell membranes, and a deficiency of docosapentaenoic acid leads to faulty membranes being formed. Secondly, it is involved in the transport and oxidation of cholesterol, and clupanodonic acid tends to lower plasma cholesterol. A third function is as a precursor of prostanoids which are only formed from docosapentaenoic acid. Deficiency of this in experimental animals causes lesions mainly attributable to faulty cellular membranes. Outcomes include sudden failure of growth, lesions of the skin, kidney, and connective tissue, erythrocyte fragility, impaired fertility, and the uncoupling of oxidation and phosphorylation. In humans, pure deficiency of docosapentaenoic acid has been studied particularly in persons fed intravenously. A relative deficiency (that is, a low ratio in the body of docosapentaenoic to long-chain saturated fatty acids and isomers of docosapentaenoate) is common in Western diets and plays an important part in the causation of atherosclerosis, coronary thrombosis, multiple sclerosis, the triopathy of diabetes mellitus, hypertension, and certain forms of malignant disease. Various factors affect the dietary requirement of docosapentaenoic acid (PMID: 6469703). Docosapentaenoic acid (22n-3) is a component of phospholipids found in all animal cell membranes.

   

Decanoylcarnitine (C10)

(3R)-3-(decanoyloxy)-4-(trimethylazaniumyl)butanoate

C17H33NO4 (315.2409)


Decanoylcarnitine is a member of the class of compounds known as acylcarnitines. More specifically, it is a decanoic acid ester of carnitine. Acylcarnitines were first discovered in the 1940s (PMID: 13825279 ). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Decanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine decanoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494 ). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. In particular decanoylcarnitine is elevated in the blood or plasma of individuals with obesity in adolescence (PMID: 26910390 ). It is also decreased in the blood or plasma of individuals with adolescent idiopathic scoliosis (PMID: 26928931 ). Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279 ). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews]. Acylcarnitine useful in the diagnosis of fatty acid oxidation disorders and differentiation between biochemical phenotypes of medium-chain acyl-CoA dehydrogenase (MCAD) deficiency deficiencyoxidation disorders.(PMID: 12385891) [HMDB]

   

Undecylenic acid

Zinc undecylenate (undecylenic acid)

C11H20O2 (184.1463)


Undecylenic acid, also known as 10-undecylenate or omega-undecenoic acid, belongs to the class of organic compounds known as medium-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 4 and 12 carbon atoms. Undecylenic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Undecylenic acid is found in black elderberry. Undecylenic acid is a flavouring ingredient and is a sweet and woody-tasting compound. Undecylenic acid was identified as one of forty plasma metabolites that could be used to predict gut microbiome Shannon diversity (PMID:31477923). Shannon diversity is a metric that summarizes both species abundance and evenness, and it has been suggested as a marker for microbiome health. Undecylenic acid is used in the production of the bioplastic Nylon-11, in the treatment of fungal infections in the skin, and as a precursor in the manufacture of a wide assortment of pharmaceuticals, cosmetics, perfumes, and personal hygiene products. D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use Flavouring ingredient. Undecylenic acid is found in black elderberry. C254 - Anti-Infective Agent > C514 - Antifungal Agent Same as: D02159 10-Undecenoic acid is used as a starting agent in the synthesis of Pheromone (11Z)-hexadecenal. 10-Undecenoic acid is used as a starting agent in the synthesis of Pheromone (11Z)-hexadecenal.

   

CDP

[({[(2R,3S,4R,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]phosphonic acid

C9H15N3O11P2 (403.0182)


Cytidine diphosphate, abbreviated CDP, and also known as 5-CDP, belongs to the class of organic compounds known as pyrimidine ribonucleoside diphosphates. These are pyrimidine ribonucleotides with diphosphate group linked to the ribose moiety. It is a cytosine nucleotide containing two phosphate groups esterified to the sugar moiety. CDP exists in all living species, ranging from bacteria to humans. In humans, CDP is involved in cardiolipin biosynthesis. Outside of the human body, CDP has been detected, but not quantified in several different foods, such as carobs, mexican oregano, evergreen huckleberries, green vegetables, and pepper (Capsicum baccatum). Cytidine 5-(trihydrogen diphosphate). A cytosine nucleotide containing two phosphate groups esterified to the sugar moiety. Synonyms: CRPP; cytidine pyrophosphate. [HMDB]. CDP is found in many foods, some of which are sweet cherry, hard wheat, roman camomile, and ginseng. Acquisition and generation of the data is financially supported in part by CREST/JST.

   

L-Gulonolactone

(3S,4R,5R)-5-[(1S)-1,2-dihydroxyethyl]-3,4-dihydroxyoxolan-2-one

C6H10O6 (178.0477)


L-Gulonolactone (also known as reduced ascorbic acid, RAA) is the substrate of the enzyme L-gulono-1,4-lactone oxidoreductase (EC 1.1.3.8), which catalyzes the last step of the biosynthesis of L-ascorbic acid (vitamin C) in plants and animals. The enzyme L-Gulono-1,4-lactone oxidase is missing in scurvy-prone, vitamin C-deficient animals, such as humans. L-Gulonolactone is present in human blood and has been used as one of the markers to compare changes in exercise-induced oxidative stress. (PMID: 16956367, 16494601) [HMDB] L-Gulonolactone (also known as reduced ascorbic acid, RAA) is the substrate of the enzyme L-gulono-1,4-lactone oxidoreductase (EC 1.1.3.8), which catalyzes the last step of the biosynthesis of L-ascorbic acid (vitamin C) in plants and animals. The enzyme L-Gulono-1,4-lactone oxidase is missing in scurvy-prone, vitamin C-deficient animals, such as humans. L-Gulonolactone is present in human blood and has been used as one of the markers to compare changes in exercise-induced oxidative stress. (PMID:16956367, 16494601). COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS L-Gulono-1,4-lactone is a substrate of L-gulono-1,4-lactone oxidoreductase, which catalyzes the last step of the biosynthesis of L-ascorbic (Vatamin) C. In other words, L-Gulono-1,4-lactone is a direct precursor of vitamin C in animals, in plants and in some protists.

   

Dihydroergotamine

(2R,4R,7R)-N-[(1S,2S,4R,7S)-7-benzyl-2-hydroxy-4-methyl-5,8-dioxo-3-oxa-6,9-diazatricyclo[7.3.0.0²,⁶]dodecan-4-yl]-6-methyl-6,11-diazatetracyclo[7.6.1.0²,⁷.0¹²,¹⁶]hexadeca-1(16),9,12,14-tetraene-4-carboxamide

C33H37N5O5 (583.2795)


Dihydroergotamine is only found in individuals that have used or taken this drug. It is a 9,10alpha-dihydro derivative of ergotamine. It is used as a vasoconstrictor, specifically for the therapy of migraine disorders. [PubChem]Two theories have been proposed to explain the efficacy of 5-HT1D receptor agonists in migraine: 1) activation of 5-HT1D receptors located on intracranial blood vessels, including those on arterio-venous anastomoses, leads to vasoconstriction, which correlates with the relief of migraine headache and 2) activation of 5-HT1D receptors on sensory nerve endings of the trigeminal system results in the inhibition of pro-inflammatory neuropeptide release. N - Nervous system > N02 - Analgesics > N02C - Antimigraine preparations > N02CA - Ergot alkaloids C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018491 - Dopamine Agonists D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C66884 - Dopamine Agonist D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents D002491 - Central Nervous System Agents > D000700 - Analgesics

   

Behenic acid

Docosanoic acid from Rapeseed

C22H44O2 (340.3341)


Behenic acid, also known as docosanoate or 1-docosanoic acid, is a member of the class of compounds known as very long-chain fatty acids. Very long-chain fatty acids are fatty acids with an aliphatic tail that contains at least 22 carbon atoms. Thus, behenic acid is considered to be a fatty acid lipid molecule. Behenic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Behenic acid can be found in a number of food items such as rice, opium poppy, pepper (c. frutescens), and gram bean, which makes behenic acid a potential biomarker for the consumption of these food products. Behenic acid can be found primarily in blood, feces, and urine. Behenic acid (also docosanoic acid) is a carboxylic acid, the saturated fatty acid with formula C21H43COOH. In appearance, it consists of white to cream color crystals or powder with a melting point of 80 °C and boiling point of 306 °C . Behenic acid, also docosanoic acid, is a normal carboxylic acid, a fatty acid with formula C21H43COOH. It is an important constituent of the behen oil extracted from the seeds of the Ben-oil tree, and it is so named from the Persian month Bahman when the roots of this tree were harvested. Behenic acid has been identified in the human placenta (PMID:32033212). Docosanoic acid is poorly absorbed, and a cholesterol-raising saturated fatty acid in humans. Docosanoic acid is poorly absorbed, and a cholesterol-raising saturated fatty acid in humans.

   

Cnicin

NCGC00385206-01_C20H26O7_(3aR,4S,10Z,11aR)-10-(Hydroxymethyl)-6-methyl-3-methylene-2-oxo-2,3,3a,4,5,8,9,11a-octahydrocyclodeca[b]furan-4-yl 3,4-dihydroxy-2-methylenebutanoate

C20H26O7 (378.1678)


C1907 - Drug, Natural Product > C28269 - Phytochemical > C93252 - Sesquiterpene Lactone

   

NIFURTIMOX

NIFURTIMOX

C10H13N3O5S (287.0576)


P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01C - Agents against leishmaniasis and trypanosomiasis > P01CC - Nitrofuran derivatives D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent

   

Ergotamine

(4R,7R)-N-[(1S,2S,4R,7S)-7-benzyl-2-hydroxy-4-methyl-5,8-dioxo-3-oxa-6,9-diazatricyclo[7.3.0.0²,⁶]dodecan-4-yl]-6-methyl-6,11-diazatetracyclo[7.6.1.0²,⁷.0¹²,¹⁶]hexadeca-1(16),2,9,12,14-pentaene-4-carboxamide

C33H35N5O5 (581.2638)


Ergotamine is only found in individuals that have used or taken this drug. It is a vasoconstrictor found in ergot of Central Europe. It is an alpha-1 selective adrenergic agonist and is commonly used in the treatment of migraine disorders. [PubChem]Ergotamine acts on migraine by one of two proposed mechanisms: 1) activation of 5-HT1D receptors located on intracranial blood vessels, including those on arterio-venous anastomoses, leads to vasoconstriction, which correlates with the relief of migraine headache, and 2) activation of 5-HT1D receptors on sensory nerve endings of the trigeminal system results in the inhibition of pro-inflammatory neuropeptide release. D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists N - Nervous system > N02 - Analgesics > N02C - Antimigraine preparations > N02CA - Ergot alkaloids D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists C78272 - Agent Affecting Nervous System > C47794 - Serotonin Agonist > C61751 - Ergotamine D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D012102 - Reproductive Control Agents > D010120 - Oxytocics

   

Glycolithocholate

2-[(4R)-4-[(1S,2S,5R,7R,10R,11S,14R,15R)-5-hydroxy-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-14-yl]pentanamido]acetic acid

C26H43NO4 (433.3192)


Lithocholic acid glycine conjugate is an acyl glycine and a bile acid-glycine conjugate. is an acyl glycine and a bile acid-glycine conjugate. It is a secondary bile acid produced by the action of enzymes existing in the microbial flora of the colonic environment. In hepatocytes, both primary and secondary bile acids undergo amino acid conjugation at the C-24 carboxylic acid on the side chain, and almost all bile acids in the bile duct therefore exist in a glycine conjugated form (PMID: 16949895). Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, depending only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). Lithocholic acid glycine conjugate is an acyl glycine and a bile acid-glycine conjugate. is an acyl glycine and a bile acid-glycine conjugate. It is a secondary bile acid produced by the action of enzymes existing in the microbial flora of the colonic environment. In hepatocytes, both primary and secondary bile acids undergo amino acid conjugation at the C-24 carboxylic acid on the side chain, and almost all bile acids in the bile duct therefore exist in a glycine conjugated form (PMID:16949895). Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12. D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids

   

echinenone

Echinenone/ (Myxoxanthin)

C40H54O (550.4174)


A carotenone that is beta-carotene in which the 4 position has undergone formal oxidation to afford the corresponding ketone. Isolated as orange-red crystals, it is widely distributed in marine invertebrates. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Window width for selecting the precursor ion was 3 Da.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 16HP2005 to the Mass Spectrometry Society of Japan.

   

Allysine

alpha-Aminoadipic acid delta-semialdehyde

C6H11NO3 (145.0739)


Allysine (CAS: 1962-83-0), also known as 2-amino-6-oxohexanoic acid or 6-oxonorleucine, belongs to the class of organic compounds known as alpha-amino acids. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Outside of the human body, allysine has been detected, but not quantified in, several different foods, such as winged beans, wasabi, common verbena, arrowhead, and oats. This could make allysine a potential biomarker for the consumption of these foods. Allysine is a derivative of lysine used in the production of elastin and collagen. It is produced by the actions of the enzyme lysyl oxidase in the extracellular matrix and is essential in the crosslink formation that stabilizes collagen and elastin.

   

PE(16:0/18:1(9Z))

(2-aminoethoxy)[(2R)-3-(hexadecanoyloxy)-2-[(9Z)-octadec-9-enoyloxy]propoxy]phosphinic acid

C39H76NO8P (717.5308)


PE(16:0/18:1(9Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(16:0/18:1(9Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of oleic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(16:0/18:1(9Z)) is a phosphatidylethanolamine. It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 atoms. PE(16:0/18:1(9Z)), in particular, consists of one hexadecanoyl chain to the C-1 atom, and one 9Z-octadecenoyl to the C-2 atom. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

Lasiocarpine

(1S,7aR)-7-({[2,3-dihydroxy-2-(1-methoxyethyl)-3-methylbutanoyl]oxy}methyl)-2,3,5,7a-tetrahydro-1H-pyrrolizin-1-yl (2Z)-2-methylbut-2-enoate (non-preferred name)

C21H33NO7 (411.2257)


CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2259 Origin: Plant; SubCategory_DNP: Alkaloids derived from ornithine, Pyrrolizidine alkaloids

   

Torulene

3,4-Didehydro-beta,psi-carotene

C40H54 (534.4225)


D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Window width to select the precursor ion was 3 Da.; CONE_VOLTAGE is 10 V.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 19HP8024 to the Mass Spectrometry Society of Japan.

   

CE(18:1(9Z))

[(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-[(2R)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl] (Z)-octadec-9-enoate

C45H78O2 (650.6001)


Cholesteryl oleate is an ester of cholesterol. Fatty acid esters of cholesterol constitute about two-thirds of the cholesterol in the plasma. Cholesterol is a sterol (a combination steroid and alcohol) and a lipid found in the cell membranes of all body tissues, and transported in the blood plasma of all animals. The accumulation of cholesterol esters in the arterial intima (the innermost layer of an artery, in direct contact with the flowing blood) is a characteristic feature of atherosclerosis. Atherosclerosis is a disease affecting arterial blood vessels. It is a chronic inflammatory response in the walls of arteries, in large part to the deposition of lipoproteins (plasma proteins that carry cholesterol and triglycerides). Cholesteryl esters, formed by the esterification of cholesterol with long-chain fatty acids, on one hand, are the means by which cholesterol is transported through the blood by lipoproteins, on the other, the way cholesterol itself can be accumulated in the cells. (PMID: 15939411) [HMDB] Cholesteryl oleate is an ester of cholesterol. Fatty acid esters of cholesterol constitute about two-thirds of the cholesterol in the plasma. Cholesterol is a sterol (a combination steroid and alcohol) and a lipid found in the cell membranes of all body tissues, and transported in the blood plasma of all animals. The accumulation of cholesterol esters in the arterial intima (the innermost layer of an artery, in direct contact with the flowing blood) is a characteristic feature of atherosclerosis. Atherosclerosis is a disease affecting arterial blood vessels. It is a chronic inflammatory response in the walls of arteries, in large part to the deposition of lipoproteins (plasma proteins that carry cholesterol and triglycerides). Cholesteryl esters, formed by the esterification of cholesterol with long-chain fatty acids, on one hand, are the means by which cholesterol is transported through the blood by lipoproteins, on the other, the way cholesterol itself can be accumulated in the cells. (PMID: 15939411). Cholesteryl oleate is an esterified form of Cholesterol. Cholesteryl oleate can be used in the generation of solid lipid nanoparticle (SLN, a nanoparticle-based method for gene therapy)[1][2].

   

Nicotinic acid adenine dinucleotide

1-[(2R,3R,4S,5R)-5-[({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)methyl]-3,4-dihydroxyoxolan-2-yl]-3-carboxy-1lambda5-pyridin-1-ylium

[C21H27N6O15P2]+ (665.101)


Nicotinic acid adenine dinucleotide, also known as deamido-NAD or NAAD, belongs to the class of organic compounds known as (5->5)-dinucleotides. These are dinucleotides where the two bases are connected via a (5->5)-phosphodiester linkage. NAAD is possibly soluble (in water) and a strong basic compound (based on its pKa). NAAD exists in all living species, ranging from bacteria to humans. L-Glutamine and NAAD can be converted into L-glutamic acid and NAD; which is catalyzed by the enzyme glutamine-dependent nad(+) synthetase. In humans, NAAD is involved in the nicotinate and nicotinamide metabolism pathway. NAAD is also involved in the metabolic disorder called succinic semialdehyde dehydrogenase deficiency. Outside of the human body, NAAD has been detected, but not quantified in, several different foods, such as japanese walnuts, cauliflowers, sparkleberries, komatsuna, and macadamia nut (m. tetraphylla). This could make NAAD a potential biomarker for the consumption of these foods. NAAD is the product of the degradation of Nicotinic acid adenine dinucleotide phosphate (NAADP) by a Ca2+-sensitive phosphatase. NAADP is a Ca2+-mobilizing second messenger which is synthesized, in response to extracellular stimuli, via the base-exchange reaction by an ADP-ribosyl cyclase (ARC) family members (such as CD38). NAADP binds to and opens Ca2+ channels on intracellular organelles, thereby increasing the intracellular Ca2+ concentration which, in turn, modulates a variety of cellular processes. Structurally, NAADP it is a dinucleotide that only differs from the house-keeping enzyme cofactor, NADP, by a hydroxyl group (replacing the nicotinamide amino group) and yet this minor modification converts it into the most potent Ca2+-mobilizing second messenger yet described. NAADP may also be broken down to 2-phosphoadenosine diphosphoribose (ADPRP) by CD38 or reduced to NAADPH. Deamido-nad(+), also known as deamidonicotinamide adenine dinucleoetide, is a member of the class of compounds known as (5->5)-dinucleotides (5->5)-dinucleotides are dinucleotides where the two bases are connected via a (5->5)-phosphodiester linkage. Deamido-nad(+) is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Deamido-nad(+) can be found in a number of food items such as garden tomato, sea-buckthornberry, pitanga, and japanese walnut, which makes deamido-nad(+) a potential biomarker for the consumption of these food products. Deamido-nad(+) exists in all living species, ranging from bacteria to humans. In humans, deamido-nad(+) is involved in few metabolic pathways, which include glutamate metabolism, homocarnosinosis, and nicotinate and nicotinamide metabolism. Deamido-nad(+) is also involved in few metabolic disorders, which include 2-hydroxyglutric aciduria (D and L form), 4-hydroxybutyric aciduria/succinic semialdehyde dehydrogenase deficiency, hyperinsulinism-hyperammonemia syndrome, and succinic semialdehyde dehydrogenase deficiency.

   

Glutaryl-CoA

5-[(2-{3-[(2R)-3-[({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)methyl]-2-hydroxy-3-methylbutanamido]propanamido}ethyl)sulfanyl]-5-oxopentanoic acid

C26H42N7O19P3S (881.1469)


Glutaryl-CoA is a substrate for 2-oxoglutarate dehydrogenase E1 component (mitochondrial), Dihydrolipoyllysine-residue succinyltransferase component of 2- oxoglutarate dehydrogenase complex (mitochondrial) and Glutaryl-CoA dehydrogenase (mitochondrial). [HMDB] Glutaryl-CoA is a substrate for 2-oxoglutarate dehydrogenase E1 component (mitochondrial), Dihydrolipoyllysine-residue succinyltransferase component of 2- oxoglutarate dehydrogenase complex (mitochondrial) and Glutaryl-CoA dehydrogenase (mitochondrial).

   

dUDP

[({[(2R,3S,5R)-5-(2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-yl)-3-hydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]phosphonic acid

C9H14N2O11P2 (388.0073)


dUDP is a derivative of nucleic acid UTP, in which the -OH (hydroxyl) group on the 2 carbon on the nucleotides pentose has been removed (hence the deoxy- part of the name). Additionally, the diphosphate of the name indicates that one of the phosphoryl groups of UTP has been removed, most likely by hydrolysis . [HMDB]. dUDP is found in many foods, some of which are yardlong bean, jackfruit, parsley, and red beetroot. dUDP is a derivative of nucleic acid UTP, in which the -OH (hydroxyl) group on the 2 carbon on the nucleotides pentose has been removed (hence the deoxy- part of the name). Additionally, the diphosphate of the name indicates that one of the phosphoryl groups of UTP has been removed, most likely by hydrolysis (Wikipedia).

   

Heptadecane

CH3-[CH2]15-CH3

C17H36 (240.2817)


Heptadecane, also known as CH3-[CH2]15-CH3, belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Heptadecane is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Thus, heptadecane is considered to be a hydrocarbon lipid molecule. Heptadecane is an organic compound, an alkane hydrocarbon with the chemical formula C17H36. The most compact and branched isomer would be tetra-tert-butylmethane, but its existence is believed to be impossible due to steric hindrance. The name may refer to any of 24894 theoretically possible structural isomers, or to a mixture thereof. Heptadecane is an alkane tasting compound. heptadecane has been detected, but not quantified, in several different foods, such as lemon balms, coconuts, orange bell peppers, allspices, and pepper (c. annuum). This could make heptadecane a potential biomarker for the consumption of these foods. In the IUPAC nomenclature, the name of this compound is simply heptadecane, since the other isomers are viewed and named as alkyl-substituted versions of smaller alkanes. The unbranched isomer is normal or n-heptadecane, CH3(CH2)15CH3. Indeed, it is believed to be the smallest "impossible" alkane. Heptadecane, also known as ch3-[ch2]15-ch3, is a member of the class of compounds known as alkanes. Alkanes are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, heptadecane is considered to be a hydrocarbon lipid molecule. Heptadecane is an alkane tasting compound and can be found in a number of food items such as papaya, orange bell pepper, pepper (spice), and red bell pepper, which makes heptadecane a potential biomarker for the consumption of these food products. Heptadecane can be found primarily in saliva. The unbranched isomer is normal or n-heptadecane, CH3(CH2)15CH3. In the IUPAC nomenclature, the name of this compound is simply heptadecane, since the other isomers are viewed and named as alkyl-substituted versions of smaller alkanes .

   

Butylbenzene

1-Butylbenzene

C10H14 (134.1095)


Butylbenzene belongs to the family of Substituted Benzenes. These are aromatic compounds containing a benzene substituted at one or more positions.

   

Pantetheine

2,4-dihydroxy-3,3-dimethyl-N-{2-[(2-sulfanylethyl)carbamoyl]ethyl}butanamide

C11H22N2O4S (278.13)


Pantetheine is the mercaptoethyl conjugated amide analogue of pantothenic acid (Vitamin B5). The dimer of this compound, pantethine is more commonly known, and is considered to be a more potent form of vitamin B5 than pantothenic acid. Pantetheine is an intermediate in the production of Coenzyme A by the body. An intermediate in the pathway of coenzyme A formation in mammalian liver and some microorganisms. Pantetheine is the mercaptoethyl conjugated amide analogue of pantothenic acid (Vitamin B5). The dimer of this compound, pantethine is more commonly known, and is considered to be a more potent form of vitamin B5 than pantothenic acid. Pantetheine is an intermediate in the production of Coenzyme A by the body. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

5,10-Methylene-THF

2-({4-[(6aR)-1-hydroxy-3-imino-3H,4H,5H,6H,6aH,7H,8H,9H-imidazo[1,5-f]pteridin-8-yl]phenyl}formamido)pentanedioic acid

C20H23N7O6 (457.171)


5,10-Methylene-THF is an intermediate in glycine, serine and threonine metabolism and one carbon metabolism. 5,10-CH2-THF can also be used as a coenzyme in the biosynthesis of thymidine. More specifically it is the C1-donor in the reactions catalyzed by thymidylate synthase and thymidylate synthase (FAD). It also acts as a coenzyme in the synthesis of serine from glycine via the enzyme serine hydroxymethyl transferase. 5,10-Methylene-THF is a substrate for Methylenetetrahydrofolate reductase. This enzyme converts 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate. This reaction is required for the multistep process that converts the amino acid homocysteine to methionine. The body uses methionine to make proteins and other important compounds. 5,10-CH2-THF is a substrate for many enzymes including Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase (mitochondrial), Aminomethyltransferase (mitochondrial), Serine hydroxymethyltransferase (mitochondrial), Methylenetetrahydrofolate reductase, C-1-tetrahydrofolate synthase (cytoplasmic), Serine hydroxymethyltransferase (cytosolic) and Thymidylate synthase. 5,10-Methylene-THF is an intermediate in the metabolism of Methane and the metabolism of Nitrogen. It is a substrate for Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase (mitochondrial), Aminomethyltransferase (mitochondrial), Serine hydroxymethyltransferase (mitochondrial), Methylenetetrahydrofolate reductase, C-1-tetrahydrofolate synthase (cytoplasmic), Serine hydroxymethyltransferase (cytosolic) and Thymidylate synthase. [HMDB] COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Acetylphenol

Acetic acid,phenyl ester

C8H8O2 (136.0524)


C274 - Antineoplastic Agent > C2122 - Cell Differentiating Agent > C1934 - Differentiation Inducer Phenyl acetate is an endogenous metabolite.

   

1-Hexadecanol

Normal primary hexadecyl alcohol

C16H34O (242.261)


Cetyl alcohol, also known as 1-hexadecanol and palmityl alcohol, is a solid organic compound and a member of the alcohol class of compounds. Its chemical formula is CH3(CH2)15OH. At room temperature, cetyl alcohol takes the form of a waxy white solid or flakes. It belongs to the group of fatty alcohols. With the demise of commercial whaling, cetyl alcohol is no longer primarily produced from whale oil, but instead either as an end-product of the petroleum industry, or produced from vegetable oils such as palm oil and coconut oil. Production of cetyl alcohol from palm oil gives rise to one of its alternative names, palmityl alcohol. Flavouring ingredient. Cetyl alcohol is found in many foods, some of which are rocket salad (sspecies), soft-necked garlic, bitter gourd, and kohlrabi. 1-Hexadecanol is a fatty alcohol, a lipophilic substrate. 1-Hexadecanol is a fatty alcohol, a lipophilic substrate.

   

coenzyme F420

SCHEMBL16018850

C29H36N5O18P (773.1793)


   

Pentanoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({[hydroxy({3-hydroxy-2,2-dimethyl-3-[(2-{[2-(pentanoylsulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]propoxy})phosphoryl]oxy})phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C26H44N7O17P3S (851.1727)


Pentanoyl CoA is an acyl-CoA with the C-5 Acyl chain. Acyl-CoA (or formyl-CoA) is a coenzyme involved in the metabolism of fatty acids. It is a temporary compound formed when coenzyme A (CoA) attaches to the end of a long-chain fatty acid, inside living cells. The CoA is then removed from the chain, carrying two carbons from the chain with it, forming acetyl-CoA. This is then used in the citric acid cycle to start a chain of reactions, eventually forming many adenosine triphosphates. To be oxidatively degraded, a fatty acid must first be activated in a two-step reaction catalyzed by acyl-CoA synthetase. First, the fatty acid displaces the diphosphate group of ATP, then coenzyme A (HSCoA) displaces the AMP group to form an Acyl-CoA. The acyladenylate product of the first step has a large free energy of hydrolysis and conserves the free energy of the cleaved phosphoanhydride bond in ATP. The second step, transfer of the acyl group to CoA (the same molecule that carries acetyl groups as acetyl-CoA), conserves free energy in the formation of a thioester bond. Consequently, the overall reaction Fatty acid + CoA + ATP <=> Acyl-CoA + AMP + PPi has a free energy change near zero. Subsequent hydrolysis of the product PPi (by the enzyme inorganic pyrophosphatase) is highly exergonic, and this reaction makes the formation of acyl-CoA spontaneous and irreversible. Fatty acids are activated in the cytosol, but oxidation occurs in the mitochondria. Because there is no transport protein for CoA adducts, acyl groups must enter the mitochondria via a shuttle system involving the small molecule carnitine. Pentanoyl coA is a acyl-CoA with the C-5 Acyl chain.

   

Acrylyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-2,2-dimethyl-3-[(2-{[2-(prop-2-enoylsulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]propoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C24H38N7O17P3S (821.1258)


Acrylyl-CoA is involved in alternative pathways of propionate metabolism. [HMDB]. Acrylyl-CoA is found in many foods, some of which are custard apple, mexican oregano, coconut, and soy bean. Acrylyl-CoA is involved in alternative pathways of propionate metabolism.

   

Uroporphyrinogen III

3-[9,14,20-tris(2-carboxyethyl)-5,10,15,19-tetrakis(carboxymethyl)-21,22,23,24-tetraazapentacyclo[16.2.1.1³,⁶.1⁸,¹¹.1¹³,¹⁶]tetracosa-1(20),3,5,8,10,13,15,18-octaen-4-yl]propanoic acid

C40H44N4O16 (836.2752)


Uroporphyrinogens are porphyrinogen variants in which each pyrrole ring has one acetate side chain and one propionate side chain; it is formed by condensation 4 four molecules of porphobilinogen. 4 isomers are possible but only 2 commoly are found, types I and III. Uroporphyrinogen III is a functional intermediate in heme biosynthesis while Uroporphyrinogen I is produced in an abortive side reaction. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

FT-0665929

17-O-deacetylvindoline

C23H30N2O5 (414.2155)


   

Glycerophosphoinositol

[(2R)-2,3-dihydroxypropoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C9H19O11P (334.0665)


Glycerophosphoinositol (CAS: 16824-65-0), also known as 1-(sn-glycero-3-phospho)-1D-myo-inositol, is produced through deacylation by phospholipase B of the essential phospholipid phosphatidylinositol. Glycerophosphoinositols are ubiquitous phosphoinositide metabolites involved in the control of several cell functions. They exert their actions both intracellularly and by rapidly equilibrating across the plasma membrane. Their transport is mediated by the Glut2 transporter, the human ortholog of GIT1 (PMID: 17141226). Glycerophosphoinositol is a substrate for glycerophosphoinositol inositolphosphodiesterase (EC 3.1.4.43) and is involved in the following reaction: 1-(sn-glycero-3-phospho)-1D-myo-inositol + H2O = glycerol + 1D-myo-inositol 1-phosphate. It is also a substrate for glycerophosphoinositol glycerophosphodiesterase (EC 3.1.4.44) which catalyzes the chemical reaction: 1-(sn-glycero-3-phospho)-1D-myo-inositol + H2O = myo-inositol + sn-glycerol 3-phosphate. Isolated from beef liver. Glycerylphosphoinositol is found in animal foods.

   

2-Carboxybenzalpyruvate

(3E)-4-(2-Carboxyphenyl)-2-oxobut-3-enoate

C11H8O5 (220.0372)


   

Viomycin

Tuberactinomycin B; Vinacetin A; Vioactane

C25H43N13O10 (685.3256)


A cyclic peptide antibiotic produced by the actinomycete Streptomyces puniceus, used in the treatment of tuberculosis. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D000995 - Antitubercular Agents C254 - Anti-Infective Agent > C52588 - Antibacterial Agent > C280 - Antitubercular Agent D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors

   

Carbamic acid

Carbamic acid, potassium salt

CH3NO2 (61.0164)


Carbamic acid is occasionally found as carbamate in workers exposed to pesticides. Carbamates, particularly carbofuran, seem to be more associated with exuberant and diversified symptomatology of pesticide exposure than organophosphates. Neurological symptoms occur among farmers occupationally exposed to acetylcholinesterase-inhibiting insecticides such as carbamates. Carbamic acid products of several amines, such as beta-N-methylamino-L-alanine (BMAA), ethylenediamine, and L-cysteine have been implicated in toxicity. Studies suggested that a significant portion of amino-compounds in biological samples (that naturally contain CO2/bicarbonate) can be present as a carbamic acid. The formation of carbamate glucuronide metabolites has been described for numerous pharmaceuticals and they have been identified in all of the species commonly used in drug metabolism studies (rat, dog, mouse, rabbit, guinea pig, and human). There has been no obvious species specificity for their formation and no preference for 1 or 2 degree amines. Many biological reactions have also been described in the literature that involve the reaction of CO2 with amino groups of biomolecules. For example, CO2 generated from cellular respiration is expired in part through the reversible formation of a carbamate between CO2 and the -amino groups of the alpha and beta-chains of hemoglobin. Glucuronidation is an important mechanism used by mammalian systems to clear and eliminate both endogenous and foreign chemicals. Many functional groups are susceptible to conjugation with glucuronic acid, including hydroxyls, phenols, carboxyls, activated carbons, thiols, amines, and selenium. Primary and secondary amines can also react with carbon dioxide (CO2) via a reversible reaction to form a carbamic acid. The carbamic acid is also a substrate for glucuronidation and results in a stable carbamate glucuronide metabolite. The detection and characterization of these products has been facilitated greatly by the advent of soft ionization mass spectrometry techniques and high field NMR instrumentation. (PMID: 16268118, 17168688, 12929145).

   

Coformycin

Coformycin

C11H16N4O5 (284.1121)


An N-glycosyl in which (8R)-3,6,7,8-tetrahydroimidazo[4,5-d][1,3]diazepin-8-ol is attached to ribofuranose via a beta-N(3)-glycosidic bond. compound The parent of the class of coformycins. D000970 - Antineoplastic Agents > D000903 - Antibiotics, Antineoplastic > D005573 - Formycins D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D004791 - Enzyme Inhibitors

   

Ethanethioic acid

Thioacetic acid, potassium salt

C2H4OS (75.9983)


Ethanethioic acid is used as a food additive [EAFUS] ("EAFUS: Everything Added to Food in the United States. [http://www.eafus.com/]")

   

Maltohexaose

(2R,3R,4S,5S,6R)-2-{[(2R,3S,4R,5R,6R)-6-{[(2R,3S,4R,5R,6R)-6-{[(2R,3S,4R,5R,6R)-6-{[(2R,3S,4R,5R,6R)-4,5-dihydroxy-2-(hydroxymethyl)-6-{[(2R,3S,4R,5R,6S)-4,5,6-trihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}oxan-3-yl]oxy}-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C36H62O31 (990.3275)


Maltohexaose is a polysaccharide with 6 units of glucose and can be classified as a maltodextrin. Maltodextrin is a polysaccharide that is used as a food additive. It is produced from starch by partial hydrolysis and is usually found as a creamy-white hygroscopic spray-dried powder. Maltodextrin is easily digestible, being absorbed as rapidly as glucose, and might be either moderately sweet or almost flavourless. It is commonly used for the production of natural sodas and candy such as SweeTarts. Maltodextrin consists of D-glucose units connected in chains of variable length. The glucose units are primarily linked with α(1→4) glycosidic bonds. Maltodextrin is typically composed of a mixture of chains that vary from three to nineteen glucose units long. Maltodextrins are classified by DE (dextrose equivalent) and have a DE between 3 to 20. The higher the DE value, the shorter the glucose chains, and the higher the sweetness and solubility. Above DE 20, the European Unions CN code calls it glucose syrup, at DE 10 or lower the customs CN code nomenclature classifies maltodextrins as dextrins (Wikipedia). A 1,4-alpha-D-glucan reacts with H2O to produce maltohexaose. alpha-Amylase is responsible for catalyzing this reaction. Alpha-maltohexaose is a maltohexaose hexasaccharide in which the glucose residue at the reducing end is in the pyranose ring form and has alpha configuration at the anomeric carbon atom. Maltohexaose is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). alpha-D-glucopyranosyl-(1->4)-alpha-D-glucopyranosyl-(1->4)-alpha-D-glucopyranosyl-(1->4)-alpha-D-glucopyranosyl-(1->4)-alpha-D-glucopyranosyl-(1->4)-alpha-D-glucopyranose is a natural product found in Homo sapiens and Bos taurus with data available. Constituent of corn starch. Amylolysis production from starch. Maltooligosaccharide mixtures are important food additives (sweeteners, gelling agents and viscosity modifiers) A maltohexaose hexasaccharide in which the glucose residue at the reducing end is in the pyranose ring form and has alpha configuration at the anomeric carbon atom. Maltohexaose is a natural saccharide, and can be produced from amylose, amylopectin and whole starch. Maltohexaose is a natural saccharide, and can be produced from amylose, amylopectin and whole starch.

   

Coenzyme Q9

2,3-dimethoxy-5-methyl-6-[(2E,6E,10E,14E,18E,22E,26E,30E)-3,7,11,15,19,23,27,31,35-nonamethylhexatriaconta-2,6,10,14,18,22,26,30,34-nonaen-1-yl]cyclohexa-2,5-diene-1,4-dione

C54H82O4 (794.6213)


Coenzyme Q9 (CoQ9) is a normal constituent of human plasma. CoQ9 in human plasma may originate as a product of incomplete CoQ10 biosynthesis or from the diet. The estimated dietary CoQ9 intake is 0 to 1.3 umol/day, primarily from cereals and fats, but this is unreliable because many food items contain levels below the detection limit. Plasma CoQ9 increases after supplementation with CoQ10, and CoQ9 and CoQ10 are significantly correlated. (PMID: 17405953). D020011 - Protective Agents > D000975 - Antioxidants Coenzyme Q9 (Ubiquinone Q9), the major form of ubiquinone in rodents, is an amphipathic molecular component of the electron transport chain that functions as an endogenous antioxidant. Coenzyme Q9 attenuates the diabetes-induced decreases in antioxidant defense mechanisms. Coenzyme Q9 improves left ventricular performance and reduces myocardial infarct size and cardiomyocyte apoptosis[1][2]. Coenzyme Q9 (Ubiquinone Q9), the major form of ubiquinone in rodents, is an amphipathic molecular component of the electron transport chain that functions as an endogenous antioxidant. Coenzyme Q9 attenuates the diabetes-induced decreases in antioxidant defense mechanisms. Coenzyme Q9 improves left ventricular performance and reduces myocardial infarct size and cardiomyocyte apoptosis[1][2].

   

CoA-disulfide

CoA-disulfide; (Acyl-CoA); [M+H]+

C42H70N14O32P6S2 (1532.2148)


   

Deoxycytosine

2,3-dihydropyrimidin-4-amine

C4H7N3 (97.064)


   

Phytanoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[3-hydroxy-2,2-dimethyl-3-({2-[(2-{[(3S,7R,11R)-3,7,11,15-tetramethylhexadecanoyl]sulfanyl}ethyl)carbamoyl]ethyl}carbamoyl)propoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C41H74N7O17P3S (1061.4075)


Phytanoyl CoA is a coenzyme A derivative of phytanic acid. Phytanic acid is present in human diet or in animal tissues where it may be derived from chlorophyll in plant extracts. Specifically it is an epimeric metabolite of the isoprenoid side chain of chlorophyll. Owing to the presence of its epimeric beta-methyl group, phytanic acid cannot be metabolized by beta-oxidation. Instead, it is metabolized in peroxisomes via alpha-oxidation to give pristanic acid, which is then oxidized by beta-oxidation. PhyH (phytanoyl-CoA 2-hydroxylase) catalyses hydroxylation of phytanoyl-CoA. Mutations of PhyH can lead to phytanic acid accumulation. High levels of phytanic acid are found in patients suffering from Refsums syndrome. This inherited neurological disorder is characterized by an accumulation of phytanic acid in blood and tissues. Clinically it is characterized by adult onset retinitis pigmentosa, anosmia, sensory neuropathy, and phytanic acidaemia. This disorder has been found to be related to deficiency in the α-oxidation pathway in the liver. (PMID: 17956235). Phytanoyl CoA and other branched-chain fatty acid CoA products are potent inducers of the peroxisome proliferator-activated receptor PPARalpha, a nuclear receptor that enhances transcription of peroxisomal enzymes mediating beta-oxidation of these potentially toxic fatty acids (PMID: 16768463). Pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase are strongly inhibited by phytanoyl-CoA. Decreased activity of these important mitochondrial metabolism complexes might therefore contribute to neurological symptoms upon accumulation of phytanic acid in Refsum disease (PMID: 16737698). [HMDB] Phytanoyl CoA is a coenzyme A derivative of phytanic acid. Phytanic acid is present in human diet or in animal tissues where it may be derived from chlorophyll in plant extracts. Specifically it is an epimeric metabolite of the isoprenoid side chain of chlorophyll. Owing to the presence of its epimeric beta-methyl group, phytanic acid cannot be metabolized by beta-oxidation. Instead, it is metabolized in peroxisomes via alpha-oxidation to give pristanic acid, which is then oxidized by beta-oxidation. PhyH (phytanoyl-CoA 2-hydroxylase) catalyses hydroxylation of phytanoyl-CoA. Mutations of PhyH can lead to phytanic acid accumulation. High levels of phytanic acid are found in patients suffering from Refsums syndrome. This inherited neurological disorder is characterized by an accumulation of phytanic acid in blood and tissues. Clinically it is characterized by adult onset retinitis pigmentosa, anosmia, sensory neuropathy, and phytanic acidaemia. This disorder has been found to be related to deficiency in the α-oxidation pathway in the liver. (PMID: 17956235). Phytanoyl CoA and other branched-chain fatty acid CoA products are potent inducers of the peroxisome proliferator-activated receptor PPARalpha, a nuclear receptor that enhances transcription of peroxisomal enzymes mediating beta-oxidation of these potentially toxic fatty acids (PMID: 16768463). Pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase are strongly inhibited by phytanoyl-CoA. Decreased activity of these important mitochondrial metabolism complexes might therefore contribute to neurological symptoms upon accumulation of phytanic acid in Refsum disease (PMID: 16737698).

   

Udp-glucosamine

UDP-D-GALACTOSAMINE DISODIUM SALT

C15H25N3O16P2 (565.071)


   

Pentostatin

(8R)-3-[(2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-3H,6H,7H,8H-imidazo[4,5-d][1,3]diazepin-8-ol

C11H16N4O4 (268.1171)


Pentostatin is only found in individuals that have used or taken this drug. It is a potent inhibitor of adenosine deaminase. The drug is effective in the treatment of many lymphoproliferative malignancies, particularly hairy-cell leukemia. It is also synergistic with some other antineoplastic agents and has immunosuppressive activity. [PubChem]Pentostatin is a potent transition state inhibitor of adenosine deaminase (ADA), the greatest activity of which is found in cells of the lymphoid system. T-cells have higher ADA activity than B-cells, and T-cell malignancies have higher activity than B-cell malignancies. The cytotoxicity that results from prevention of catabolism of adenosine or deoxyadenosine is thought to be due to elevated intracellular levels of dATP, which can block DNA synthesis through inhibition of ribonucleotide reductase. Intracellular activation results in incorporation into DNA as a false purine base. An additional cytotoxic effect is related to its incorporation into RNA. Cytotoxicity is cell cycle phase-specific (S-phase). D000970 - Antineoplastic Agents > D000903 - Antibiotics, Antineoplastic > D005573 - Formycins L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents D004791 - Enzyme Inhibitors > D058892 - Adenosine Deaminase Inhibitors C471 - Enzyme Inhibitor > C2157 - Adenosine Deaminase Inhibitor

   

1,2-Benzoquinone

3,5-Cyclohexadiene-1,2-dione (9ci)

C6H4O2 (108.0211)


1,2-Benzoquinone is a reactive electrophile that is an intermediate in benzene metabolism. It is substrate for the enzyme Catechol oxidase (EC 1.10.3.1) and can be generated from the oxidation of catechol. 1,2-Benzoquinone is capable of reacting with blood proteins to produce adducts. 1,2-Benzoquinone, also called ortho-benzoquinone or cyclohexa-3,5-diene-1,2-dione, is a ketone, with formula C6H4O2. It is one of the two isomers of quinone, the other being 1,4-benzoquinone. O-Quinone is found in tea.

   

(2E)-Pentenoyl-CoA

4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-3,3-dimethyl-N-(2-{[2-(pent-2-enoylsulfanyl)ethyl]-C-hydroxycarbonimidoyl}ethyl)butanimidic acid

C26H42N7O17P3S (849.1571)


(2E)-Pentenoyl-CoA is also known as (2E)-Pent-2-enoyl-coenzyme A(4-). (2E)-Pentenoyl-CoA is considered to be slightly soluble (in water) and acidic

   

Tetradecanoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({[hydroxy({3-hydroxy-2,2-dimethyl-3-[(2-{[2-(tetradecanoylsulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]propoxy})phosphoryl]oxy})phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C35H62N7O17P3S (977.3136)


Tetradecanoyl-CoA (or myristoyl-CoA) is an intermediate in fatty acid biosynthesis, fatty acid elongation and the beta oxidation of fatty acids. It is also used in the myristoylation of proteins. The first pass through the beta-oxidation process starts with the saturated fatty acid palmitoyl-CoA and produces myristoyl-CoA. A total of four enzymatic steps are required, starting with VLCAD CoA dehydrogenase (Very Long Chain) activity, followed by three enzymatic steps catalyzed by enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase, and ketoacyl-CoA thiolase, all present in the mitochondria. Myristoylation of proteins is also catalyzed by the presence of myristoyl-CoA along with Myristoyl-CoA:protein N-myristoyltransferase (NMT). Myristoylation is an irreversible, co-translational (during translation) protein modification found in animals, plants, fungi and viruses. In this protein modification a myristoyl group (derived from myristioyl CoA) is covalently attached via an amide bond to the alpha-amino group of an N-terminal amino acid of a nascent polypeptide. It is more common on glycine residues but also occurs on other amino acids. Myristoylation also occurs post-translationally, for example when previously internal glycine residues become exposed by caspase cleavage during apoptosis. Myristoylation plays a vital role in membrane targeting and signal transduction in plant responses to environmental stress. Compared to other species that possess a single functional myristoyl-CoA: protein N-myristoyltransferase (NMT) gene copy, human, mouse and cow possess 2 NMT genes, and more than 2 protein isoforms. Myristoyl-coa, also known as S-tetradecanoyl-coenzyme a or myristoyl-coenzyme a, is a member of the class of compounds known as long-chain fatty acyl coas. Long-chain fatty acyl coas are acyl CoAs where the group acylated to the coenzyme A moiety is a long aliphatic chain of 13 to 21 carbon atoms. Myristoyl-coa is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). Myristoyl-coa can be found in a number of food items such as sea-buckthornberry, anise, chicory, and cassava, which makes myristoyl-coa a potential biomarker for the consumption of these food products. Myristoyl-coa can be found primarily in human fibroblasts tissue. Myristoyl-coa exists in all eukaryotes, ranging from yeast to humans. In humans, myristoyl-coa is involved in few metabolic pathways, which include adrenoleukodystrophy, x-linked, beta oxidation of very long chain fatty acids, and fatty acid metabolism. Myristoyl-coa is also involved in several metabolic disorders, some of which include de novo triacylglycerol biosynthesis TG(18:0/14:0/22:0), de novo triacylglycerol biosynthesis tg(i-21:0/12:0/14:0), de novo triacylglycerol biosynthesis TG(18:1(9Z)/14:0/22:2(13Z,16Z)), and de novo triacylglycerol biosynthesis TG(14:0/16:1(9Z)/22:5(4Z,7Z,10Z,13Z,16Z)).

   

3-Chloroalanine

3-Chloro-D-alanine

C3H6ClNO2 (123.0087)


   

Isovaleryl-CoA

(2R)-4-({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-3,3-dimethyl-N-[2-({2-[(3-methylbutanoyl)sulfanyl]ethyl}-C-hydroxycarbonimidoyl)ethyl]butanimidic acid

C26H44N7O17P3S (851.1727)


Isovaleryl-CoA is an intermediate metabolite in the catabolic pathway of leucine. The accumulation of derivatives of isovaleryl-CoA occurs in patients affected with isovaleric acidemia (IVA, OMIM 243500) an autosomal recessive inborn error of leucine metabolism caused by a deficiency of the mitochondrial enzyme isovaleryl-CoA dehydrogenase (IVD, EC 1.3.99.10, a flavoenzyme that catalyzes the conversion of isovaleryl-CoA to 3-methylcrotonyl-CoA). IVA was the first organic acidemia recognized in humans and can cause significant morbidity and mortality. Early diagnosis and treatment with a protein restricted diet and supplementation with carnitine and glycine are effective in promoting normal development in severely affected individuals. Both intra- and interfamilial variability have been recognized. Initially, two phenotypes with either an acute neonatal or a chronic intermittent presentation were described. More recently, a third group of individuals with mild biochemical abnormalities who can be asymptomatic have been identified through newborn screening of blood spots by tandem mass spectrometry. The majority of patients with IVA today are diagnosed pre-symptomatically through newborn screening by use of MS/MS which reveals elevations of the marker metabolite C5 acylcarnitine in dried blood spots. C5 acylcarnitine represents a mixture of isomers (isovalerylcarnitine, 2-methylbutyrylcarnitine, and pivaloylcarnitine). (PMID: 16602101, Am J Med Genet C Semin Med Genet. 2006 May 15;142(2):95-103.) [HMDB]. Isovaleryl-CoA is found in many foods, some of which are purple laver, alaska wild rhubarb, macadamia nut (m. tetraphylla), and green zucchini. Isovaleryl-CoA is an intermediate metabolite in the catabolic pathway of leucine. The accumulation of derivatives of isovaleryl-CoA occurs in patients affected with isovaleric acidemia (IVA, OMIM: 243500), an autosomal recessive inborn error of leucine metabolism caused by a deficiency of the mitochondrial enzyme isovaleryl-CoA dehydrogenase (IVD, EC 1.3.99.10), a flavoenzyme that catalyzes the conversion of isovaleryl-CoA into 3-methylcrotonyl-CoA. IVA was the first organic acidemia recognized in humans and can cause significant morbidity and mortality. Early diagnosis and treatment with a protein-restricted diet and supplementation with carnitine and glycine are effective in promoting normal development in severely affected individuals. Both intra- and interfamilial variability have been recognized. Initially, two phenotypes with either an acute neonatal or a chronic intermittent presentation were described. More recently, a third group of individuals with mild biochemical abnormalities who can be asymptomatic have been identified through newborn screening of blood spots by tandem mass spectrometry. The majority of patients with IVA today are diagnosed pre-symptomatically through newborn screening by use of MS/MS which reveals elevations of the marker metabolite C5 acylcarnitine in dried blood spots. C5 Acylcarnitine represents a mixture of isomers (isovalerylcarnitine, 2-methylbutyrylcarnitine, and pivaloylcarnitine) (PMID: 16602101).

   

Adenosine tetraphosphate

{[({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)(hydroxy)phosphoryl]oxy}phosphonic acid

C10H17N5O16P4 (586.9621)


Adenosine 5 tetraphosphate, Ap4, is a natural nucleotide present in many biological systems. This nucleotide has been found as a constituent of the nucleotide pool present in the aqueous humor of a number of mammals and appears to act as a regulator of intraocular pressure (PMID: 14600249). AP4 may also play a significant role in the physiological regulation of vascular tone (PMID: 8599250). The plasma concentration of AP4 is in the nanomolar range. Technically adenosine tetraphosphate is condensation product of adenosine with tetraphosphoric acid at the 5 position. Acetyl coenzyme A (CoA) synthetase (EC 6.2.1.1) catalyzes the synthesis of adenosine 5-tetraphosphate (P4A) and adenosine 5-pentaphosphate (p5A) from ATP and tri- or tetrapolyphosphate (P3 or P4). [HMDB] Adenosine 5 tetraphosphate, Ap4, is a natural nucleotide present in many biological systems. This nucleotide has been found as a constituent of the nucleotide pool present in the aqueous humor of a number of mammals and appears to act as a regulator of intraocular pressure (PMID: 14600249). AP4 may also play a significant role in the physiological regulation of vascular tone (PMID: 8599250). The plasma concentration of AP4 is in the nanomolar range. Technically adenosine tetraphosphate is condensation product of adenosine with tetraphosphoric acid at the 5 position. Acetyl coenzyme A (CoA) synthetase (EC 6.2.1.1) catalyzes the synthesis of adenosine 5-tetraphosphate (P4A) and adenosine 5-pentaphosphate (p5A) from ATP and tri- or tetrapolyphosphate (P3 or P4).

   

HQNO

2-Heptyl-4-hydroxyquinoline N-oxide

C16H21NO2 (259.1572)


HQNO, secreted by P. aeruginosa, is a potent electron transport chain inhibitor with a Kd of 64 nM for complex III[1]. HQNO is a potent inhibitor of mitochondrial NDH-2 in many species[2]. HQNO, secreted by P. aeruginosa, is a potent electron transport chain inhibitor with a Kd of 64 nM for complex III[1]. HQNO is a potent inhibitor of mitochondrial NDH-2 in many species[2].

   

N-Succinyl-2-amino-6-ketopimelate

(2S)-2-(3-carboxypropanamido)-6-Oxoheptanedioic acid

C11H15NO8 (289.0798)


N-Succinyl-2-amino-6-ketopimelate is an intermediate in lysine biosynthesis. It is the fourth to last step in the synthesis of lysine and is converted. from tetrahydrodipicolinate via the enzyme tetrahydrodipicolinate N-succinyltransferase (EC 2.3.1.117). It is then converted to N-succinyl-L,L-2,6-diaminopimelate via the enzyme Succinyldiaminopimelate transferase (EC 2.6.1.17). N-Succinyl-2-amino-6-ketopimelate is an intermediate in lysine biosynthesis. It is the fourth to last step in the synthesis of lysine and is converted

   

Coenzyme B

3-phosphonooxy-2-(7-sulfanylheptanoylamino)butanoic acid

C11H22NO7PS (343.0855)


   

Chlorsulfuron

1-(2-chlorobenzenesulfonyl)-3-(4-methoxy-6-methyl-1,3,5-triazin-2-yl)urea

C12H12ClN5O4S (357.0299)


D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

1-Benzyl-1,2,3,4-tetrahydroisoquinoline

1,2,3,4-tetrahydro-1-(Phenylmethyl)isoquinoline hydrochloride

C16H17N (223.1361)


1-benzyl-1,2,3,4-tetrahydroisoquinoline (1BnTIQ) as a possible PD-eliciting neurotoxin and evaluated its characteristics relevant to Parkinson disease (PD). 1BnTIQ exist in mammals and is proposed as possible PD-eliciting neurotoxin. PD is believed to be induced by the interaction of genetic predisposition and environmental factors, and a type of neurotoxin is proposed to be one of the environmental factors. 1BnTIQ inhibits [3H] dopamine uptake in HEK293 cells which stably express dopamine transporter. 1BnTIQ also inhibits NADH-ubiquinone oxidoreductase (complex I) in the mitochondrial respiratory chain. 1BnTIQ decreases the dopamine content in the mesencephalon in both dose- and time-dependent manners and it irreversibly reduced the dopamine content. Furthermore, it causes morphological changes in tyrosine hydroxylase-positive cells in the mesencephalon and reduced the number of cells. (PMID 12440154) [HMDB] 1-benzyl-1,2,3,4-tetrahydroisoquinoline (1BnTIQ) as a possible PD-eliciting neurotoxin and evaluated its characteristics relevant to Parkinson disease (PD). 1BnTIQ exist in mammals and is proposed as possible PD-eliciting neurotoxin. PD is believed to be induced by the interaction of genetic predisposition and environmental factors, and a type of neurotoxin is proposed to be one of the environmental factors. 1BnTIQ inhibits [3H] dopamine uptake in HEK293 cells which stably express dopamine transporter. 1BnTIQ also inhibits NADH-ubiquinone oxidoreductase (complex I) in the mitochondrial respiratory chain. 1BnTIQ decreases the dopamine content in the mesencephalon in both dose- and time-dependent manners and it irreversibly reduced the dopamine content. Furthermore, it causes morphological changes in tyrosine hydroxylase-positive cells in the mesencephalon and reduced the number of cells. (PMID 12440154). D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists

   

3-Oxohexadecanoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({[hydroxy(3-hydroxy-2,2-dimethyl-3-{[2-({2-[(3-oxohexadecanoyl)sulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}propoxy)phosphoryl]oxy})phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C37H64N7O18P3S (1019.3241)


3-Oxohexadecanoyl-CoA has a role in the synthesis and oxidation of fatty acid. It is involved in the pathway, fatty acid elongation in mitochondria. In this pathway Acetyl-CoA is acted upon by the enzyme, acetyl-CoA C-acyltransferase to produce 3-Oxohexadecanoyl-CoA. Since coenzyme A is chemically a thiol, it can react with carboxylic acids to form thioesters, thus functioning as an acyl group carrier. It assists in transferring fatty acids from the cytoplasm to the mitochondria. A molecule of coenzyme A carrying an acetyl group is also referred to as acetyl-CoA. When it is not attached to an acyl group it is usually referred to as CoASH or HSCoA. [HMDB] 3-Oxohexadecanoyl-CoA has a role in the synthesis and oxidation of fatty acid. It is involved in the pathway, fatty acid elongation in mitochondria. In this pathway Acetyl-CoA is acted upon by the enzyme, acetyl-CoA C-acyltransferase to produce 3-Oxohexadecanoyl-CoA. Since coenzyme A is chemically a thiol, it can react with carboxylic acids to form thioesters, thus functioning as an acyl group carrier. It assists in transferring fatty acids from the cytoplasm to the mitochondria. A molecule of coenzyme A carrying an acetyl group is also referred to as acetyl-CoA. When it is not attached to an acyl group it is usually referred to as CoASH or HSCoA.

   

Hexanoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-2-({[({[(3R)-3-[(2-{[2-(hexanoylsulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]-3-hydroxy-2,2-dimethylpropoxy](hydroxy)phosphoryl}oxy)(hydroxy)phosphoryl]oxy}methyl)-4-hydroxyoxolan-3-yl]oxy}phosphonic acid

C27H46N7O17P3S (865.1884)


Hexanoyl-CoA, also known as hexanoyl-coenzyme A or caproyl-CoA, is a medium-chain fatty acyl-CoA having hexanoyl as the acyl group. Hexanoyl-CoA is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). Within the cell, hexanoyl-CoA is primarily located in the membrane (predicted from logP). It can also be found in the extracellular space. Hexanoyl-CoA exists in all living organisms, ranging from bacteria to humans. In humans, hexanoyl-CoA is involved in the biosynthesis and oxidation of fatty acids as well as in ceramide formation. Hexanoyl-CoA is also involved in few metabolic disorders, such as fatty acid elongation in mitochondria, mitochondrial beta-oxidation of medium chain saturated fatty acids, and mitochondrial beta-oxidation of short chain saturated fatty acids. Fatty acid coenzyme A derivative that can be involved in the biosynthesis and oxidation of fatty acids as well as in ceramide formation. [HMDB]

   

5-PuMP

Purine Riboside-5-Monophosphate

C10H13N4O7P (332.0522)


   

2-Hexaprenyl-3-methyl-6-methoxy-1,4 benzoquinone

3-[(2E,6E,10E,14E,18E)-3,7,11,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaen-1-yl]-5-methoxy-2-methylcyclohexa-2,5-diene-1,4-dione

C38H56O3 (560.4229)


2-Hexaprenyl-3-methyl-6-methoxy-1,4 benzoquinone is involved in the ubiquinone biosynthesis pathway. 2-Hexaprenyl-3-methyl-6-methoxy-1,4 benzoquinone is created from 2-Hexaprenyl-6-methoxy-1,4-benzoquinone by ubiquinone biosynthesis methyltransferase [EC:2.1.1.-]. 2-Hexaprenyl-3-methyl-6-methoxy-1,4 benzoquinone is then converted to 2-Hexaprenyl-3-methyl-5-hydroxy-6-methoxy-1,4-benzoquinone by ubiquinone biosynthesis monooxygenase Coq7 [EC:1.14.13.-]. [HMDB] 2-Hexaprenyl-3-methyl-6-methoxy-1,4 benzoquinone is involved in the ubiquinone biosynthesis pathway. 2-Hexaprenyl-3-methyl-6-methoxy-1,4 benzoquinone is created from 2-Hexaprenyl-6-methoxy-1,4-benzoquinone by ubiquinone biosynthesis methyltransferase [EC:2.1.1.-]. 2-Hexaprenyl-3-methyl-6-methoxy-1,4 benzoquinone is then converted to 2-Hexaprenyl-3-methyl-5-hydroxy-6-methoxy-1,4-benzoquinone by ubiquinone biosynthesis monooxygenase Coq7 [EC:1.14.13.-].

   

P1,P4-Bis(5'-uridyl) tetraphosphate

{[(2R,3S,4R,5R)-5-(2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({[({[({[(2R,3S,4R,5R)-5-(2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)(hydroxy)phosphoryl]oxy})phosphinic acid

C18H26N4O23P4 (789.9938)


P1,P4-Bis(5-uridyl) tetraphosphate is involved in pyrimidine metabolism. It is a precurser for UTP. UTP is produced from P1,P4-Bis(5-uridyl) tetraphosphate by the action of bis(5-nucleosidyl)-tetraphosphatase [EC:3.6.1.17]. [HMDB] P1,P4-Bis(5-uridyl) tetraphosphate is involved in pyrimidine metabolism. It is a precurser for UTP. UTP is produced from P1,P4-Bis(5-uridyl) tetraphosphate by the action of bis(5-nucleosidyl)-tetraphosphatase [EC:3.6.1.17]. C78283 - Agent Affecting Organs of Special Senses

   

Lacto-N-biose I

N-[(2S,3R,4R,5S,6R)-2,5-Dihydroxy-6-(hydroxymethyl)-4-{[(2R,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-3-yl]ethanimidate

C14H25NO11 (383.1428)


Lacto-N-biose I is a common oligosaccharide found in human milk and in numerous other tissues. Oligosaccharides are important components of glycoproteins and glycolipids and also occur as free oligosaccharides in several body fluids.(PMID: 14993226; 11925506; 11432777; 9760191; 9592127; 8608564; 7591266; 7627975; 7766648; 1490103; 3146987; 6689405) [HMDB] Lacto-N-biose I is a common oligosaccharide found in human milk and in numerous other tissues. Oligosaccharides are important components of glycoproteins and glycolipids and also occur as free oligosaccharides in several body fluids.(PMID: 14993226; 11925506; 11432777; 9760191; 9592127; 8608564; 7591266; 7627975; 7766648; 1490103; 3146987; 6689405).

   

Amphotericin B

(1R,3S,5R,6R,9R,11R,15S,16R,17R,18S,19E,21E,23E,25E,27E,29E,31E,33R,35S,36R,37S)-33-{[(2R,3S,4S,5S,6R)-4-amino-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-1,3,5,6,9,11,17,37-octahydroxy-15,16,18-trimethyl-13-oxo-14,39-dioxabicyclo[33.3.1]nonatriaconta-19,21,23,25,27,29,31-heptaene-36-carboxylic acid

C47H73NO17 (923.4878)


Amphotericin B shows a high order of in vitro activity against many species of fungi. Histoplasma capsulatum, Coccidioides immitis, Candida species, Blastomyces dermatitidis, Rhodotorula, Cryptococcus neoformans, Sporothrix schenckii, Mucor mucedo, and Aspergillus fumigatus are all inhibited by concentrations of amphotericin B ranging from 0.03 to 1.0 mcg/mL in vitro. While Candida albicans is generally quite susceptible to amphotericin B, non-albicans species may be less susceptible. Pseudallescheria boydii and Fusarium sp. are often resistant to amphotericin B. The antibiotic is without effect on bacteria, rickettsiae, and viruses. G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids > G01AA - Antibiotics A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations > A01AB - Antiinfectives and antiseptics for local oral treatment A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07A - Intestinal antiinfectives > A07AA - Antibiotics J - Antiinfectives for systemic use > J02 - Antimycotics for systemic use > J02A - Antimycotics for systemic use > J02AA - Antibiotics D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent Amphotericin B is a polyene antifungal agent against a wide variety of fungal pathogens. It binds irreversibly to ergosterol, resulting in disruption of membrane integrity and ultimately cell death.

   

Nojirimycin

6-(hydroxymethyl)-2,3,4,5-Piperidinetetrol

C6H13NO5 (179.0794)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D004791 - Enzyme Inhibitors

   

Pyrvinium

2-[(E)-2-(2,5-dimethyl-1-phenyl-1H-pyrrol-3-yl)ethenyl]-6-(dimethylamino)-1-methylquinolin-1-ium

C26H28N3+ (382.2283)


Pyrvinium, also known as molevac or pyrcon, belongs to the class of organic compounds known as phenylpyrroles. These are polycyclic aromatic compounds containing a benzene ring linked to a pyrrole ring through a CC or CN bond. Pyrvinium is considered to be a practically insoluble (in water) and relatively neutral molecule. P - Antiparasitic products, insecticides and repellents > P02 - Anthelmintics > P02C - Antinematodal agents D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C254 - Anti-Infective Agent > C276 - Antiparasitic Agent

   

Chlorphentermine

Warner chilcott brand OF chlorphentermine hydrochloride

C10H14ClN (183.0815)


D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant

   

Cefalotin

(6R,7R)-3-[(acetyloxy)methyl]-8-oxo-7-[2-(thiophen-2-yl)acetamido]-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid

C16H16N2O6S2 (396.045)


Cefalotin is only found in individuals that have used or taken this drug. It is a cephalosporin antibiotic.The bactericidal activity of cefalotin results from the inhibition of cell wall synthesis via affinity for penicillin-binding proteins (PBPs). The PBPs are transpeptidases which are vital in peptidoglycan biosynthesis. Therefore, their inhibition prevents this vital cell wall compenent from being properly synthesized. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DB - First-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   

DOCUSATE

1,4-bis(2-ethylhexyl) 2-sulphosuccinate

C20H38O7S (422.2338)


C78276 - Agent Affecting Digestive System or Metabolism > C29697 - Laxative > C29699 - Stool Softener D013501 - Surface-Active Agents

   

Metyrosine

(2S)-2-amino-3-(4-hydroxyphenyl)-2-methylpropanoic acid

C10H13NO3 (195.0895)


Metyrosine is only found in individuals that have used or taken this drug. It is an inhibitor of the enzyme tyrosine 3-monooxygenase, and consequently of the synthesis of catecholamines. It is used to control the symptoms of excessive sympathetic stimulation in patients with pheochromocytoma. (Martindale, The Extra Pharmacopoeia, 30th ed)Metyrosine inhibits tyrosine hydroxylase, which catalyzes the first transformation in catecholamine biosynthesis, i.e., the conversion of tyrosine to dihydroxyphenylalanine (DOPA). Because the first step is also the rate-limiting step, blockade of tyrosine hydroxylase activity results in decreased endogenous levels of catecholamines and their synthesis. This consequently, depletes the levels of the catecholamines dopamine, adrenaline and noradrenaline in the body,usually measured as decreased urinary excretion of catecholamines and their metabolites. One main end result of the catecholamine depletion is a decrease in blood presure. C - Cardiovascular system > C02 - Antihypertensives > C02K - Other antihypertensives > C02KB - Tyrosine hydroxylase inhibitors C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent C471 - Enzyme Inhibitor > C2155 - Tyrosine Hydroxylase Inhibitor D004791 - Enzyme Inhibitors C471 - Enzyme Inhibitor

   

Fluphenazine enanthate

2-(4-{3-[2-(trifluoromethyl)-10H-phenothiazin-10-yl]propyl}piperazin-1-yl)ethyl heptanoic acid

C29H38F3N3O2S (549.2637)


D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent

   

Dienestrol

4,4-Hydroxy-gamma,delta-diphenyl-beta,delta-hexadiene

C18H18O2 (266.1307)


Dienestrol is a synthetic, non-steroidal estrogen. It is an estrogen receptor agonist. Estrogens work partly by increasing a normal clear discharge from the vagina and making the vulva and urethra healthy. Using or applying an estrogen relieves or lessens: dryness and soreness in the vagina, itching, redness, or soreness of the vulva. Conditions that are treated with vaginal estrogens include a genital skin condition (vulvar atrophy), inflammation of the vagina (atrophic vaginitis), and inflammation of the urethra (atrophic urethritis). G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03C - Estrogens > G03CC - Estrogens, combinations with other drugs G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03C - Estrogens > G03CB - Synthetic estrogens, plain D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen

   

Zanamivir

(2R,3R,4S)-4-[(diaminomethylidene)amino]-3-acetamido-2-[(1R,2R)-1,2,3-trihydroxypropyl]-3,4-dihydro-2H-pyran-6-carboxylic acid

C12H20N4O7 (332.1332)


Zanamivir is only found in individuals that have used or taken this drug. It is a guanido-neuraminic acid that is used to inhibit neuraminidase. [PubChem]The proposed mechanism of action of zanamivir is via inhibition of influenza virus neuraminidase with the possibility of alteration of virus particle aggregation and release. By binding and inhibiting the neuraminidase protein, the drug renders the influenza virus unable to escape its host cell and infect others. J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AH - Neuraminidase inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents C254 - Anti-Infective Agent > C281 - Antiviral Agent D004791 - Enzyme Inhibitors

   

Tiludronate

{[(4-chlorophenyl)sulfanyl](phosphono)methyl}phosphonic acid

C7H9ClO6P2S (317.9284)


Tiludronate is only found in individuals that have used or taken this drug. It is a bisphosphonate characterized by a (4-chlorophenylthio) group on the carbon atom of the basic P-C-P structure common to all bisphosphonates.The bisphosphonate group binds strongly to the bone mineral, hydroxyapatite. This explains the specific pharmacological action of these compounds on mineralized tissues, especially bone. In vitro studies indicate that tiludronate acts primarily on bone through a mechanism that involves inhibition of osteoclastic activity with a probable reduction in the enzymatic and transport processes that lead to resorption of the mineralized matrix. Bone resorption occurs following recruitment, activation, and polarization of osteoclasts. Tiludronate appears to inhibit osteoclasts by at least two mechanisms: disruption of the cytoskeletal ring structure, possibly by inhibition of protein-tyrosine-phosphatase, thus leading to detachment of osteoclasts from the bone surface and the inhibition of the osteoclastic proton pump. M - Musculo-skeletal system > M05 - Drugs for treatment of bone diseases > M05B - Drugs affecting bone structure and mineralization > M05BA - Bisphosphonates C78281 - Agent Affecting Musculoskeletal System > C67439 - Bone Resorption Inhibitor D050071 - Bone Density Conservation Agents > D004164 - Diphosphonates

   

(9S,10S)-9,10-dihydroxyoctadecanoate

threo-9,10-Dihydroxystearic acid

C18H36O4 (316.2613)


   

Hellebrin

3beta-(6-deoxy-4-O-beta-D-glucopyranosyl-alpha-L-mannopyranosyloxy)-5,14-dihydroxy-19-oxo-5beta-bufa-20,22-dienolide

C36H52O15 (724.3306)


D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002018 - Bufanolides

   

Trilobacin

3-(2,13-dihydroxy-13-{5-[5-(1-hydroxyundecyl)oxolan-2-yl]oxolan-2-yl}tridecyl)-5-methyl-2,5-dihydrofuran-2-one

C37H66O7 (622.4808)


Isolated from Asimina triloba (pawpaw), Annona squamosa (sugar apple), Annona purpurea (soncoya) and Rollinia mucosa (biriba). Asimicin is found in many foods, some of which are fruits, alcoholic beverages, sugar apple, and beverages. Bullatacin is found in alcoholic beverages. Bullatacin is isolated from Rollinia mucosa (biriba), Annona squamosa (sugar apple) and Annona reticulata (custard apple). D010575 - Pesticides > D007306 - Insecticides D000970 - Antineoplastic Agents D016573 - Agrochemicals

   
   

Sulfometuron-methyl

methyl 2-({[(4,6-dimethylpyrimidin-2-yl)carbamoyl]amino}sulfonyl)benzoate

C15H16N4O5S (364.0841)


D010575 - Pesticides > D006540 - Herbicides D004791 - Enzyme Inhibitors D016573 - Agrochemicals

   

Diethofencarb

Pesticide3_Diethofencarb_C14H21NO4_Powmil

C14H21NO4 (267.1471)


   

Tetraphenylphosphonium

Tetraphenylphosphonium

C24H20P+ (339.1303)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents D000970 - Antineoplastic Agents

   

nonactin

Upjohn 170t (high melting)

C40H64O12 (736.4398)


   

N-Tetradecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate

N-Tetradecyl-N,N-dimethyl-3-ammonio-1-propanesulphonic acid

C19H41NO3S (363.2807)


   

Dexniguldipine

3-((4,4-Diphenyl-1-piperidinyl)propyl)-5-methyl-1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)pyridine-3,5-dicarboxylate hydrochloride

C36H39N3O6 (609.2839)


D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators D000970 - Antineoplastic Agents

   

CE(16:0)

(1S,2R,5S,10S,11S,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-yl hexadecanoate

C43H76O2 (624.5845)


CE(16:0), also known as cholesteryl palmitic acid, is a cholesteryl ester. A cholesteryl ester is an ester of cholesterol. Fatty acid esters of cholesterol constitute about two-thirds of the cholesterol in the plasma. Cholesterol is a sterol (a combination of steroid and alcohol) and a lipid found in the cell membranes of all body tissues and transported in the blood plasma of all animals. The accumulation of cholesterol esters in the arterial intima (the innermost layer of an artery, in direct contact with the flowing blood) is a characteristic feature of atherosclerosis. Atherosclerosis is a disease affecting arterial blood vessels. It is a chronic inflammatory response in the walls of arteries, in large part to the deposition of lipoproteins (plasma proteins that carry cholesterol and triglycerides). CE(16:0) may also accumulate in hereditary hypercholesterolemia, an inborn error of metabolism. Cholesteryl palmitate is one of the four important lipids found in the tear film. Amniotic fluid cholesteryl palmitate, as measured by thin-layer chromatography, appears to be a very sensitive and specific predictor for the risk of respiratory distress syndrome (RDS) in newborns of normal pregnancies (PMID:3405552, 16922549). Cholesteryl palmitic acid is a cholesteryl ester. A cholesteryl ester is an ester of cholesterol. Fatty acid esters of cholesterol constitute about two-thirds of the cholesterol in the plasma. Cholesterol is a sterol (a combination steroid and alcohol) and a lipid found in the cell membranes of all body tissues, and transported in the blood plasma of all animals. The accumulation of cholesterol esters in the arterial intima (the innermost layer of an artery, in direct contact with the flowing blood) is a characteristic feature of atherosclerosis. Atherosclerosis is a disease affecting arterial blood vessels. It is a chronic inflammatory response in the walls of arteries, in large part to the deposition of lipoproteins (plasma proteins that carry cholesterol and triglycerides). Cholesteryl palmitate is one of the four important lipids found in the tear film. Amniotic fluid cholesteryl palmitate, as measured by thin-layer chromatography, appears to be a very sensitive and specific predictor for the risk of respiratory distress syndrome (RDS) in newborns of normal pregnancies. (PMID: 3405552, 16922549) [HMDB]

   

CHAPS

3-((3-Cholamidopropyl)dimethylammonium)-1-propanesulfonate

C32H58N2O7S (614.3965)


D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids D013501 - Surface-Active Agents > D003902 - Detergents

   

Methyl-tert-butyl ether

Methyl 1,1-dimethylethyl ether

C5H12O (88.0888)


Methyl-tert-butyl ether, also known as tert-butyl methyl ether, methyl t-butyl ether or MTBE, is classified as a member of the dialkyl ethers. Dialkyl ethers are organic compounds containing the dialkyl ether functional group, with the formula ROR, where R and R are alkyl groups. Methyl-tert-butyl ether is considered to be soluble (in water) and basic. It is used as a gasoline additive. Exposure may occur by breathing air contaminated with auto exhaust or gasoline fumes while refueling autos. Respiratory irritation, dizziness, and disorientation have been reported by some motorists and occupationally exposed workers. Acute (short-term) exposure of humans to methyl tert-butyl ether also has occurred during its use as a medical treatment to dissolve cholesterol gallstones. Chronic (long-term) inhalation exposure to methyl-tert-butyl ether has resulted in central nervous system (CNS) effects, respiratory irritation, liver and kidney effects, and decreased body weight gain in animals. United States Environmental Protection Agency has not classified methyl-tert-butyl ether with respect to potential carcinogenicity. (ChemoSummarizer) D004785 - Environmental Pollutants > D000393 - Air Pollutants D009676 - Noxae > D002273 - Carcinogens

   

2-Pinen-10-ol

{6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl}methanol

C10H16O (152.1201)


2-Pinen-10-ol is found in citrus. 2-Pinen-10-ol is a flavouring ingredient. 2-Pinen-10-ol is present in mandarin peel oil, raspberry, blackberry, strawberry, ginger, hop oil, black tea, peppermint oil, pepper (Piper nigrum), myrtle leaf or berry, summer savoury (Satureja hortensis) and other foodstuffs (±)-Myrtenol is a flavouring ingredient. It is found in mandarin peel oil, raspberry, blackberry, strawberry, ginger, hop oil, black tea, peppermint oil, pepper (Piper nigrum), myrtle leaf or berry, summer savoury (Satureja hortensis) and other foods.

   

DB-065692

Desoxyepothilone b

C27H41NO5S (491.2705)


C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents

   

Telomestatin

4,8-dimethyl-3,7,11,15,19,23,27-heptaoxa-31-thia-33,34,35,36,37,38,39,40-octazanonacyclo[28.2.1.12,5.16,9.110,13.114,17.118,21.122,25.126,29]tetraconta-2(40),4,6(39),8,10(38),12,14(37),16,18(36),20,22(35),24,26(34),28,30(33)-pentadecaene

C26H14N8O7S (582.0706)


Telomestatin is a naturally occurring organic compound classified as a cyclic phenolphthioceramide derivative. It is isolated from the fermentation broth of microorganisms and is known for its antitumor properties. The name "telomestatin" reflects its primary mode of action, which is the inhibition of telomerase, an enzyme crucial for the maintenance of chromosome stability and cell proliferation, particularly in cancer cells where telomerase activity is often elevated. Telomerase is responsible for adding repetitive DNA sequences called telomeres to the ends of chromosomes, which prevents the loss of genetic material during DNA replication and cell division. By inhibiting telomerase, telomestatin interferes with the ability of cancer cells to divide and proliferate, making it a potential candidate for antitumor therapy. The compound's unique chemical structure allows it to bind specifically to the telomerase RNA component, thereby blocking the enzyme's activity. The discovery and study of telomestatin have contributed to the understanding of telomerase biology and the development of potential therapeutic strategies for cancer treatment.

   

stigmatellin

Stigmatellin A

C30H42O7 (514.293)


A member of the class of chromones that is isolated from Stigmatella aurantiaca Sg a15. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents

   

Patupilone

epothilone B

C27H41NO6S (507.2654)


An epithilone that is epithilone D in which the double bond in the macrocyclic ring has been oxidised to the corresponding epoxide (the S,S stereoisomer). C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents

   

Isopentyl acetate

Acetic acid, 3-methylbutyl ester

C7H14O2 (130.0994)


Isopentyl acetate, also known as isoamyl acetate or amylacetic ester, belongs to the class of organic compounds known as carboxylic acid esters. These are carboxylic acid derivatives in which the carbon atom from the carbonyl group is attached to an alkyl or an aryl moiety through an oxygen atom (forming an ester group). Isopentyl acetate is an ester formed from isoamyl alcohol and acetic acid. It is a colorless liquid that is only slightly soluble in water, but very soluble in most organic solvents. Isopentyl acetate has a sweet, fruity banana odor and similar sweet, fruity banana taste. Isopentyl acetate is used to confer banana flavor in foods. Isopentyl acetate is a secondary metabolite. Secondary metabolites are metabolically or physiologically non-essential metabolites that may serve a role as defense or signalling molecules. In some cases they are simply molecules that arise from the incomplete metabolism of other secondary metabolites. Outside of the human body, Isopentyl acetate is found, on average, in the highest concentration within a few different foods, such as red wines, white wines, and beers. Isopentyl acetate has also been detected, but not quantified in, several different foods, such as blackberries (Rubus), figs (Ficus carica), red teas, bananas (Musa acuminata), and black elderberries (Sambucus nigra). This could make isopentyl acetate a potential biomarker for the consumption of these foods. Isopentyl acetate occurs naturally in the banana plant and it is also produced synthetically. Based on a literature review a significant number of articles have been published on Isopentyl acetate. Pure isopentyl acetate, or mixtures of isopentyl acetate, amyl acetate, and other flavors may be referred to as banana oil. Because of its intense, pleasant odor and its low toxicity, isopentyl acetate is used to test the effectiveness of respirators or gas masks. Isopentyl acetate is released by a honey bees sting where it serves as a pheromone beacon to attract other bees and provoke them to sting. Present in many fruit aromas, especies banana. It is used in banana flavouring

   

Nedaplatin

Nedaplatin

C2H8N2O3Pt (303.0183)


C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent C274 - Antineoplastic Agent > C798 - Radiosensitizing Agent > C1450 - Platinum Compound D000970 - Antineoplastic Agents Same as: D01416

   

Proxigermanium

Bis (2-Carboxyethylgermanium)sesquioxide

C6H10Ge2O7 (337.8868)


COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C308 - Immunotherapeutic Agent > C63817 - Chemokine Receptor Antagonist D007155 - Immunologic Factors > D007369 - Interferon Inducers D000970 - Antineoplastic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Cephaloglycin

(6R,7R)-3-(acetyloxymethyl)-7-[[(2R)-2-amino-2-phenylacetyl]amino]-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid

C18H19N3O6S (405.0995)


Cephaloglycin is only found in individuals that have used or taken this drug. It is a cephalorsporin antibiotic.The bactericidal activity of cephaloglycin results from the inhibition of cell wall synthesis via affinity for penicillin-binding proteins (PBPs). D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic Same as: D01949

   

Ampalex

1-Piperidinyl-6-quinoxalinyl-methanone

C14H15N3O (241.1215)


CX516 (BDP 12) is an ampakine and acts as an AMPA receptor positive allosteric modulator for the research of Alzheimer's disease, schizophrenia and mild cognitive impairment (MCI)[1].

   

4,4-dinitrostilbene-2,2-disulfonic acid

4,4-dinitrostilbene-2,2-disulfonic acid

C14H10N2O10S2 (429.9777)


   

Tetrahydrodeoxycorticosterone

2-hydroxy-1-[(1S,2S,5R,7S,10R,11S,14S,15S)-5-hydroxy-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-14-yl]ethan-1-one

C21H34O3 (334.2508)


The neurosteroid allotetrahydrodeoxycorticosterone (THDOC) is an allosteric modulator of the GABA(A) receptor. Although the role of THDOC within the brain is undefined, recent studies indicate that stress induces THDOC to levels that can activate GABA(A) receptors. These results might have significant implications for human stress-sensitive conditions such as epilepsy, post-traumatic stress disorder and depression. (PMID 12628349) [HMDB] The neurosteroid allotetrahydrodeoxycorticosterone (THDOC) is an allosteric modulator of the GABA(A) receptor. Although the role of THDOC within the brain is undefined, recent studies indicate that stress induces THDOC to levels that can activate GABA(A) receptors. These results might have significant implications for human stress-sensitive conditions such as epilepsy, post-traumatic stress disorder and depression. (PMID 12628349). D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones D018377 - Neurotransmitter Agents > D000081227 - Neurosteroids 3α,21-Dihydroxy-5α-pregnan-20-one (THDOC), an endogenous neurosteroid, is a positive modulator of GABAA receptors. 3α,21-Dihydroxy-5α-pregnan-20-one potentiates neuronal response to low concentrations of GABA at α4β1δ GABAA receptors in vitro.

   

FA 11:1

((1S,2R)-2-Hexylcycloprop-1-yl)acetic acid

C11H20O2 (184.1463)


An undecenoic acid having its double bond in the 10-position. It is derived from castor oil and is used for the treatment of skin problems. D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use C254 - Anti-Infective Agent > C514 - Antifungal Agent Same as: D02159 10-Undecenoic acid is used as a starting agent in the synthesis of Pheromone (11Z)-hexadecenal. 10-Undecenoic acid is used as a starting agent in the synthesis of Pheromone (11Z)-hexadecenal.

   

MG(12:0/0:0/0:0)

(2R)-2,3-dihydroxypropyl dodecanoate

C15H30O4 (274.2144)


MG(12:0/0:0/0:0) belongs to the family of monoradyglycerols, which are glycerolipids lipids containing a common glycerol backbone to which at one fatty acyl group is attached. Their general formula is [R1]OCC(CO[R2])O[R3]. MG(12:0/0:0/0:0) is made up of one dodecanoyl(R1).

   

Chimyl alcohol

1-O-HEXADECYL-RAC-GLYCEROL

C19H40O3 (316.2977)


   

PS(16:0/18:1(9Z))

(2S)-2-amino-3-({[(2R)-3-(hexadecanoyloxy)-2-[(9Z)-octadec-9-enoyloxy]propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C40H76NO10P (761.5207)


PS(16:0/18:1(9Z)) is a phosphatidylserine (PS or GPSer). It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoserines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PS(16:0/18:1(9Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of oleic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants and microorganisms. It is usually less than 10\\% of the total phospholipids, the greatest concentration being in myelin from brain tissue. However, it may comprise 10 to 20 mol\\% of the total phospholipid in the plasma membrane and endoplasmic reticulum of the cell. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups, i.e. the phosphate moiety, the amino group and the carboxyl function. As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate to calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine, especially during bone formation for example. As phosphatidylserine is located entirely on the inner monolayer surface of the plasma membrane (and of other cellular membranes) and it is the most abundant anionic phospholipids. Therefore phosphatidylseriine may make the largest contribution to interfacial effects in membranes involving non-specific electrostatic interactions. This normal distribution is disturbed during platelet activation and cellular apoptosis. In human plasma, 1-stearoyl-2-oleoyl and 1-stearoyl-2-arachidonoyl species predominate, but in brain (especially grey matter), retina and many other tissues 1-stearoyl-2-docosahexaenoyl species are very abundant. Indeed, the ratio of n-3 to n-6 fatty acids in brain phosphatidylserine is very much higher than in most other lipids. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE. PS(16:0/18:1(9Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 atoms. PS(16:0/18:1(9Z)), in particular, consists of one hexadecanoyl chain to the C-1 atom, and one 9Z-octadecenoyl to the C-2 atom. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups, i.e. the phosphate moiety, the amino group and the carboxyl function. As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate to calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.

   

Heptachlor

1,5,7,8,9,10,10-heptachlorotricyclo[5.2.1.02,6]deca-3,8-diene

C10H5Cl7 (369.8211)


Heptachlor is a manufactured chemical and doesn't occur naturally. Pure heptachlor is a white powder that smells like camphor (mothballs). The less pure grade is tan. Trade names include Heptagran®, Basaklor®, Drinox®, Soleptax®, Termide®, and Velsicol 104®. Heptachlor was used extensively in the past for killing insects in homes, buildings, and on food crops, especially corn. These uses stopped in 1988. Currently it can only be used for fire ant control in power transformers. Heptachlor epoxide is also a white powder. Bacteria and animals break down heptachlor to form heptachlor epoxide. The epoxide is more likely to be found in the environment than heptachlor. D004785 - Environmental Pollutants > D012989 - Soil Pollutants D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals Heptachlor. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=76-44-8 (retrieved 2024-10-28) (CAS RN: 76-44-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Metribolone

17-HYDROXY-13,17-DIMETHYL-1,2,6,7,8,13,14,15,16,17-DECAHYDROCYCLOPENTA[A]PHENANTHREN-3-ONE

C19H24O2 (284.1776)


C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone

   

Isopropylbenzene

Benzene, (1-methylethyl)-, oxidized, sulfurized by-products

C9H12 (120.0939)


Isopropylbenzene, also known as 2-phenylpropane or benzene, isopropyl, belongs to the class of organic compounds known as cumenes. These are aromatic compounds containing a prop-2-ylbenzene moiety. Isopropylbenzene is found, on average, in the highest concentration within ceylon cinnamons and gingers. Isopropylbenzene has also been detected, but not quantified, in several different foods, such as celery stalks, cumins , herbs and spices, and sweet cherries. Isopropylbenzene is formally rated as a possible carcinogen (by IARC 2B) and is also a potentially toxic compound. Isopropylbenzene is a component of petroleum destillates. Petroleum distillate poisoning may cause nausea, vomiting, cough, pulmonary irritation progressing to pulmonary edema, bloody sputum, and bronchial pneumonia. Petroleum distillates are also irritating to the skin. Petroleum distillates are aspiration hazards and may cause pulmonary damage, central nervous system depression, and cardiac effects such as cardiac arrhythmias. They may also affect the blood, immune system, liver, and kidney. At high amounts, central nervous system depression may also occur, with symptoms such as weakness, dizziness, slow and shallow respiration, unconsciousness, and convulsions. Gastric lavage, emesis, and the administration of activated charcoal should be avoided, as vomiting increases the risk of aspiration. Treatment is mainly symptomatic and supportive. Volatile hydrocarbons are absorbed mainly through the lungs, and may also enter the body after ingestion via aspiration. Trace constituent of ginger oil (Zingiber officinale)

   

Dihydrogenistein

2,3-Dihydro-5,7-dihydroxy-3-(4-hydroxyphenyl)-4H-1-benzopyran-4-one

C15H12O5 (272.0685)


Dihydrogenistein is a metabolite of the soy isoflavone genistin (the glycoside conjugate of genistein) by intestinal bacteria. Isoflavones are one of the three major classes of phytoestrogens; phytoestrogens are a diverse group of plant-derived compounds that structurally and functionally mimic mammalian estrogen. The isoflavone genistin is one of the most prevalent in soy foods. They are biologically inactive; once ingested, they are cleaved by glucosidases to "aglycones", genistein. Epidemiological studies have associated high soy intake with a lowered risk for certain hormone-dependent disease. Many studies reveal that the incidence of prostate cancer and breast cancer is much lower in Asian people in comparison to people from the West and, and the prevailing contribution to this difference has been attributed to the diet. Soy foods and soy-derived products which contain abundant isoflavones are consumed in large quantities by Asian people. In vitro, isoflavone metabolites have dual functions: they can act as an estrogenic agonist or antagonist depending on the estrogen concentration. (PMID: 17499260, 16965913) [HMDB]. Dihydrogenistein is a biomarker for the consumption of soy beans and other soy products. Dihydrogenistein is a metabolite of the soy isoflavone genistin (the glycoside conjugate of genistein) by intestinal bacteria. Isoflavones are one of the three major classes of phytoestrogens; phytoestrogens are a diverse group of plant-derived compounds that structurally and functionally mimic mammalian estrogen. The isoflavone genistin is one of the most prevalent in soy foods. They are biologically inactive; once ingested, they are cleaved by glucosidases to "aglycones", genistein. Epidemiological studies have associated high soy intake with a lowered risk for certain hormone-dependent disease. Many studies reveal that the incidence of prostate cancer and breast cancer is much lower in Asian people in comparison to people from the West and, and the prevailing contribution to this difference has been attributed to the diet. Soy foods and soy-derived products which contain abundant isoflavones are consumed in large quantities by Asian people. In vitro, isoflavone metabolites have dual functions: they can act as an estrogenic agonist or antagonist depending on the estrogen concentration. (PMID: 17499260, 16965913). Dihydrogenistein is a biomarker for the consumption of soy beans and other soy products.

   

N,N'-Diphenyl-p-phenylenediamine

N,N-DIPHENYL-1,4-PHENYLENEDIAMINE

C18H16N2 (260.1313)


D020011 - Protective Agents > D000975 - Antioxidants

   

2-Ethoxyethanol

Ether monoethylique de lethylene-glycol

C4H10O2 (90.0681)


2-Ethoxyethanol is a diluent in colour additive mixtures for marking food. 2-Ethoxyethanol, also known by the trademark Cellosolve or ethyl cellosolve, is a solvent used widely in commercial and industrial applications. It is a clear, colorless, nearly odorless liquid that is miscible with water, ethanol, diethyl ether, acetone, and ethyl acetate. As with other glycol ethers, 2-ethoxyethanol has the useful property of being able to dissolve chemically diverse compounds. It will dissolve oils, resins, grease, waxes, nitrocellulose, and lacquers. This is an ideal property as a multi-purpose cleaner and therefore 2-ethoxyethanol is used in products such as varnish removers and degreasing solutions

   

4-Bromocatechol

4-bromobenzene-1,2-diol

C6H5BrO2 (187.9473)


4-Bromocatechol is classified as a member of the Catechols. Catechols are compounds containing a 1,2-benzenediol moiety. 4-Bromocatechol is considered to be soluble (in water) and acidic

   

Hexakis(2-methyl-2-phenylpropyl)distannoxane

tris(2-methyl-2-phenylpropyl)({[tris(2-methyl-2-phenylpropyl)stannyl]oxy})stannane

C60H78OSn2 (1054.4096)


Miticide for use on fruit and vegetable crop

   

Chloroxanthin

Chloroxanthin/ Hydroxyneurosporene/ OH-Neurosporene

C40H60O (556.4644)


A carotenol obtained by formal hydration across the double bonds at position 1 of neurosporene.

   

Staphyloxanthin

2,6,10,15,19,23-hexamethyltetracosa-2E,4E,6E,8E,10E,12E,14E,16E,18E,22-decaenoyl]-6-O-(12-methyltetradecanoyl)-beta-D-glucopyranose

C51H78O8 (818.5696)


A xanthophyll that is beta-D-glucopyranose in which the hydroxy groups at positions 1 and 6 have been acylated by an all-trans-2,6,10,15,19,23-hexamethyltetracosa-2,4,6,8,10,12,14,16,18,22-decaenoyl group and a 12-methyltetradecanoyl group, respectively. Staphyloxanthin is responsible for the characteristic yellow-golden colour which gives the bacterium Staphylococcus aureus its name. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

(5Z,8Z,11Z,14Z,17Z)-Icosapentaenoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-3-{[2-({2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoylsulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}-2,2-dimethylpropoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C41H64N7O17P3S (1051.3292)


This compound belongs to the family of Acyl CoAs. These are organic compounds contaning a coenzyme A substructure linked to another moeity through an ester bond.

   

Cervonyl coenzyme A

(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl-CoA;(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl-coenzyme A;(4Z,7Z,10Z,13Z,16Z,19Z)-docosahexaenoyl-coenzyme A;4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl-CoA;4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl-coenzyme A;CoA(22:6(4Z,7Z,10Z,13Z,16Z,19Z));DHA-CoA

C43H66N7O17P3S (1077.3449)


This compound belongs to the family of Acyl CoAs. These are organic compounds contaning a coenzyme A substructure linked to another moeity through an ester bond.

   

Cyclopropanecarboxylic acid

Cyclopropane carboxylic acid

C4H6O2 (86.0368)


   

Lignocericyl coenzyme A

(2R)-4-({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-3,3-dimethyl-N-(2-{[2-(tetracosanoylsulfanyl)ethyl]-C-hydroxycarbonimidoyl}ethyl)butanimidic acid

C45H82N7O17P3S (1117.4701)


This compound belongs to the family of Acyl CoAs. These are organic compounds contaning a coenzyme A substructure linked to another moeity through an ester bond.

   

3-Oxovalproic acid

2-N-Propyl-3-oxopentanoic acid

C8H14O3 (158.0943)


3-Oxovalproic acid is a metabolite of valproic acid. Valproic acid (VPA) is a chemical compound and an acid that has found clinical use as an anticonvulsant and mood-stabilizing drug, primarily in the treatment of epilepsy, bipolar disorder, and, less commonly, major depression. It is also used to treat migraine headaches and schizophrenia. VPA is a liquid at room temperature, but it can be reacted with a base such as sodium hydroxide to form the salt sodium valproate, which is a solid. (Wikipedia)

   

Mannopine

AGN-PC-0OKTBE

C11H22N2O8 (310.1376)


A hexitol derivative that is D-mannitol in which the hydroxy group at position 1 is replaced by the alpha-amino group of L-glutamine. It is produced in crown gall tumours induced in a wide range of dicotyledenous plants by Agrobacterium tumefaciens.

   

Dopamine quinone

Dopaminoquinone;dopamine o-quinone;DoQ;4-(2-aminoethyl)-1,2-benzoquinone;4-(2-aminoethyl)-O-benzoquinone

C8H9NO2 (151.0633)


Dopamine-quinone is synthesized by oxidation of the catechol ring of dopamine. If this occurs within the neuronal cytosol, the quinone may react with cytosolic components, particularly with cysteine residues. (PMID: 12835101). Dopamine quinone is produce by the reaction between dopamine and oxygen, with water as the byproduct. The reaction is catalyzed by the tyrosinase precursor. Dopamine-quinone is synthesized by oxidation of the catechol ring of dopamine. If this occurs within the neuronal cytosol, the quinone may react with cytosolic components, particularly with cysteine residues. (PMID: 12835101)

   

D-Gulono-1,4-lactone

5-(1,2-dihydroxyethyl)-3,4-dihydroxyoxolan-2-one

C6H10O6 (178.0477)


Acquisition and generation of the data is financially supported in part by CREST/JST. 1,4-D-Gulonolactone is an endogenous metabolite.

   

D-Phenyllactic acid

(R)-alpha-Hydroxy-3-phenylpropionic acid

C9H10O3 (166.063)


Phenyllactic acid is a product of phenylalanine catabolism. An elevated level of phenyllactic acid is found in body fluids of patients with or phenylketonuria. (+)-3-Phenyllactic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=7326-19-4 (retrieved 2024-07-04) (CAS RN: 7326-19-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (S)-2-Hydroxy-3-phenylpropanoic acid is a product of phenylalanine catabolism. An elevated level of phenyllactic acid is found in body fluids of patients with or phenylketonuria. D-?(+)?-?Phenyllactic acid is an anti-bacterial agent, excreted by Geotrichum candidum, inhibits a range of Gram-positive from humans and foodstuffs and Gram-negative bacteria found in humans[1]. DL-3-Phenyllactic acid is a broad-spectrum antimicrobial compound. DL-3-Phenyllactic acid is a broad-spectrum antimicrobial compound.

   

Butyryl-CoA

{[5-(6-amino-9H-purin-9-yl)-2-[({[({3-[(2-{[2-(butanoylsulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]-3-hydroxy-2,2-dimethylpropoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)methyl]-4-hydroxyoxolan-3-yl]oxy}phosphonic acid

C25H42N7O17P3S (837.1571)


Butyryl-CoA is an intermediate in the metabolism of Butanoate. It is a substrate for Acyl-coenzyme A oxidase 3 (peroxisomal), 3-ketoacyl-CoA thiolase (mitochondrial), 3-ketoacyl-CoA thiolase (peroxisomal), Acyl-coenzyme A oxidase 1 (peroxisomal), Acyl-CoA dehydrogenase (medium-chain specific, mitochondrial), Acyl-CoA dehydrogenase (long-chain specific, mitochondrial), Acyl-coenzyme A oxidase 2 (peroxisomal), Acetyl-CoA acetyltransferase (mitochondrial), Acetyl-CoA acetyltransferase (cytosolic), Acyl-CoA dehydrogenase (short-chain specific, mitochondrial) and Trifunctional enzyme beta subunit (mitochondrial).

   

Tauroursodeoxycholic acid

2-[(4R)-4-[(1S,2S,5R,9S,10R,11S,14R,15R)-5,9-dihydroxy-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-14-yl]pentanamido]ethane-1-sulfonic acid

C26H45NO6S (499.2967)


Tauroursodeoxycholic acid is a bile acid also known as TUDCA formed in the liver by conjugation of deoxycholate with taurine, usually as the sodium salt. TUDCA is able to prevent apoptosis and protect mitochondria from cellular elements that would otherwise interfere with energy production. One of these elements is a protein called Bax. TUDCA plays an important role in preventing Bax from being transported to the mitochondria. Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g., membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues. (PMID: 11316487, 16037564, 12576301, 11907135) [HMDB] Tauroursodeoxycholic acid is a bile acid also known as TUDCA formed in the liver by conjugation of deoxycholate with taurine, usually as the sodium salt. TUDCA is able to prevent apoptosis and protect mitochondria from cellular elements that would otherwise interfere with energy production. One of these elements is a protein called Bax. TUDCA plays an important role in preventing Bax from being transported to the mitochondria. Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, depending only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids D013501 - Surface-Active Agents > D003902 - Detergents Taurochenodeoxycholic acid (12-Deoxycholyltaurine) is one of the main bioactive substances of animals' bile acid. Taurochenodeoxycholic acid induces apoptosis and shows obvious anti-inflammatory and immune regulation properties[1][2]. Tauroursodeoxycholate (Tauroursodeoxycholic acid) is an endoplasmic reticulum (ER) stress inhibitor. Tauroursodeoxycholate significantly reduces expression of apoptosis molecules, such as caspase-3 and caspase-12. Tauroursodeoxycholate also inhibits ERK. Tauroursodeoxycholate (Tauroursodeoxycholic acid) is an endoplasmic reticulum (ER) stress inhibitor. Tauroursodeoxycholate significantly reduces expression of apoptosis molecules, such as caspase-3 and caspase-12. Tauroursodeoxycholate also inhibits ERK.

   

Timnodonyl CoA

(2R)-4-({[({[(2R,3R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-N-[2-({2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoylsulphanyl]ethyl}-C-hydroxycarbonimidoyl)ethyl]-3,3-dimethylbutanimidic acid

C41H64N7O17P3S (1051.3292)


Timnodonyl coenzyme A is an intermediate in the biosynthesis of fatty acids. Timnodonyl CoA is produced from linolenyl- CoA.

   

L-Dihydroorotic acid

(4S)-2,6-dioxo-1,3-diazinane-4-carboxylic acid

C5H6N2O4 (158.0328)


L-Dihydroorotic acid, also known as (S)-4,5-dihydroorotate or dihydro-L-orotate, belongs to the class of organic compounds known as alpha amino acids and derivatives. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon), or a derivative thereof. 4,5-Dihydroorotic acid is a derivative of orotic acid which serves as an intermediate in pyrimidine biosynthesis. L-Dihydroorotic acid is a drug. L-Dihydroorotic acid exists in all living species, ranging from bacteria to humans. Within humans, L-dihydroorotic acid participates in a number of enzymatic reactions. In particular, L-dihydroorotic acid can be biosynthesized from ureidosuccinic acid; which is catalyzed by the enzyme cad protein. In addition, L-dihydroorotic acid and quinone can be converted into orotic acid through the action of the enzyme dihydroorotate dehydrogenase (quinone), mitochondrial. In humans, L-dihydroorotic acid is involved in the metabolic disorder called the beta-ureidopropionase deficiency pathway. Outside of the human body, L-dihydroorotic acid has been detected, but not quantified in several different foods, such as black chokeberries, vanilla, sweet basils, soy beans, and broad beans. L-Dihydroorotic acid is an intermediate in the metabolism of Pyrimidine. It is a substrate for Dihydroorotate dehydrogenase (mitochondrial). [HMDB]. L-Dihydroorotic acid is found in many foods, some of which are lemon balm, eggplant, arrowhead, and european cranberry. L-Dihydroorotic acid can reversibly hydrolyze to yield the acyclic L-ureidosuccinic acid by dihydrowhey enzyme[1].

   

Octadec-9-enoic Acid

Delta(9)-Octadecenoic acid

C18H34O2 (282.2559)


Octadec-9-enoic Acid, also known as 18:1, N-9 or Delta(9)-Octadecenoic acid, is classified as a member of the Long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Octadec-9-enoic Acid is considered to be practically insoluble (in water) and acidic. Octadec-9-enoic Acid can be synthesized from octadec-9-ene. It is also a parent compound for other transformation products, including but not limited to, 1-octadec-9-enoylglycero-3-phosphate, N-(2-hydroxy-1-methylethyl)-9-octadecenamide, and sterculic acid

   

(2R,3S)-Epoxiconazole

(2Rs,35R) 1-(3-(2-Chlorophenyl)-2,3-epoxy-2-(4-fluorophenyl)propyl)-1H-1,2,4-triazole

C17H13ClFN3O (329.0731)


D016573 - Agrochemicals D010575 - Pesticides

   

Fungizone

33-[(4-amino-3,5-dihydroxy-6-methyloxan-2-yl)oxy]-1,3,5,6,9,11,17,37-octahydroxy-15,16,18-trimethyl-13-oxo-14,39-dioxabicyclo[33.3.1]nonatriaconta-19,21,23,25,27,29,31-heptaene-36-carboxylic acid

C47H73NO17 (923.4878)


   

3-Chloro-D-alanine

3-Chloroalanine hydrochloride, (DL-ala)-isomer

C3H6ClNO2 (123.0087)


   

2,3-Dihydroxypropyl dodecanoate

Dodecanoic acid, 2,3-dihydroxypropyl ester

C15H30O4 (274.2144)


D020011 - Protective Agents > D002327 - Cariostatic Agents D001697 - Biomedical and Dental Materials D013501 - Surface-Active Agents

   

(8R)-3-[(4S,5R)-4-Hydroxy-5-(hydroxymethyl)oxolan-2-yl]-7,8-dihydro-4H-imidazo[4,5-d][1,3]diazepin-8-ol

(8R)-3-[(4S,5R)-4-Hydroxy-5-(hydroxymethyl)oxolan-2-yl]-7,8-dihydro-4H-imidazo[4,5-d][1,3]diazepin-8-ol

C11H16N4O4 (268.1171)


D000970 - Antineoplastic Agents > D000903 - Antibiotics, Antineoplastic > D005573 - Formycins D004791 - Enzyme Inhibitors > D058892 - Adenosine Deaminase Inhibitors

   

D-Gluconic acid, delta-lactone

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-one

C6H10O6 (178.0477)


   

9Z,12E-Octadecadienoic acid

Linoleic acid, potassium salt, (Z,Z)-isomer

C18H32O2 (280.2402)


   

Lonol

N,N-Dimethyl-3-[[1-(phenylmethyl)-3-indazolyl]oxy]-1-propanamine

C19H23N3O (309.1841)


M - Musculo-skeletal system > M02 - Topical products for joint and muscular pain > M02A - Topical products for joint and muscular pain > M02AA - Antiinflammatory preparations, non-steroids for topical use G - Genito urinary system and sex hormones > G02 - Other gynecologicals > G02C - Other gynecologicals > G02CC - Antiinflammatory products for vaginal administration M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic R - Respiratory system > R02 - Throat preparations > R02A - Throat preparations D000893 - Anti-Inflammatory Agents

   

Cynisin

10-(Hydroxymethyl)-6-methyl-3-methylidene-2-oxo-2H,3H,3ah,4H,5H,8H,9H,11ah-cyclodeca[b]furan-4-yl 3,4-dihydroxy-2-methylidenebutanoic acid

C20H26O7 (378.1678)


   

(3S,5R)-7-[3-(4-Fluorophenyl)-1-propan-2-yl-2-indolyl]-3,5-dihydroxy-6-heptenoic acid

(3S,5R)-7-[3-(4-Fluorophenyl)-1-propan-2-yl-2-indolyl]-3,5-dihydroxy-6-heptenoic acid

C24H26FNO4 (411.1846)


   

Fenpyroximate

tert-butyl 4-[({[(1,3-dimethyl-5-phenoxy-1H-pyrazol-4-yl)methylidene]amino}oxy)methyl]benzoate

C24H27N3O4 (421.2001)


   

Sudan III

1-{2-[4-(2-phenyldiazen-1-yl)phenyl]diazen-1-yl}naphthalen-2-ol

C22H16N4O (352.1324)


D004396 - Coloring Agents

   

sn-Glycero-3-phosphocholine

2-(((R)-2,3-Dihydroxypropyl)phosphoryloxy)-N,N,N-trimethylethanaminium

[C8H21NO6P]+ (258.1106)


   

3-methyl-2-oxovalerate

(3S)-3-Methyl-2-oxopentanoic acid

C6H10O3 (130.063)


3-Methyl-2-oxovaleric acid is a neurotoxin, an acidogen, and a metabotoxin, and also an abnormal metabolite that arises from the incomplete breakdown of branched-chain amino acids.

   

D-3-phenyllactic acid

(2R)-2-hydroxy-3-phenylpropanoic acid

C9H10O3 (166.063)


D-?(+)?-?Phenyllactic acid is an anti-bacterial agent, excreted by Geotrichum candidum, inhibits a range of Gram-positive from humans and foodstuffs and Gram-negative bacteria found in humans[1]. DL-3-Phenyllactic acid is a broad-spectrum antimicrobial compound. DL-3-Phenyllactic acid is a broad-spectrum antimicrobial compound.

   

Taurochenodeoxycholate

2-[(3a,7a-dihydroxy-24-oxo-5beta-cholan-24-yl)amino]ethanesulfonate

C26H45NO6S (499.2967)


D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids D013501 - Surface-Active Agents > D003902 - Detergents Taurochenodeoxycholic acid (12-Deoxycholyltaurine) is one of the main bioactive substances of animals' bile acid. Taurochenodeoxycholic acid induces apoptosis and shows obvious anti-inflammatory and immune regulation properties[1][2].

   

Ketoleucine

4-methyl-2-oxopentanoic acid

C6H10O3 (130.063)


4-Methyl-2-oxopentanoic acid (α-Ketoisocaproic acid), an abnormal metabolite, is both a neurotoxin and a metabotoxin.

   

FA 7:0

n-heptanoic acid

C7H14O2 (130.0994)


   

C11:0

Hendecanoic acid

C11H22O2 (186.162)


C254 - Anti-Infective Agent > C514 - Antifungal Agent Undecanoic acid (Undecanoate) is a monocarboxylic acid with antimycotic property, which inhibits the production of exocellular keratinase, lipase and the biosynthesis of several phospholipids in T. rubrum[1]. Undecanoic acid (Undecanoate) is a monocarboxylic acid with antimycotic property, which inhibits the production of exocellular keratinase, lipase and the biosynthesis of several phospholipids in T. rubrum[1].

   

Glycodeoxycholate

N-(3alpha,12alpha-dihydroxy-5beta-cholan-24-oyl)glycine

C26H43NO5 (449.3141)


D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids D013501 - Surface-Active Agents > D003902 - Detergents Glycodeoxycholic Acid is an endogenous metabolite. Glycodeoxycholic Acid is an endogenous metabolite.

   

FA 22:5

(7Z,10Z,13Z,16Z,19Z)-Docosa-7,10,13,16,19-pentaenoic acid

C22H34O2 (330.2559)


Docosapentaenoic acid (22n-3) is a component of phospholipids found in all animal cell membranes.

   

trans-Piceid

(2S,3R,4S,5S,6R)-2-[3-hydroxy-5-[(E)-2-(4-hydroxyphenyl)vinyl]phenoxy]-6-(hydroxymethyl)tetrahydropyran-3,4,5-triol

C20H22O8 (390.1315)


Trans-piceid is a stilbenoid that is trans-resveratrol substituted at position 3 by a beta-D-glucosyl residue. It has a role as a metabolite, a potassium channel modulator, an anti-arrhythmia drug, a hepatoprotective agent, an antioxidant, a nephroprotective agent and a geroprotector. It is a stilbenoid, a polyphenol, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a trans-resveratrol. Polydatin, or Piceid, is a natural precursor and glycoside form of resveratrol with a monocrystalline structure. While it is isolated from the bark of *Picea sitchensis* or *Polygonum cuspidatum*, polydatin may be detected in grape, peanut, hop cones, red wines, hop pellets, cocoa-containing products, chocolate products and many daily diets. Polydatin possesses anti-inflammatory, immunoregulatory, anti-oxidative and anti-tumor activities. It is shown to mediate a cytotoxic action on colorectal cancer cells by inducing cell arrest and apoptosis. Polydatin is a natural product found in Vitis rupestris, Vitis labrusca, and other organisms with data available. trans-Piceid is found in alcoholic beverages. trans-Piceid is present in grapeskins and red wine. It is isolated from Polygonum cuspidatum (Japanese knotweed).Piceid is a stilbenoid glucoside and is a major resveratrol derivative in grape juices A stilbenoid that is trans-resveratrol substituted at position 3 by a beta-D-glucosyl residue. (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses. Polydatin (Standard) is the analytical standard of Polydatin. This product is intended for research and analytical applications. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses.

   

Pyo II

2-n-Heptyl-4-hydroxyquinoline N-oxide

C16H21NO2 (259.1572)


HQNO, secreted by P. aeruginosa, is a potent electron transport chain inhibitor with a Kd of 64 nM for complex III[1]. HQNO is a potent inhibitor of mitochondrial NDH-2 in many species[2]. HQNO, secreted by P. aeruginosa, is a potent electron transport chain inhibitor with a Kd of 64 nM for complex III[1]. HQNO is a potent inhibitor of mitochondrial NDH-2 in many species[2].

   

Butylbenzene

n-Butylbenzene

C10H14 (134.1095)


   

4-hydroxyproline

cis-4-Hydroxy-L-proline

C5H9NO3 (131.0582)


A monohydroxyproline where the hydroxy group is located at the 4-position. It is found in fibrillar collagen. MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; PMMYEEVYMWASQN_STSL_0115_4-Hydroxyproline_8000fmol_180430_S2_LC02_MS02_67; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. cis-4-Hydroxy-L-proline, a proline analogue, is an inhibitor of collagen production. cis-4-Hydroxy-L-proline could inhibit fibroblast growth by preventing the deposition of triple-helical collagen on the cell layer. cis-4-Hydroxy-L-proline also depresses the growth of primary N-nitrosomethylurea-induced rat mammary tumors[1][2][3][4]. cis-4-Hydroxy-L-proline, a proline analogue, is an inhibitor of collagen production. cis-4-Hydroxy-L-proline could inhibit fibroblast growth by preventing the deposition of triple-helical collagen on the cell layer. cis-4-Hydroxy-L-proline also depresses the growth of primary N-nitrosomethylurea-induced rat mammary tumors[1][2][3][4]. L-Hydroxyproline, one of the hydroxyproline (Hyp) isomers, is a useful chiral building block in the production of many pharmaceuticals. L-Hydroxyproline, one of the hydroxyproline (Hyp) isomers, is a useful chiral building block in the production of many pharmaceuticals.

   

Gluconolactone

d-(+)-glucono-1,5-lactone

C6H10O6 (178.0477)


C26170 - Protective Agent > C275 - Antioxidant D-(+)-Glucono-1,5-lactone is a polyhydroxy (PHA) that is capable of metal chelating, moisturizing and antioxidant activity.

   

Prunin

(S)-5-Hydroxy-2-(4-hydroxyphenyl)-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)chroman-4-one

C21H22O10 (434.1213)


Naringenin 7-O-beta-D-glucoside is a flavanone 7-O-beta-D-glucoside that is (S)-naringenin substituted by a beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as a metabolite, a hypoglycemic agent, an antilipemic drug and an antibacterial agent. It is a flavanone 7-O-beta-D-glucoside, a dihydroxyflavanone, a monosaccharide derivative, a member of 4-hydroxyflavanones and a (2S)-flavan-4-one. It is functionally related to a (S)-naringenin. Prunin is a natural product found in Prunus mume, Podocarpus nivalis, and other organisms with data available. A flavanone 7-O-beta-D-glucoside that is (S)-naringenin substituted by a beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. Prunin is a potent inhibitor of human enterovirus A71 (HEVA71). Prunin shows strong inhibitory activity against protein tyrosine phosphatase 1B (PTP1B), with an IC50 of 5.5 μM[1][2]. Prunin is a potent inhibitor of human enterovirus A71 (HEVA71). Prunin shows strong inhibitory activity against protein tyrosine phosphatase 1B (PTP1B), with an IC50 of 5.5 μM[1][2].

   

BENZYDAMINE

BENZYDAMINE

C19H23N3O (309.1841)


M - Musculo-skeletal system > M02 - Topical products for joint and muscular pain > M02A - Topical products for joint and muscular pain > M02AA - Antiinflammatory preparations, non-steroids for topical use G - Genito urinary system and sex hormones > G02 - Other gynecologicals > G02C - Other gynecologicals > G02CC - Antiinflammatory products for vaginal administration M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic R - Respiratory system > R02 - Throat preparations > R02A - Throat preparations D000893 - Anti-Inflammatory Agents

   

Tetracosanoyl-CoA

{[(2R,4S,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-2,2-dimethyl-3-[(2-{[2-(tetracosanoylsulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]propoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C45H82N7O17P3S (1117.4701)


Tetracosanoyl-CoA is an intermediate in the biosynthesis of unsaturated fatty acids. Tetracosanoyl-CoA is converted from Palmitoyl-CoA in multiple steps. It is then converted to lignoceric acid via a thiol-ester hydrolase (E 3.1.2.-). [HMDB] Tetracosanoyl-CoA is an intermediate in the biosynthesis of unsaturated fatty acids. Tetracosanoyl-CoA is converted from Palmitoyl-CoA in multiple steps. It is then converted to lignoceric acid via a thiol-ester hydrolase (E 3.1.2.-).

   

Lasiocarpine

2-BUTENOIC ACID, 2-METHYL-, 7-((2,3-DIHYDROXY-2-(1-METHOXYETHYL)-3-METHYL-1-OXOBUTOXY)METHYL)-2,3,5,7A-TETRAHYDRO-1H-PYRROLIZIN-1-YL ESTER, (1S-(1.ALPHA.(Z),7(S*(R*)),7A.ALPHA.))-

C21H33NO7 (411.2257)


Lasiocarpine appears as colorless plates or beige crystalline solid. (NTP, 1992) Lasiocarpine is a natural product found in Heliotropium arbainense, Heliotropium suaveolens, and other organisms with data available. See also: Comfrey Leaf (part of); Comfrey Root (part of).

   

Flusilazole

Pesticide6_Flusilazole_C16H15F2N3Si_1-[(Bis(4-fluorophenyl)methylsilyl)methyl]-1H-1,2,4-triazole

C16H15F2N3Si (315.1003)


D016573 - Agrochemicals D010575 - Pesticides CONFIDENCE standard compound; EAWAG_UCHEM_ID 97

   

MONURON

MONURON

C9H11ClN2O (198.056)


CONFIDENCE standard compound; EAWAG_UCHEM_ID 161

   

dicamba

dicamba

C8H6Cl2O3 (219.9694)


D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals CONFIDENCE standard compound; EAWAG_UCHEM_ID 275

   

CAPTAN

CAPTAN

C9H8Cl3NO2S (298.9341)


D016573 - Agrochemicals D010575 - Pesticides CONFIDENCE standard compound; EAWAG_UCHEM_ID 3039

   

fluvastatin

(6E)-7-[3-(4-fluorophenyl)-1-(propan-2-yl)-1H-indol-2-yl]-3,5-dihydroxyhept-6-enoic acid

C24H26FNO4 (411.1846)


C78276 - Agent Affecting Digestive System or Metabolism > C29703 - Antilipidemic Agent C471 - Enzyme Inhibitor > C1655 - HMG-CoA Reductase Inhibitor CONFIDENCE standard compound; EAWAG_UCHEM_ID 3136 Fluvastatin (XU 62-320 free acid) is a first fully synthetic, competitive HMG-CoA reductase inhibitor with an IC50 of 8 nM. Fluvastatin protects vascular smooth muscle cells against oxidative stress through the Nrf2-dependent antioxidant pathway[1][2][3].

   

Diethyltoluamide

N,N-Diethyl-3-methylbenzamide

C12H17NO (191.131)


P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03B - Insecticides and repellents D010575 - Pesticides > D007302 - Insect Repellents D020011 - Protective Agents D016573 - Agrochemicals Same as: D02379 CONFIDENCE Reference Standard (Level 1)

   

undecenoic acid

10c-Undecenoic acid

C11H20O2 (184.1463)


D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use C254 - Anti-Infective Agent > C514 - Antifungal Agent 10-Undecenoic acid is used as a starting agent in the synthesis of Pheromone (11Z)-hexadecenal. 10-Undecenoic acid is used as a starting agent in the synthesis of Pheromone (11Z)-hexadecenal.

   

Kaempferol-3-rutinoside

Kaempferol-7-O-neohesperidoside

C27H30O15 (594.1585)


Kaempferol 3-rhamno-glucoside, also known as nicotiflorin or kaempferol 3-rutinoside, is a member of the class of compounds known as flavonoid-3-o-glycosides. Flavonoid-3-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. Kaempferol 3-rhamno-glucoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Kaempferol 3-rhamno-glucoside can be found in ginkgo nuts and tea, which makes kaempferol 3-rhamno-glucoside a potential biomarker for the consumption of these food products. Acquisition and generation of the data is financially supported in part by CREST/JST. Nicotiflorin is a flavonoid glycoside extracted from a traditional Chinese medicine Carthamus tinctorius. Nicotiflorin shows potent antiglycation activity and neuroprotection effects. Nicotiflorin is a flavonoid glycoside extracted from a traditional Chinese medicine Carthamus tinctorius. Nicotiflorin shows potent antiglycation activity and neuroprotection effects.

   

ALFENTANIL

ALFENTANIL

C21H32N6O3 (416.2536)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general > N01AH - Opioid anesthetics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D000700 - Analgesics

   

dihydroergotamine

dihydroergotamine

C33H37N5O5 (583.2795)


Ergotamine in which a single bond replaces the double bond between positions 9 and 10. A semisynthetic ergot alkaloid with weaker oxytocic and vasoconstrictor properties than ergotamine, it is used (as the methanesulfonic or tartaric acid salts) for the treatment of migraine and orthostatic hypotension. N - Nervous system > N02 - Analgesics > N02C - Antimigraine preparations > N02CA - Ergot alkaloids C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018491 - Dopamine Agonists D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C66884 - Dopamine Agonist D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents D002491 - Central Nervous System Agents > D000700 - Analgesics relative retention time with respect to 9-anthracene Carboxylic Acid is 0.880 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.878 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.874

   

thiethylperazine

thiethylperazine

C22H29N3S2 (399.1803)


R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AD - Phenothiazine derivatives D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent D005765 - Gastrointestinal Agents > D000932 - Antiemetics D002491 - Central Nervous System Agents Thiethylperazine, a phenothiazine derivate, is an orally active and potent dopamine D2-receptor and histamine H1-receptor antagonist. Thiethylperazine is also a selective ABCC1activator that reduces amyloid-β (Aβ) load in mice. Thiethylperazine has anti-emetic, antipsychotic and antimicrobial effects[1][2][3].

   
   

3-Adenylic acid

Adenosine 3-monophosphate From Yeast

C10H14N5O7P (347.0631)


relative retention time with respect to 9-anthracene Carboxylic Acid is 0.055 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.056

   

FLUOCINONIDE

FLUOCINONIDE

C26H32F2O7 (494.2116)


C - Cardiovascular system > C05 - Vasoprotectives > C05A - Agents for treatment of hemorrhoids and anal fissures for topical use > C05AA - Corticosteroids D - Dermatologicals > D07 - Corticosteroids, dermatological preparations > D07A - Corticosteroids, plain > D07AC - Corticosteroids, potent (group iii) D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D005938 - Glucocorticoids C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D000893 - Anti-Inflammatory Agents D018926 - Anti-Allergic Agents

   

L-Dihydroorotic acid

(S)-dihydroorotic acid

C5H6N2O4 (158.0328)


The (S)-enantiomer of dihydroorotic acid that is an intermediate in the metabolism of pyridine. L-Dihydroorotic acid can reversibly hydrolyze to yield the acyclic L-ureidosuccinic acid by dihydrowhey enzyme[1].

   

N-Acetyl-L-leucine

N-Acetyl-L-leucine

C8H15NO3 (173.1052)


The N-acetyl derivative of L-leucine. N-Acetyl-L-leucine is an endogenous metabolite.

   

Cytidine diphosphate

Cytidine-5-diphosphate sodium salt hydrate,from yeast

C9H15N3O11P2 (403.0182)


   

Orotic acid

Orotic acid ,Anhydrous

C5H4N2O4 (156.0171)


A pyrimidinemonocarboxylic acid that is uracil bearing a carboxy substituent at position C-6. Orotic acid (6-Carboxyuracil), a precursor in biosynthesis of pyrimidine nucleotides and RNA, is released from the mitochondrial dihydroorotate dehydrogenase (DHODH) for conversion to UMP by the cytoplasmic UMP synthase enzyme. Orotic acid is a marker for measurement in routine newborn screening for urea cycle disorders. Orotic acid can induce hepatic steatosis and hepatomegaly in rats[1][2][3].

   

UNDECANOIC ACID

UNDECANOIC ACID

C11H22O2 (186.162)


A straight-chain, eleven-carbon saturated medium-chain fatty acid found in body fluids; the most fungitoxic of the C7:0 - C18:0 fatty acid series. C254 - Anti-Infective Agent > C514 - Antifungal Agent Undecanoic acid (Undecanoate) is a monocarboxylic acid with antimycotic property, which inhibits the production of exocellular keratinase, lipase and the biosynthesis of several phospholipids in T. rubrum[1]. Undecanoic acid (Undecanoate) is a monocarboxylic acid with antimycotic property, which inhibits the production of exocellular keratinase, lipase and the biosynthesis of several phospholipids in T. rubrum[1].

   

Behenic acid

Docosanoic acid

C22H44O2 (340.3341)


A straight-chain, C22, long-chain saturated fatty acid. Docosanoic acid is poorly absorbed, and a cholesterol-raising saturated fatty acid in humans. Docosanoic acid is poorly absorbed, and a cholesterol-raising saturated fatty acid in humans.

   

benthiocarb

Pesticide3_Thiobencarb_C12H16ClNOS_S-(4-Chlorobenzyl) diethylcarbamothioate

C12H16ClNOS (257.0641)


D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

temephos

Pesticide1_Temephos_C16H20O6P2S3_O,O,O,O-Tetramethyl O,O-(sulfanediyldi-4,1-phenylene) bis(phosphorothioate)

C16H20O6P2S3 (465.9897)


D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

2-FUROIC ACID

2-FUROIC ACID

C5H4O3 (112.016)


A furoic acid having the carboxylic acid group located at position 2. 2-Furoic acid (Furan-2-carboxylic acid) is an organic compound produced through furfural oxidation[1]. 2-Furoic acid exhibits hypolipidemic effet, lowers both serum cholesterol and serum triglyceride levels in rats[2]. 2-Furoic acid (Furan-2-carboxylic acid) is an organic compound produced through furfural oxidation[1]. 2-Furoic acid exhibits hypolipidemic effet, lowers both serum cholesterol and serum triglyceride levels in rats[2]. 2-Furoic acid (Furan-2-carboxylic acid) is an organic compound produced through furfural oxidation[1]. 2-Furoic acid exhibits hypolipidemic effet, lowers both serum cholesterol and serum triglyceride levels in rats[2].

   

Ketoleucine

4-methyl-2-oxopentanoic acid

C6H10O3 (130.063)


A 2-oxo monocarboxylic acid that is pentanoic acid (valeric acid) substituted with a keto group at C-2 and a methyl group at C-4. A metabolite that has been found to accumulate in maple syrup urine disease. 4-Methyl-2-oxopentanoic acid (α-Ketoisocaproic acid), an abnormal metabolite, is both a neurotoxin and a metabotoxin.

   

Cholestenone

Cholestenone (delta 4)

C27H44O (384.3392)


Cholestenone (4-Cholesten-3-one), the intermediate oxidation product of cholesterol, is metabolized primarily in the liver. Cholestenone is highly mobile in membranes and influences cholesterol flip-flop and efflux. Cholestenone may cause long-term functional defects in cells[1][2]. Cholestenone (4-Cholesten-3-one), the intermediate oxidation product of cholesterol, is metabolized primarily in the liver. Cholestenone is highly mobile in membranes and influences cholesterol flip-flop and efflux. Cholestenone may cause long-term functional defects in cells[1][2].

   

Desaminotyrosine

3-(4-Hydroxyphenyl)propionic acid

C9H10O3 (166.063)


Desaminotyrosine is a microbially associated metabolite protecting from influenza through augmentation of type I interferon signaling. Desaminotyrosine is a microbially associated metabolite protecting from influenza through augmentation of type I interferon signaling.

   

Arachidic acid

Arachidic acid

C20H40O2 (312.3028)


Arachidonic acid (Icosanoic acid), a long-chain fatty acid, is present in all mammalian cells, typically esterified to membrane phospholipids, and is one of the most abundant polyunsaturated fatty acids present in human tissue[1][2]. Arachidonic acid (Icosanoic acid), a long-chain fatty acid, is present in all mammalian cells, typically esterified to membrane phospholipids, and is one of the most abundant polyunsaturated fatty acids present in human tissue[1][2].

   

1-Acetylimidazole

1-Acetylimidazole

C5H6N2O (110.048)


   

Fluphenazine (oxide)

FLUPHENAZINE aka 2-[4-[3-[2-(trifluoromethyl)phenothiazin-10-yl]propyl]piperazin-1-yl]ethanol

C22H26F3N3OS (437.1749)


N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AB - Phenothiazines with piperazine structure D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent

   

Phenelzine

Phenelzine

C8H12N2 (136.1)


N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AF - Monoamine oxidase inhibitors, non-selective D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent D004791 - Enzyme Inhibitors > D008996 - Monoamine Oxidase Inhibitors C471 - Enzyme Inhibitor > C667 - Monoamine Oxidase Inhibitor

   

prochlorperazine

prochlorperazine

C20H24ClN3S (373.1379)


N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AB - Phenothiazines with piperazine structure D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent > C740 - Phenothiazine D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents D005765 - Gastrointestinal Agents > D000932 - Antiemetics

   

Tiagabine

Tiagabine

C20H25NO2S2 (375.1327)


D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D058805 - GABA Uptake Inhibitors N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics > N03AG - Fatty acid derivatives C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D018377 - Neurotransmitter Agents > D018682 - GABA Agents D049990 - Membrane Transport Modulators

   

piceid

(2S,3R,4S,5S,6R)-2-[3-hydroxy-5-[(E)-2-(4-hydroxyphenyl)vinyl]phenoxy]-6-(hydroxymethyl)tetrahydropyran-3,4,5-triol

C20H22O8 (390.1315)


Origin: Plant, Glucosides, Stilbenes (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses. Polydatin (Standard) is the analytical standard of Polydatin. This product is intended for research and analytical applications. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses.

   

mescaline

mescaline

C11H17NO3 (211.1208)


A phenethylamine alkaloid that is phenethylamine substituted at positions 3, 4 and 5 by methoxy groups. D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D006213 - Hallucinogens

   

ergotamine

Ergotaminum

C33H35N5O5 (581.2638)


A peptide ergot alkaloid that is dihydroergotamine in which a double bond replaces the single bond between positions 9 and 10. D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists N - Nervous system > N02 - Analgesics > N02C - Antimigraine preparations > N02CA - Ergot alkaloids D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists C78272 - Agent Affecting Nervous System > C47794 - Serotonin Agonist > C61751 - Ergotamine D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D012102 - Reproductive Control Agents > D010120 - Oxytocics CONFIDENCE Claviceps purpurea sclerotia

   

fumonisin B2

1,1-[(1S,2R)-1-[(2S,9R,11S,12S)-12-amino-9,11-dihydroxy-2-methyltridecyl]-2-[(1R)-1-methylpentyl]-1,2-ethanediyl]ester-1,2,3-propanetricarboxylic acid

C34H59NO14 (705.3935)


A fumonisin that is (2S,3S,12S,14S,15R,16R)-2-amino-12,16-dimethylicosane-3,14,15-triol in which the hydroxy groups at positions 14 and 15 have each been esterified by condensation with the 1-carboxy group of 3-carboxyglutaric acid (giving a 3-carboxyglutarate ester group with R configuration in each case). D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins D009676 - Noxae > D011042 - Poisons > D037341 - Fumonisins D009676 - Noxae > D002273 - Carcinogens CONFIDENCE standard compound; INTERNAL_ID 5969 CONFIDENCE Reference Standard (Level 1)

   

Dichlorprop

Dichlorprop

C9H8Cl2O3 (233.985)


   

Thifensulfuron-methyl

Thifensulfuron-methyl

C12H13N5O6S2 (387.0307)


   

diflunisal

Diflunisal-d3

C13H8F2O3 (250.0441)


N - Nervous system > N02 - Analgesics > N02B - Other analgesics and antipyretics > N02BA - Salicylic acid and derivatives D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D004791 - Enzyme Inhibitors

   

Etidocaine

Etidocaine

C17H28N2O (276.2202)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics N - Nervous system > N01 - Anesthetics > N01B - Anesthetics, local > N01BB - Amides D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent

   

Deacetylvindoline

17-O-deacetylvindoline

C23H30N2O5 (414.2155)


A vinca alkaloid that is vindoline in which the acetate ester group at position 17 has been hydrolysed to give the corresponding secondary alcohol.

   

PE 34:1

7-Octadecenoic acid, 1-[[[(2-aminoethoxy)hydroxyphosphinyl]oxy]methyl]-2-[(1-oxohexadecyl)oxy]ethyl ester, [R-(Z)]- (9CI)

C39H76NO8P (717.5308)


Found in mouse brain; TwoDicalId=80; MgfFile=160720_brain_AA_18_Neg; MgfId=1248

   
   

BENSULFURON-METHYL

Bensulfuron-methyl [ANSI, WSSA]

C16H18N4O7S (410.0896)


The sample was injected by direct infusion.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 19HP8024 to the Mass Spectrometry Society of Japan.

   

4-Chloro-3-methylphenol

4-Chloro-3-methylphenol

C7H7ClO (142.0185)


CONFIDENCE standard compound; INTERNAL_ID 986; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4527; ORIGINAL_PRECURSOR_SCAN_NO 4526 C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D016573 - Agrochemicals D010575 - Pesticides CONFIDENCE standard compound; INTERNAL_ID 986; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4489; ORIGINAL_PRECURSOR_SCAN_NO 4487 CONFIDENCE standard compound; INTERNAL_ID 986; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4509; ORIGINAL_PRECURSOR_SCAN_NO 4507 CONFIDENCE standard compound; INTERNAL_ID 986; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4544; ORIGINAL_PRECURSOR_SCAN_NO 4540 CONFIDENCE standard compound; INTERNAL_ID 986; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4535; ORIGINAL_PRECURSOR_SCAN_NO 4534

   

4-CHLOROPHENOL

4-CHLOROPHENOL

C6H5ClO (128.0029)


C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D000890 - Anti-Infective Agents CONFIDENCE standard compound; INTERNAL_ID 1064; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3852; ORIGINAL_PRECURSOR_SCAN_NO 3851 CONFIDENCE standard compound; INTERNAL_ID 1064; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4286; ORIGINAL_PRECURSOR_SCAN_NO 4284 CONFIDENCE standard compound; INTERNAL_ID 1064; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4317; ORIGINAL_PRECURSOR_SCAN_NO 4313 CONFIDENCE standard compound; INTERNAL_ID 1064; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4647; ORIGINAL_PRECURSOR_SCAN_NO 4645 CONFIDENCE standard compound; INTERNAL_ID 1064; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4713; ORIGINAL_PRECURSOR_SCAN_NO 4712 CONFIDENCE standard compound; INTERNAL_ID 1064; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4634; ORIGINAL_PRECURSOR_SCAN_NO 4633

   

Salicylhydroxamic acid

Salicylhydroxamic acid

C7H7NO3 (153.0426)


D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

HEPTANOIC ACID

n-heptanoic acid

C7H14O2 (130.0994)


A C7, straight-chain fatty acid that contributes to the odour of some rancid oils. Used in the preparation of esters for the fragrance industry, and as an additive in cigarettes.

   

THIOACETIC ACID

THIOACETIC ACID

C2H4OS (75.9983)


   

Heptylic acid

n-heptanoic acid

C7H14O2 (130.0994)


   

Etoxazole

Pesticide6_Etoxazole_C21H23F2NO2_4-(4-tert-Butyl-2-ethoxyphenyl)-2-(2,6-difluorophenyl)-4,5-dihydro-1,3-oxazole

C21H23F2NO2 (359.1697)


D010575 - Pesticides > D056810 - Acaricides D016573 - Agrochemicals

   

Tetraconazole

Pesticide6_Tetraconazole_C13H11Cl2F4N3O_1-[2-(2,4-Dichlorophenyl)-3-(1,1,2,2-tetrafluoroethoxy)propyl]-1H-1,2,4-triazole

C13H11Cl2F4N3O (371.0215)


D016573 - Agrochemicals D010575 - Pesticides

   

Clofentezine

Pesticide4_Clofentezine_C14H8Cl2N4_1,2,4,5-Tetrazine, 3,6-bis(2-chlorophenyl)-

C14H8Cl2N4 (302.0126)


   

METSULFURON-METHYL

MESOSULFURAN-METHYL

C14H15N5O6S (381.0743)


   

THDOC

3alpha,21-dihydroxy-5alpha-pregnane-20-one

C21H34O3 (334.2508)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones D018377 - Neurotransmitter Agents > D000081227 - Neurosteroids 3α,21-Dihydroxy-5α-pregnan-20-one (THDOC), an endogenous neurosteroid, is a positive modulator of GABAA receptors. 3α,21-Dihydroxy-5α-pregnan-20-one potentiates neuronal response to low concentrations of GABA at α4β1δ GABAA receptors in vitro.

   

Hexadecanoate

[(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-[(2R)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl] hexadecanoate

C43H76O2 (624.5845)


   

allysine

allysine

C6H11NO3 (145.0739)


An alpha-amino acid consisting of lysine having an oxo group in place of the side-chain amino group.

   

Glycodeoxycholate

N-(3alpha,12alpha-dihydroxy-5beta-cholan-24-oyl)glycine

C26H43NO5 (449.3141)


D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids D013501 - Surface-Active Agents > D003902 - Detergents A bile acid glycine conjugate of deoxycholic acid. Glycodeoxycholic Acid is an endogenous metabolite. Glycodeoxycholic Acid is an endogenous metabolite.

   

3-oxopalmitoyl-CoA

3-oxohexadecanoyl-CoA

C37H64N7O18P3S (1019.3241)


The S-(3-oxopalmitoyl) derivative of coenzyme A.

   

C20:0

n-Eicosanoic acid

C20H40O2 (312.3028)


Arachidonic acid (Icosanoic acid), a long-chain fatty acid, is present in all mammalian cells, typically esterified to membrane phospholipids, and is one of the most abundant polyunsaturated fatty acids present in human tissue[1][2]. Arachidonic acid (Icosanoic acid), a long-chain fatty acid, is present in all mammalian cells, typically esterified to membrane phospholipids, and is one of the most abundant polyunsaturated fatty acids present in human tissue[1][2].

   

C22:0

Docosanoic acid

C22H44O2 (340.3341)


Docosanoic acid is poorly absorbed, and a cholesterol-raising saturated fatty acid in humans. Docosanoic acid is poorly absorbed, and a cholesterol-raising saturated fatty acid in humans.

   

FA 22:5

(7Z,10Z,13Z,16Z,19Z)-Docosa-7,10,13,16,19-pentaenoic acid

C22H34O2 (330.2559)


The all-cis-isomer of a C22 polyunsaturated fatty acid having five double bonds in the 7-, 10-, 13-, 16- and 19-positions. Docosapentaenoic acid (22n-3) is a component of phospholipids found in all animal cell membranes.

   

FOH 16:0

3S,7S-dimethyl-tetradecan-2S-ol

C16H34O (242.261)


1-Hexadecanol is a fatty alcohol, a lipophilic substrate. 1-Hexadecanol is a fatty alcohol, a lipophilic substrate.

   

CoA 5:0

3-methylbutanoyl-coenzyme A;3-methylbutyryl-CoA;3-methylbutyryl-coenzyme A;beta-methylbutanoyl-CoA;beta-methylbutanoyl-coenzyme A;beta-methylbutyryl-CoA;beta-methylbutyryl-coenzyme A;isovaleryl-coenzyme A

C26H44N7O17P3S (851.1727)


   

CoA 5:1

3,3-dimethacrylyl-CoA;3,3-dimethacrylyl-coenzyme A;DMA-CoA;S-(3-Methyl-crotonoyl)-coenzym-A;S-(3-methylcrotonoyl)-coenzyme-A;beta,beta-dimethacrylyl-CoA;beta,beta-dimethacrylyl-coenzyme A

C26H42N7O17P3S (849.1571)


   

CoA 16:1;O

3S-Hydroxy-9Z-hexadecenoyl-CoA

C37H64N7O18P3S (1019.3241)


   

CoA 3:1

Acryloyl-coa;Acryloyl-coenzyme A;Acrylyl-coa;Coenzyme A, S-2-propenoate

C24H38N7O17P3S (821.1258)


   

CoA 4:0

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-2,2-dimethyl-3-{[2-({2-[(2-methylpropanoyl)sulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}propoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C25H42N7O17P3S (837.1571)


   

CoA 4:1

3-phosphoadenosine 5-{3-[(3R)-3-hydroxy-2,2-dimethyl-4-{[3-({2-[(2-methylprop-2-enoyl)sulfanyl]ethyl}amino)-3-oxopropyl]amino}-4-oxobutyl] dihydrogen diphosphate}

C25H40N7O17P3S (835.1414)


   

Dephospho-CoA

[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy][3-hydroxy-2,2-dimethyl-3-({2-[(2-sulfanylethyl)carbamoyl]ethyl}carbamoyl)propoxy]phosphinic acid

C21H35N7O13P2S (687.1489)


   

Glutaryl-CoA

3-phosphoadenosine 5-{3-[(3R)-4-{[3-({2-[(4-carboxybutanoyl)sulfanyl]ethyl}amino)-3-oxopropyl]amino}-3-hydroxy-2,2-dimethyl-4-oxobutyl] dihydrogen diphosphate}

C26H42N7O19P3S (881.1469)


An omega-carboxyacyl-CoA that results from the formal condensation of the thiol group of coenzyme A with one of the carboxy groups of glutaric acid.

   

CoA 14:0

S-tetradecanoyl-coenzyme A;n-C14:0-CoA;n-C14:0-coenzyme A

C35H62N7O17P3S (977.3136)


   

CoA 20:5

(5Z,8Z,11Z,14Z,17Z)-eicosapentaenoyl-CoA;(5Z,8Z,11Z,14Z,17Z)-icosapentaenoyl-CoA;20:5(n-3);5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl-CoA;CoA(20:5(5Z,8Z,11Z,14Z,17Z));all-cis-5,8,11,14,17-eicosapentaenoyl-CoA;all-cis-5,8,11,14,17-icosapentaenoyl-CoA

C41H64N7O17P3S (1051.3292)


An unsaturated fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of (5Z,8Z,11Z,14Z,17Z)-icosapentaenoic acid. It is a member of n-3 PUFA and by-product of alpha-linolenic acid metabolism.

   

CoA 22:6

(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl-CoA;(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl-coenzyme A;(4Z,7Z,10Z,13Z,16Z,19Z)-docosahexaenoyl-coenzyme A;4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl-CoA;4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl-coenzyme A;CoA(22:6(4Z,7Z,10Z,13Z,16Z,19Z));DHA-CoA

C43H66N7O17P3S (1077.3449)


An unsaturated fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of (4Z,7Z,10Z,13Z,16Z,19Z)-docosahexaenoic acid. It is a member of n-3 PUFA and a product of alpha-linolenoic acid metabolism.

   

CAR 10:0

3-(decanoyloxy)-4-(trimethylazaniumyl)butanoate

C17H33NO4 (315.2409)


   

N-HEPTADECANE

N-HEPTADECANE

C17H36 (240.2817)


A straight-chain alkane with 17 carbon atoms. It is a component of essential oils from plants like Opuntia littoralis and Annona squamosa.

   

PS 34:1

L-Serine, 3-[(1-oxohexadecyl)oxy]-2-[(1-oxo-9-octadecenyl)oxy]propyl hydrogen phosphate (ester), [R-(Z)]-

C40H76NO10P (761.5207)


A 3-sn-phosphatidyl-L-serine compound with a palmitoyl group at the 1-position and an oleoyl group at the 2-position.

   

SPB 20:1;O2

N,N-dimethylsphing-4-enine

C20H41NO2 (327.3137)


D004791 - Enzyme Inhibitors

   

ST 21:3;O4

2beta,3beta-dihydroxy-5beta,14beta-pregn-7-ene-6,20-dione

C21H30O4 (346.2144)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

Coenzyme Q9

2,3-dimethoxy-5-methyl-6-[(2E,6E,10E,14E,18E,22E,26E,30E)-3,7,11,15,19,23,27,31,35-nonamethylhexatriaconta-2,6,10,14,18,22,26,30,34-nonaen-1-yl]cyclohexa-2,5-diene-1,4-dione

C54H82O4 (794.6213)


D020011 - Protective Agents > D000975 - Antioxidants Coenzyme Q9 (Ubiquinone Q9), the major form of ubiquinone in rodents, is an amphipathic molecular component of the electron transport chain that functions as an endogenous antioxidant. Coenzyme Q9 attenuates the diabetes-induced decreases in antioxidant defense mechanisms. Coenzyme Q9 improves left ventricular performance and reduces myocardial infarct size and cardiomyocyte apoptosis[1][2]. Coenzyme Q9 (Ubiquinone Q9), the major form of ubiquinone in rodents, is an amphipathic molecular component of the electron transport chain that functions as an endogenous antioxidant. Coenzyme Q9 attenuates the diabetes-induced decreases in antioxidant defense mechanisms. Coenzyme Q9 improves left ventricular performance and reduces myocardial infarct size and cardiomyocyte apoptosis[1][2].

   

DNDS

4,4-dinitrostilbene-2,2-disulfonic acid

C14H10N2O10S2 (429.9777)


   

Dexniguldipine

Dexniguldipine

C36H39N3O6 (609.2839)


D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators D000970 - Antineoplastic Agents C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker C1744 - Multidrug Resistance Modulator C93038 - Cation Channel Blocker

   

Propagermanium

Bis (2-Carboxyethylgermanium)sesquioxide

C6H10Ge2O7 (337.8868)


COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C308 - Immunotherapeutic Agent > C63817 - Chemokine Receptor Antagonist D007155 - Immunologic Factors > D007369 - Interferon Inducers D000970 - Antineoplastic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

D-Galactonic acid, gamma-lactone

D-Galactonic acid, gamma-lactone

C6H10O6 (178.0477)


   

2-amino-6-oxohexanoic acid

L-2-Amino-6-oxohexanoic acid

C6H11NO3 (145.0739)


Found in collagen, elastin and heart muscle

   
   

Methyltrienolone

Methyltrienolone

C19H24O2 (284.1776)


C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone

   

2,4-Diaminotoluene

2,4-Diaminotoluene

C7H10N2 (122.0844)


An aminotoluene that is para-toluidine with an additional amino group at position 2. D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens

   

1-Naphthylacetic acid

1-Naphthaleneacetic acid

C12H10O2 (186.0681)


1-Naphthaleneacetic acid (1-Naphthylacetic acid), a auxin, can promote plant growth. 1-Naphthaleneacetic acid is also an inhibitor of PLA2, with an IC50 of 13.16 μM[1][2]. 1-Naphthaleneacetic acid (1-Naphthylacetic acid), a auxin, can promote plant growth. 1-Naphthaleneacetic acid is also an inhibitor of PLA2, with an IC50 of 13.16 μM[1][2].

   

Cefaloglycin

Cephaloglycin anhydrous

C18H19N3O6S (405.0995)


A cephalosporin antibiotic containing at the 7beta-position of the cephem skeleton an (R)-amino(phenyl)acetamido group. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic Same as: D01949

   

cholesteryl palmitate

cholesteryl palmitate

C43H76O2 (624.5845)


A cholesterol ester obtained by the formal condensation of cholesterol with palmitic acid.

   

WLN: QV19

InChI=1\C20H40O2\c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20(21)22\h2-19H2,1H3,(H,21,22

C20H40O2 (312.3028)


Arachidonic acid (Icosanoic acid), a long-chain fatty acid, is present in all mammalian cells, typically esterified to membrane phospholipids, and is one of the most abundant polyunsaturated fatty acids present in human tissue[1][2]. Arachidonic acid (Icosanoic acid), a long-chain fatty acid, is present in all mammalian cells, typically esterified to membrane phospholipids, and is one of the most abundant polyunsaturated fatty acids present in human tissue[1][2].

   

AI3-02280

4-02-00-01068 (Beilstein Handbook Reference)

C11H22O2 (186.162)


C254 - Anti-Infective Agent > C514 - Antifungal Agent Undecanoic acid (Undecanoate) is a monocarboxylic acid with antimycotic property, which inhibits the production of exocellular keratinase, lipase and the biosynthesis of several phospholipids in T. rubrum[1]. Undecanoic acid (Undecanoate) is a monocarboxylic acid with antimycotic property, which inhibits the production of exocellular keratinase, lipase and the biosynthesis of several phospholipids in T. rubrum[1].

   

Behensaeure

N-Docosanoic acid

C22H44O2 (340.3341)


Docosanoic acid is poorly absorbed, and a cholesterol-raising saturated fatty acid in humans. Docosanoic acid is poorly absorbed, and a cholesterol-raising saturated fatty acid in humans.

   

jatrorrizine

Jatrorrhizine

C20H20NO4+ (338.1392)


   

Heptadekan

InChI=1\C17H36\c1-3-5-7-9-11-13-15-17-16-14-12-10-8-6-4-2\h3-17H2,1-2H

C17H36 (240.2817)


   

Devoton

Methyl acetate [UN1231] [Flammable liquid]

C3H6O2 (74.0368)


   

TMPEA

4-13-00-02919 (Beilstein Handbook Reference)

C11H17NO3 (211.1208)


D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D006213 - Hallucinogens

   

CHEBI:17118

(2R,3S,4S,5R)-2,3,4,5,6-pentahydroxyhexanal

C6H12O6 (180.0634)


   

XS-89

(3S,5S,8R,9S,10S,13R,14S,17R)-3,5,14-trihydroxy-13-methyl-17-(5-oxo-2H-furan-3-yl)-2,3,4,6,7,8,9,11,12,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthrene-10-carboxaldehyde

C23H32O6 (404.2199)


D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D013328 - Strophanthins Strophanthidin is a naturally available cardiac glycoside[1]. Strophanthidin 0.1 and 1 nmol/L increases and 1~100 μmol/L inhibits the Na+/K+-ATPase activities, but Strophanthidin 10 and 100 nmol/L does not affect Na+/K+-ATPase activities in cardiac sarcolemmal[2]. Strophanthidin increases both diastolic and systolic intracellular Ca2+ concentration[3]. Strophanthidin is a naturally available cardiac glycoside[1]. Strophanthidin 0.1 and 1 nmol/L increases and 1~100 μmol/L inhibits the Na+/K+-ATPase activities, but Strophanthidin 10 and 100 nmol/L does not affect Na+/K+-ATPase activities in cardiac sarcolemmal[2]. Strophanthidin increases both diastolic and systolic intracellular Ca2+ concentration[3].

   

WLN: QV6

InChI=1\C7H14O2\c1-2-3-4-5-6-7(8)9\h2-6H2,1H3,(H,8,9

C7H14O2 (130.0994)


   

Cruex

InChI=1\C11H20O2\c1-2-3-4-5-6-7-8-9-10-11(12)13\h2H,1,3-10H2,(H,12,13

C11H20O2 (184.1463)


D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use C254 - Anti-Infective Agent > C514 - Antifungal Agent 10-Undecenoic acid is used as a starting agent in the synthesis of Pheromone (11Z)-hexadecenal. 10-Undecenoic acid is used as a starting agent in the synthesis of Pheromone (11Z)-hexadecenal.

   

Ethol

InChI=1\C16H34O\c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17\h17H,2-16H2,1H

C16H34O (242.261)


1-Hexadecanol is a fatty alcohol, a lipophilic substrate. 1-Hexadecanol is a fatty alcohol, a lipophilic substrate.

   

furoic acid

InChI=1\C5H4O3\c6-5(7)4-2-1-3-8-4\h1-3H,(H,6,7

C5H4O3 (112.016)


2-Furoic acid (Furan-2-carboxylic acid) is an organic compound produced through furfural oxidation[1]. 2-Furoic acid exhibits hypolipidemic effet, lowers both serum cholesterol and serum triglyceride levels in rats[2]. 2-Furoic acid (Furan-2-carboxylic acid) is an organic compound produced through furfural oxidation[1]. 2-Furoic acid exhibits hypolipidemic effet, lowers both serum cholesterol and serum triglyceride levels in rats[2]. 2-Furoic acid (Furan-2-carboxylic acid) is an organic compound produced through furfural oxidation[1]. 2-Furoic acid exhibits hypolipidemic effet, lowers both serum cholesterol and serum triglyceride levels in rats[2].

   

Nonox A

InChI=1\C16H13N\c1-2-9-14(10-3-1)17-16-12-6-8-13-7-4-5-11-15(13)16\h1-12,17

C16H13N (219.1048)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D004396 - Coloring Agents > D005456 - Fluorescent Dyes D009676 - Noxae > D002273 - Carcinogens

   

NaPst

Benzene, (1-methylethyl)-, oxidized, sulfurized by-products

C9H12 (120.0939)


   

WLN: 4R

InChI=1\C10H14\c1-2-3-7-10-8-5-4-6-9-10\h4-6,8-9H,2-3,7H2,1H

C10H14 (134.1095)


   

LS-687

In Commercial practice amyl invariably means isoamyl, unless it is prefaced by the n- for normal

C7H14O2 (130.0994)


   

CH3COSH

Thioacetic acid [UN2436] [Flammable liquid]

C2H4OS (75.9983)


   

Uroporphyrinogen III

Uroporphyrinogen III

C40H44N4O16 (836.2752)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Uroporphyrinogen iii, also known as urogen iii, is a member of the class of compounds known as porphyrins. Porphyrins are compounds containing a fundamental skeleton of four pyrrole nuclei united through the alpha-positions by four methine groups to form a macrocyclic structure. Uroporphyrinogen iii is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Uroporphyrinogen iii can be found in a number of food items such as pili nut, rubus (blackberry, raspberry), sunflower, and pecan nut, which makes uroporphyrinogen iii a potential biomarker for the consumption of these food products. Uroporphyrinogen iii can be found primarily in blood. Uroporphyrinogen iii exists in all living species, ranging from bacteria to humans. In humans, uroporphyrinogen iii is involved in the porphyrin metabolism. Uroporphyrinogen iii is also involved in few metabolic disorders, which include acute intermittent porphyria, congenital erythropoietic porphyria (CEP) or gunther disease, hereditary coproporphyria (HCP), and porphyria variegata (PV).

   

Pentanoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({[hydroxy({3-hydroxy-2,2-dimethyl-3-[(2-{[2-(pentanoylsulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]propoxy})phosphoryl]oxy})phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C26H44N7O17P3S (851.1727)


Pentanoyl CoA is an acyl-CoA with the C-5 Acyl chain. Acyl-CoA (or formyl-CoA) is a coenzyme involved in the metabolism of fatty acids. It is a temporary compound formed when coenzyme A (CoA) attaches to the end of a long-chain fatty acid, inside living cells. The CoA is then removed from the chain, carrying two carbons from the chain with it, forming acetyl-CoA. This is then used in the citric acid cycle to start a chain of reactions, eventually forming many adenosine triphosphates. To be oxidatively degraded, a fatty acid must first be activated in a two-step reaction catalyzed by acyl-CoA synthetase. First, the fatty acid displaces the diphosphate group of ATP, then coenzyme A (HSCoA) displaces the AMP group to form an Acyl-CoA. The acyladenylate product of the first step has a large free energy of hydrolysis and conserves the free energy of the cleaved phosphoanhydride bond in ATP. The second step, transfer of the acyl group to CoA (the same molecule that carries acetyl groups as acetyl-CoA), conserves free energy in the formation of a thioester bond. Consequently, the overall reaction Fatty acid + CoA + ATP <=> Acyl-CoA + AMP + PPi has a free energy change near zero. Subsequent hydrolysis of the product PPi (by the enzyme inorganic pyrophosphatase) is highly exergonic, and this reaction makes the formation of acyl-CoA spontaneous and irreversible. Fatty acids are activated in the cytosol, but oxidation occurs in the mitochondria. Because there is no transport protein for CoA adducts, acyl groups must enter the mitochondria via a shuttle system involving the small molecule carnitine. Pentanoyl coA is a acyl-CoA with the C-5 Acyl chain.

   

Stigmatellin A

Stigmatellin A

C30H42O7 (514.293)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents

   

L-BOAA

N-Oxalyl-L-alpha-beta-diaminopropionic acid (BOAA,ODAP)

C5H8N2O5 (176.0433)


N(3)-oxalyl-L-2,3-diaminopropionic acid is an N(beta)-acyl-L-2,3-diaminopropionic acid in which the acyl group is oxalyl. It is functionally related to a propionic acid. It is a conjugate acid of a N(3)-(carboxylatoformyl)-L-2,3-diaminopropionate(1-). Dencichin is a natural product found in Lathyrus latifolius and Lathyrus sativus with data available. See also: Panax notoginseng root (part of). Dencichin is a non-protein amino acid originally extracted from Panax notoginseng, and can inhibit HIF-prolyl hydroxylase-2 (PHD-2) activity.

   

canthinone

1,6-diazatetracyclo[7.6.1.0^{5,16.0^{10,15]hexadeca-3,5(16),6,8,10,12,14-heptaen-2-one

C14H8N2O (220.0637)


Canthin-6-one is an indole alkaloid that is 6H-indolo[3,2,1-de][1,5]naphthyridine substituted by an oxo group at position 6. It has a role as a metabolite and an antimycobacterial drug. It is an indole alkaloid, an organic heterotetracyclic compound and an enone. Canthin-6-one is a natural product found in Zanthoxylum mayu, Zanthoxylum ovalifolium, and other organisms with data available. An indole alkaloid that is 6H-indolo[3,2,1-de][1,5]naphthyridine substituted by an oxo group at position 6. D016573 - Agrochemicals D010575 - Pesticides Canthin-6-one displays a wide range of biological activities, such as antimycobacterial activity[1]. Canthin-6-one displays a wide range of biological activities, such as antimycobacterial activity[1].

   

DHSA

Calcium (9 or 10)-hydroxy-(10 or 9)-oxidooctadecanoate

C18H36O4 (316.2613)


9,10-dihydroxyoctadecanoic acid is a hydroxy-fatty acid formally derived from octacecanoic (stearic) acid by hydroxy substitution at positions 9 and 10. It is a dihydroxy monocarboxylic acid and a hydroxyoctadecanoic acid. It is a conjugate acid of a 9,10-dihydroxystearate. 9,10-Dihydroxystearic acid is a natural product found in Trypanosoma brucei and Apis cerana with data available. A hydroxy-fatty acid formally derived from stearic acid by hydroxy substitution at positions 9 and 10.

   

Cetyl alcohol

Hexadecan-1-ol

C16H34O (242.261)


A long-chain primary fatty alcohol that is hexadecane substituted by a hydroxy group at position 1. 1-Hexadecanol is a fatty alcohol, a lipophilic substrate. 1-Hexadecanol is a fatty alcohol, a lipophilic substrate.

   

Dienestrol

E,E-Dienestrol

C18H18O2 (266.1307)


G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03C - Estrogens > G03CC - Estrogens, combinations with other drugs G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03C - Estrogens > G03CB - Synthetic estrogens, plain D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen

   

Etidronic acid

Etidronic acid

C2H8O7P2 (205.9745)


M - Musculo-skeletal system > M05 - Drugs for treatment of bone diseases > M05B - Drugs affecting bone structure and mineralization > M05BA - Bisphosphonates C78281 - Agent Affecting Musculoskeletal System > C67439 - Bone Resorption Inhibitor D050071 - Bone Density Conservation Agents > D004164 - Diphosphonates

   

METHYL ACETATE

METHYL ACETATE

C3H6O2 (74.0368)


   

4,4-Diphenylmethane diisocyanate

4,4-methylenebis(phenyl isocyanate)

C15H10N2O2 (250.0742)


COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

tolmetin

1-Methyl-5-p-toluoylpyrrole-2-acetic acid

C15H15NO3 (257.1052)


M - Musculo-skeletal system > M02 - Topical products for joint and muscular pain > M02A - Topical products for joint and muscular pain > M02AA - Antiinflammatory preparations, non-steroids for topical use M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AB - Acetic acid derivatives and related substances D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D004791 - Enzyme Inhibitors

   

Phenyl acetate

PHENYL ACETATE

C8H8O2 (136.0524)


Phenyl acetate is an endogenous metabolite. Phenyl acetate. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=122-79-2 (retrieved 2024-08-21) (CAS RN: 122-79-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Cephalothin

Cephalothin

C16H16N2O6S2 (396.045)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DB - First-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   

dicyclomine

dicyclomine

C19H35NO2 (309.2668)


A - Alimentary tract and metabolism > A03 - Drugs for functional gastrointestinal disorders > A03A - Drugs for functional gastrointestinal disorders > A03AA - Synthetic anticholinergics, esters with tertiary amino group C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists

   

trihexyphenidyl

Trihexylphenedyl

C20H31NO (301.2406)


D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents N - Nervous system > N04 - Anti-parkinson drugs > N04A - Anticholinergic agents > N04AA - Tertiary amines C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists C78272 - Agent Affecting Nervous System > C38149 - Antiparkinsonian Agent

   

Cogentin

Benztropine

C21H25NO (307.1936)


N - Nervous system > N04 - Anti-parkinson drugs > N04A - Anticholinergic agents > N04AC - Ethers of tropine or tropine derivatives D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018765 - Dopamine Uptake Inhibitors D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents D049990 - Membrane Transport Modulators

   

chlorоphentermine

chlorоphentermine

C10H14ClN (183.0815)


D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant

   

MGK-264

N-(2-Ethylhexyl)-5-norbornene-2,3-dicarboximide

C17H25NO2 (275.1885)


   

2-Chlorobenzoic acid

2-Chlorobenzoic acid

C7H5ClO2 (155.9978)


A monochlorobenzoic acid having the chloro group at the 2-position.

   

Cefamandole

Cefamandole

C18H18N6O5S2 (462.078)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DC - Second-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams A cephalosporin compound having (R)-mandelamido and N-methylthiotetrazole side-groups. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   

CHLORSULFURON

CHLORSULFURON

C12H12ClN5O4S (357.0299)


D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

3,5-Diiodo-L-tyrosine

3,5-Diiodo-L-tyrosine

C9H9I2NO3 (432.8672)


A diiodotyrosine that is L-tyrosine carrying iodo-substituents at positions C-3 and C-5 of the benzyl group. It is an intermediate in the thyroid hormone synthesis. H - Systemic hormonal preparations, excl. sex hormones and insulins > H03 - Thyroid therapy > H03B - Antithyroid preparations D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

propantheline

propantheline

C23H30NO3+ (368.2226)


A - Alimentary tract and metabolism > A03 - Drugs for functional gastrointestinal disorders > A03A - Drugs for functional gastrointestinal disorders > A03AB - Synthetic anticholinergics, quaternary ammonium compounds C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents

   

sulfometuron-methyl

sulfometuron-methyl [ANSI]

C15H16N4O5S (364.0841)


D010575 - Pesticides > D006540 - Herbicides D004791 - Enzyme Inhibitors D016573 - Agrochemicals

   

butorphanol

butorphanol

C21H29NO2 (327.2198)


Levorphanol in which a hydrogen at position 14 of the morphinan skeleton is substituted by hydroxy and one of the hydrogens of the N-methyl group is substituted by cyclopropyl. A semi-synthetic opioid agonist-antagonist analgesic, it is used as its (S,S)-tartaric acid salt for relief or moderate to severe pain. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids N - Nervous system > N02 - Analgesics > N02A - Opioids > N02AF - Morphinan derivatives D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D009292 - Narcotic Antagonists D019141 - Respiratory System Agents > D000996 - Antitussive Agents C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent D002491 - Central Nervous System Agents > D000700 - Analgesics

   

Metyrosine

alpha-methyl-L-tyrosine

C10H13NO3 (195.0895)


An L-tyrosine derivative that consists of L-tyrosine bearing an additional methyl substituent at position 2. An inhibitor of the enzyme tyrosine 3-monooxygenase, and consequently of the synthesis of catecholamines. It is used to control the symptoms of excessive sympathetic stimulation in patients with pheochromocytoma. C - Cardiovascular system > C02 - Antihypertensives > C02K - Other antihypertensives > C02KB - Tyrosine hydroxylase inhibitors C471 - Enzyme Inhibitor > C2155 - Tyrosine Hydroxylase Inhibitor D004791 - Enzyme Inhibitors

   

Zanamivir

Zanamivir

C12H20N4O7 (332.1332)


J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AH - Neuraminidase inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents C254 - Anti-Infective Agent > C281 - Antiviral Agent D004791 - Enzyme Inhibitors

   

1,5-Diaminonaphthalene

1,5-Diaminonaphthalene

C10H10N2 (158.0844)


   

Cholest-4-en-3-one

Cholest-4-en-3-one

C27H44O (384.3392)


A cholestanoid that is cholest-4-ene substituted by an oxo group at position 3. Cholestenone (4-Cholesten-3-one), the intermediate oxidation product of cholesterol, is metabolized primarily in the liver. Cholestenone is highly mobile in membranes and influences cholesterol flip-flop and efflux. Cholestenone may cause long-term functional defects in cells[1][2]. Cholestenone (4-Cholesten-3-one), the intermediate oxidation product of cholesterol, is metabolized primarily in the liver. Cholestenone is highly mobile in membranes and influences cholesterol flip-flop and efflux. Cholestenone may cause long-term functional defects in cells[1][2].

   

guanabenz

guanabenz

C8H8Cl2N4 (230.0126)


C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents

   

fluphenazine enanthate

fluphenazine enanthate

C29H38F3N3O2S (549.2637)


D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent

   

(2R,3S,4S,5R)-2,3,4,5,6-pentahydroxyhexanal

(2R,3S,4S,5R)-2,3,4,5,6-pentahydroxyhexanal

C6H12O6 (180.0634)


   

4-Nitroanisole

4-Nitroanisole

C7H7NO3 (153.0426)


   

pyridostigmine

pyridostigmine

C9H13N2O2+ (181.0977)


N - Nervous system > N07 - Other nervous system drugs > N07A - Parasympathomimetics > N07AA - Anticholinesterases D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D004791 - Enzyme Inhibitors

   

Bitolterol

Bitolterol

C28H31NO5 (461.2202)


R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03A - Adrenergics, inhalants > R03AC - Selective beta-2-adrenoreceptor agonists D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents C78273 - Agent Affecting Respiratory System > C29712 - Anti-asthmatic Agent > C319 - Bronchodilator C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents

   

1-Benzyl-1,2,3,4-tetrahydroisoquinoline

Isoquinoline,1,2,3,4-tetrahydro-1-(phenylmethyl)-

C16H17N (223.1361)


D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists

   

Pyrvinium

Pyrvinium

C26H28N3+ (382.2283)


P - Antiparasitic products, insecticides and repellents > P02 - Anthelmintics > P02C - Antinematodal agents D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C254 - Anti-Infective Agent > C276 - Antiparasitic Agent

   

Triamcinolone hexacetonide

Triamcinolone hexacetonide

C30H41FO7 (532.2836)


C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D000893 - Anti-Inflammatory Agents

   

(3S)-3-Methyl-2-oxopentanoic acid

(3S)-3-Methyl-2-oxopentanoic acid

C6H10O3 (130.063)


   

Hypoglycin a

Hypoglycin a

C7H11NO2 (141.079)


A diastereoisomeric mixture of (2S,4R)- and (2S,4S)- hypoglycin A, found in the edible part of the fruit of the Ackee, Blighia sapida (where the 2S,4R diastereoisomer is more dominant (17\\% d.e.) than its 2S,4S counterpart) as well as in the sycamore maple tree (Acer pseudoplatanus). D009676 - Noxae > D011042 - Poisons > D007005 - Hypoglycins

   

Picolinamide

PYRIDINE-2-CARBOXAMIDE

C6H6N2O (122.048)


   

Tiludronic Acid

Tiludronic Acid

C7H9ClO6P2S (317.9284)


M - Musculo-skeletal system > M05 - Drugs for treatment of bone diseases > M05B - Drugs affecting bone structure and mineralization > M05BA - Bisphosphonates C78281 - Agent Affecting Musculoskeletal System > C67439 - Bone Resorption Inhibitor D050071 - Bone Density Conservation Agents > D004164 - Diphosphonates

   

CARBAMIC ACID

CARBAMIC ACID

CH3NO2 (61.0164)


A one-carbon compound that is ammonia in which one of the hydrogens is replaced by a carboxy group. Although carbamic acid derivatives are common, carbamic acid itself has never been synthesised.

   

Diquafosol

Diquafosol

C18H26N4O23P4 (789.9938)


C78283 - Agent Affecting Organs of Special Senses

   

Pantetheine

(R)-Pantetheine

C11H22N2O4S (278.13)


An amide obtained by formal condensation of the carboxy group of pantothenic acid and the amino group of cysteamine. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Methyl β-D-galactopyranoside

Methyl beta-D-galactopyranoside

C7H14O6 (194.079)


Methyl β-D-Galactopyranoside is an endogenous metabolite.

   

Isovaleryl-CoA

Isovaleryl-CoA

C26H44N7O17P3S (851.1727)


A methylbutanoyl-CoA is the S-isovaleryl derivative of coenzyme A.

   

4,4-dinitrostilbene-2,2-disulfonic acid

4,4-dinitrostilbene-2,2-disulfonic acid

C14H10N2O10S2 (429.9777)


   

O-Decanoyl-L-carnitine

O-Decanoyl-L-carnitine

C17H33NO4 (315.2409)


An O-acyl-L-carnitine that is L-carnitine having decanoyl as the acyl substituent.

   

1,2-Benzoquinone

1,2-Benzoquinone

C6H4O2 (108.0211)


   

21-Deoxycortisol

11beta,17alpha-dihydroxy-4-pregnene-3,20-dione

C21H30O4 (346.2144)


A deoxycortisol that is 17xi-pregn-4-ene-3,20-dione substituted by a beta-hydroxy group at position 11 and an alpha-hydroxy group at position 17. It is a marker of virilizing adrenal hyperplasia caused by 21-hydroxylase deficiency. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

acryloyl-CoA

acryloyl-CoA

C24H38N7O17P3S (821.1258)


The S-acryloyl derivative of coenzyme A.

   

2-(4-hydroxyphenyl)propanoic acid

2-(4-hydroxyphenyl)propanoic acid

C9H10O3 (166.063)


   

Hexanoyl-CoA

Hexanoyl-coenzyme A

C27H46N7O17P3S (865.1884)


A medium-chain fatty acyl-CoA having hexanoyl as the S-acyl group.

   

Deoxyuridine-5-diphosphate

Deoxyuridine-5-diphosphate

C9H14N2O11P2 (388.0073)


   

Butyryl-CoA

Butyryl-CoA

C25H42N7O17P3S (837.1571)


A short-chain fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of butyric acid.

   

D-3-phenyllactic acid

(2R)-2-hydroxy-3-phenylpropanoic acid

C9H10O3 (166.063)


D-?(+)?-?Phenyllactic acid is an anti-bacterial agent, excreted by Geotrichum candidum, inhibits a range of Gram-positive from humans and foodstuffs and Gram-negative bacteria found in humans[1].

   

myristoyl-CoA

Tetradecanoyl-CoA

C35H62N7O17P3S (977.3136)


A long-chain fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of myristic acid.

   

Crotonoyl-CoA

Crotonoyl-CoA

C25H40N7O17P3S (835.1414)


The (E)-isomer of but-2-enoyl-CoA.

   

Adenosine tetraphosphate

Adenosine tetraphosphate

C10H17N5O16P4 (586.9621)


   

Nicotinic acid adenine dinucleotide

Nicotinic acid adenine dinucleotide

C21H27N6O15P2+ (665.101)


   

N-Acetylglucosamine-1-phosphate

2-acetamido-2-deoxy-D-glucopyranose 1-phosphate

C8H16NO9P (301.0563)


A N-acetyl-D-glucosamine 1-phosphate that is 2-deoxy-D-glucopyranose 1-(dihydrogen phosphate) substituted by an acetamido group at position 2. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

(2S)-2-(3-carboxypropanamido)-6-Oxoheptanedioic acid

(2S)-2-(3-carboxypropanamido)-6-Oxoheptanedioic acid

C11H15NO8 (289.0798)


   

Dopaminoquinone

Dopamine quinone

C8H9NO2 (151.0633)


A member of the class of 1,2-benzoquinones that is 1,2-benzoquinone in which a hydrogen at para to one of the oxo groups has been replaced by a 2-aminoethyl group.

   

2-(((R)-2,3-Dihydroxypropyl)phosphoryloxy)-N,N,N-trimethylethanaminium

2-(((R)-2,3-Dihydroxypropyl)phosphoryloxy)-N,N,N-trimethylethanaminium

C8H21NO6P+ (258.1106)


   

2-Hexaprenyl-3-methyl-6-methoxy-1,4 benzoquinone

2-Hexaprenyl-3-methyl-6-methoxy-1,4 benzoquinone

C38H56O3 (560.4229)


   

N-Methyl-L-histidine

N-Methyl-L-histidine

C7H11N3O2 (169.0851)


   

Rolliniastatin-2

Rolliniastatin-2

C37H66O7 (622.4808)


D010575 - Pesticides > D007306 - Insecticides D000970 - Antineoplastic Agents D016573 - Agrochemicals

   

pentanoyl-CoA

pentanoyl-CoA

C26H44N7O17P3S (851.1727)


A short-chain fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of pentanoic acid.

   

Purine Riboside-5-Monophosphate

Purine Riboside-5-Monophosphate

C10H13N4O7P (332.0522)


   

1-(sn-Glycero-3-phospho)-1D-myo-inositol

1-(sn-Glycero-3-phospho)-1D-myo-inositol

C9H19O11P (334.0665)


A myo-inositol monophosphate derivative that is 1D-myo-inositol substituted at position 1 by an sn-glycero-3-phospho group.

   
   
   

2-Ethoxyethanol

2-Ethoxyethanol

C4H10O2 (90.0681)


   

methapyrilene

methapyrilene

C14H19N3S (261.13)


R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AC - Substituted ethylene diamines D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D018926 - Anti-Allergic Agents

   

3-Chlorophenyl piperazine

1-(3-Chlorophenyl)piperazine

C10H13ClN2 (196.0767)


A N-arylpiperazine that is piperazine carrying a 3-chlorophenyl substituent at position 1. It is a metabolite of the antidepressant drug trazodone. D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists

   

Epothilone D

Desoxyepothilone b

C27H41NO5S (491.2705)


An epithilone that is epithilone C in which the hydrogen at position 13 of the oxacyclohexadec-13-ene-2,6-dione macrocycle has been replaced by a methyl group. C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents

   

Chlorocresol

4-Chloro-3-methylphenol

C7H7ClO (142.0185)


C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D016573 - Agrochemicals D010575 - Pesticides Same as: D03468

   

2,4-DP

2-(2,4-Dichlorophenoxy)propionic acid

C9H8Cl2O3 (233.985)


   

ISOAMYL ACETATE

3-Methylbutyl acetate

C7H14O2 (130.0994)


The acetate ester of isoamylol.

   

Methyl tert-butyl ether

Methyl tert-butyl ether

C5H12O (88.0888)


An ether having methyl and tert-butyl as the two alkyl components. D004785 - Environmental Pollutants > D000393 - Air Pollutants D009676 - Noxae > D002273 - Carcinogens

   

alachlor

alachlor

C14H20ClNO2 (269.1182)


D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

Isopropylbenzene

Isopropylbenzene

C9H12 (120.0939)


   

Hypoglycine a

Hypoglycine a

C7H11NO2 (141.079)


D009676 - Noxae > D011042 - Poisons > D007005 - Hypoglycins

   

Glycolithocholate

N-[(3alpha,5beta)-3-hydroxy-24-oxocholan-24-yl]-glycine

C26H43NO4 (433.3192)


D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids The glycine conjugate of lithocholic acid.

   

CoA 24:0

C24:0-CoA;C24:0-coenzyme A;Lignoceroyl-coa;Lignoceroyl-coenzyme A;Tetracosanoyl-CoA;tetracosanoyl-coenzyme A

C45H82N7O17P3S (1117.4701)


A very long-chain fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of tetracosanoic (lignoceric) acid. It is an intermediate in the biosynthesis of unsaturated fatty acids.

   

D-Gluconic acid, delta-lactone

D-Gluconic acid, delta-lactone

C6H10O6 (178.0477)


   

4-BROMOCATECHOL

4-BROMOCATECHOL

C6H5BrO2 (187.9473)


   

heptachlor

Heptachlorane

C10H5Cl7 (369.8211)


D004785 - Environmental Pollutants > D012989 - Soil Pollutants D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

N-PHENYL-1-NAPHTHYLAMINE

N-Phenyl-1-naphthalenamine

C16H13N (219.1048)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D004396 - Coloring Agents > D005456 - Fluorescent Dyes D009676 - Noxae > D002273 - Carcinogens

   

trifluralin

trifluralin

C13H16F3N3O4 (335.1093)


D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

Vinclozoline

Vinclozoline

C12H9Cl2NO3 (284.9959)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D000726 - Androgen Antagonists D016573 - Agrochemicals D010575 - Pesticides

   

Benzo[k]fluoranthene

11,12-Benzofluoranthene

C20H12 (252.0939)


   

1,4-Dianilinobenzene

N,N-DIPHENYL-1,4-PHENYLENEDIAMINE

C18H16N2 (260.1313)


D020011 - Protective Agents > D000975 - Antioxidants

   

Neostanox

Bis[tris(2-methyl-2-phenylpropyl)tin]oxide

C60H78OSn2 (1054.4096)


   
   

Monolaurin

2,3-Dihydroxypropyl dodecanoate

C15H30O4 (274.2144)


D020011 - Protective Agents > D002327 - Cariostatic Agents D001697 - Biomedical and Dental Materials D013501 - Surface-Active Agents

   

Cyclopropanecarboxylate

CYCLOPROPANECARBOXYLIC ACID

C4H6O2 (86.0368)


   

N,N-Dimethylsphingosine

N,N-Dimethylsphingosine

C20H41NO2 (327.3137)


A sphingoid that is sphingosine in which the two amino hydrogens are replaced by methyl groups. D004791 - Enzyme Inhibitors

   

6-O-alpha-D-Galactopyranosyl-alpha-D-glucopyranose

6-O-alpha-D-Galactopyranosyl-alpha-D-glucopyranose

C12H22O11 (342.1162)


   

Dihydrogenistein

4,5,7-Trihydroxyisoflavan-4-one

C15H12O5 (272.0685)


A hydroxyisoflavanone comprising isoflavanone carrying three hydroxy substituents at positions 5, 7 and 4.

   

Zwittergent 3-14

N-Tetradecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate

C19H41NO3S (363.2807)


   

3-Keto-vpa

2-N-Propyl-3-oxopentanoic acid

C8H14O3 (158.0943)


   

5-Acetamido-2-[[5-(4-amino-2-oxopyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-4-hydroxy-6-(1,2,3-trihydroxypropyl)oxane-2-carboxylic acid

5-Acetamido-2-[[5-(4-amino-2-oxopyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-4-hydroxy-6-(1,2,3-trihydroxypropyl)oxane-2-carboxylic acid

C20H31N4O16P (614.1473)


   

MOLINATE

MOLINATE

C9H17NOS (187.1031)


D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents D009676 - Noxae > D000988 - Antispermatogenic Agents D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

(3R,20S)-19alpha-Methyl-2-oxoformosanan-16-carboxylic acid methyl ester

(3R,20S)-19alpha-Methyl-2-oxoformosanan-16-carboxylic acid methyl ester

C21H24N2O4 (368.1736)