5,10-Methylene-THF (BioDeep_00000004386)
human metabolite Endogenous blood metabolite Volatile Flavor Compounds
代谢物信息卡片
化学式: C20H23N7O6 (457.1709738)
中文名称:
谱图信息:
最多检出来源 Homo sapiens(blood) 0.68%
分子结构信息
SMILES: c12[nH]c(nc(=O)c1N1[C@H](CN2)CN(C1)c1ccc(cc1)C(=O)N[C@@H](CCC(=O)O)C(=O)O)N
InChI: InChI=1S/C20H23N7O6/c21-20-24-16-15(18(31)25-20)27-9-26(8-12(27)7-22-16)11-3-1-10(2-4-11)17(30)23-13(19(32)33)5-6-14(28)29/h1-4,12-13H,5-9H2,(H,23,30)(H,28,29)(H,32,33)(H4,21,22,24,25,31)
描述信息
5,10-Methylene-THF is an intermediate in glycine, serine and threonine metabolism and one carbon metabolism. 5,10-CH2-THF can also be used as a coenzyme in the biosynthesis of thymidine. More specifically it is the C1-donor in the reactions catalyzed by thymidylate synthase and thymidylate synthase (FAD). It also acts as a coenzyme in the synthesis of serine from glycine via the enzyme serine hydroxymethyl transferase. 5,10-Methylene-THF is a substrate for Methylenetetrahydrofolate reductase. This enzyme converts 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate. This reaction is required for the multistep process that converts the amino acid homocysteine to methionine. The body uses methionine to make proteins and other important compounds. 5,10-CH2-THF is a substrate for many enzymes including Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase (mitochondrial), Aminomethyltransferase (mitochondrial), Serine hydroxymethyltransferase (mitochondrial), Methylenetetrahydrofolate reductase, C-1-tetrahydrofolate synthase (cytoplasmic), Serine hydroxymethyltransferase (cytosolic) and Thymidylate synthase.
5,10-Methylene-THF is an intermediate in the metabolism of Methane and the metabolism of Nitrogen. It is a substrate for Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase (mitochondrial), Aminomethyltransferase (mitochondrial), Serine hydroxymethyltransferase (mitochondrial), Methylenetetrahydrofolate reductase, C-1-tetrahydrofolate synthase (cytoplasmic), Serine hydroxymethyltransferase (cytosolic) and Thymidylate synthase. [HMDB]
COVID info from COVID-19 Disease Map
Corona-virus
Coronavirus
SARS-CoV-2
COVID-19
SARS-CoV
COVID19
SARS2
SARS
同义名列表
19 个代谢物同义名
2-({4-[(6aR)-1-hydroxy-3-imino-3H,4H,5H,6H,6aH,7H,8H,9H-imidazo[1,5-f]pteridin-8-yl]phenyl}formamido)pentanedioic acid; 2-({4-[(6aR)-1-hydroxy-3-imino-4H,5H,6H,6aH,7H,9H-imidazo[1,5-f]pteridin-8-yl]phenyl}formamido)pentanedioic acid; 2-[[4-[(6aR)-3-amino-1-oxo-4,5,6,6a,7,9-hexahydroimidazo[1,5-f]pteridin-8-yl]benzoyl]amino]pentanedioic acid; 5,10-Methylenetetrahydrofolate monohydrochloride, (L-glu)-isomer; 5,10-Methylenetetrahydrofolate, (L-glu)-(S)-isomer; 5,10-Methylenetetrahydrofolate, (D-glu)-isomer; (6R)-5,10-Methylenetetrahydrofolic acid; 5,10-Methenyltetrahydropteroylglutamate; 5,10-Methylene-5,6,7,8-tetrahydrofolate; (6R)-5,10-Methylenetetrahydrofolate; 5,10-Methylenetetrahydrofolic acid; N5>,N10-methylenetetrahydrofolate; 5,10-Methylene-6-hydrofolic acid; 5,10-Methylenetetrahydrofolate; 5,10-Methylene-6-hydrofolate; Tetrahydromethylenefolate; 5,10-methylene-THF; CH2H4Folate; 5,10-Methylenetetrahydrofolate
数据库引用编号
20 个数据库交叉引用编号
- KEGG: C00143
- PubChem: 135402041
- PubChem: 135398652
- PubChem: 439175
- HMDB: HMDB0001533
- Metlin: METLIN713
- KNApSAcK: C00007250
- foodb: FDB022675
- chemspider: 388320
- CAS: 31690-11-6
- CAS: 3432-99-3
- PMhub: MS000016806
- ChEBI: CHEBI:1989
- PubChem: 3443
- PDB-CCD: MEF
- PDB-CCD: MHF
- 3DMET: B04640
- NIKKAJI: J356.347B
- RefMet: 5,10-Methylene-THF
- KNApSAcK: 1989
分类词条
相关代谢途径
Reactome(0)
BioCyc(9)
PlantCyc(0)
代谢反应
144 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(16)
- folate metabolism:
H+ + ser + tetrahydrofolate ⟶ 5,10-methylene-THF + H2O + gly
- pyrimidine deoxyribonucleotides de novo biosynthesis I:
H2O + dCTP ⟶ ammonia + dUTP
- purine and pyrimidine metabolism:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- pyrimidine deoxyribonucleotides de novo biosynthesis I:
H2O + dCTP ⟶ ammonia + dUTP
- formylTHF biosynthesis II:
H+ + NAD+ + gly + tetrahydrofolate ⟶ 5,10-methylenetetrahydrofolate + CO2 + NADH + ammonia
- formylTHF biosynthesis I:
H+ + NAD+ + gly + tetrahydrofolate ⟶ 5,10-methylenetetrahydrofolate + CO2 + NADH + ammonia
- folate polyglutamylation I:
H+ + ser + tetrahydrofolate ⟶ 5,10-methylene-THF + H2O + gly
- superpathway of serine and glycine biosynthesis I:
2-oxoglutarate + 3-phospho-L-serine ⟶ 3-phospho-hydroxypyruvate + glt
- glycine biosynthesis I:
H+ + ser + tetrahydrofolate ⟶ 5,10-methylene-THF + H2O + gly
- superpathway of threonine degradation:
thr ⟶ 2-oxobutanoate + H+ + ammonia
- threonine degradation I:
thr ⟶ acetaldehyde + gly
- formaldehyde assimilation I (serine pathway):
L-malyl-CoA ⟶ acetyl-CoA + glyoxylate
- glycine degradation III:
H+ + NAD+ + gly + tetrahydrofolate ⟶ 5,10-methylenetetrahydrofolate + CO2 + NADH + ammonia
- glycine biosynthesis II:
H+ + NAD+ + gly + tetrahydrofolate ⟶ 5,10-methylenetetrahydrofolate + CO2 + NADH + ammonia
- folate polyglutamylation I:
H+ + ser + tetrahydrofolate ⟶ 5,10-methylenetetrahydrofolate + H2O + gly
- glycine cleavage complex:
a [glycine-cleavage complex H protein] N6-aminomethyldihydrolipoyl-L-lysine + tetrahydrofolate ⟶ 5,10-methylene-THF + a [glycine-cleavage complex H protein] N6-dihydrolipoyl-L-lysine + ammonia
WikiPathways(6)
- Folate metabolism:
Thromboxane A2 ⟶ Thromboxane B2
- Vitamin B12 metabolism:
Thromboxane A2 ⟶ Thromboxane B2
- Vitamin B12 metabolism:
Thromboxane A2 ⟶ Thromboxane B2
- Folate-alcohol and cancer pathway hypotheses:
Cysteine ⟶ Cystathionine
- Folate metabolism:
Thromboxane A2 ⟶ Thromboxane B2
- Ethanol effects on histone modifications:
Ethanol ⟶ Acetaldehyde
Plant Reactome(0)
INOH(6)
- Folate metabolism ( Folate metabolism ):
6-Pyruvoyl-5,6,7,8-tetrahydro-pterin + NADPH ⟶ 5,6,7,8-Tetrahydro-biopterin + NADP+
- Pyrimidine Nucleotides and Nucleosides metabolism ( Pyrimidine Nucleotides and Nucleosides metabolism ):
Deoxy-cytidine + H2O ⟶ Deoxy-uridine + NH3
- L-Tetrahydro-folic acid + L-Serine = 5,10-Methylene-tetrahydro-folic acid + Glycine + H2O ( Folate metabolism ):
L-Serine + L-Tetrahydro-folic acid ⟶ 5,10-Methylene-tetrahydro-folic acid + Glycine + H2O
- Glycine and Serine metabolism ( Glycine and Serine metabolism ):
Guanidino-acetic acid + S-Adenosyl-L-methionine ⟶ Creatine + S-Adenosyl-L-homocysteine
- L-Tetrahydro-folic acid + L-Serine = 5,10-Methylene-tetrahydro-folic acid + Glycine + H2O ( Glycine and Serine metabolism ):
L-Serine + L-Tetrahydro-folic acid ⟶ 5,10-Methylene-tetrahydro-folic acid + Glycine
- NAD+ + 5,10-Methylene-tetrahydro-folic acid = NADH + 5,10-Methenyl-tetrahydro-folic acid ( Folate metabolism ):
5,10-Methylene-tetrahydro-folic acid + NAD+ ⟶ 5,10-Methenyl-tetrahydro-folic acid + NADH
PlantCyc(13)
- formaldehyde oxidation VII (THF pathway):
a tetrahydrofolate + formaldehyde ⟶ H2O + a 5,10-methylenetetrahydrofolate
- folate polyglutamylation:
ATP + a 5,10-methylenetetrahydrofolate + glu ⟶ ADP + a 5,10-methylenetetrahydrofolate + phosphate
- glycine biosynthesis I:
a tetrahydrofolate + ser ⟶ H2O + a 5,10-methylenetetrahydrofolate + gly
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- pyrimidine deoxyribonucleotides de novo biosynthesis I:
a 5,10-methylenetetrahydrofolate + dUMP ⟶ a 7,8-dihydrofolate + dTMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pantothenate and coenzymeA biosynthesis:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- glycine biosynthesis:
a tetrahydrofolate + ser ⟶ H2O + a 5,10-methylenetetrahydrofolate + gly
- formate assimilation into 5,10-methylenetetrahydrofolate:
NADP+ + a 5,10-methylenetetrahydrofolate ⟶ NADPH + a 5,10-methenyltetrahydrofolate
- superpathway of pyrimidine deoxyribonucleotides de novo biosynthesis:
ATP + H2O + gln + hydrogencarbonate ⟶ ADP + H+ + carbamoyl phosphate + glu + phosphate
- pyrimidine deoxyribonucleotides de novo biosynthesis II:
a 5,10-methylenetetrahydrofolate + dUMP ⟶ a 7,8-dihydrofolate + dTMP
- superpathway of coenzyme A biosynthesis II (plants):
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
COVID-19 Disease Map(1)
- @COVID-19 Disease
Map["name"]:
2-Methyl-3-acetoacetyl-CoA + Coenzyme A ⟶ Acetyl-CoA + Propanoyl-CoA
PathBank(102)
- Glycine and Serine Metabolism:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Ammonia Recycling:
Adenosine triphosphate + L-Aspartic acid + L-Glutamine + Water ⟶ Adenosine monophosphate + L-Asparagine + L-Glutamic acid + Pyrophosphate
- Dimethylglycine Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Dihydropyrimidine Dehydrogenase Deficiency (DHPD):
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Sarcosinemia:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Non-Ketotic Hyperglycinemia:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Dimethylglycine Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Hyperglycinemia, Non-Ketotic:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- 3-Phosphoglycerate Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Ammonia Recycling:
Adenosine triphosphate + L-Aspartic acid + L-Glutamine + Water ⟶ Adenosine monophosphate + L-Asparagine + L-Glutamic acid + Pyrophosphate
- Glycine and Serine Metabolism:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- 3-Phosphoglycerate Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Dihydropyrimidine Dehydrogenase Deficiency (DHPD):
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Dimethylglycine Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Sarcosinemia:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Non-Ketotic Hyperglycinemia:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Hyperglycinemia, Non-Ketotic:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- 3-Phosphoglycerate Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Ammonia Recycling:
Adenosine triphosphate + L-Aspartic acid + L-Glutamine + Water ⟶ Adenosine monophosphate + L-Asparagine + L-Glutamic acid + Pyrophosphate
- Glycine and Serine Metabolism:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Ammonia Recycling:
Adenosine triphosphate + L-Aspartic acid + L-Glutamine + Water ⟶ Adenosine monophosphate + L-Asparagine + L-Glutamic acid + Pyrophosphate
- Glycine and Serine Metabolism:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Ammonia Recycling:
Adenosine triphosphate + L-Aspartic acid + L-Glutamine + Water ⟶ Adenosine monophosphate + L-Asparagine + L-Glutamic acid + Pyrophosphate
- Glycine and Serine Metabolism:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Ammonia Recycling:
Adenosine triphosphate + L-Aspartic acid + L-Glutamine + Water ⟶ Adenosine monophosphate + L-Asparagine + L-Glutamic acid + Pyrophosphate
- Glycine and Serine Metabolism:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Dihydropyrimidine Dehydrogenase Deficiency (DHPD):
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Dimethylglycine Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Sarcosinemia:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Non-Ketotic Hyperglycinemia:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Hyperglycinemia, Non-Ketotic:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Pyrimidine Metabolism:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- beta-Ureidopropionase Deficiency:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- UMP Synthase Deficiency (Orotic Aciduria):
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Dihydropyrimidinase Deficiency:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- MNGIE (Mitochondrial Neurogastrointestinal Encephalopathy):
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- One Carbon Pool by Folate:
S-Aminomethyldihydrolipoylprotein; + Tetrahydrofolic acid ⟶ 5,10-Methylene-THF + Ammonia + dihydrolipoylprotein
- One Carbon Pool by Folate I:
S-Aminomethyldihydrolipoylprotein; + Tetrahydrofolic acid ⟶ 5,10-Methylene-THF + Ammonia + dihydrolipoylprotein
- Pyrimidine Metabolism:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- beta-Ureidopropionase Deficiency:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Dihydropyrimidinase Deficiency:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- UMP Synthase Deficiency (Orotic Aciduria):
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- MNGIE (Mitochondrial Neurogastrointestinal Encephalopathy):
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Pyrimidine Metabolism:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Pyrimidine Metabolism:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Pyrimidine Metabolism:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Pyrimidine Metabolism:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- beta-Ureidopropionase Deficiency:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Dihydropyrimidinase Deficiency:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- UMP Synthase Deficiency (Orotic Aciduria):
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- MNGIE (Mitochondrial Neurogastrointestinal Encephalopathy):
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- One Carbon Pool by Folate:
S-Aminomethyldihydrolipoylprotein; + Tetrahydrofolic acid ⟶ 5,10-Methylene-THF + Ammonia + dihydrolipoylprotein
- Methionine Metabolism:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Folate Metabolism:
5-Formiminotetrahydrofolic acid ⟶ 5,10-Methenyltetrahydrofolic acid + Ammonia
- Cystathionine beta-Synthase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Hypermethioninemia:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- S-Adenosylhomocysteine (SAH) Hydrolase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Glycine N-Methyltransferase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Methylenetetrahydrofolate Reductase Deficiency (MTHFRD):
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Methionine Adenosyltransferase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Methotrexate Action Pathway:
5-Formiminotetrahydrofolic acid ⟶ 5,10-Methenyltetrahydrofolic acid + Ammonia
- Methylenetetrahydrofolate Reductase Deficiency (MTHFRD):
5-Formiminotetrahydrofolic acid ⟶ 5,10-Methenyltetrahydrofolic acid + Ammonia
- Homocystinuria-Megaloblastic Anemia Due to Defect in Cobalamin Metabolism, cblG Complementation Type:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Folate Malabsorption, Hereditary:
5-Formiminotetrahydrofolic acid ⟶ 5,10-Methenyltetrahydrofolic acid + Ammonia
- Folate Metabolism:
5-Formiminotetrahydrofolic acid ⟶ 5,10-Methenyltetrahydrofolic acid + Ammonia
- Methionine Metabolism:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Folate Malabsorption, Hereditary:
5-Formiminotetrahydrofolic acid ⟶ 5,10-Methenyltetrahydrofolic acid + Ammonia
- Cystathionine beta-Synthase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Glycine N-Methyltransferase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Hypermethioninemia:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Methionine Adenosyltransferase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Methylenetetrahydrofolate Reductase Deficiency (MTHFRD):
5-Formiminotetrahydrofolic acid ⟶ 5,10-Methenyltetrahydrofolic acid + Ammonia
- S-Adenosylhomocysteine (SAH) Hydrolase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Homocystinuria-Megaloblastic Anemia Due to Defect in Cobalamin Metabolism, cblG Complementation Type:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Folate Malabsorption, Hereditary:
5-Formiminotetrahydrofolic acid ⟶ 5,10-Methenyltetrahydrofolic acid + Ammonia
- Folate Metabolism:
5-Formiminotetrahydrofolic acid ⟶ 5,10-Methenyltetrahydrofolic acid + Ammonia
- Methionine Metabolism:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Folate Metabolism:
5-Formiminotetrahydrofolic acid ⟶ 5,10-Methenyltetrahydrofolic acid + Ammonia
- Methionine Metabolism:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Folate Metabolism:
5-Formiminotetrahydrofolic acid ⟶ 5,10-Methenyltetrahydrofolic acid + Ammonia
- Methionine Metabolism:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Folate Metabolism:
5-Formiminotetrahydrofolic acid ⟶ 5,10-Methenyltetrahydrofolic acid + Ammonia
- Methionine Metabolism:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Cystathionine beta-Synthase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Glycine N-Methyltransferase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Hypermethioninemia:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Methionine Adenosyltransferase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Methylenetetrahydrofolate Reductase Deficiency (MTHFRD):
5-Formiminotetrahydrofolic acid ⟶ 5,10-Methenyltetrahydrofolic acid + Ammonia
- S-Adenosylhomocysteine (SAH) Hydrolase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Homocystinuria-Megaloblastic Anemia Due to Defect in Cobalamin Metabolism, cblG Complementation Type:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Glycine Metabolism:
DL-O-Phosphoserine + Water ⟶ L-Serine + Phosphate
- Serine Metabolism:
DL-O-Phosphoserine + Water ⟶ L-Serine + Phosphate
- Glycine Metabolism:
L-Serine + Tetrahydrofolic acid ⟶ 5,10-Methylene-THF + Glycine + Water
- Serine Metabolism:
L-Serine + Tetrahydrofolic acid ⟶ 5,10-Methylene-THF + Glycine + Water
- Glycine Biosynthesis:
L-Serine + Tetrahydrofolic acid ⟶ 5,10-Methylene-THF + Glycine + Water
- Pantothenate and CoA Biosynthesis:
-Ketoisovaleric acid + 5,10-Methylene-THF + Water ⟶ 2-dehydropantoate + Tetrahydrofolic acid
- Sarcosine Oncometabolite Pathway:
L-Serine + Tetrahydrofolic acid ⟶ 5,10-Methylene-THF + Glycine + Water
- Pantothenate and CoA Biosynthesis:
-Ketoisovaleric acid + 5,10-Methylene-THF + Water ⟶ 2-dehydropantoate + Tetrahydrofolic acid
- Sarcosine Oncometabolite Pathway:
L-Serine + Tetrahydrofolic acid ⟶ 5,10-Methylene-THF + Glycine + Water
- Sarcosine Oncometabolite Pathway:
L-Serine + Tetrahydrofolic acid ⟶ 5,10-Methylene-THF + Glycine + Water
- Glycine Biosynthesis:
L-Serine + Tetrahydrofolic acid ⟶ 5,10-Methylene-THF + Glycine + Water
- Pantothenate and CoA Biosynthesis:
-Ketoisovaleric acid + 5,10-Methylene-THF + Water ⟶ 2-dehydropantoate + Tetrahydrofolic acid
PharmGKB(0)
1 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Armelle Vigouroux, Thibault Meyer, Anaïs Naretto, Pierre Legrand, Magali Aumont-Nicaise, Aurélie Di Cicco, Sébastien Renoud, Jeanne Doré, Daniel Lévy, Ludovic Vial, Céline Lavire, Solange Moréra. Characterization of the first tetrameric transcription factor of the GntR superfamily with allosteric regulation from the bacterial pathogen Agrobacterium fabrum.
Nucleic acids research.
2021 01; 49(1):529-546. doi:
10.1093/nar/gkaa1181
. [PMID: 33313837] - Helena Taflin, Elisabeth Odin, Göran Carlsson, Roger Tell, Bengt Gustavsson, Yvonne Wettergren. Plasma deoxyuridine as a surrogate marker for toxicity and early clinical response in patients with metastatic colorectal cancer after 5-FU-based therapy in combination with arfolitixorin.
Cancer chemotherapy and pharmacology.
2021 01; 87(1):31-41. doi:
10.1007/s00280-020-04173-2
. [PMID: 33099678] - Aamod S Dekhne, Changwen Ning, Md Junayed Nayeen, Khushbu Shah, Hasini Kalpage, Josephine Frühauf, Adrianne Wallace-Povirk, Carrie O'Connor, Zhanjun Hou, Seongho Kim, Maik Hüttemann, Aleem Gangjee, Larry H Matherly. Cellular Pharmacodynamics of a Novel Pyrrolo[3,2-d]pyrimidine Inhibitor Targeting Mitochondrial and Cytosolic One-Carbon Metabolism.
Molecular pharmacology.
2020 01; 97(1):9-22. doi:
10.1124/mol.119.117937
. [PMID: 31707355] - Mehmet Serdar Kutuk, Asli Subasioglu, Semih Uludag, Nazife Tascioglu, Mahmut Tuncay Ozgun, Munis Dundar. The effect of parental 5,10-methylenetetrahydrofolate reductase 677C/T and 1298A/C gene polymorphisms on response to single-dose methotrexate in tubal ectopic pregnancy.
The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstetricians.
2017 May; 30(10):1232-1237. doi:
10.1080/14767058.2016.1209652
. [PMID: 27379466] - Natario L Couser, Julie McClure, Michael W Evans, Nathan R Haines, Susan K Burden, Joseph Muenzer. Homocysteinemia due to MTHFR deficiency in a young adult presenting with bilateral lens subluxations.
Ophthalmic genetics.
2017 Jan; 38(1):91-94. doi:
10.3109/13816810.2016.1143017
. [PMID: 27046515] - Martin Groth, Guillaume Moissiard, Markus Wirtz, Haifeng Wang, Carolina Garcia-Salinas, Perla A Ramos-Parra, Sylvain Bischof, Suhua Feng, Shawn J Cokus, Amala John, Danielle C Smith, Jixian Zhai, Christopher J Hale, Jeff A Long, Ruediger Hell, Rocío I Díaz de la Garza, Steven E Jacobsen. MTHFD1 controls DNA methylation in Arabidopsis.
Nature communications.
2016 06; 7(?):11640. doi:
10.1038/ncomms11640
. [PMID: 27291711] - José F Cascalheira, Mónica Gonçalves, Madalena Barroso, Rita Castro, Manuela Palmeira, André Serpa, Ana C Dias-Cabral, Fernanda C Domingues, Sofia Almeida. Association of the transcobalamin II gene 776C → G polymorphism with Alzheimer's type dementia: dependence on the 5, 10-methylenetetrahydrofolate reductase 1298A → C polymorphism genotype.
Annals of clinical biochemistry.
2015 Jul; 52(Pt 4):448-55. doi:
10.1177/0004563214561770
. [PMID: 25395544] - Yvonne Wettergren, Helena Taflin, Elisabeth Odin, Karl Kodeda, Kristoffer Derwinger. A pharmacokinetic and pharmacodynamic investigation of Modufolin® compared to Isovorin® after single dose intravenous administration to patients with colon cancer: a randomized study.
Cancer chemotherapy and pharmacology.
2015 Jan; 75(1):37-47. doi:
10.1007/s00280-014-2611-9
. [PMID: 25342290] - Azita Hekmatdoost, Farhad Vahid, Zahra Yari, Mohammadreza Sadeghi, Hassan Eini-Zinab, Niknam Lakpour, Soheila Arefi. Methyltetrahydrofolate vs Folic Acid Supplementation in Idiopathic Recurrent Miscarriage with Respect to Methylenetetrahydrofolate Reductase C677T and A1298C Polymorphisms: A Randomized Controlled Trial.
PloS one.
2015; 10(12):e0143569. doi:
10.1371/journal.pone.0143569
. [PMID: 26630680] - A H Ford, L Flicker, G J Hankey, P Norman, F M van Bockxmeer, O P Almeida. Homocysteine, methylenetetrahydrofolate reductase C677T polymorphism and cognitive impairment: the health in men study.
Molecular psychiatry.
2012 May; 17(5):559-66. doi:
10.1038/mp.2011.18
. [PMID: 21358708] - Bridget Wilcken. Leukoencephalopathies associated with disorders of cobalamin and folate metabolism.
Seminars in neurology.
2012 Feb; 32(1):68-74. doi:
10.1055/s-0032-1306389
. [PMID: 22422209] - Siaw C Liew, Esha Das-Gupta, Shew F Wong, Nagarajah Lee, Najeeb Safdar, Adawiyah Jamil. Association of methylentetraydrofolate reductase (MTHFR) 677 C > T gene polymorphism and homocysteine levels in psoriasis vulgaris patients from Malaysia: a case-control study.
Nutrition journal.
2012 Jan; 11(?):1. doi:
10.1186/1475-2891-11-1
. [PMID: 22217364] - Andrew H Ford, Leon Flicker, Helman Alfonso, Graeme J Hankey, Paul E Norman, Frank M van Bockxmeer, Osvaldo P Almeida. Plasma homocysteine and MTHFRC677T polymorphism as risk factors for incident dementia.
Journal of neurology, neurosurgery, and psychiatry.
2012 Jan; 83(1):70-5. doi:
10.1136/jnnp.2011.242446
. [PMID: 21746742] - Jian-Yuan Zhao, Jing-Wei Sun, Zhuo-Ya Gu, Jue Wang, Er-Li Wang, Xue-Yan Yang, Bin Qiao, Wen-Yuan Duan, Guo-Ying Huang, Hong-Yan Wang. Genetic polymorphisms of the TYMS gene are not associated with congenital cardiac septal defects in a Han Chinese population.
PloS one.
2012; 7(2):e31644. doi:
10.1371/journal.pone.0031644
. [PMID: 22384047] - Jill A McKay, Alexandra Groom, Catherine Potter, Lisa J Coneyworth, Dianne Ford, John C Mathers, Caroline L Relton. Genetic and non-genetic influences during pregnancy on infant global and site specific DNA methylation: role for folate gene variants and vitamin B12.
PloS one.
2012; 7(3):e33290. doi:
10.1371/journal.pone.0033290
. [PMID: 22479380] - Michael Kube, Jelena Mitrovic, Bojan Duduk, Ralf Rabus, Erich Seemüller. Current view on phytoplasma genomes and encoded metabolism.
TheScientificWorldJournal.
2012; 2012(?):185942. doi:
10.1100/2012/185942
. [PMID: 22550465] - Ganesh Chauhan, Ismeet Kaur, Rubina Tabassum, Om Prakash Dwivedi, Saurabh Ghosh, Nikhil Tandon, Dwaipayan Bharadwaj. Common variants of homocysteine metabolism pathway genes and risk of type 2 diabetes and related traits in Indians.
Experimental diabetes research.
2012; 2012(?):960318. doi:
10.1155/2012/960318
. [PMID: 21960995] - Emel Ergul, Ali Sazci, Ihsan Kara. Methylenetetrahydrofolate reductase gene polymorphisms in Turkish children with attention-deficit/hyperactivity disorder.
Genetic testing and molecular biomarkers.
2012 Jan; 16(1):67-9. doi:
10.1089/gtmb.2011.0062
. [PMID: 21819229] - Asma Ezzaher, Dhouha Haj Mouhamed, Anwar Mechri, Asma Omezzine, Fadoua Neffati, Wahiba Douki, Ali Bouslama, Lotfi Gaha, Mohamed Fadhel Najjar. Hyperhomocysteinemia in Tunisian bipolar I patients.
Psychiatry and clinical neurosciences.
2011 Dec; 65(7):664-71. doi:
10.1111/j.1440-1819.2011.02284.x
. [PMID: 22176285] - Haruka Murakami, Motoyuki Iemitsu, Kiyoshi Sanada, Yuko Gando, Yumi Ohmori, Ryoko Kawakami, Satoshi Sasaki, Izumi Tabata, Motohiko Miyachi. Associations among objectively measured physical activity, fasting plasma homocysteine concentration, and MTHFR C677T genotype.
European journal of applied physiology.
2011 Dec; 111(12):2997-3005. doi:
10.1007/s00421-011-1926-z
. [PMID: 21451940] - Asuri N Prasad, Charles A Rupar, Chitra Prasad. Methylenetetrahydrofolate reductase (MTHFR) deficiency and infantile epilepsy.
Brain & development.
2011 Oct; 33(9):758-69. doi:
10.1016/j.braindev.2011.05.014
. [PMID: 21778025] - Erika R F Siqueira, Cláudia P M S Oliveira, Maria T C Muniz, Filipe Silva, Leila M M B Pereira, Flair J Carrilho. Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism and high plasma homocysteine in chronic hepatitis C (CHC) infected patients from the Northeast of Brazil.
Nutrition journal.
2011 Aug; 10(?):86. doi:
10.1186/1475-2891-10-86
. [PMID: 21854603] - Kyung Lim Yoon, Jin Hee Ko, Kye Shik Shim, Mi Young Han, Sung Ho Cha, Su Kang Kim, Joo Ho Jung. Polymorphisms of methylenetetrahydrofolate reductase are not a risk factor for Kawasaki disease in the Korean population.
Korean journal of pediatrics.
2011 Aug; 54(8):335-9. doi:
10.3345/kjp.2011.54.8.335
. [PMID: 22087200] - Roman Pavlik, Stephanie Hecht, Robert Ochsenkühn, Ulrich Noss, Peter Lohse, Christian J Thaler. Divergent effects of the 677C>T mutation of the 5,10-methylenetetrahydrofolate reductase (MTHFR) gene on ovarian responsiveness and anti-Müllerian hormone concentrations.
Fertility and sterility.
2011 Jun; 95(7):2257-62. doi:
10.1016/j.fertnstert.2011.03.023
. [PMID: 21481373] - Veronica E Ohrvik, Cornelia M Witthoft. Human folate bioavailability.
Nutrients.
2011 04; 3(4):475-90. doi:
10.3390/nu3040475
. [PMID: 22254106] - So-Young Lee, Hoe-Young Kim, Kyung Mi Park, Stephen Yon Gu Lee, Seong Geun Hong, Hyung-Jong Kim, Dong Ho Yang. MTHFR C677T polymorphism as a risk factor for vascular calcification in chronic hemodialysis patients.
Journal of Korean medical science.
2011 Mar; 26(3):461-5. doi:
10.3346/jkms.2011.26.3.461
. [PMID: 21394321] - Audrey Y Jung, Yvo Smulders, Petra Verhoef, Frans J Kok, Henk Blom, Robert M Kok, Ellen Kampman, Jane Durga. No effect of folic acid supplementation on global DNA methylation in men and women with moderately elevated homocysteine.
PloS one.
2011; 6(9):e24976. doi:
10.1371/journal.pone.0024976
. [PMID: 21966393] - Beata Sarecka-Hujar, Iwona Zak. [Role of the polymorphisms within genes encoding proteins related to endothelial dysfunction in coronary artery disease].
Wiadomosci lekarskie (Warsaw, Poland : 1960).
2011; 64(4):294-300. doi:
. [PMID: 22533155]
- Hui-Qi Low, Christopher P L H Chen, Katherine Kasiman, Anbupalam Thalamuthu, Seok-Shin Ng, Jia-Nee Foo, Hui-Meng Chang, Meng-Cheong Wong, E-Shyong Tai, Jianjun Liu. A comprehensive association analysis of homocysteine metabolic pathway genes in Singaporean Chinese with ischemic stroke.
PloS one.
2011; 6(9):e24757. doi:
10.1371/journal.pone.0024757
. [PMID: 21935458] - Shih-Jen Tsai, Chen-Jee Hong, Heng-Liang Yeh, Ying-Jay Liou, Albert C Yang, Mu-En Liu, Jen-Ping Hwang. Heterozygote advantage of the MTHFR C677T polymorphism on specific cognitive performance in elderly Chinese males without dementia.
Dementia and geriatric cognitive disorders.
2011; 32(3):159-63. doi:
10.1159/000333074
. [PMID: 21997345] - Claire M Payne, Cheray Crowley-Skillicorn, Carol Bernstein, Hana Holubec, Harris Bernstein. Molecular and cellular pathways associated with chromosome 1p deletions during colon carcinogenesis.
Clinical and experimental gastroenterology.
2011; 4(?):75-119. doi:
10.2147/ceg.s17114
. [PMID: 21753893] - Tomasz Wlodarski, Jan Kutner, Joanna Towpik, Lukasz Knizewski, Leszek Rychlewski, Andrzej Kudlicki, Maga Rowicka, Andrzej Dziembowski, Krzysztof Ginalski. Comprehensive structural and substrate specificity classification of the Saccharomyces cerevisiae methyltransferome.
PloS one.
2011; 6(8):e23168. doi:
10.1371/journal.pone.0023168
. [PMID: 21858014] - Linda M Liao, Paul Brennan, Dana M van Bemmel, David Zaridze, Vsevolod Matveev, Vladimir Janout, Hellena Kollarova, Vladimir Bencko, Marie Navratilova, Neonila Szeszenia-Dabrowska, Dana Mates, Nathaniel Rothman, Paolo Boffetta, Wong-Ho Chow, Lee E Moore. LINE-1 methylation levels in leukocyte DNA and risk of renal cell cancer.
PloS one.
2011; 6(11):e27361. doi:
10.1371/journal.pone.0027361
. [PMID: 22076155] - Oksana Tehlivets. Homocysteine as a risk factor for atherosclerosis: is its conversion to s-adenosyl-L-homocysteine the key to deregulated lipid metabolism?.
Journal of lipids.
2011; 2011(?):702853. doi:
10.1155/2011/702853
. [PMID: 21837278] - Alfonso Campanile, Fabiola B Sozzi, Gian Battista Danzi. Multiple coronary artery thrombosis in 5,10-methylenetetrahydrofolate reductase gene mutation.
Cardiology research and practice.
2011; 2011(?):856479. doi:
10.4061/2011/856479
. [PMID: 21918725] - John C Panetta, Alex Sparreboom, Ching-Hon Pui, Mary V Relling, William E Evans. Modeling mechanisms of in vivo variability in methotrexate accumulation and folate pathway inhibition in acute lymphoblastic leukemia cells.
PLoS computational biology.
2010 Dec; 6(12):e1001019. doi:
10.1371/journal.pcbi.1001019
. [PMID: 21152005] - Rachel Dankner, Angela Chetrit, Havi Murad, Ben-Ami Sela, Jan Frystyk, Itamar Raz, Allan Flyvbjerg. Serum adiponectin is associated with homocysteine in elderly men and women, and with 5,10-methylenetetrahydrofolate reductase (MTHFR) in a sex-dependent manner.
Metabolism: clinical and experimental.
2010 Dec; 59(12):1767-74. doi:
10.1016/j.metabol.2010.05.001
. [PMID: 20580032] - Lin Zhang, Rui-Xing Yin, Wan-Ying Liu, Lin Miao, Dong-Feng Wu, Lynn Htet Htet Aung, Xi-Jiang Hu, Xiao-Li Cao, Jin-Zhen Wu, Shang-Ling Pan. Association of methylenetetrahydrofolate reductase C677T polymorphism and serum lipid levels in the Guangxi Bai Ku Yao and Han populations.
Lipids in health and disease.
2010 Oct; 9(?):123. doi:
10.1186/1476-511x-9-123
. [PMID: 20977771] - Chi-Jung Chung, Yeong-Shiau Pu, Chien-Tien Su, Hui-Wen Chen, Yung-Kai Huang, Horng-Sheng Shiue, Yu-Mei Hsueh. Polymorphisms in one-carbon metabolism pathway genes, urinary arsenic profile, and urothelial carcinoma.
Cancer causes & control : CCC.
2010 Oct; 21(10):1605-13. doi:
10.1007/s10552-010-9589-3
. [PMID: 20532609] - Angela M Devlin, Ursula Brain, Jehannine Austin, Tim F Oberlander. Prenatal exposure to maternal depressed mood and the MTHFR C677T variant affect SLC6A4 methylation in infants at birth.
PloS one.
2010 Aug; 5(8):e12201. doi:
10.1371/journal.pone.0012201
. [PMID: 20808944] - Yi Zhang, Kehan Sun, Francisco J Sandoval, Katherine Santiago, Sanja Roje. One-carbon metabolism in plants: characterization of a plastid serine hydroxymethyltransferase.
The Biochemical journal.
2010 Aug; 430(1):97-105. doi:
10.1042/bj20100566
. [PMID: 20518745] - Carolyn M Summers, Laura E Mitchell, Anna Stanislawska-Sachadyn, Shirley F Baido, Ian A Blair, Joan M Von Feldt, Alexander S Whitehead. Genetic and lifestyle variables associated with homocysteine concentrations and the distribution of folate derivatives in healthy premenopausal women.
Birth defects research. Part A, Clinical and molecular teratology.
2010 Aug; 88(8):679-88. doi:
10.1002/bdra.20683
. [PMID: 20544798] - Dao-Mei Cheng, Yu-Gang Jiang, Cheng-Yu Huang, Hai-Yan Kong, Wei Pang, Hong-Peng Yang. Polymorphism of MTHFR C677T, serum vitamin levels and cognition in subjects with hyperhomocysteinemia in China.
Nutritional neuroscience.
2010 Aug; 13(4):175-82. doi:
10.1179/147683010x12611460764200
. [PMID: 20670473] - Motoyuki Iemitsu, Haruka Murakami, Kiyoshi Sanada, Kenta Yamamoto, Hiroshi Kawano, Yuko Gando, Motohiko Miyachi. Lack of carotid stiffening associated with MTHFR 677TT genotype in cardiorespiratory fit adults.
Physiological genomics.
2010 Jul; 42(2):259-65. doi:
10.1152/physiolgenomics.00039.2010
. [PMID: 20406848] - Soujatya Dhar, Sumana Chatterjee, Saumitra Ray, Anjanlal Dutta, Bani Sengupta, Shila Chakrabarti. Polymorphisms of methylenetetrahydrofolate reductase gene as the genetic predispositions of coronary artery diseases in eastern India.
Journal of cardiovascular disease research.
2010 Jul; 1(3):152-7. doi:
10.4103/0975-3583.70922
. [PMID: 21187870] - Signe Altmäe, Anneli Stavreus-Evers, Jonatan R Ruiz, Margit Laanpere, Tiina Syvänen, Agneta Yngve, Andres Salumets, Torbjörn K Nilsson. Variations in folate pathway genes are associated with unexplained female infertility.
Fertility and sterility.
2010 Jun; 94(1):130-7. doi:
10.1016/j.fertnstert.2009.02.025
. [PMID: 19324355] - Fabio Coppedè. One-carbon metabolism and Alzheimer's disease: focus on epigenetics.
Current genomics.
2010 Jun; 11(4):246-60. doi:
10.2174/138920210791233090
. [PMID: 21119889] - Chung Shil Kwak, Mee Sook Lee, Hae Jeung Lee, Jin Yong Whang, Sang Chul Park. Dietary source of vitamin B(12) intake and vitamin B(12) status in female elderly Koreans aged 85 and older living in rural area.
Nutrition research and practice.
2010 Jun; 4(3):229-34. doi:
10.4162/nrp.2010.4.3.229
. [PMID: 20607069] - Steven F Werder. Cobalamin deficiency, hyperhomocysteinemia, and dementia.
Neuropsychiatric disease and treatment.
2010 May; 6(?):159-95. doi:
10.2147/ndt.s6564
. [PMID: 20505848] - A Preynat, H Lapierre, M C Thivierge, M F Palin, N Cardinault, J J Matte, A Desrochers, C L Girard. Effects of supplementary folic acid and vitamin B(12) on hepatic metabolism of dairy cows according to methionine supply.
Journal of dairy science.
2010 May; 93(5):2130-42. doi:
10.3168/jds.2009-2796
. [PMID: 20412928] - Rajneesh Tripathi, Satyendra Tewari, Prabhat Kumar Singh, Sarita Agarwal. Association of homocysteine and methylene tetrahydrofolate reductase (MTHFR C677T) gene polymorphism with coronary artery disease (CAD) in the population of North India.
Genetics and molecular biology.
2010 Apr; 33(2):224-8. doi:
10.1590/s1415-47572010005000026
. [PMID: 21637473] - In Bo Han, Ok Joon Kim, Jung Yong Ahn, Doyeun Oh, Sun Pyo Hong, Ryoong Huh, Sang Sup Chung, Nam Keun Kim. Association of methylenetetrahydrofolate reductase (MTHFR 677C>T and 1298A>C) polymorphisms and haplotypes with silent brain infarction and homocysteine levels in a Korean population.
Yonsei medical journal.
2010 Mar; 51(2):253-60. doi:
10.3349/ymj.2010.51.2.253
. [PMID: 20191019] - Bunzo Nakata, Ryosuke Amano, Shigetomi Nakao, Tatsuro Tamura, Osamu Shinto, Toshiki Hirakawa, Yoshihiro Okita, Nobuya Yamada, Kosei Hirakawa. Plasma pharmacokinetics after combined therapy of gemcitabine and oral S-1 for unresectable pancreatic cancer.
Journal of experimental & clinical cancer research : CR.
2010 Feb; 29(?):15. doi:
10.1186/1756-9966-29-15
. [PMID: 20181235] - N Solanky, A Requena Jimenez, S W D'Souza, C P Sibley, J D Glazier. Expression of folate transporters in human placenta and implications for homocysteine metabolism.
Placenta.
2010 Feb; 31(2):134-43. doi:
10.1016/j.placenta.2009.11.017
. [PMID: 20036773] - Andrew H Ford, Leon Flicker, Kieran McCaul, Frank van Bockxmeer, Sarah Hegarty, Varsha Hirani, Stephen Fenner, Osvaldo P Almeida. The B-VITAGE trial: a randomized trial of homocysteine lowering treatment of depression in later life.
Trials.
2010 Jan; 11(?):8. doi:
10.1186/1745-6215-11-8
. [PMID: 20096138] - Susanne H Kirsch, Jean-Pierre Knapp, Wolfgang Herrmann, Rima Obeid. Quantification of key folate forms in serum using stable-isotope dilution ultra performance liquid chromatography-tandem mass spectrometry.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2010 Jan; 878(1):68-75. doi:
10.1016/j.jchromb.2009.11.021
. [PMID: 19959403] - Martin J MacInnis, Michael S Koehle, Jim L Rupert. Evidence for a genetic basis for altitude illness: 2010 update.
High altitude medicine & biology.
2010; 11(4):349-68. doi:
10.1089/ham.2010.1030
. [PMID: 21190504] - Rey-Yue Yuan, Jau-Jiuan Sheu, Jia-Ming Yu, Chaur-Jong Hu, Ing-Jy Tseng, Chun-Sum Ho, Ching-Ying Yeh, Ya-Lin Hung, Tsuey-Ru Chiang. Methylenetetrahydrofolate reductase polymorphisms and plasma homocysteine in levodopa-treated and non-treated Parkinson's disease patients.
Journal of the neurological sciences.
2009 Dec; 287(1-2):64-8. doi:
10.1016/j.jns.2009.09.007
. [PMID: 19786283] - Aditi Hazra, Peter Kraft, Ross Lazarus, Constance Chen, Stephen J Chanock, Paul Jacques, Jacob Selhub, David J Hunter. Genome-wide significant predictors of metabolites in the one-carbon metabolism pathway.
Human molecular genetics.
2009 Dec; 18(23):4677-87. doi:
10.1093/hmg/ddp428
. [PMID: 19744961] - Shazia Micheal, Raheel Qamar, Farah Akhtar, Muhammad Imran Khan, Wajid Ali Khan, Asifa Ahmed. MTHFR gene C677T and A1298C polymorphisms and homocysteine levels in primary open angle and primary closed angle glaucoma.
Molecular vision.
2009 Nov; 15(?):2268-78. doi:
NULL
. [PMID: 19936026] - Cullen K T Pang, Joshua H Hunter, Ramesh Gujjar, Ramulu Podutoori, Julie Bowman, Devaraja G Mudeppa, Pradipsinh K Rathod. Catalytic and ligand-binding characteristics of Plasmodium falciparum serine hydroxymethyltransferase.
Molecular and biochemical parasitology.
2009 Nov; 168(1):74-83. doi:
10.1016/j.molbiopara.2009.06.011
. [PMID: 19591883] - Ruth Gil-Prieto, Valentín Hernández, Beatriz Cano, Manuel Oya, Angel Gil. Plasma homocysteine in adolescents depends on the interaction between methylenetetrahydrofolate reductase genotype, lipids and folate: a seroepidemiological study.
Nutrition & metabolism.
2009 Oct; 6(?):39. doi:
10.1186/1743-7075-6-39
. [PMID: 19804640] - Grazyna Kurzawińska, Agnieszka Seremak-Mrozikiewicz, Krzysztof Drews, Magdalena Barlik, Przemysław M Mrozikiewicz. [Genetic conditioned changes in activity of 5,10-methylenetetrahydrofolate reductase (MTHFR) and recurrent miscarriages].
Ginekologia polska.
2009 Oct; 80(10):762-7. doi:
. [PMID: 19943541]
- Asuman Orhan Varoglu. Na VPA-induced acute ischemic stroke in an epileptic patient with methylenetetrahydrofolate reductase gene polymorphism.
Epilepsy research.
2009 Oct; 86(2-3):232-6. doi:
10.1016/j.eplepsyres.2009.06.009
. [PMID: 19646848] - Arman Haghighatgoo, Yadira Valles-Ayoub, Chai Saechao, Saghi Esfandiarifard, Sarah L Martinez, Marvin Pietruszka, Daniel Darvish. MTHFR C677T genotype frequency in patients of Middle Eastern descent as determined by real-time PCR and melting curve analysis.
Genetic testing and molecular biomarkers.
2009 Aug; 13(4):471-6. doi:
10.1089/gtmb.2009.0008
. [PMID: 19594372] - José F Cascalheira, Sara S João, Sandra S Pinhanços, Rita Castro, Manuela Palmeira, Sofia Almeida, Maria C Faria, Fernanda C Domingues. Serum homocysteine: interplay with other circulating and genetic factors in association to Alzheimer's type dementia.
Clinical biochemistry.
2009 Jun; 42(9):783-90. doi:
10.1016/j.clinbiochem.2009.02.006
. [PMID: 19232336] - Szilvia Szamosi, Zoltán Csiki, Edit Szomják, Erzsébet Szolnoki, Gabriella Szoke, Zoltán Szekanecz, Gyula Szegedi, Yehuda Shoenfeld, Gabriella Szucs. Plasma homocysteine levels, the prevalence of methylenetetrahydrofolate reductase gene C677T polymorphism and macrovascular disorders in systemic sclerosis: risk factors for accelerated macrovascular damage?.
Clinical reviews in allergy & immunology.
2009 Jun; 36(2-3):145-9. doi:
10.1007/s12016-008-8105-y
. [PMID: 19093229] - Wojciech Sawuła, Zyta Banecka-Majkutewicz, Leszek Kadziński, Joanna Jakóbkiewicz-Banecka, Grzegorz Wegrzyn, Walenty Nyka, Bogdan Banecki. Homocysteine level and metabolism in ischemic stroke in the population of Northern Poland.
Clinical biochemistry.
2009 Apr; 42(6):442-7. doi:
10.1016/j.clinbiochem.2008.12.019
. [PMID: 19166826] - Yvonne Lamers, Jerry Williamson, Maria Ralat, Eoin P Quinlivan, Lesa R Gilbert, Christine Keeling, Robert D Stevens, Christopher B Newgard, Per M Ueland, Klaus Meyer, Ase Fredriksen, Peter W Stacpoole, Jesse F Gregory. Moderate dietary vitamin B-6 restriction raises plasma glycine and cystathionine concentrations while minimally affecting the rates of glycine turnover and glycine cleavage in healthy men and women.
The Journal of nutrition.
2009 Mar; 139(3):452-60. doi:
10.3945/jn.108.099184
. [PMID: 19158217] - Muhammed Hadithi, Chris J J Mulder, Frank Stam, Joshan Azizi, J Bart A Crusius, Amado Salvador Peña, Coen D A Stehouwer, Yvo M Smulders. Effect of B vitamin supplementation on plasma homocysteine levels in celiac disease.
World journal of gastroenterology.
2009 Feb; 15(8):955-60. doi:
10.3748/wjg.15.955
. [PMID: 19248194] - Cinzia Scambi, Lucia De Franceschi, Patrizia Guarini, Fabio Poli, Angela Siciliano, Patrizia Pattini, Andrea Biondani, Valentina La Verde, Oscar Bortolami, Francesco Turrini, Franco Carta, Ciro D'Orazio, Baroukh M Assael, Giovanni Faccini, Lisa M Bambara. Preliminary evidence for cell membrane amelioration in children with cystic fibrosis by 5-MTHF and vitamin B12 supplementation: a single arm trial.
PloS one.
2009; 4(3):e4782. doi:
10.1371/journal.pone.0004782
. [PMID: 19277125] - Emin Alioglu, Ugur Turk, Sirri Cam, Abbasali Abbasaliyev, Istemihan Tengiz, Ertugrul Ercan. Polymorphisms of the methylenetetrahydrofolate reductase, vascular endothelial growth factor, endothelial nitric oxide synthase, monocyte chemoattractant protein-1 and apolipoprotein E genes are not associated with carotid intima-media thickness.
The Canadian journal of cardiology.
2009 Jan; 25(1):e1-5. doi:
10.1016/s0828-282x(09)70022-4
. [PMID: 19148342] - Andrie Panayiotou, Andrew Nicolaides, Maura Griffin, Theodosis Tyllis, Niki Georgiou, Richard M Martin, Dawn Bond, Chrysa Tziakouri-Shiakalli, Charis Fessas, Constantinos Deltas. Serum total homocysteine, folate, 5,10-methylenetetrahydrofolate reductase (MTHFR) 677C-->T genotype and subclinical atherosclerosis.
Expert opinion on therapeutic targets.
2009 Jan; 13(1):1-11. doi:
10.1517/14728220802560281
. [PMID: 19063701] - Mahdi Montazer Haghighi, Ramin Radpour, Touraj Mahmoudi, Seyed Reza Mohebbi, Mohsen Vahedi, Mohammad Reza Zali. Association between MTHFR polymorphism (C677T) with nonfamilial colorectal cancer.
Oncology research.
2009; 18(2-3):57-63. doi:
10.3727/096504009789954636
. [PMID: 20066895] - Argyri Gialeraki, Marianna Politou, Loukianos Rallidis, Efrosyni Merkouri, Christos Markatos, Dimitrios Kremastinos, Anthi Travlou. Prevalence of prothrombotic polymorphisms in Greece.
Genetic testing.
2008 Dec; 12(4):541-7. doi:
10.1089/gte.2008.0060
. [PMID: 19072566] - Sandra Hirsch, Ana María Ronco, Carlos Guerrero-Bosagna, María Pía de la Maza, Laura Leiva, Gladys Barrera, Miguel Llanos, M Angelica Alliende, Francisca Silva, Daniel Bunout. Methylation status in healthy subjects with normal and high serum folate concentration.
Nutrition (Burbank, Los Angeles County, Calif.).
2008 Nov; 24(11-12):1103-9. doi:
10.1016/j.nut.2008.05.018
. [PMID: 18653314] - E A Trifonova, M G Spiridonova, V A Stepanov. [Genetic diversity and the structure of linkage disequilibrium in the methylenetetrahydrofolate reductase locus].
Genetika.
2008 Oct; 44(10):1410-9. doi:
NULL
. [PMID: 19062539] - D Gaysina, S Cohen, N Craddock, A Farmer, F Hoda, A Korszun, M J Owen, I W Craig, P McGuffin. No association with the 5,10-methylenetetrahydrofolate reductase gene and major depressive disorder: results of the depression case control (DeCC) study and a meta-analysis.
American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics.
2008 Sep; 147B(6):699-706. doi:
10.1002/ajmg.b.30665
. [PMID: 18165972] - Lars Henrik Jensen, Jan Lindebjerg, Dorthe Gylling Crüger, Ivan Brandslund, Anders Jakobsen, Steen Kolvraa, Jens Nederby Nielsen. Microsatellite instability and the association with plasma homocysteine and thymidylate synthase in colorectal cancer.
Cancer investigation.
2008 Jul; 26(6):583-9. doi:
10.1080/07357900801970992
. [PMID: 18584349] - Canan Aygun, Bilge Tanyeri, Meltem Ceyhan, Hasan Bagci, Sukru Kucukoduk. Diffuse multicystic encephalomalacia in a preterm baby due to homozygous methylenetetrahydrofolate reductase 677 C-->T mutation.
Journal of child neurology.
2008 Jun; 23(6):695-8. doi:
10.1177/0883073807312371
. [PMID: 18539994] - Yi Zhang, Kehan Sun, Sanja Roje. An HPLC-based fluorometric assay for serine hydroxymethyltransferase.
Analytical biochemistry.
2008 Apr; 375(2):367-9. doi:
10.1016/j.ab.2007.12.015
. [PMID: 18194659] - Veerle De Brouwer, Guo-Fang Zhang, Sergei Storozhenko, Dominique Van Der Straeten, Willy E Lambert. pH stability of individual folates during critical sample preparation steps in prevision of the analysis of plant folates.
Phytochemical analysis : PCA.
2007 Nov; 18(6):496-508. doi:
10.1002/pca.1006
. [PMID: 17624887] - Shih-Ping Liu, Ying-Shiuan Li, Yann-Jang Chen, En-Pei Chiang, Anna Fen-Yau Li, Ying-Hue Lee, Ting-Fen Tsai, Michael Hsiao, Shiu-Feng Huang, Shiu-Feng Hwang, Yi-Ming Arthur Chen. Glycine N-methyltransferase-/- mice develop chronic hepatitis and glycogen storage disease in the liver.
Hepatology (Baltimore, Md.).
2007 Nov; 46(5):1413-25. doi:
10.1002/hep.21863
. [PMID: 17937387] - Marni Hall, Mary Gamble, Vesna Slavkovich, Xinhua Liu, Diane Levy, Zhongqi Cheng, Alexander van Geen, Mahammad Yunus, Mahfuzar Rahman, J Richard Pilsner, Joseph Graziano. Determinants of arsenic metabolism: blood arsenic metabolites, plasma folate, cobalamin, and homocysteine concentrations in maternal-newborn pairs.
Environmental health perspectives.
2007 Oct; 115(10):1503-9. doi:
10.1289/ehp.9906
. [PMID: 17938743] - Jacob S Elkins, S Claiborne Johnston, Elad Ziv, Deborah Kado, Jane A Cauley, Kristine Yaffe. Methylenetetrahydrofolate reductase C677T polymorphism and cognitive function in older women.
American journal of epidemiology.
2007 Sep; 166(6):672-8. doi:
10.1093/aje/kwm140
. [PMID: 17638709] - V T Ramaekers, J Weis, J M Sequeira, E V Quadros, N Blau. Mitochondrial complex I encephalomyopathy and cerebral 5-methyltetrahydrofolate deficiency.
Neuropediatrics.
2007 Aug; 38(4):184-7. doi:
10.1055/s-2007-991150
. [PMID: 18058625] - Nadja Engel, Kirsten van den Daele, Uner Kolukisaoglu, Katja Morgenthal, Wolfram Weckwerth, Tiit Pärnik, Olav Keerberg, Hermann Bauwe. Deletion of glycine decarboxylase in Arabidopsis is lethal under nonphotorespiratory conditions.
Plant physiology.
2007 Jul; 144(3):1328-35. doi:
10.1104/pp.107.099317
. [PMID: 17496108] - Jamal Golbahar, Mohammad A Aminzadeh, Qasim M Al-Shboul, Salah Kassab, Golam R Rezaian. Association of methylenetetrahydrofolate reductase (C677T) polymorphism with hyperuricemia.
Nutrition, metabolism, and cardiovascular diseases : NMCD.
2007 Jul; 17(6):462-7. doi:
10.1016/j.numecd.2006.02.002
. [PMID: 17010581] - Peng Hui, Tomohiro Nakayama, Akihiko Morita, Naoyuki Sato, Mikano Hishiki, Kosuke Saito, Yukie Yoshikawa, Masaaki Tamura, Ichiro Sato, Teruyuki Takahashi, Masayoshi Soma, Yoichi Izumi, Yukio Ozawa, Zuheng Cheng. Common single nucleotide polymorphisms in Japanese patients with essential hypertension: aldehyde dehydrogenase 2 gene as a risk factor independent of alcohol consumption.
Hypertension research : official journal of the Japanese Society of Hypertension.
2007 Jul; 30(7):585-92. doi:
10.1291/hypres.30.585
. [PMID: 17785925] - Kevin A Strauss, D Holmes Morton, Erik G Puffenberger, Christine Hendrickson, Donna L Robinson, Conrad Wagner, Sally P Stabler, Robert H Allen, Grazyna Chwatko, Hieronim Jakubowski, Mihai D Niculescu, S Harvey Mudd. Prevention of brain disease from severe 5,10-methylenetetrahydrofolate reductase deficiency.
Molecular genetics and metabolism.
2007 Jun; 91(2):165-75. doi:
10.1016/j.ymgme.2007.02.012
. [PMID: 17409006] - H Ashktorab, R Begum, A Akhgar, D T Smoot, M Elbedawi, M Daremipouran, A Zhao, B Momen, F M Giardiello. Folate status and risk of colorectal polyps in African Americans.
Digestive diseases and sciences.
2007 Jun; 52(6):1462-70. doi:
10.1007/s10620-006-9236-8
. [PMID: 17372834] - Steinar Hustad, Øivind Midttun, Jørn Schneede, Stein Emil Vollset, Tom Grotmol, Per Magne Ueland. The methylenetetrahydrofolate reductase 677C-->T polymorphism as a modulator of a B vitamin network with major effects on homocysteine metabolism.
American journal of human genetics.
2007 May; 80(5):846-55. doi:
10.1086/513520
. [PMID: 17436239] - Robert Y L Zee, Samia Mora, Suzanne Cheng, Henry A Erlich, Klaus Lindpaintner, Nader Rifai, Julie E Buring, Paul M Ridker. Homocysteine, 5,10-methylenetetrahydrofolate reductase 677C>T polymorphism, nutrient intake, and incident cardiovascular disease in 24,968 initially healthy women.
Clinical chemistry.
2007 May; 53(5):845-51. doi:
10.1373/clinchem.2006.083881
. [PMID: 17332146] - Ok Joon Kim, Sun Pyo Hong, Jung Yong Ahn, Seung Ho Hong, Tae Sun Hwang, Soo Ok Kim, Wangdon Yoo, Doyeun Oh, Nam Keun Kim. Influence of combined methionine synthase (MTR 2756A > G) and methylenetetrahydrofolate reductase (MTHFR 677C > T) polymorphisms to plasma homocysteine levels in Korean patients with ischemic stroke.
Yonsei medical journal.
2007 Apr; 48(2):201-9. doi:
10.3349/ymj.2007.48.2.201
. [PMID: 17461517] - Fu-rong Deng, Xin-biao Guo, Li Chen, Zhi-quan Wang, Kai Zhang. [Relationship between 5,10-methylenetetrahydrofolate reductase genetic polymorphism and arsenic metabolism].
Beijing da xue xue bao. Yi xue ban = Journal of Peking University. Health sciences.
2007 Apr; 39(2):149-52. doi:
. [PMID: 17440589]
- Ulrich C Lutz, Anil Batra, Gerlinde Wiatr, Fausto Machicao, Werner Kolb, Sandra Maurer, Gerhard Buchkremer, Michael D Köhnke. Significant impact of MTHFR C677T polymorphism on plasma homovanillic acid (HVA) levels among alcohol-dependent patients.
Addiction biology.
2007 Mar; 12(1):100-5. doi:
10.1111/j.1369-1600.2006.00046.x
. [PMID: 17407503] - Murat Kasap, Ali Sazci, Emel Ergul, Gurler Akpinar. Molecular phylogenetic analysis of methylenetetrahydrofolate reductase family of proteins.
Molecular phylogenetics and evolution.
2007 Mar; 42(3):838-46. doi:
10.1016/j.ympev.2006.09.020
. [PMID: 17098450] - Ken D Stark, Robert J Pawlosky, Robert J Sokol, John H Hannigan, Norman Salem. Maternal smoking is associated with decreased 5-methyltetrahydrofolate in cord plasma.
The American journal of clinical nutrition.
2007 Mar; 85(3):796-802. doi:
10.1093/ajcn/85.3.796
. [PMID: 17344502] - Cláudia Marinho, Irina Alho, Daniela Arduíno, Luiz Menezes Falcão, José Brás-Nogueira, Manuel Bicho. GST M1/T1 and MTHFR polymorphisms as risk factors for hypertension.
Biochemical and biophysical research communications.
2007 Feb; 353(2):344-50. doi:
10.1016/j.bbrc.2006.12.019
. [PMID: 17182005]