Tauroursodeoxycholic acid (BioDeep_00000017905)

Main id: BioDeep_00000000172

Secondary id: BioDeep_00000016572, BioDeep_00000230796, BioDeep_00000265463

human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite Bile acids


代谢物信息卡片


2-[(4R)-4-[(1S,2S,5R,9S,10R,11S,14R,15R)-5,9-dihydroxy-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-14-yl]pentanamido]ethane-1-sulfonic acid

化学式: C26H45NO6S (499.2967)
中文名称: 牛磺脱氧胆酸二水合物, 牛磺鹅去氧胆酸
谱图信息: 最多检出来源 Homo sapiens(plant) 4.35%

分子结构信息

SMILES: CC(CCC(=O)NCCS(=O)(=O)O)C1CCC2C1(CCC3C2C(CC4C3(CCC(C4)O)C)O)C
InChI: InChI=1S/C26H45NO6S/c1-16(4-7-23(30)27-12-13-34(31,32)33)19-5-6-20-24-21(9-11-26(19,20)3)25(2)10-8-18(28)14-17(25)15-22(24)29/h16-22,24,28-29H,4-15H2,1-3H3,(H,27,30)(H,31,32,33)/t16-,17+,18-,19-,20+,21+,22-,24+,25+,26-/m1/s1

描述信息

Tauroursodeoxycholic acid is a bile acid also known as TUDCA formed in the liver by conjugation of deoxycholate with taurine, usually as the sodium salt. TUDCA is able to prevent apoptosis and protect mitochondria from cellular elements that would otherwise interfere with energy production. One of these elements is a protein called Bax. TUDCA plays an important role in preventing Bax from being transported to the mitochondria. Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g., membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues. (PMID: 11316487, 16037564, 12576301, 11907135) [HMDB]
Tauroursodeoxycholic acid is a bile acid also known as TUDCA formed in the liver by conjugation of deoxycholate with taurine, usually as the sodium salt. TUDCA is able to prevent apoptosis and protect mitochondria from cellular elements that would otherwise interfere with energy production. One of these elements is a protein called Bax. TUDCA plays an important role in preventing Bax from being transported to the mitochondria. Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, depending only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135).
D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics
D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts
D005765 - Gastrointestinal Agents > D002793 - Cholic Acids
D013501 - Surface-Active Agents > D003902 - Detergents
Taurochenodeoxycholic acid (12-Deoxycholyltaurine) is one of the main bioactive substances of animals' bile acid. Taurochenodeoxycholic acid induces apoptosis and shows obvious anti-inflammatory and immune regulation properties[1][2].
Tauroursodeoxycholate (Tauroursodeoxycholic acid) is an endoplasmic reticulum (ER) stress inhibitor. Tauroursodeoxycholate significantly reduces expression of apoptosis molecules, such as caspase-3 and caspase-12. Tauroursodeoxycholate also inhibits ERK.
Tauroursodeoxycholate (Tauroursodeoxycholic acid) is an endoplasmic reticulum (ER) stress inhibitor. Tauroursodeoxycholate significantly reduces expression of apoptosis molecules, such as caspase-3 and caspase-12. Tauroursodeoxycholate also inhibits ERK.

同义名列表

23 个代谢物同义名

2-[(4R)-4-[(1S,2S,5R,9S,10R,11S,14R,15R)-5,9-dihydroxy-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-14-yl]pentanamido]ethane-1-sulfonic acid; (4R)-4-[(1S,2S,5R,9S,10R,11S,14R,15R)-5,9-Dihydroxy-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-14-yl]-N-(2-sulphoethyl)pentanimidic acid; 2-[(4R)-4-[(1S,2S,5R,9S,10R,11S,14R,15R)-5,9-dihydroxy-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-14-yl]pentanamido]ethanesulfonic acid; (4R)-4-[(1S,2S,5R,9S,10R,11S,14R,15R)-5,9-Dihydroxy-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-14-yl]-N-(2-sulphoethyl)pentanimidate; (4R)-4-[(1S,2S,5R,9S,10R,11S,14R,15R)-5,9-Dihydroxy-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-14-yl]-N-(2-sulfoethyl)pentanimidate; 2-(((3-alpha,5-beta,7-beta)-3,7-Dihydroxy-24-oxocholan-24-yl)amino)-ethanesulfonic acid; 2-(((3-alpha,5-beta,7-beta)-3,7-Dihydroxy-24-oxocholan-24-yl) amino)ethanesulfonic acid; 2-(((3-alpha,5-beta,7-beta)-3,7-Dihydroxy-24-oxocholan-24-yl)amino)-ethanesulfonate; 2-(((3-alpha,5-beta,7-beta)-3,7-Dihydroxy-24-oxocholan-24-yl) amino)ethanesulfonate; tauroursodeoxycholic acid, monosodium salt, (3alpha,5beta,7alpha)-isomer; Tauroursodeoxycholic acid, monosodium salt, (3alpha,7alpha)-isomer; N-(3-alpha,7-beta-Dihydroxy-5-beta-cholan-24-oyl)-taurine; tauroursodeoxycholic acid, (3alpha,5alpha,7alpha)-isomer; 3a,7b-Dihydroxy-5b-cholanoyltaurine; Taurochenodeoxycholic acid; Tauroursodeoxycholic acid; Ursodeoxycholyltaurine; tauroursodeoxycholate; Tauroursodiol; UR 906; TUDCA; 12-Deoxycholyltaurine; Tauroursodeoxycholic acid



数据库引用编号

26 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

3 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 8 AKT1, ALB, BCL2, CASP3, CASP8, GPBAR1, PIK3C3, S1PR2
Peripheral membrane protein 1 CYP1B1
Endoplasmic reticulum membrane 3 BCL2, CYP1B1, CYP7A1
Cytoplasmic vesicle, autophagosome 1 PIK3C3
Nucleus 6 AKT1, ALB, BCL2, CASP3, CASP8, NR1H4
autophagosome 1 PIK3C3
cytosol 8 AKT1, ALB, BCL2, CASP3, CASP8, GPT, PIK3C3, PRKCQ
phosphatidylinositol 3-kinase complex, class III 1 PIK3C3
centrosome 1 ALB
nucleoplasm 4 AKT1, CASP3, CASP8, NR1H4
RNA polymerase II transcription regulator complex 1 NR1H4
Cell membrane 4 ABCB11, AKT1, GPBAR1, TNF
lamellipodium 2 AKT1, CASP8
Multi-pass membrane protein 2 ABCB11, GPBAR1
cell cortex 1 AKT1
cell surface 2 ABCB11, TNF
glutamatergic synapse 4 AKT1, CASP3, PIK3C3, S1PR2
Golgi apparatus 1 ALB
Golgi membrane 2 ABCB11, INS
neuronal cell body 2 CASP3, TNF
postsynapse 2 AKT1, S1PR2
Presynapse 1 S1PR2
endosome 2 ABCB11, PIK3C3
plasma membrane 7 ABCB11, AKT1, GCG, GPBAR1, PRKCQ, S1PR2, TNF
Membrane 5 ABCB11, AKT1, BCL2, CYP1B1, PIK3C3
apical plasma membrane 1 ABCB11
axon 1 CCK
extracellular exosome 3 ABCB11, ALB, GPT
endoplasmic reticulum 2 ALB, BCL2
extracellular space 7 ALB, CCK, GCG, IL6, INS, SCT, TNF
intercellular canaliculus 1 ABCB11
mitochondrion 3 BCL2, CASP8, CYP1B1
protein-containing complex 4 AKT1, ALB, BCL2, CASP8
intracellular membrane-bounded organelle 2 CYP1B1, CYP7A1
Microsome membrane 2 CYP1B1, CYP7A1
postsynaptic density 1 CASP3
Secreted 5 ALB, CCK, GCG, IL6, INS
extracellular region 7 ALB, CCK, GCG, IL6, INS, SCT, TNF
Mitochondrion outer membrane 1 BCL2
Single-pass membrane protein 2 BCL2, CYP7A1
mitochondrial outer membrane 2 BCL2, CASP8
anchoring junction 1 ALB
centriolar satellite 1 PRKCQ
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 1 BCL2
external side of plasma membrane 1 TNF
microtubule cytoskeleton 1 AKT1
midbody 1 PIK3C3
cell-cell junction 1 AKT1
recycling endosome 2 ABCB11, TNF
Single-pass type II membrane protein 1 TNF
vesicle 1 AKT1
Apical cell membrane 1 ABCB11
Cell projection, lamellipodium 1 CASP8
Membrane raft 1 TNF
pore complex 1 BCL2
spindle 1 AKT1
GABA-ergic synapse 1 PIK3C3
Peroxisome 1 PIK3C3
Mitochondrion intermembrane space 1 AKT1
mitochondrial intermembrane space 1 AKT1
axoneme 1 PIK3C3
Late endosome 1 PIK3C3
receptor complex 2 GPBAR1, NR1H4
ciliary basal body 2 AKT1, ALB
chromatin 1 NR1H4
phagocytic cup 1 TNF
phagocytic vesicle membrane 1 PIK3C3
cytoskeleton 1 CASP8
[Isoform 3]: Nucleus 1 NR1H4
centriole 1 ALB
spindle pole 1 ALB
blood microparticle 1 ALB
Recycling endosome membrane 1 ABCB11
endosome lumen 1 INS
phagophore assembly site 1 PIK3C3
phosphatidylinositol 3-kinase complex, class III, type I 1 PIK3C3
phosphatidylinositol 3-kinase complex, class III, type II 1 PIK3C3
euchromatin 1 NR1H4
cell body 1 CASP8
myelin sheath 1 BCL2
secretory granule lumen 2 GCG, INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 4 ALB, GCG, IL6, INS
platelet alpha granule lumen 1 ALB
transport vesicle 1 INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
immunological synapse 1 PRKCQ
presynaptic endosome 1 PIK3C3
aggresome 1 PRKCQ
[Isoform 2]: Nucleus 1 NR1H4
[Isoform 1]: Nucleus 1 NR1H4
CD95 death-inducing signaling complex 1 CASP8
death-inducing signaling complex 2 CASP3, CASP8
ripoptosome 1 CASP8
[Isoform 4]: Nucleus 1 NR1H4
intracellular canaliculus 1 ABCB11
postsynaptic endosome 1 PIK3C3
[Glucagon-like peptide 1]: Secreted 1 GCG
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
Autolysosome 1 PIK3C3
interleukin-6 receptor complex 1 IL6
BAD-BCL-2 complex 1 BCL2
ciliary transition fiber 1 ALB
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Aliya Ayaz, Abdul Jalal, Zhou Qian, Khalid Ali Khan, Liwang Liu, Chunmei Hu, Ying Li, Xilin Hou. Investigating the effects of tauroursodeoxycholic acid (TUDCA) in mitigating endoplasmic reticulum stress and cellular responses in Pak choi. Physiologia plantarum. 2024 Mar; 176(2):e14246. doi: 10.1111/ppl.14246. [PMID: 38467573]
  • Qiuyue Wang, Wen Li, Xiaozhuo Zhang, Shuet Ling Chung, Jinling Dai, Zhu Jin. Tauroursodeoxycholic acid protects Schwann cells from high glucose-induced cytotoxicity by targeting NLRP3 to regulate cell migration and pyroptosis. Biotechnology and applied biochemistry. 2024 Feb; 71(1):28-37. doi: 10.1002/bab.2518. [PMID: 37749820]
  • Nuo Xu, Yuyan Bai, Xinyan Han, Jinfeng Yuan, Lupeng Wang, Yixin He, Liu Yang, Hui Wu, Hailian Shi, Xiaojun Wu. Taurochenodeoxycholic acid reduces astrocytic neuroinflammation and alleviates experimental autoimmune encephalomyelitis in mice. Immunobiology. 2023 Apr; 228(3):152388. doi: 10.1016/j.imbio.2023.152388. [PMID: 37079985]
  • Himanshu Sankrityayan, Vishwadeep Shelke, Ajinath Kale, Anil Bhanudas Gaikwad. Evaluating the potential of tauroursodeoxycholic acid as add-on therapy in amelioration of streptozotocin-induced diabetic kidney disease. European journal of pharmacology. 2023 Mar; 942(?):175528. doi: 10.1016/j.ejphar.2023.175528. [PMID: 36690052]
  • Xiaolu Zhou, Yaling Li, Ren Mu, Chuanming Wang, Yuyan Song, Caibi Zhou, Xin Mei. Duyun compound green tea extracts regulate bile acid metabolism on mice induced by high-fat diet. The British journal of nutrition. 2022 Oct; ?(?):1-9. doi: 10.1017/s0007114522003166. [PMID: 36210537]
  • Dongqin Wei, Yizhou Li, Meng Che, Chaowei Li, Qiong Wu, Chao Sun. Melatonin relieves hepatic lipid dysmetabolism caused by aging via modifying the secondary bile acid pattern of gut microbes. Cellular and molecular life sciences : CMLS. 2022 Sep; 79(10):527. doi: 10.1007/s00018-022-04412-0. [PMID: 36151409]
  • Dongwei Zhang, Yongfu Zhu, Ya Su, Minghui Yu, Xiaozhou Xu, Chunhua Wang, Shaohu Zhang, Liming Xia. Taurochenodeoxycholic acid inhibits the proliferation and invasion of gastric cancer and induces its apoptosis. Journal of food biochemistry. 2022 03; 46(3):e13866. doi: 10.1111/jfbc.13866. [PMID: 34278593]
  • Siyu Wu, Lorenzo Romero-Ramírez, Jörg Mey. Taurolithocholic acid but not tauroursodeoxycholic acid rescues phagocytosis activity of bone marrow-derived macrophages under inflammatory stress. Journal of cellular physiology. 2022 02; 237(2):1455-1470. doi: 10.1002/jcp.30619. [PMID: 34705285]
  • Yong Wu, Huan Yang, Sujuan Xu, Ming Cheng, Jie Gu, Weichen Zhang, Shaojun Liu, Minmin Zhang. AIM2 inflammasome contributes to aldosterone-induced renal injury via endoplasmic reticulum stress. Clinical science (London, England : 1979). 2022 01; 136(1):103-120. doi: 10.1042/cs20211075. [PMID: 34935888]
  • Youchao Qi, Linkai Shi, Guozhen Duan, Yonggui Ma, Peifeng Li. Taurochenodeoxycholic Acid Increases cAMP Content via Specially Interacting with Bile Acid Receptor TGR5. Molecules (Basel, Switzerland). 2021 Nov; 26(23):. doi: 10.3390/molecules26237066. [PMID: 34885648]
  • Ya Zhang, Jian Liu, Genxiang Mao, Jihui Zuo, Shijun Li, Yue Yang, Ronald W Thring, Mingjiang Wu, Haibin Tong. Sargassum fusiforme fucoidan alleviates diet-induced insulin resistance by inhibiting colon-derived ceramide biosynthesis. Food & function. 2021 Sep; 12(18):8440-8453. doi: 10.1039/d1fo01272j. [PMID: 34374401]
  • Song-Yang Zhang, Rosa J W Li, Yu-Mi Lim, Battsetseg Batchuluun, Huiying Liu, T M Zaved Waise, Tony K T Lam. FXR in the dorsal vagal complex is sufficient and necessary for upper small intestinal microbiome-mediated changes of TCDCA to alter insulin action in rats. Gut. 2021 09; 70(9):1675-1683. doi: 10.1136/gutjnl-2020-321757. [PMID: 33087489]
  • Qifan Lu, Zhaoyan Jiang, Qihan Wang, Hai Hu, Gang Zhao. The effect of Tauroursodeoxycholic acid (TUDCA) and gut microbiota on murine gallbladder stone formation. Annals of hepatology. 2021 Jul; 23(?):100289. doi: 10.1016/j.aohep.2020.100289. [PMID: 33217585]
  • Cong Liang, Xiao-Hong Zhou, Pi-Min Gong, Hai-Yue Niu, Lin-Zheng Lyu, Yi-Fan Wu, Xue Han, Lan-Wei Zhang. Lactiplantibacillus plantarum H-87 prevents high-fat diet-induced obesity by regulating bile acid metabolism in C57BL/6J mice. Food & function. 2021 May; 12(10):4315-4324. doi: 10.1039/d1fo00260k. [PMID: 34031676]
  • Xin Chen, Mingli Gu, Tengda Li, Yi Sun. Metabolite reanalysis revealed potential biomarkers for COVID-19: a potential link with immune response. Future microbiology. 2021 05; 16(?):577-588. doi: 10.2217/fmb-2021-0047. [PMID: 33973485]
  • Lucas Zangerolamo, Jean F Vettorazzi, Lucas R O Rosa, Everardo M Carneiro, Helena C L Barbosa. The bile acid TUDCA and neurodegenerative disorders: An overview. Life sciences. 2021 May; 272(?):119252. doi: 10.1016/j.lfs.2021.119252. [PMID: 33636170]
  • Julien Allard, Simon Bucher, Julie Massart, Pierre-Jean Ferron, Dounia Le Guillou, Roxane Loyant, Yoann Daniel, Youenn Launay, Nelly Buron, Karima Begriche, Annie Borgne-Sanchez, Bernard Fromenty. Drug-induced hepatic steatosis in absence of severe mitochondrial dysfunction in HepaRG cells: proof of multiple mechanism-based toxicity. Cell biology and toxicology. 2021 04; 37(2):151-175. doi: 10.1007/s10565-020-09537-1. [PMID: 32535746]
  • Avinash K Persaud, Sreenath Nair, Md Fazlur Rahman, Radhika Raj, Brenna Weadick, Debasis Nayak, Craig McElroy, Muruganandan Shanmugam, Sue Knoblaugh, Xiaolin Cheng, Rajgopal Govindarajan. Facilitative lysosomal transport of bile acids alleviates ER stress in mouse hematopoietic precursors. Nature communications. 2021 02; 12(1):1248. doi: 10.1038/s41467-021-21451-6. [PMID: 33623001]
  • Yanlin Tao, Fang Zheng, Donghong Cui, Fei Huang, Xiaojun Wu. A combination of three plasma bile acids as a putative biomarker for schizophrenia. Acta neuropsychiatrica. 2021 Feb; 33(1):51-54. doi: 10.1017/neu.2020.42. [PMID: 33222705]
  • Holden W Hemingway, Amy M Moore, Albert H Olivencia-Yurvati, Steven A Romero. Effect of endoplasmic reticulum stress on endothelial ischemia-reperfusion injury in humans. American journal of physiology. Regulatory, integrative and comparative physiology. 2020 12; 319(6):R666-R672. doi: 10.1152/ajpregu.00257.2020. [PMID: 33074709]
  • Iván L Csanaky, Andrew J Lickteig, Youcai Zhang, Curtis D Klaassen. Effects of patent ductus venosus on bile acid homeostasis in aryl hydrocarbon receptor (AhR)-null mice. Toxicology and applied pharmacology. 2020 09; 403(?):115136. doi: 10.1016/j.taap.2020.115136. [PMID: 32679164]
  • Sabrina Paganoni, Eric A Macklin, Suzanne Hendrix, James D Berry, Michael A Elliott, Samuel Maiser, Chafic Karam, James B Caress, Margaret A Owegi, Adam Quick, James Wymer, Stephen A Goutman, Daragh Heitzman, Terry Heiman-Patterson, Carlayne E Jackson, Colin Quinn, Jeffrey D Rothstein, Edward J Kasarskis, Jonathan Katz, Liberty Jenkins, Shafeeq Ladha, Timothy M Miller, Stephen N Scelsa, Tuan H Vu, Christina N Fournier, Jonathan D Glass, Kristin M Johnson, Andrea Swenson, Namita A Goyal, Gary L Pattee, Patricia L Andres, Suma Babu, Marianne Chase, Derek Dagostino, Samuel P Dickson, Noel Ellison, Meghan Hall, Kent Hendrix, Gale Kittle, Michelle McGovern, Joseph Ostrow, Lindsay Pothier, Rebecca Randall, Jeremy M Shefner, Alexander V Sherman, Eric Tustison, Prasha Vigneswaran, Jason Walker, Hong Yu, James Chan, Janet Wittes, Joshua Cohen, Justin Klee, Kent Leslie, Rudolph E Tanzi, Walter Gilbert, Patrick D Yeramian, David Schoenfeld, Merit E Cudkowicz. Trial of Sodium Phenylbutyrate-Taurursodiol for Amyotrophic Lateral Sclerosis. The New England journal of medicine. 2020 09; 383(10):919-930. doi: 10.1056/nejmoa1916945. [PMID: 32877582]
  • Nicola Gray, Lee A Gethings, Robert S Plumb, Ian D Wilson. UHPLC-MS-Based Lipidomic and Metabonomic Investigation of the Metabolic Phenotypes of Wild Type and Hepatic CYP Reductase Null (HRN) Mice. Journal of pharmaceutical and biomedical analysis. 2020 Jul; 186(?):113318. doi: 10.1016/j.jpba.2020.113318. [PMID: 32380354]
  • Sebastiano Masuri, Enzo Cadoni, Maria Grazia Cabiddu, Francesco Isaia, Maria Giovanna Demuru, Lukáš Moráň, David Buček, Petr Vaňhara, Josef Havel, Tiziana Pivetta. The first copper(ii) complex with 1,10-phenanthroline and salubrinal with interesting biochemical properties. Metallomics : integrated biometal science. 2020 06; 12(6):891-901. doi: 10.1039/d0mt00006j. [PMID: 32337526]
  • Weiguo Sui, Qing Gan, Fuhua Liu, Minglin Ou, Bingguo Wang, Songbai Liao, Liusheng Lai, Huaizhou Chen, Ming Yang, Yong Dai. Dynamic Metabolomics Study of the Bile Acid Pathway During Perioperative Primary Hepatic Carcinoma Following Liver Transplantation. Annals of transplantation. 2020 Jun; 25(?):e921844. doi: 10.12659/aot.921844. [PMID: 32572018]
  • Timothy W Olsen, Roy B Dyer, Fukutaro Mano, Jeffrey H Boatright, Micah A Chrenek, Daniel Paley, Kathy Wabner, Jenn Schmit, Ju Byung Chae, Jana T Sellers, Ravinder J Singh, Timothy S Wiedmann. Drug Tissue Distribution of TUDCA From a Biodegradable Suprachoroidal Implant versus Intravitreal or Systemic Delivery in the Pig Model. Translational vision science & technology. 2020 05; 9(6):11. doi: 10.1167/tvst.9.6.11. [PMID: 32821508]
  • Runbin Sun, Dan Xu, Qingli Wei, Bangling Zhang, Jiye Aa, Guangji Wang, Yuan Xie. Silybin ameliorates hepatic lipid accumulation and modulates global metabolism in an NAFLD mouse model. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2020 Mar; 123(?):109721. doi: 10.1016/j.biopha.2019.109721. [PMID: 31865143]
  • Silei Sun, Bing Zhao, Mengzhi Qi, Yi Yao, Lili Xu, Ran Ji, Weiwei Chen, Jinlong Wang, Shunwei Huang, Li Ma, Ying Chen, Zhitao Yang, Huiqiu Sheng, Jian Fei, Erzhen Chen, Enqiang Mao. TUDCA Ameliorates Liver Injury Via Activation of SIRT1-FXR Signaling in a Rat Hemorrhagic Shock Model. Shock (Augusta, Ga.). 2020 02; 53(2):217-222. doi: 10.1097/shk.0000000000001351. [PMID: 30998645]
  • Jeenat Ferdous Urmi, Hiroaki Itoh, Keiko Muramatsu-Kato, Yukiko Kohmura-Kobayashi, Natsuyo Hariya, Divyanu Jain, Naoaki Tamura, Toshiyuki Uchida, Kazunao Suzuki, Yoshihiro Ogawa, Nobuaki Shiraki, Kazuki Mochizuki, Takeo Kubota, Naohiro Kanayama. Plasticity of histone modifications around Cidea and Cidec genes with secondary bile in the amelioration of developmentally-programmed hepatic steatosis. Scientific reports. 2019 11; 9(1):17100. doi: 10.1038/s41598-019-52943-7. [PMID: 31745102]
  • David Peter Obert, Alexander Karl Wolpert, Sebastian Korff. Modulation of Endoplasmic Reticulum Stress Influences Ischemia-Reperfusion Injury After Hemorrhagic Shock. Shock (Augusta, Ga.). 2019 11; 52(5):e76-e84. doi: 10.1097/shk.0000000000001298. [PMID: 30499877]
  • Yiwei Zhu, Yuan Guan, Juan J Loor, Xueying Sha, Danielle N Coleman, Cai Zhang, Xiliang Du, Zhen Shi, Xiaobing Li, Zhe Wang, Guowen Liu, Xinwei Li. Fatty acid-induced endoplasmic reticulum stress promoted lipid accumulation in calf hepatocytes, and endoplasmic reticulum stress existed in the liver of severe fatty liver cows. Journal of dairy science. 2019 Aug; 102(8):7359-7370. doi: 10.3168/jds.2018-16015. [PMID: 31155263]
  • Yoshie Arai, Bogyu Choi, Byoung Ju Kim, Wongyu Rim, Sunghyun Park, Hyoeun Park, Jinsung Ahn, Soo-Hong Lee. Tauroursodeoxycholic acid (TUDCA) counters osteoarthritis by regulating intracellular cholesterol levels and membrane fluidity of degenerated chondrocytes. Biomaterials science. 2019 Aug; 7(8):3178-3189. doi: 10.1039/c9bm00426b. [PMID: 31143889]
  • Raji Lenin, Peter G Nagy, Kumar Abhiram Jha, Rajashekhar Gangaraju. GRP78 translocation to the cell surface and O-GlcNAcylation of VE-Cadherin contribute to ER stress-mediated endothelial permeability. Scientific reports. 2019 07; 9(1):10783. doi: 10.1038/s41598-019-47246-w. [PMID: 31346222]
  • Jody Groenendyk, Alison Robinson, Qian Wang, Miao Hu, Jingfeng Tang, Xing-Zhen Chen, Michael Mengel, R Todd Alexander, Luis B Agellon, Marek Michalak. Tauroursodeoxycholic acid attenuates cyclosporine-induced renal fibrogenesis in the mouse model. Biochimica et biophysica acta. General subjects. 2019 07; 1863(7):1210-1216. doi: 10.1016/j.bbagen.2019.04.016. [PMID: 31028822]
  • Yutai Li, Raymond Evers, Michael J Hafey, Kyeongmi Cheon, Hong Duong, Donna Lynch, Lisa LaFranco-Scheuch, Stephen Pacchione, Alex M Tamburino, Keith Q Tanis, Kristin Geddes, Daniel Holder, Nanyan Rena Zhang, Wen Kang, Raymond J Gonzalez, Alema Galijatovic-Idrizbegovic, Kara M Pearson, Jose A Lebron, Warren E Glaab, Frank D Sistare. Use of a Bile Salt Export Pump Knockdown Rat Susceptibility Model to Interrogate Mechanism of Drug-Induced Liver Toxicity. Toxicological sciences : an official journal of the Society of Toxicology. 2019 07; 170(1):180-198. doi: 10.1093/toxsci/kfz079. [PMID: 30903168]
  • Qi Zhou, Wenjia Guo, Yanan Jia, Jiancheng Xu. Effect of 4-Phenylbutyric Acid and Tauroursodeoxycholic Acid on Magnesium and Calcium Metabolism in Streptozocin-Induced Type 1 Diabetic Mice. Biological trace element research. 2019 Jun; 189(2):501-510. doi: 10.1007/s12011-018-1494-8. [PMID: 30171596]
  • Xing Yu, Tanchun Wang, Meichen Zhu, Liting Zhang, Fengzhi Zhang, Enen Jing, Yongzhe Ren, Zhiqiang Wang, Zeyu Xin, Tongbao Lin. Transcriptome and physiological analyses for revealing genes involved in wheat response to endoplasmic reticulum stress. BMC plant biology. 2019 May; 19(1):193. doi: 10.1186/s12870-019-1798-7. [PMID: 31072347]
  • Carmen De Miguel, Randee Sedaka, Malgorzata Kasztan, Jeremie M Lever, Michelle Sonnenberger, Andrew Abad, Chunhua Jin, Pamela K Carmines, David M Pollock, Jennifer S Pollock. Tauroursodeoxycholic acid (TUDCA) abolishes chronic high salt-induced renal injury and inflammation. Acta physiologica (Oxford, England). 2019 05; 226(1):e13227. doi: 10.1111/apha.13227. [PMID: 30501003]
  • Shijin Tang, Yinping Pan, Deshuai Lou, Shunlin Ji, Liancai Zhu, Jun Tan, Na Qi, Qiong Yang, Zhi Zhang, Biling Yang, Wenyan Zhao, Bochu Wang. Structural and functional characterization of a novel acidophilic 7α-hydroxysteroid dehydrogenase. Protein science : a publication of the Protein Society. 2019 05; 28(5):910-919. doi: 10.1002/pro.3599. [PMID: 30839141]
  • Yeo Min Yoon, SangMin Kim, Yong-Seok Han, Chul Won Yun, Jun Hee Lee, Hyunjin Noh, Sang Hun Lee. TUDCA-treated chronic kidney disease-derived hMSCs improve therapeutic efficacy in ischemic disease via PrPC. Redox biology. 2019 04; 22(?):101144. doi: 10.1016/j.redox.2019.101144. [PMID: 30785084]
  • Yingpeng Xu, Li Yang, Shujuan Zhao, Zhengtao Wang. Large-scale production of tauroursodeoxycholic acid products through fermentation optimization of engineered Escherichia coli cell factory. Microbial cell factories. 2019 Feb; 18(1):34. doi: 10.1186/s12934-019-1076-2. [PMID: 30736766]
  • Sevtap Han, Nur Banu Bal, Gökhan Sadi, Suzan Emel Usanmaz, Merve Matilda Tuglu, Mecit Orhan Uludag, Emine Demirel-Yilmaz. Inhibition of endoplasmic reticulum stress protected DOCA-salt hypertension-induced vascular dysfunction. Vascular pharmacology. 2019 02; 113(?):38-46. doi: 10.1016/j.vph.2018.11.004. [PMID: 30458302]
  • Hangqi Luo, Changzuan Zhou, Jufang Chi, Sunlei Pan, Hui Lin, Feidan Gao, Tingjuan Ni, Liping Meng, Jie Zhang, Chengjian Jiang, Zheng Ji, Haitao Lv, Hangyuan Guo. The Role of Tauroursodeoxycholic Acid on Dedifferentiation of Vascular Smooth Muscle Cells by Modulation of Endoplasmic Reticulum Stress and as an Oral Drug Inhibiting In-Stent Restenosis. Cardiovascular drugs and therapy. 2019 02; 33(1):25-33. doi: 10.1007/s10557-018-6844-4. [PMID: 30663009]
  • Jun Hee Lee, Yeo Min Yoon, Sang Hun Lee. TUDCA-Treated Mesenchymal Stem Cells Protect against ER Stress in the Hippocampus of a Murine Chronic Kidney Disease Model. International journal of molecular sciences. 2019 Jan; 20(3):. doi: 10.3390/ijms20030613. [PMID: 30708974]
  • Talha Rashid, Ivan Nemazanyy, Cecilia Paolini, Takashi Tatsuta, Paul Crespin, Delphine de Villeneuve, Susanne Brodesser, Paule Benit, Pierre Rustin, Martin A Baraibar, Onnik Agbulut, Anne Olivier, Feliciano Protasi, Thomas Langer, Roman Chrast, Pascale de Lonlay, Helene de Foucauld, Bert Blaauw, Mario Pende. Lipin1 deficiency causes sarcoplasmic reticulum stress and chaperone-responsive myopathy. The EMBO journal. 2019 01; 38(1):. doi: 10.15252/embj.201899576. [PMID: 30420558]
  • Zhi Jian Chen, Jia Xing Chen, Li Kang Wu, Bi Yun Li, Ya Feng Tian, Min Xian, Zi Pei Huang, Ri An Yu. Induction of Endoplasmic Reticulum Stress by Cadmium and Its Regulation on Nrf2 Signaling Pathway in Kidneys of Rats. Biomedical and environmental sciences : BES. 2019 Jan; 32(1):1-10. doi: 10.3967/bes2019.001. [PMID: 30696534]
  • K-Y Bian, H-F Jin, W Sun, Y-J Sun. DCA can improve the ACI-induced neurological impairment through negative regulation of Nrf2 signaling pathway. European review for medical and pharmacological sciences. 2019 Jan; 23(1):343-351. doi: 10.26355/eurrev_201901_16782. [PMID: 30657576]
  • Alejandra Daruich, Emilie Picard, Jeffrey H Boatright, Francine Behar-Cohen. Review: The bile acids urso- and tauroursodeoxycholic acid as neuroprotective therapies in retinal disease. Molecular vision. 2019; 25(?):610-624. doi: ". [PMID: 31700226]
  • Xinxin Pang, Yage Zhang, Xiujie Shi, Dongyang Li, Jiarui Han. ERp44 depletion exacerbates ER stress and aggravates diabetic nephropathy in db/db mice. Biochemical and biophysical research communications. 2018 10; 504(4):921-926. doi: 10.1016/j.bbrc.2018.09.037. [PMID: 30224065]
  • Hyo-Jin Park, Dong Gil Lee, Jung Bae Seong, Hyun-Shik Lee, Oh-Shin Kwon, Beom Sik Kang, Jeen-Woo Park, Sang-Rae Lee, Dong-Seok Lee. Peroxiredoxin I maintains luteal function by regulating unfolded protein response. Reproductive biology and endocrinology : RB&E. 2018 Aug; 16(1):79. doi: 10.1186/s12958-018-0396-0. [PMID: 30111318]
  • Dibyendu K Panda, Xiuying Bai, Yves Sabbagh, Yan Zhang, Hans-Christian Zaun, Angeliki Karellis, Antonis E Koromilas, Mark L Lipman, Andrew C Karaplis. Defective interplay between mTORC1 activity and endoplasmic reticulum stress-unfolded protein response in uremic vascular calcification. American journal of physiology. Renal physiology. 2018 06; 314(6):F1046-F1061. doi: 10.1152/ajprenal.00350.2017. [PMID: 29357413]
  • Yu Gu, Fei Huang, Yanling Wang, Chaojin Chen, Shan Wu, Shaoli Zhou, Ziqing Hei, Dongdong Yuan. Connexin32 plays a crucial role in ROS-mediated endoplasmic reticulum stress apoptosis signaling pathway in ischemia reperfusion-induced acute kidney injury. Journal of translational medicine. 2018 05; 16(1):117. doi: 10.1186/s12967-018-1493-8. [PMID: 29728112]
  • Ying Yang, Xianglin Tang, Feiran Hao, Zengchun Ma, Yuguang Wang, Lili Wang, Yue Gao. Bavachin Induces Apoptosis through Mitochondrial Regulated ER Stress Pathway in HepG2 Cells. Biological & pharmaceutical bulletin. 2018 Feb; 41(2):198-207. doi: 10.1248/bpb.b17-00672. [PMID: 29187671]
  • Weijun Wang, Jinfang Zhao, Wenfang Gui, Dan Sun, Haijiang Dai, Li Xiao, Huikuan Chu, Fan Du, Qingjing Zhu, Bernd Schnabl, Kai Huang, Ling Yang, Xiaohua Hou. Tauroursodeoxycholic acid inhibits intestinal inflammation and barrier disruption in mice with non-alcoholic fatty liver disease. British journal of pharmacology. 2018 02; 175(3):469-484. doi: 10.1111/bph.14095. [PMID: 29139555]
  • Seung Pil Yun, Yeo Min Yoon, Jun Hee Lee, Minjee Kook, Yong-Seok Han, Seo Kyung Jung, Sang Hun Lee. Tauroursodeoxycholic Acid Protects against the Effects of P-Cresol-Induced Reactive Oxygen Species via the Expression of Cellular Prion Protein. International journal of molecular sciences. 2018 Jan; 19(2):. doi: 10.3390/ijms19020352. [PMID: 29370069]
  • Ying Zhang, Pengxiang Qu, Xiaonan Ma, Fang Qiao, Yefei Ma, Suzhu Qing, Yong Zhang, Yongsheng Wang, Wei Cui. Tauroursodeoxycholic acid (TUDCA) alleviates endoplasmic reticulum stress of nuclear donor cells under serum starvation. PloS one. 2018; 13(5):e0196785. doi: 10.1371/journal.pone.0196785. [PMID: 29718981]
  • Yan Sun, Dai Zhang, Xiaoli Liu, Xuesong Li, Fang Liu, Yi Yu, Shuo Jia, Yujie Zhou, Yingxin Zhao. Endoplasmic Reticulum Stress Affects Lipid Metabolism in Atherosclerosis Via CHOP Activation and Over-Expression of miR-33. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology. 2018; 48(5):1995-2010. doi: 10.1159/000492522. [PMID: 30092598]
  • Se Won Park, Cynthia R L Webster, Mohammed S Anwer. Mechanism of inhibition of taurolithocholate-induced retrieval of plasma membrane MRP2 by cyclic AMP and tauroursodeoxycholate. Physiological reports. 2017 Dec; 5(23):. doi: 10.14814/phy2.13529. [PMID: 29192063]
  • Atsushi Irie, Takahisa Imamura, Yayoi Michibata, Ttatsuko Kubo, Naoki Takeda, Isao Shibuya, Shinji Sogo, Kimi Araki, Yasuharu Nishimura. Accumulation of HLA-DR4 in Colonic Epithelial Cells Causes Severe Colitis in Homozygous HLA-DR4 Transgenic Mice. Inflammatory bowel diseases. 2017 12; 23(12):2121-2133. doi: 10.1097/mib.0000000000001282. [PMID: 29084077]
  • Andi Marquardt, Moh'd Mohanad Al-Dabet, Sanchita Ghosh, Shrey Kohli, Jayakumar Manoharan, Ahmed ElWakiel, Ihsan Gadi, Fabian Bock, Sumra Nazir, Hongjie Wang, Jonathan A Lindquist, Peter Paul Nawroth, Thati Madhusudhan, Peter R Mertens, Khurrum Shahzad, Berend Isermann. Farnesoid X Receptor Agonism Protects against Diabetic Tubulopathy: Potential Add-On Therapy for Diabetic Nephropathy. Journal of the American Society of Nephrology : JASN. 2017 11; 28(11):3182-3189. doi: 10.1681/asn.2016101123. [PMID: 28696246]
  • Jean Franciesco Vettorazzi, Mirian Ayumi Kurauti, Gabriela Moreira Soares, Patricia Cristine Borck, Sandra Mara Ferreira, Renato Chaves Souto Branco, Luciana de Souza Lima Michelone, Antonio Carlos Boschero, Jose Maria Costa Junior, Everardo Magalhães Carneiro. Bile acid TUDCA improves insulin clearance by increasing the expression of insulin-degrading enzyme in the liver of obese mice. Scientific reports. 2017 11; 7(1):14876. doi: 10.1038/s41598-017-13974-0. [PMID: 29093479]
  • Sara Moreira, Inês Fonseca, Maria João Nunes, Alexandra Rosa, Luísa Lemos, Elsa Rodrigues, Andreia Neves Carvalho, Tiago F Outeiro, Cecília Maria Pereira Rodrigues, Maria João Gama, Margarida Castro-Caldas. Nrf2 activation by tauroursodeoxycholic acid in experimental models of Parkinson's disease. Experimental neurology. 2017 09; 295(?):77-87. doi: 10.1016/j.expneurol.2017.05.009. [PMID: 28552716]
  • Philipp Ellinger, Jan Stindt, Carola Dröge, Katharina Sattler, Claudia Stross, Stefanie Kluge, Diran Herebian, Sander H J Smits, Martin Burdelski, Sebastian Schulz-Jürgensen, Antje Ballauff, Jan Schulte Am Esch, Ertan Mayatepek, Dieter Häussinger, Ralf Kubitz, Lutz Schmitt. Partial external biliary diversion in bile salt export pump deficiency: Association between outcome and mutation. World journal of gastroenterology. 2017 Aug; 23(29):5295-5303. doi: 10.3748/wjg.v23.i29.5295. [PMID: 28839429]
  • Nuria Fernández-Bautista, Lourdes Fernández-Calvino, Alfonso Muñoz, M Mar Castellano. HOP3, a member of the HOP family in Arabidopsis, interacts with BiP and plays a major role in the ER stress response. Plant, cell & environment. 2017 Aug; 40(8):1341-1355. doi: 10.1111/pce.12927. [PMID: 28155228]
  • Xiao-Xia Li, Yun-Fei Diao, Hai-Jun Wei, Shi-Yong Wang, Xin-Yan Cao, Yu-Fei Zhang, Tong Chang, Dan-Li Li, Min Kyu Kim, Baozeng Xu. Tauroursodeoxycholic acid enhances the development of porcine embryos derived from in vitro-matured oocytes and evaporatively dried spermatozoa. Scientific reports. 2017 07; 7(1):6773. doi: 10.1038/s41598-017-07185-w. [PMID: 28754923]
  • Jie Shi, Jie Wang, Lu Yu, Li Yang, Shujuan Zhao, Zhengtao Wang. Rapidly directional biotransformation of tauroursodeoxycholic acid through engineered Escherichia coli. Journal of industrial microbiology & biotechnology. 2017 07; 44(7):1073-1082. doi: 10.1007/s10295-017-1935-y. [PMID: 28332050]
  • Annelies Paridaens, Sarah Raevens, Isabelle Colle, Eliene Bogaerts, Yves-Paul Vandewynckel, Xavier Verhelst, Anne Hoorens, Leo A van Grunsven, Hans Van Vlierberghe, Anja Geerts, Lindsey Devisscher. Combination of tauroursodeoxycholic acid and N-acetylcysteine exceeds standard treatment for acetaminophen intoxication. Liver international : official journal of the International Association for the Study of the Liver. 2017 05; 37(5):748-756. doi: 10.1111/liv.13261. [PMID: 27706903]
  • Can Song, Bochu Wang, Jun Tan, Liancai Zhu, Deshuai Lou. Discovery of tauroursodeoxycholic acid biotransformation enzymes from the gut microbiome of black bears using metagenomics. Scientific reports. 2017 04; 7(?):45495. doi: 10.1038/srep45495. [PMID: 28436439]
  • Chandak Upagupta, Rachel E Carlisle, Jeffrey G Dickhout. Analysis of the potency of various low molecular weight chemical chaperones to prevent protein aggregation. Biochemical and biophysical research communications. 2017 04; 486(1):163-170. doi: 10.1016/j.bbrc.2017.03.019. [PMID: 28285140]
  • Wenyan Xia, Yu Zhou, Lijing Wang, Linxi Wang, Xiaoying Liu, Yichuan Lin, Qing Zhou, Jianqing Huang, Libin Liu. Tauroursodeoxycholic acid inhibits TNF-α-induced lipolysis in 3T3-L1 adipocytes via the IRE-JNK-perilipin-A signaling pathway. Molecular medicine reports. 2017 Apr; 15(4):1753-1758. doi: 10.3892/mmr.2017.6209. [PMID: 28260008]
  • Lien Van den Bossche, Pieter Hindryckx, Lindsey Devisscher, Sarah Devriese, Sophie Van Welden, Tom Holvoet, Ramiro Vilchez-Vargas, Marius Vital, Dietmar H Pieper, Julie Vanden Bussche, Lynn Vanhaecke, Tom Van de Wiele, Martine De Vos, Debby Laukens. Ursodeoxycholic Acid and Its Taurine- or Glycine-Conjugated Species Reduce Colitogenic Dysbiosis and Equally Suppress Experimental Colitis in Mice. Applied and environmental microbiology. 2017 04; 83(7):. doi: 10.1128/aem.02766-16. [PMID: 28115375]
  • Qinyue Guo, Lin Xu, Jiali Liu, Huixia Li, Hongzhi Sun, Shufang Wu, Bo Zhou. Fibroblast growth factor 21 reverses suppression of adiponectin expression via inhibiting endoplasmic reticulum stress in adipose tissue of obese mice. Experimental biology and medicine (Maywood, N.J.). 2017 02; 242(4):441-447. doi: 10.1177/1535370216677354. [PMID: 27811171]
  • Hongxia Xue, Fang Gan, Gang Qian, Junfa Hu, Shu Hao, Jing Xu, Xingxiang Chen, Kehe Huang. Astragalus polysaccharides attenuate PCV2 infection by inhibiting endoplasmic reticulum stress in vivo and in vitro. Scientific reports. 2017 01; 7(?):40440. doi: 10.1038/srep40440. [PMID: 28071725]
  • Guzel Bikbova, Toshiyuki Oshitari, Takayuki Baba, Shuichi Yamamoto. Combination of Neuroprotective and Regenerative Agents for AGE-Induced Retinal Degeneration: In Vitro Study. BioMed research international. 2017; 2017(?):8604723. doi: 10.1155/2017/8604723. [PMID: 28573143]
  • Yeo Min Yoon, Jun Hee Lee, Seung Pil Yun, Yong-Seok Han, Chul Won Yun, Hyun Jik Lee, Hyunjin Noh, Sei-Jung Lee, Ho Jae Han, Sang Hun Lee. Tauroursodeoxycholic acid reduces ER stress by regulating of Akt-dependent cellular prion protein. Scientific reports. 2016 12; 6(?):39838. doi: 10.1038/srep39838. [PMID: 28004805]
  • Hong Ma, Minde Zeng, Ying Han, Huiping Yan, Hong Tang, Jifang Sheng, Heping Hu, Liufang Cheng, Qing Xie, Youfu Zhu, Guofeng Chen, Zhiliang Gao, Wen Xie, Jiyao Wang, Shanming Wu, Guiqiang Wang, Xiaohui Miao, Xiaoqing Fu, Liping Duan, Jie Xu, Lai Wei, Guangfeng Shi, Chengwei Chen, Minhu Chen, Qin Ning, Chen Yao, Jidong Jia. A multicenter, randomized, double-blind trial comparing the efficacy and safety of TUDCA and UDCA in Chinese patients with primary biliary cholangitis. Medicine. 2016 Nov; 95(47):e5391. doi: 10.1097/md.0000000000005391. [PMID: 27893675]
  • Lauren K Walsh, Robert M Restaino, Martha Neuringer, Camila Manrique, Jaume Padilla. Administration of tauroursodeoxycholic acid prevents endothelial dysfunction caused by an oral glucose load. Clinical science (London, England : 1979). 2016 11; 130(21):1881-8. doi: 10.1042/cs20160501. [PMID: 27503949]
  • Guoxiang Xie, Xiaoning Wang, Fengjie Huang, Aihua Zhao, Wenlian Chen, Jingyu Yan, Yunjing Zhang, Sha Lei, Kun Ge, Xiaojiao Zheng, Jiajian Liu, Mingming Su, Ping Liu, Wei Jia. Dysregulated hepatic bile acids collaboratively promote liver carcinogenesis. International journal of cancer. 2016 10; 139(8):1764-75. doi: 10.1002/ijc.30219. [PMID: 27273788]
  • Monika Rau, Bruno Stieger, Maria J Monte, Johannes Schmitt, Daniel Jahn, Isabelle Frey-Wagner, Tina Raselli, Jose J G Marin, Beat Müllhaupt, Gerhard Rogler, Andreas Geier. Alterations in Enterohepatic Fgf15 Signaling and Changes in Bile Acid Composition Depend on Localization of Murine Intestinal Inflammation. Inflammatory bowel diseases. 2016 10; 22(10):2382-9. doi: 10.1097/mib.0000000000000879. [PMID: 27580383]
  • Shun-Guang Wei, Yang Yu, Robert M Weiss, Robert B Felder. Endoplasmic reticulum stress increases brain MAPK signaling, inflammation and renin-angiotensin system activity and sympathetic nerve activity in heart failure. American journal of physiology. Heart and circulatory physiology. 2016 10; 311(4):H871-H880. doi: 10.1152/ajpheart.00362.2016. [PMID: 27496879]
  • Hong-Wa Yung, Patji Alnæs-Katjavivi, Carolyn J P Jones, Tatiana El-Bacha, Michaela Golic, Anne-Cathrine Staff, Graham J Burton. Placental endoplasmic reticulum stress in gestational diabetes: the potential for therapeutic intervention with chemical chaperones and antioxidants. Diabetologia. 2016 10; 59(10):2240-50. doi: 10.1007/s00125-016-4040-2. [PMID: 27406815]
  • Jing Zhang, Ying Fan, Chuchu Zeng, Li He, Niansong Wang. Tauroursodeoxycholic Acid Attenuates Renal Tubular Injury in a Mouse Model of Type 2 Diabetes. Nutrients. 2016 Sep; 8(10):. doi: 10.3390/nu8100589. [PMID: 27669287]
  • Chun-Fei Wang, Jia-Rui Yuan, Dong Qin, Jun-Fei Gu, Bing-Jie Zhao, Li Zhang, Di Zhao, Juan Chen, Xue-Feng Hou, Nan Yang, Wei-Quan Bu, Jing Wang, Chao Li, Gang Tian, Zi-Bo Dong, Liang Feng, Xiao-Bin Jia. Protection of tauroursodeoxycholic acid on high glucose-induced human retinal microvascular endothelial cells dysfunction and streptozotocin-induced diabetic retinopathy rats. Journal of ethnopharmacology. 2016 Jun; 185(?):162-70. doi: 10.1016/j.jep.2016.03.026. [PMID: 26988565]
  • Willem-Jan Keune, Jens Hausmann, Ruth Bolier, Dagmar Tolenaars, Andreas Kremer, Tatjana Heidebrecht, Robbie P Joosten, Manjula Sunkara, Andrew J Morris, Elisa Matas-Rico, Wouter H Moolenaar, Ronald P Oude Elferink, Anastassis Perrakis. Steroid binding to Autotaxin links bile salts and lysophosphatidic acid signalling. Nature communications. 2016 Apr; 7(?):11248. doi: 10.1038/ncomms11248. [PMID: 27075612]
  • Qi Zhou, Di Wang, Jiancheng Xu, Baorong Chi. Effect of Tauroursodeoxycholic Acid and 4-Phenylbutyric Acid on Metabolism of Copper and Zinc in Type 1 Diabetic Mice Model. Biological trace element research. 2016 Apr; 170(2):348-56. doi: 10.1007/s12011-015-0474-5. [PMID: 26282527]
  • Honglei Guo, Hongmei Li, Lilu Ling, Yong Gu, Wei Ding. Endoplasmic Reticulum Chaperon Tauroursodeoxycholic Acid Attenuates Aldosterone-Infused Renal Injury. Mediators of inflammation. 2016; 2016(?):4387031. doi: 10.1155/2016/4387031. [PMID: 27721575]
  • Wei Ding, Bin Wang, Minmin Zhang, Yong Gu. Involvement of Endoplasmic Reticulum Stress in Uremic Cardiomyopathy: Protective Effects of Tauroursodeoxycholic Acid. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology. 2016; 38(1):141-52. doi: 10.1159/000438616. [PMID: 26765262]
  • Xiaochen Yang, Renu Srivastava, Stephen H Howell, Diane C Bassham. Activation of autophagy by unfolded proteins during endoplasmic reticulum stress. The Plant journal : for cell and molecular biology. 2016 Jan; 85(1):83-95. doi: 10.1111/tpj.13091. [PMID: 26616142]
  • Jianbo Fu, Xiaoning Zhang, Peng Chen, Yingmei Zhang. Endoplasmic reticulum stress is involved in 2,4-dichlorophenol-induced hepatotoxicity. The Journal of toxicological sciences. 2016; 41(6):745-756. doi: 10.2131/jts.41.745. [PMID: 27853103]
  • Kejun Zhou, Jun Wang, Guoxiang Xie, Ying Zhou, Weihui Yan, Weihua Pan, Yanran Che, Ting Zhang, Linda Wong, Sandi Kwee, Yongtao Xiao, Jie Wen, Wei Cai, Wei Jia. Distinct Plasma Bile Acid Profiles of Biliary Atresia and Neonatal Hepatitis Syndrome. Journal of proteome research. 2015 Nov; 14(11):4844-50. doi: 10.1021/acs.jproteome.5b00676. [PMID: 26449593]
  • Pingan Peng, Qian Ma, Le Wang, Ou Zhang, Hongya Han, Xiaoli Liu, Yujie Zhou, Yingxin Zhao. Preconditioning With Tauroursodeoxycholic Acid Protects Against Contrast-Induced HK-2 Cell Apoptosis by Inhibiting Endoplasmic Reticulum Stress. Angiology. 2015 Nov; 66(10):941-9. doi: 10.1177/0003319715575965. [PMID: 25818106]
  • Simon Dubrey, Elizabeth Ackermann, Julian Gillmore. The transthyretin amyloidoses: advances in therapy. Postgraduate medical journal. 2015 Aug; 91(1078):439-48. doi: 10.1136/postgradmedj-2014-133224. [PMID: 26048914]
  • Hongtan Wu, Luyao Wei, Fuqin Fan, Suyuan Ji, Shihao Zhang, Jing Geng, Lixin Hong, Xin Fan, Qinghua Chen, Jing Tian, Mingting Jiang, Xiufeng Sun, Changnan Jin, Zhen-Yu Yin, Qingxu Liu, Jinjia Zhang, Funiu Qin, Kwang-Huei Lin, Jau-Song Yu, Xianming Deng, Hong-Rui Wang, Bin Zhao, Randy L Johnson, Lanfen Chen, Dawang Zhou. Integration of Hippo signalling and the unfolded protein response to restrain liver overgrowth and tumorigenesis. Nature communications. 2015 Feb; 6(?):6239. doi: 10.1038/ncomms7239. [PMID: 25695629]
  • Amina R Gani, Jagadeesh Kumar Uppala, Kolluru V A Ramaiah. Tauroursodeoxycholic acid prevents stress induced aggregation of proteins in vitro and promotes PERK activation in HepG2 cells. Archives of biochemistry and biophysics. 2015 Feb; 568(?):8-15. doi: 10.1016/j.abb.2014.12.031. [PMID: 25579883]
  • Zhenwei Shi, Feng Fu, Liming Yu, Wenjuan Xing, Feifei Su, Xiangyan Liang, Ru Tie, Lele Ji, Miaozhang Zhu, Jun Yu, Haifeng Zhang. Vasonatrin peptide attenuates myocardial ischemia-reperfusion injury in diabetic rats and underlying mechanisms. American journal of physiology. Heart and circulatory physiology. 2015 Feb; 308(4):H281-90. doi: 10.1152/ajpheart.00666.2014. [PMID: 25485902]
  • Guzel Bikbova, Toshiyuki Oshitari, Takayuki Baba, Shuichi Yamamoto. Altered Expression of NF- κ B and SP1 after Exposure to Advanced Glycation End-Products and Effects of Neurotrophic Factors in AGEs Exposed Rat Retinas. Journal of diabetes research. 2015; 2015(?):543818. doi: 10.1155/2015/543818. [PMID: 26078979]
  • Annika Sommerfeld, Roland Reinehr, Dieter Häussinger. Tauroursodeoxycholate Protects Rat Hepatocytes from Bile Acid-Induced Apoptosis via β1-Integrin- and Protein Kinase A-Dependent Mechanisms. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology. 2015; 36(3):866-83. doi: 10.1159/000430262. [PMID: 26044599]
  • Hao Lu, Ling Lu, Zhen-Chao Xu, Yun-Jie Lu, Bo Zhao, Lin Zhuang, Bao-Bing Hao, Feng Zhang. Tauroursodeoxycholic acid and 4-phenyl butyric acid alleviate endoplasmic reticulum stress and improve prognosis of donation after cardiac death liver transplantation in rats. Hepatobiliary & pancreatic diseases international : HBPD INT. 2014 Dec; 13(6):586-93. doi: 10.1016/s1499-3872(14)60269-1. [PMID: 25475860]
  • Se Won Park, Christopher M Schonhoff, Cynthia R L Webster, M Sawkat Anwer. Rab11, but not Rab4, facilitates cyclic AMP- and tauroursodeoxycholate-induced MRP2 translocation to the plasma membrane. American journal of physiology. Gastrointestinal and liver physiology. 2014 Oct; 307(8):G863-70. doi: 10.1152/ajpgi.00457.2013. [PMID: 25190474]