Exact Mass: 1051.3292

Exact Mass Matches: 1051.3292

Found 52 metabolites which its exact mass value is equals to given mass value 1051.3292, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

(5Z,8Z,11Z,14Z,17Z)-Icosapentaenoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-3-{[2-({2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoylsulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}-2,2-dimethylpropoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C41H64N7O17P3S (1051.3292)


This compound belongs to the family of Acyl CoAs. These are organic compounds contaning a coenzyme A substructure linked to another moeity through an ester bond.

   

Timnodonyl CoA

(2R)-4-({[({[(2R,3R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-N-[2-({2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoylsulphanyl]ethyl}-C-hydroxycarbonimidoyl)ethyl]-3,3-dimethylbutanimidic acid

C41H64N7O17P3S (1051.3292)


Timnodonyl coenzyme A is an intermediate in the biosynthesis of fatty acids. Timnodonyl CoA is produced from linolenyl- CoA.

   

3-Hydroxyhexdecanedioyl-CoA

16-{[2-(3-{3-[({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)methyl]-2-hydroxy-3-methylbutanamido}propanamido)ethyl]sulfanyl}-14-hydroxy-16-oxohexadecanoic acid

C37H64N7O20P3S (1051.314)


3-Hydroxyhexdecanedioyl-CoA is a human metabolite involved in the fatty acid elongation in mitochondria pathway. The enzyme long-chain-3-hydroxyacyl-CoA dehydrogenase catalyzes the conversion of 3-Oxododecanoyl-CoA to (S)-3-Hydroxydodecanoyl-CoA.3-Hydroxyhexdecanedioyl-CoA is an intermediate in fatty acid metabolism, being the substrate of the enzymes beta-hydroxyacyl-CoA dehydrogenase and 3-hydroxyacyl-CoA dehydrogenase [EC 1.1.1.211-1.1.1.35]; 3-Hydroxyhexdecanedioyl-CoA is an intermediate in fatty acid elongation in mitochondria, the substrate of the enzymes enoyl-CoA hydratase and long-chain-enoyl-CoA hydratase [EC 4.2.1.17-4.2.1.74]. (KEGG) [HMDB] 3-Hydroxyhexdecanedioyl-CoA is a human metabolite involved in the fatty acid elongation in mitochondria pathway. The enzyme long-chain-3-hydroxyacyl-CoA dehydrogenase catalyzes the conversion of 3-Oxododecanoyl-CoA to (S)-3-Hydroxydodecanoyl-CoA.3-Hydroxyhexdecanedioyl-CoA is an intermediate in fatty acid metabolism, being the substrate of the enzymes beta-hydroxyacyl-CoA dehydrogenase and 3-hydroxyacyl-CoA dehydrogenase [EC 1.1.1.211-1.1.1.35]; 3-Hydroxyhexdecanedioyl-CoA is an intermediate in fatty acid elongation in mitochondria, the substrate of the enzymes enoyl-CoA hydratase and long-chain-enoyl-CoA hydratase [EC 4.2.1.17-4.2.1.74]. (KEGG).

   

Eicosa-5,8,11,14,17-all-cis-pentaenoyl-CoA

(2R)-4-({[({[(2S,3S,4R,5S)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-N-[2-({2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoylsulfanyl]ethyl}-C-hydroxycarbonimidoyl)ethyl]-3,3-dimethylbutanimidic acid

C41H64N7O17P3S (1051.3292)


This compound belongs to the family of Acyl CoAs. These are organic compounds contaning a coenzyme A substructure linked to another moeity through an ester bond.

   

Eicosapentaenoic acid-coenzyme A

{[5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({[hydroxy({3-hydroxy-3-[(2-{[2-(icosa-4,7,10,13,16-pentaenoylsulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]-2,2-dimethylpropoxy})phosphoryl]oxy})phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C41H64N7O17P3S (1051.3292)


   

7-hydroxyhexadecanedioyl-CoA

16-({2-[(3-{[4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-1,2-dihydroxy-3,3-dimethylbutylidene]amino}-1-hydroxypropylidene)amino]ethyl}sulphanyl)-10-hydroxy-16-oxohexadecanoic acid

C37H64N7O20P3S (1051.314)


7-hydroxyhexadecanedioyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a 7-hydroxyhexadecanedioic acid thioester of coenzyme A. 7-hydroxyhexadecanedioyl-coa is an acyl-CoA with 16 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 7-hydroxyhexadecanedioyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 7-hydroxyhexadecanedioyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 7-hydroxyhexadecanedioyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 7-hydroxyhexadecanedioyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 7-hydroxyhexadecanedioyl-CoA into 7-hydroxyhexadecanedioylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 7-hydroxyhexadecanedioylcarnitine is converted back to 7-hydroxyhexadecanedioyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 7-hydroxyhexadecanedioyl-CoA occurs in four steps. First, since 7-hydroxyhexadecanedioyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 7-hydroxyhexadecanedioyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond ...

   

8-hydroxyhexadecanedioyl-CoA

16-({2-[(3-{[4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-1,2-dihydroxy-3,3-dimethylbutylidene]amino}-1-hydroxypropylidene)amino]ethyl}sulphanyl)-9-hydroxy-16-oxohexadecanoic acid

C37H64N7O20P3S (1051.314)


8-hydroxyhexadecanedioyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is an 8-hydroxyhexadecanedioic acid thioester of coenzyme A. 8-hydroxyhexadecanedioyl-coa is an acyl-CoA with 16 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 8-hydroxyhexadecanedioyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 8-hydroxyhexadecanedioyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 8-hydroxyhexadecanedioyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 8-hydroxyhexadecanedioyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 8-hydroxyhexadecanedioyl-CoA into 8-hydroxyhexadecanedioylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 8-hydroxyhexadecanedioylcarnitine is converted back to 8-hydroxyhexadecanedioyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 8-hydroxyhexadecanedioyl-CoA occurs in four steps. First, since 8-hydroxyhexadecanedioyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 8-hydroxyhexadecanedioyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond...

   

4-hydroxyhexadecanedioyl-CoA

16-({2-[(3-{[4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-1,2-dihydroxy-3,3-dimethylbutylidene]amino}-1-hydroxypropylidene)amino]ethyl}sulphanyl)-13-hydroxy-16-oxohexadecanoic acid

C37H64N7O20P3S (1051.314)


4-hydroxyhexadecanedioyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a 4-hydroxyhexadecanedioic acid thioester of coenzyme A. 4-hydroxyhexadecanedioyl-coa is an acyl-CoA with 16 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 4-hydroxyhexadecanedioyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 4-hydroxyhexadecanedioyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 4-hydroxyhexadecanedioyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 4-hydroxyhexadecanedioyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 4-hydroxyhexadecanedioyl-CoA into 4-hydroxyhexadecanedioylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 4-hydroxyhexadecanedioylcarnitine is converted back to 4-hydroxyhexadecanedioyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 4-hydroxyhexadecanedioyl-CoA occurs in four steps. First, since 4-hydroxyhexadecanedioyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 4-hydroxyhexadecanedioyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond ...

   

6-hydroxyhexadecanedioyl-CoA

16-({2-[(3-{[4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-1,2-dihydroxy-3,3-dimethylbutylidene]amino}-1-hydroxypropylidene)amino]ethyl}sulphanyl)-11-hydroxy-16-oxohexadecanoic acid

C37H64N7O20P3S (1051.314)


6-hydroxyhexadecanedioyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a 6-hydroxyhexadecanedioic acid thioester of coenzyme A. 6-hydroxyhexadecanedioyl-coa is an acyl-CoA with 16 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 6-hydroxyhexadecanedioyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 6-hydroxyhexadecanedioyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 6-hydroxyhexadecanedioyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 6-hydroxyhexadecanedioyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 6-hydroxyhexadecanedioyl-CoA into 6-hydroxyhexadecanedioylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 6-hydroxyhexadecanedioylcarnitine is converted back to 6-hydroxyhexadecanedioyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 6-hydroxyhexadecanedioyl-CoA occurs in four steps. First, since 6-hydroxyhexadecanedioyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 6-hydroxyhexadecanedioyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond ...

   

3-hydroxyhexadecanedioyl-CoA

16-({2-[(3-{[4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-1,2-dihydroxy-3,3-dimethylbutylidene]amino}-1-hydroxypropylidene)amino]ethyl}sulphanyl)-14-hydroxy-16-oxohexadecanoic acid

C37H64N7O20P3S (1051.314)


3-hydroxyhexadecanedioyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a 3-hydroxyhexadecanedioic acid thioester of coenzyme A. 3-hydroxyhexadecanedioyl-coa is an acyl-CoA with 16 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 3-hydroxyhexadecanedioyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 3-hydroxyhexadecanedioyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 3-hydroxyhexadecanedioyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 3-hydroxyhexadecanedioyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 3-hydroxyhexadecanedioyl-CoA into 3-hydroxyhexadecanedioylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 3-hydroxyhexadecanedioylcarnitine is converted back to 3-hydroxyhexadecanedioyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 3-hydroxyhexadecanedioyl-CoA occurs in four steps. First, since 3-hydroxyhexadecanedioyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 3-hydroxyhexadecanedioyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond ...

   

5-hydroxyhexadecanedioyl-CoA

16-({2-[(3-{[4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-1,2-dihydroxy-3,3-dimethylbutylidene]amino}-1-hydroxypropylidene)amino]ethyl}sulphanyl)-12-hydroxy-16-oxohexadecanoic acid

C37H64N7O20P3S (1051.314)


5-hydroxyhexadecanedioyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a 5-hydroxyhexadecanedioic acid thioester of coenzyme A. 5-hydroxyhexadecanedioyl-coa is an acyl-CoA with 16 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 5-hydroxyhexadecanedioyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 5-hydroxyhexadecanedioyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 5-hydroxyhexadecanedioyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 5-hydroxyhexadecanedioyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 5-hydroxyhexadecanedioyl-CoA into 5-hydroxyhexadecanedioylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 5-hydroxyhexadecanedioylcarnitine is converted back to 5-hydroxyhexadecanedioyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 5-hydroxyhexadecanedioyl-CoA occurs in four steps. First, since 5-hydroxyhexadecanedioyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 5-hydroxyhexadecanedioyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond ...

   

(5Z,8Z,10E,12E,14Z)-Icosa-5,8,10,12,14-pentaenoyl-CoA

4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-N-(2-{[2-(icosa-5,8,10,12,14-pentaenoylsulphanyl)ethyl]-C-hydroxycarbonimidoyl}ethyl)-3,3-dimethylbutanimidic acid

C41H64N7O17P3S (1051.3292)


(5z,8z,10e,12e,14z)-icosa-5,8,10,12,14-pentaenoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a (5Z_8Z_10E_12E_14Z)-icosa-5_8_10_12_14-pentaenoic acid thioester of coenzyme A. (5z,8z,10e,12e,14z)-icosa-5,8,10,12,14-pentaenoyl-coa is an acyl-CoA with 20 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. (5z,8z,10e,12e,14z)-icosa-5,8,10,12,14-pentaenoyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. (5z,8z,10e,12e,14z)-icosa-5,8,10,12,14-pentaenoyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, (5Z,8Z,10E,12E,14Z)-Icosa-5,8,10,12,14-pentaenoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of (5Z,8Z,10E,12E,14Z)-Icosa-5,8,10,12,14-pentaenoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts (5Z,8Z,10E,12E,14Z)-Icosa-5,8,10,12,14-pentaenoyl-CoA into (5Z_8Z_10E_12E_14Z)-Icosa-5_8_10_12_14-pentaenoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, (5Z_8Z_10E_12E_14Z)-Icosa-5_8_10_12_14-pentaenoylcarnitine is converted back to (5Z,8Z,10E,12E,14Z)-Icosa-5,8,10,12,14-pentaenoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of (5Z,8Z,10E,12E,14Z)-Icosa-5,8,10,12,14-pentaenoyl-CoA occurs in four steps. First, since (5Z,8Z,10E,12E,14Z)-Icosa-5,8,10,12,14-pentaenoyl-CoA is a long chain acyl-CoA ...

   

(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl-CoA

4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-N-(2-{[2-(icosa-5,8,11,14,17-pentaenoylsulphanyl)ethyl]-C-hydroxycarbonimidoyl}ethyl)-3,3-dimethylbutanimidic acid

C41H64N7O17P3S (1051.3292)


(5z,8z,11z,14z,17z)-icosa-5,8,11,14,17-pentaenoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a (5Z_8Z_11Z_14Z_17Z)-icosa-5_8_11_14_17-pentaenoic acid thioester of coenzyme A. (5z,8z,11z,14z,17z)-icosa-5,8,11,14,17-pentaenoyl-coa is an acyl-CoA with 20 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. (5z,8z,11z,14z,17z)-icosa-5,8,11,14,17-pentaenoyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. (5z,8z,11z,14z,17z)-icosa-5,8,11,14,17-pentaenoyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl-CoA into (5Z_8Z_11Z_14Z_17Z)-icosa-5_8_11_14_17-pentaenoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, (5Z_8Z_11Z_14Z_17Z)-icosa-5_8_11_14_17-pentaenoylcarnitine is converted back to (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl-CoA occurs in four steps. First, since (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl-CoA is a long chain acyl-CoA ...

   

dihomo gamma-linolenoyl-CoA

4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonatooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-N-(2-{[2-(icosa-8,11,14-trienoylsulphanyl)ethyl]carboximidato}ethyl)-3,3-dimethylbutanecarboximidic acid

C41H64N7O17P3S (1051.3292)


Dihomo gamma-linolenoyl-coa is a member of the class of compounds known as long-chain fatty acyl coas. Long-chain fatty acyl coas are acyl CoAs where the group acylated to the coenzyme A moiety is a long aliphatic chain of 13 to 21 carbon atoms. Dihomo gamma-linolenoyl-coa is practically insoluble (in water) and an extremely strong acidic compound (based on its pKa). Dihomo gamma-linolenoyl-coa can be found in a number of food items such as savoy cabbage, german camomile, cascade huckleberry, and pepper (c. annuum), which makes dihomo gamma-linolenoyl-coa a potential biomarker for the consumption of these food products.

   

Cyanidin 3-O-[2-O-(xylosyl)-6-O-(p-O-(glucosyl)-p-coumaroyl) glucoside] 5-O-glucoside

Cyanidin 3-O-[2-O-(xylosyl)-6-O-(p-O-(glucosyl)-p-coumaroyl) glucoside] 5-O-glucoside

C47H55O27 (1051.2931)


   

Cyanidin 3-O- [ 2'-O- (xylosyl) -6'-O- (p-O- (glucosyl) -p-coumaroyl) glucoside ] 5-O-glucoside

3,5,7,3,4-Pentahydroxyflavylium 3-O- [ 2"-O- (xylosyl) -6"-O- (p-O- (glucosyl) -p-coumaroyl) glucoside ] 5-O-glucoside

C47H55O27 (1051.2931)


   

(2E,8Z,11Z,14Z,17Z)-icosapentaenoyl-CoA

(2E,8Z,11Z,14Z,17Z)-icosapentaenoyl-CoA

C41H64N7O17P3S (1051.3292)


An unsaturated fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of (2E,8Z,11Z,14Z,17Z)-icosapentaenoic acid.

   

Cyanidin 3-O-[2-O-(xylosyl)-6-O-(p-O-(glucosyl)-p-coumaroyl) glucoside] 5-O-glucoside

Cyanidin 3-O-[2-O-(xylosyl)-6-O-(p-O-(glucosyl)-p-coumaroyl) glucoside] 5-O-glucoside

[C47H55O27]+ (1051.2931)


Acquisition and generation of the data is financially supported by the Max-Planck-Society

   

Timnodonyl CoA

cis-Icosa-5,8,11,14,17-pentaenoyl coenzyme A

C41H64N7O17P3S (1051.3292)


   

CoA(20:5(5Z,8Z,11Z,14Z,17Z))

5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl-CoA

C41H64N7O17P3S (1051.3292)


   

CoA 16:1;O3

16-{[2-(3-{3-[({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)methyl]-2-hydroxy-3-methylbutanamido}propanamido)ethyl]sulfanyl}-14-hydroxy-16-oxohexadecanoic acid

C37H64N7O20P3S (1051.314)


   

CoA 20:5

(5Z,8Z,11Z,14Z,17Z)-eicosapentaenoyl-CoA;(5Z,8Z,11Z,14Z,17Z)-icosapentaenoyl-CoA;20:5(n-3);5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl-CoA;CoA(20:5(5Z,8Z,11Z,14Z,17Z));all-cis-5,8,11,14,17-eicosapentaenoyl-CoA;all-cis-5,8,11,14,17-icosapentaenoyl-CoA

C41H64N7O17P3S (1051.3292)


An unsaturated fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of (5Z,8Z,11Z,14Z,17Z)-icosapentaenoic acid. It is a member of n-3 PUFA and by-product of alpha-linolenic acid metabolism.

   

Cyanidin 3-O-[2-O-(xylosyl)-6-O-(p-O-(glucosyl)-p-coumaroyl) glucoside] 5-O-glucoside

Cyanidin 3-O-[2-O-(xylosyl)-6-O-(p-O-(glucosyl)-p-coumaroyl) glucoside] 5-O-glucoside

C47H55O27+ (1051.2931)


   

Eicosapentaenoic acid-coenzyme A

Eicosapentaenoic acid-coenzyme A

C41H64N7O17P3S (1051.3292)


   
   

dihomo gamma-linolenoyl-CoA

4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonatooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-N-(2-{[2-(icosa-8,11,14-trienoylsulphanyl)ethyl]carboximidato}ethyl)-3,3-dimethylbutanecarboximidic acid

C41H64N7O17P3S (1051.3292)


Dihomo gamma-linolenoyl-coa is a member of the class of compounds known as long-chain fatty acyl coas. Long-chain fatty acyl coas are acyl CoAs where the group acylated to the coenzyme A moiety is a long aliphatic chain of 13 to 21 carbon atoms. Dihomo gamma-linolenoyl-coa is practically insoluble (in water) and an extremely strong acidic compound (based on its pKa). Dihomo gamma-linolenoyl-coa can be found in a number of food items such as savoy cabbage, german camomile, cascade huckleberry, and pepper (c. annuum), which makes dihomo gamma-linolenoyl-coa a potential biomarker for the consumption of these food products. Dihomo γ-linolenoyl-coa is a member of the class of compounds known as long-chain fatty acyl coas. Long-chain fatty acyl coas are acyl CoAs where the group acylated to the coenzyme A moiety is a long aliphatic chain of 13 to 21 carbon atoms. Dihomo γ-linolenoyl-coa is practically insoluble (in water) and an extremely strong acidic compound (based on its pKa). Dihomo γ-linolenoyl-coa can be found in a number of food items such as savoy cabbage, german camomile, cascade huckleberry, and pepper (c. annuum), which makes dihomo γ-linolenoyl-coa a potential biomarker for the consumption of these food products.

   

(8Z,11Z,14Z)-Eicosatrienoyl-CoA

(8Z,11Z,14Z)-Eicosatrienoyl-CoA

C41H64N7O17P3S-4 (1051.3292)


   

(11Z,14Z,17Z)-eicosatrienoyl-CoA

(11Z,14Z,17Z)-eicosatrienoyl-CoA

C41H64N7O17P3S-4 (1051.3292)


   

(5Z,11Z,14Z)-icosatrienoyl-CoA(4-)

(5Z,11Z,14Z)-icosatrienoyl-CoA(4-)

C41H64N7O17P3S-4 (1051.3292)


   

(2E,11Z,14Z)-icosatrienoyl-CoA(4-)

(2E,11Z,14Z)-icosatrienoyl-CoA(4-)

C41H64N7O17P3S-4 (1051.3292)


   

7-hydroxyhexadecanedioyl-CoA

7-hydroxyhexadecanedioyl-CoA

C37H64N7O20P3S (1051.314)


   

8-hydroxyhexadecanedioyl-CoA

8-hydroxyhexadecanedioyl-CoA

C37H64N7O20P3S (1051.314)


   

4-hydroxyhexadecanedioyl-CoA

4-hydroxyhexadecanedioyl-CoA

C37H64N7O20P3S (1051.314)


   

6-hydroxyhexadecanedioyl-CoA

6-hydroxyhexadecanedioyl-CoA

C37H64N7O20P3S (1051.314)


   

5-hydroxyhexadecanedioyl-CoA

5-hydroxyhexadecanedioyl-CoA

C37H64N7O20P3S (1051.314)


   
   

(5Z,8Z,10E,12E,14Z)-Icosa-5,8,10,12,14-pentaenoyl-CoA

(5Z,8Z,10E,12E,14Z)-Icosa-5,8,10,12,14-pentaenoyl-CoA

C41H64N7O17P3S (1051.3292)


   

S-[2-[3-[[4-[[[5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] (4E,7E,10E,13E,16E)-icosa-4,7,10,13,16-pentaenethioate

S-[2-[3-[[4-[[[5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] (4E,7E,10E,13E,16E)-icosa-4,7,10,13,16-pentaenethioate

C41H64N7O17P3S (1051.3292)


   

S-[2-[3-[[4-[[[5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenethioate

S-[2-[3-[[4-[[[5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenethioate

C41H64N7O17P3S (1051.3292)


   

(3S)-hydroxyhexadecanedioyl-CoA

(3S)-hydroxyhexadecanedioyl-CoA

C37H64N7O20P3S (1051.314)


An (S)-3-hydroxyacyl-CoA resulting from the formal condensation of the thiol group of coenzyme A with the 1-carboxy group of (3S)-hydroxyhexadecanedioic acid.

   

(3R)-hydroxyhexadecanedioyl-CoA

(3R)-hydroxyhexadecanedioyl-CoA

C37H64N7O20P3S (1051.314)


An (R)-3-hydroxyacyl-CoA resulting from the formal condensation of the thiol group of coenzyme A with the 1-carboxy group of (3R)-hydroxyhexadecanedioic acid.

   

(3E,5Z,8Z,11Z,14Z)-icosapentaenoyl-CoA

(3E,5Z,8Z,11Z,14Z)-icosapentaenoyl-CoA

C41H64N7O17P3S (1051.3292)


An unsaturated fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of (3E,5Z,8Z,11Z,14Z)-icosapentaenoic acid.

   

(2E,4E,8Z,11Z,14Z)-icosapentaenoyl-CoA

(2E,4E,8Z,11Z,14Z)-icosapentaenoyl-CoA

C41H64N7O17P3S (1051.3292)


An unsaturated fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of (2E,4E,8Z,11Z,14Z)-icosapentaenoic acid.

   

Gemcabene-CoA; (Acyl-CoA); [M+H]+

Gemcabene-CoA; (Acyl-CoA); [M+H]+

C37H64N7O20P3S (1051.314)


   

(5Z,8Z,11Z,14Z,17Z)-Icosapentaenoyl-CoA; (Acyl-CoA); [M+H]+

(5Z,8Z,11Z,14Z,17Z)-Icosapentaenoyl-CoA; (Acyl-CoA); [M+H]+

C41H64N7O17P3S (1051.3292)


   

(8Z,11Z,14Z)-icosatrienoyl-CoA(4-)

(8Z,11Z,14Z)-icosatrienoyl-CoA(4-)

C41H64N7O17P3S (1051.3292)


A polyunsaturated fatty acyl-CoA(4-) obtained by deprotonation of the phosphate and diphosphate OH groups of (8Z,11Z,14Z)-icosatrienoyl-CoA.

   

(5Z,11Z,14Z)-icosatrienoyl-CoA(4-)

(5Z,11Z,14Z)-icosatrienoyl-CoA(4-)

C41H64N7O17P3S (1051.3292)


A polyunsaturated fatty acyl-CoA(4-) arising from deprotonation of the phosphate and diphosphate functions of (5Z,11Z,14Z)-icosatrienoyl-CoA; major species at pH 7.3.

   

(11Z,14Z,17Z)-icosatrienoyl-CoA(4-)

(11Z,14Z,17Z)-icosatrienoyl-CoA(4-)

C41H64N7O17P3S (1051.3292)


An acyl-CoA(4-) arising from deprotonation of the phosphate and diphosphate functions of (11Z,14Z,17Z)-icosatrienoyl-CoA.

   

(2E,11Z,14Z)-icosatrienoyl-CoA(4-)

(2E,11Z,14Z)-icosatrienoyl-CoA(4-)

C41H64N7O17P3S (1051.3292)


A 2,3-trans-enoyl CoA(4-) obtained by deprotonation of the phosphate and diphosphate OH groups of (2E,11Z,14Z)-icosatrienoyl-CoA; major species at pH 7.3.

   
   

Cyanidin 3-O-[2'-O-(xylosyl)-6'-O-(p-O-(glucosyl)-p-coumaroyl) glucoside]5-O-glucoside

Cyanidin 3-O-[2'-O-(xylosyl)-6'-O-(p-O-(glucosyl)-p-coumaroyl) glucoside]5-O-glucoside

C47H55O27 (1051.2931)


   

3-{[(2s,3s,4s,5s,6r)-4,5-dihydroxy-6-({[(2e)-3-(4-{[(2s,3s,4r,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)prop-2-enoyl]oxy}methyl)-3-{[(2s,3s,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-2-(3,4-dihydroxyphenyl)-7-hydroxy-5-{[(2s,3s,4r,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1λ⁴-chromen-1-ylium

3-{[(2s,3s,4s,5s,6r)-4,5-dihydroxy-6-({[(2e)-3-(4-{[(2s,3s,4r,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)prop-2-enoyl]oxy}methyl)-3-{[(2s,3s,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-2-(3,4-dihydroxyphenyl)-7-hydroxy-5-{[(2s,3s,4r,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1λ⁴-chromen-1-ylium

[C47H55O27]+ (1051.2931)