Staphyloxanthin (BioDeep_00000011011)

   


代谢物信息卡片


2,6,10,15,19,23-hexamethyltetracosa-2E,4E,6E,8E,10E,12E,14E,16E,18E,22-decaenoyl]-6-O-(12-methyltetradecanoyl)-beta-D-glucopyranose

化学式: C51H78O8 (818.5696)
中文名称:
谱图信息: 最多检出来源 Homo sapiens(lipidomics) 8.7%

分子结构信息

SMILES: C(O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](COC(CCCCCCCCCCC(C)CC)=O)O1)(=O)/C(/C)=C/C=C/C(=C/C=C/C(/C)=C/C=C/C=C(\C)/C=C/C=C(\C)/CC/C=C(\C)/C)/C
InChI: InChI=1S/C51H78O8/c1-10-39(4)26-17-15-13-11-12-14-16-18-36-46(52)57-37-45-47(53)48(54)49(55)51(58-45)59-50(56)44(9)35-24-34-43(8)33-23-31-41(6)28-20-19-27-40(5)30-22-32-42(7)29-21-25-38(2)3/h19-20,22-25,27-28,30-35,39,45,47-49,51,53-55H,10-18,21,26,29,36-37H2,1-9H3/b20-19+,30-22+,31-23+,34-24+,40-27+,41-28+,42-32+,43-33+,44-35+/t39?,45-,47-,48+,49-,51+/m1/s1

描述信息

A xanthophyll that is beta-D-glucopyranose in which the hydroxy groups at positions 1 and 6 have been acylated by an all-trans-2,6,10,15,19,23-hexamethyltetracosa-2,4,6,8,10,12,14,16,18,22-decaenoyl group and a 12-methyltetradecanoyl group, respectively. Staphyloxanthin is responsible for the characteristic yellow-golden colour which gives the bacterium Staphylococcus aureus its name.
D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

同义名列表

4 个代谢物同义名

2,6,10,15,19,23-hexamethyltetracosa-2E,4E,6E,8E,10E,12E,14E,16E,18E,22-decaenoyl]-6-O-(12-methyltetradecanoyl)-beta-D-glucopyranose; beta-D-glucopyranosyl 1-O-(4,4-diaponeurosporen-4-oate)-6-O-(12-methyltetradecanoate); Staphyloxanthin; Staphyloxanthin



数据库引用编号

12 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(1)

PlantCyc(0)

代谢反应

2 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(2)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 7 CAT, ELANE, FDPS, GARS1, MSRA, NUFIP2, SPX
Peripheral membrane protein 1 PTPMT1
Endoplasmic reticulum membrane 1 FDFT1
Nucleus 5 DFFA, FOSB, MPO, NUFIP2, PTPMT1
cytosol 9 CAT, DFFA, ELANE, FDPS, FOSB, GARS1, LIPE, MSRA, NUFIP2
nuclear body 1 NUFIP2
phagocytic vesicle 1 ELANE
nucleoplasm 6 DFFA, FDPS, FOSB, MPO, MSRA, NUFIP2
Cell membrane 3 CNNM3, KCNH2, LIPE
Lipid-anchor 1 MSRA
Cell projection, axon 1 GARS1
Multi-pass membrane protein 3 CNNM3, FDFT1, KCNH2
cell surface 3 ELANE, KCNH2, TNR
glutamatergic synapse 1 TNR
mitochondrial inner membrane 1 PTPMT1
Cytoplasm, cytosol 1 LIPE
Cytoplasmic vesicle, secretory vesicle 1 SPX
Lysosome 1 MPO
plasma membrane 4 CNNM3, DFFA, KCNH2, MSRA
Membrane 8 CAT, CNNM3, FDFT1, FDPS, KCNH2, LIPE, MSRA, NUFIP2
axon 1 GARS1
caveola 1 LIPE
extracellular exosome 6 CAT, DEFA1, ELANE, GARS1, MPO, MSRA
endoplasmic reticulum 1 FDFT1
extracellular space 6 CXCL8, DEFA1, ELANE, MPO, SPX, TNR
perinuclear region of cytoplasm 1 KCNH2
Schaffer collateral - CA1 synapse 1 TNR
mitochondrion 4 CAT, GARS1, MSRA, PTPMT1
protein-containing complex 2 CAT, DFFA
intracellular membrane-bounded organelle 4 CAT, FOSB, MPO, MSRA
Secreted 3 CXCL8, GARS1, MATN1
extracellular region 8 CAT, CXCL8, DEFA1, ELANE, MATN1, MPO, SPX, TNR
mitochondrial matrix 3 CAT, FDPS, GARS1
Secreted, extracellular space, extracellular matrix 1 TNR
actin cytoskeleton 1 MSRA
midbody 1 MSRA
Mitochondrion inner membrane 1 PTPMT1
Matrix side 1 PTPMT1
Membrane raft 1 TNR
focal adhesion 1 CAT
extracellular matrix 1 MATN1
Peroxisome 2 CAT, FDPS
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
collagen-containing extracellular matrix 4 DEFA1, ELANE, MATN1, TNR
secretory granule 3 ELANE, GARS1, MPO
chromatin 2 DFFA, FOSB
Secreted, extracellular space 1 SPX
[Isoform 1]: Mitochondrion 1 GARS1
Lipid droplet 1 LIPE
Membrane, caveola 1 LIPE
monoatomic ion channel complex 1 KCNH2
Cytoplasm, Stress granule 1 NUFIP2
cytoplasmic stress granule 1 NUFIP2
azurophil granule 1 MPO
inward rectifier potassium channel complex 1 KCNH2
voltage-gated potassium channel complex 1 KCNH2
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 1 CAT
Golgi lumen 1 DEFA1
transcription repressor complex 1 ELANE
matrilin complex 1 MATN1
specific granule lumen 1 ELANE
dense core granule 1 SPX
transport vesicle 1 SPX
Secreted, extracellular exosome 1 GARS1
azurophil granule lumen 3 DEFA1, ELANE, MPO
perineuronal net 1 TNR
[Isoform 2]: Cytoplasm 1 GARS1
phagocytic vesicle lumen 1 MPO
Cytoplasmic vesicle, phagosome 1 ELANE
ribosome 1 NUFIP2
catalase complex 1 CAT
tenascin complex 1 TNR


文献列表

  • Jessica Múnera-Jaramillo, Gerson-Dirceu López, Elizabeth Suesca, Chiara Carazzone, Chad Leidy, Marcela Manrique-Moreno. The role of staphyloxanthin in the regulation of membrane biophysical properties in Staphylococcus aureus. Biochimica et biophysica acta. Biomembranes. 2024 Jan; 1866(3):184288. doi: 10.1016/j.bbamem.2024.184288. [PMID: 38286247]
  • Laura Zamudio-Chávez, Elizabeth Suesca, Gerson-Dirceu López, Chiara Carazzone, Marcela Manrique-Moreno, Chad Leidy. Staphylococcus aureus Modulates Carotenoid and Phospholipid Content in Response to Oxygen-Restricted Growth Conditions, Triggering Changes in Membrane Biophysical Properties. International journal of molecular sciences. 2023 Oct; 24(19):. doi: 10.3390/ijms241914906. [PMID: 37834354]
  • Lulin Rao, Yanlei Xu, Li Shen, Xinyi Wang, Huilin Zhao, Bingjie Wang, Jiao Zhang, Yanghua Xiao, Yinjuan Guo, Yaoguang Sheng, Lixia Cheng, Zengqiang Song, Fangyou Yu. Small-molecule compound SYG-180-2-2 attenuates Staphylococcus aureus virulence by inhibiting hemolysin and staphyloxanthin production. Frontiers in cellular and infection microbiology. 2022; 12(?):1008289. doi: 10.3389/fcimb.2022.1008289. [PMID: 36310881]
  • Amr M Shehabeldine, Rehab M Ashour, Mona M Okba, Fatema R Saber. Callistemon citrinus bioactive metabolites as new inhibitors of methicillin-resistant Staphylococcus aureus biofilm formation. Journal of ethnopharmacology. 2020 May; 254(?):112669. doi: 10.1016/j.jep.2020.112669. [PMID: 32087316]
  • Yi Yang, Hao Wang, Huyue Zhou, Zhen Hu, Weilong Shang, Yifan Rao, Huagang Peng, Ying Zheng, Qiwen Hu, Rong Zhang, Haiyun Luo, Xiancai Rao. Protective Effect of the Golden Staphyloxanthin Biosynthesis Pathway on Staphylococcus aureus under Cold Atmospheric Plasma Treatment. Applied and environmental microbiology. 2020 01; 86(3):. doi: 10.1128/aem.01998-19. [PMID: 31704682]
  • Pooja Patel, Chinmayi Joshi, Vijay Kothari. Anti-Pathogenic Efficacy and Molecular Targets of a Polyherbal Wound- Care Formulation (Herboheal) Against Staphylococcus aureus. Infectious disorders drug targets. 2019; 19(2):193-206. doi: 10.2174/1871526518666181022112552. [PMID: 30345928]
  • Durairajan Rubini, Sanaulla Farisa Banu, Prakash Nisha, Ramar Murugan, Subbiah Thamotharan, María Judith Percino, Prabha Subramani, Paramasivam Nithyanand. Essential oils from unexplored aromatic plants quench biofilm formation and virulence of Methicillin resistant Staphylococcus aureus. Microbial pathogenesis. 2018 Sep; 122(?):162-173. doi: 10.1016/j.micpath.2018.06.028. [PMID: 29920307]
  • Esther García-Fernández, Gudrun Koch, Rabea M Wagner, Agnes Fekete, Stephanie T Stengel, Johannes Schneider, Benjamin Mielich-Süss, Sebastian Geibel, Sebastian M Markert, Christian Stigloher, Daniel Lopez. Membrane Microdomain Disassembly Inhibits MRSA Antibiotic Resistance. Cell. 2017 Nov; 171(6):1354-1367.e20. doi: 10.1016/j.cell.2017.10.012. [PMID: 29103614]
  • Juan-Carlos García-Betancur, Angel Goñi-Moreno, Thomas Horger, Melanie Schott, Malvika Sharan, Julian Eikmeier, Barbara Wohlmuth, Alma Zernecke, Knut Ohlsen, Christina Kuttler, Daniel Lopez. Cell differentiation defines acute and chronic infection cell types in Staphylococcus aureus. eLife. 2017 09; 6(?):. doi: 10.7554/elife.28023. [PMID: 28893374]
  • Xinxin Feng, Yumei Hu, Yingying Zheng, Wei Zhu, Kai Li, Chun-Hsiang Huang, Tzu-Ping Ko, Feifei Ren, Hsiu-Chien Chan, Mulugeta Nega, Shannon Bogue, Daniel López, Roberto Kolter, Friedrich Götz, Rey-Ting Guo, Eric Oldfield. Structural and functional analysis of Bacillus subtilis YisP reveals a role of its product in biofilm production. Chemistry & biology. 2014 Nov; 21(11):1557-63. doi: 10.1016/j.chembiol.2014.08.018. [PMID: 25308276]
  • Sukanlaya Leejae, Laila Hasap, Supayang Piyawan Voravuthikunchai. Inhibition of staphyloxanthin biosynthesis in Staphylococcus aureus by rhodomyrtone, a novel antibiotic candidate. Journal of medical microbiology. 2013 Mar; 62(Pt 3):421-428. doi: 10.1099/jmm.0.047316-0. [PMID: 23242641]
  • Jin-Hyung Lee, Joo-Hyeon Park, Moo Hwan Cho, Jintae Lee. Flavone reduces the production of virulence factors, staphyloxanthin and α-hemolysin, in Staphylococcus aureus. Current microbiology. 2012 Dec; 65(6):726-32. doi: 10.1007/s00284-012-0229-x. [PMID: 22965624]
  • Kent Sakai, Nobuhiro Koyama, Takashi Fukuda, Yukiko Mori, Hiroyasu Onaka, Hiroshi Tomoda. Search method for inhibitors of Staphyloxanthin production by methicillin-resistant Staphylococcus aureus. Biological & pharmaceutical bulletin. 2012; 35(1):48-53. doi: 10.1248/bpb.35.48. [PMID: 22223336]
  • Makoto Kuroda, Sanae Nagasaki, Toshiko Ohta. Sesquiterpene farnesol inhibits recycling of the C55 lipid carrier of the murein monomer precursor contributing to increased susceptibility to beta-lactams in methicillin-resistant Staphylococcus aureus. The Journal of antimicrobial chemotherapy. 2007 Mar; 59(3):425-32. doi: 10.1093/jac/dkl519. [PMID: 17242033]