Chemical Formula: C41H64N7O17P3S

Chemical Formula C41H64N7O17P3S

Found 24 metabolite its formula value is C41H64N7O17P3S

(5Z,8Z,11Z,14Z,17Z)-Icosapentaenoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-3-{[2-({2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoylsulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}-2,2-dimethylpropoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C41H64N7O17P3S (1051.3292)


This compound belongs to the family of Acyl CoAs. These are organic compounds contaning a coenzyme A substructure linked to another moeity through an ester bond.

   

Timnodonyl CoA

(2R)-4-({[({[(2R,3R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-N-[2-({2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoylsulphanyl]ethyl}-C-hydroxycarbonimidoyl)ethyl]-3,3-dimethylbutanimidic acid

C41H64N7O17P3S (1051.3292)


Timnodonyl coenzyme A is an intermediate in the biosynthesis of fatty acids. Timnodonyl CoA is produced from linolenyl- CoA.

   

Eicosa-5,8,11,14,17-all-cis-pentaenoyl-CoA

(2R)-4-({[({[(2S,3S,4R,5S)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-N-[2-({2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoylsulfanyl]ethyl}-C-hydroxycarbonimidoyl)ethyl]-3,3-dimethylbutanimidic acid

C41H64N7O17P3S (1051.3292)


This compound belongs to the family of Acyl CoAs. These are organic compounds contaning a coenzyme A substructure linked to another moeity through an ester bond.

   

Eicosapentaenoic acid-coenzyme A

{[5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({[hydroxy({3-hydroxy-3-[(2-{[2-(icosa-4,7,10,13,16-pentaenoylsulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]-2,2-dimethylpropoxy})phosphoryl]oxy})phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C41H64N7O17P3S (1051.3292)


   

(5Z,8Z,10E,12E,14Z)-Icosa-5,8,10,12,14-pentaenoyl-CoA

4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-N-(2-{[2-(icosa-5,8,10,12,14-pentaenoylsulphanyl)ethyl]-C-hydroxycarbonimidoyl}ethyl)-3,3-dimethylbutanimidic acid

C41H64N7O17P3S (1051.3292)


(5z,8z,10e,12e,14z)-icosa-5,8,10,12,14-pentaenoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a (5Z_8Z_10E_12E_14Z)-icosa-5_8_10_12_14-pentaenoic acid thioester of coenzyme A. (5z,8z,10e,12e,14z)-icosa-5,8,10,12,14-pentaenoyl-coa is an acyl-CoA with 20 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. (5z,8z,10e,12e,14z)-icosa-5,8,10,12,14-pentaenoyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. (5z,8z,10e,12e,14z)-icosa-5,8,10,12,14-pentaenoyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, (5Z,8Z,10E,12E,14Z)-Icosa-5,8,10,12,14-pentaenoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of (5Z,8Z,10E,12E,14Z)-Icosa-5,8,10,12,14-pentaenoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts (5Z,8Z,10E,12E,14Z)-Icosa-5,8,10,12,14-pentaenoyl-CoA into (5Z_8Z_10E_12E_14Z)-Icosa-5_8_10_12_14-pentaenoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, (5Z_8Z_10E_12E_14Z)-Icosa-5_8_10_12_14-pentaenoylcarnitine is converted back to (5Z,8Z,10E,12E,14Z)-Icosa-5,8,10,12,14-pentaenoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of (5Z,8Z,10E,12E,14Z)-Icosa-5,8,10,12,14-pentaenoyl-CoA occurs in four steps. First, since (5Z,8Z,10E,12E,14Z)-Icosa-5,8,10,12,14-pentaenoyl-CoA is a long chain acyl-CoA ...

   

(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl-CoA

4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-N-(2-{[2-(icosa-5,8,11,14,17-pentaenoylsulphanyl)ethyl]-C-hydroxycarbonimidoyl}ethyl)-3,3-dimethylbutanimidic acid

C41H64N7O17P3S (1051.3292)


(5z,8z,11z,14z,17z)-icosa-5,8,11,14,17-pentaenoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a (5Z_8Z_11Z_14Z_17Z)-icosa-5_8_11_14_17-pentaenoic acid thioester of coenzyme A. (5z,8z,11z,14z,17z)-icosa-5,8,11,14,17-pentaenoyl-coa is an acyl-CoA with 20 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. (5z,8z,11z,14z,17z)-icosa-5,8,11,14,17-pentaenoyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. (5z,8z,11z,14z,17z)-icosa-5,8,11,14,17-pentaenoyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl-CoA into (5Z_8Z_11Z_14Z_17Z)-icosa-5_8_11_14_17-pentaenoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, (5Z_8Z_11Z_14Z_17Z)-icosa-5_8_11_14_17-pentaenoylcarnitine is converted back to (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl-CoA occurs in four steps. First, since (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl-CoA is a long chain acyl-CoA ...

   

dihomo gamma-linolenoyl-CoA

4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonatooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-N-(2-{[2-(icosa-8,11,14-trienoylsulphanyl)ethyl]carboximidato}ethyl)-3,3-dimethylbutanecarboximidic acid

C41H64N7O17P3S (1051.3292)


Dihomo gamma-linolenoyl-coa is a member of the class of compounds known as long-chain fatty acyl coas. Long-chain fatty acyl coas are acyl CoAs where the group acylated to the coenzyme A moiety is a long aliphatic chain of 13 to 21 carbon atoms. Dihomo gamma-linolenoyl-coa is practically insoluble (in water) and an extremely strong acidic compound (based on its pKa). Dihomo gamma-linolenoyl-coa can be found in a number of food items such as savoy cabbage, german camomile, cascade huckleberry, and pepper (c. annuum), which makes dihomo gamma-linolenoyl-coa a potential biomarker for the consumption of these food products.

   

(2E,8Z,11Z,14Z,17Z)-icosapentaenoyl-CoA

(2E,8Z,11Z,14Z,17Z)-icosapentaenoyl-CoA

C41H64N7O17P3S (1051.3292)


An unsaturated fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of (2E,8Z,11Z,14Z,17Z)-icosapentaenoic acid.

   

Timnodonyl CoA

cis-Icosa-5,8,11,14,17-pentaenoyl coenzyme A

C41H64N7O17P3S (1051.3292)


   

CoA(20:5(5Z,8Z,11Z,14Z,17Z))

5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl-CoA

C41H64N7O17P3S (1051.3292)


   

CoA 20:5

(5Z,8Z,11Z,14Z,17Z)-eicosapentaenoyl-CoA;(5Z,8Z,11Z,14Z,17Z)-icosapentaenoyl-CoA;20:5(n-3);5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl-CoA;CoA(20:5(5Z,8Z,11Z,14Z,17Z));all-cis-5,8,11,14,17-eicosapentaenoyl-CoA;all-cis-5,8,11,14,17-icosapentaenoyl-CoA

C41H64N7O17P3S (1051.3292)


An unsaturated fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of (5Z,8Z,11Z,14Z,17Z)-icosapentaenoic acid. It is a member of n-3 PUFA and by-product of alpha-linolenic acid metabolism.

   

Eicosapentaenoic acid-coenzyme A

Eicosapentaenoic acid-coenzyme A

C41H64N7O17P3S (1051.3292)


   

dihomo gamma-linolenoyl-CoA

4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonatooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-N-(2-{[2-(icosa-8,11,14-trienoylsulphanyl)ethyl]carboximidato}ethyl)-3,3-dimethylbutanecarboximidic acid

C41H64N7O17P3S (1051.3292)


Dihomo gamma-linolenoyl-coa is a member of the class of compounds known as long-chain fatty acyl coas. Long-chain fatty acyl coas are acyl CoAs where the group acylated to the coenzyme A moiety is a long aliphatic chain of 13 to 21 carbon atoms. Dihomo gamma-linolenoyl-coa is practically insoluble (in water) and an extremely strong acidic compound (based on its pKa). Dihomo gamma-linolenoyl-coa can be found in a number of food items such as savoy cabbage, german camomile, cascade huckleberry, and pepper (c. annuum), which makes dihomo gamma-linolenoyl-coa a potential biomarker for the consumption of these food products. Dihomo γ-linolenoyl-coa is a member of the class of compounds known as long-chain fatty acyl coas. Long-chain fatty acyl coas are acyl CoAs where the group acylated to the coenzyme A moiety is a long aliphatic chain of 13 to 21 carbon atoms. Dihomo γ-linolenoyl-coa is practically insoluble (in water) and an extremely strong acidic compound (based on its pKa). Dihomo γ-linolenoyl-coa can be found in a number of food items such as savoy cabbage, german camomile, cascade huckleberry, and pepper (c. annuum), which makes dihomo γ-linolenoyl-coa a potential biomarker for the consumption of these food products.

   

(5Z,8Z,10E,12E,14Z)-Icosa-5,8,10,12,14-pentaenoyl-CoA

(5Z,8Z,10E,12E,14Z)-Icosa-5,8,10,12,14-pentaenoyl-CoA

C41H64N7O17P3S (1051.3292)


   

S-[2-[3-[[4-[[[5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] (4E,7E,10E,13E,16E)-icosa-4,7,10,13,16-pentaenethioate

S-[2-[3-[[4-[[[5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] (4E,7E,10E,13E,16E)-icosa-4,7,10,13,16-pentaenethioate

C41H64N7O17P3S (1051.3292)


   

S-[2-[3-[[4-[[[5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenethioate

S-[2-[3-[[4-[[[5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenethioate

C41H64N7O17P3S (1051.3292)


   

(3E,5Z,8Z,11Z,14Z)-icosapentaenoyl-CoA

(3E,5Z,8Z,11Z,14Z)-icosapentaenoyl-CoA

C41H64N7O17P3S (1051.3292)


An unsaturated fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of (3E,5Z,8Z,11Z,14Z)-icosapentaenoic acid.

   

(2E,4E,8Z,11Z,14Z)-icosapentaenoyl-CoA

(2E,4E,8Z,11Z,14Z)-icosapentaenoyl-CoA

C41H64N7O17P3S (1051.3292)


An unsaturated fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of (2E,4E,8Z,11Z,14Z)-icosapentaenoic acid.

   

(5Z,8Z,11Z,14Z,17Z)-Icosapentaenoyl-CoA; (Acyl-CoA); [M+H]+

(5Z,8Z,11Z,14Z,17Z)-Icosapentaenoyl-CoA; (Acyl-CoA); [M+H]+

C41H64N7O17P3S (1051.3292)


   

(8Z,11Z,14Z)-icosatrienoyl-CoA(4-)

(8Z,11Z,14Z)-icosatrienoyl-CoA(4-)

C41H64N7O17P3S (1051.3292)


A polyunsaturated fatty acyl-CoA(4-) obtained by deprotonation of the phosphate and diphosphate OH groups of (8Z,11Z,14Z)-icosatrienoyl-CoA.

   

(5Z,11Z,14Z)-icosatrienoyl-CoA(4-)

(5Z,11Z,14Z)-icosatrienoyl-CoA(4-)

C41H64N7O17P3S (1051.3292)


A polyunsaturated fatty acyl-CoA(4-) arising from deprotonation of the phosphate and diphosphate functions of (5Z,11Z,14Z)-icosatrienoyl-CoA; major species at pH 7.3.

   

(11Z,14Z,17Z)-icosatrienoyl-CoA(4-)

(11Z,14Z,17Z)-icosatrienoyl-CoA(4-)

C41H64N7O17P3S (1051.3292)


An acyl-CoA(4-) arising from deprotonation of the phosphate and diphosphate functions of (11Z,14Z,17Z)-icosatrienoyl-CoA.

   

(2E,11Z,14Z)-icosatrienoyl-CoA(4-)

(2E,11Z,14Z)-icosatrienoyl-CoA(4-)

C41H64N7O17P3S (1051.3292)


A 2,3-trans-enoyl CoA(4-) obtained by deprotonation of the phosphate and diphosphate OH groups of (2E,11Z,14Z)-icosatrienoyl-CoA; major species at pH 7.3.