Maltohexaose (BioDeep_00000004797)
human metabolite PANOMIX_OTCML-2023 Endogenous
代谢物信息卡片
化学式: C36H62O31 (990.3275)
中文名称: 麦芽六糖
谱图信息:
最多检出来源 () 0%
分子结构信息
SMILES: C(C1C(C(C(C(O1)OC2C(OC(C(C2O)O)OC3C(OC(C(C3O)O)OC4C(OC(C(C4O)O)OC5C(OC(C(C5O)O)OC6C(OC(C(C6O)O)O)CO)CO)CO)CO)CO)O)O)O)O
InChI: InChI=1S/C36H62O31/c37-1-7-13(43)14(44)21(51)32(58-7)64-27-9(3-39)60-34(23(53)16(27)46)66-29-11(5-41)62-36(25(55)18(29)48)67-30-12(6-42)61-35(24(54)19(30)49)65-28-10(4-40)59-33(22(52)17(28)47)63-26-8(2-38)57-31(56)20(50)15(26)45/h7-56H,1-6H2/t7-,8-,9-,10-,11-,12-,13-,14+,15-,16-,17-,18-,19-,20-,21-,22-,23-,24-,25-,26-,27-,28-,29-,30-,31+,32-,33-,34-,35-,36-/m1/s1
描述信息
Maltohexaose is a polysaccharide with 6 units of glucose and can be classified as a maltodextrin. Maltodextrin is a polysaccharide that is used as a food additive. It is produced from starch by partial hydrolysis and is usually found as a creamy-white hygroscopic spray-dried powder. Maltodextrin is easily digestible, being absorbed as rapidly as glucose, and might be either moderately sweet or almost flavourless. It is commonly used for the production of natural sodas and candy such as SweeTarts. Maltodextrin consists of D-glucose units connected in chains of variable length. The glucose units are primarily linked with α(1→4) glycosidic bonds. Maltodextrin is typically composed of a mixture of chains that vary from three to nineteen glucose units long. Maltodextrins are classified by DE (dextrose equivalent) and have a DE between 3 to 20. The higher the DE value, the shorter the glucose chains, and the higher the sweetness and solubility. Above DE 20, the European Unions CN code calls it glucose syrup, at DE 10 or lower the customs CN code nomenclature classifies maltodextrins as dextrins (Wikipedia). A 1,4-alpha-D-glucan reacts with H2O to produce maltohexaose. alpha-Amylase is responsible for catalyzing this reaction.
Alpha-maltohexaose is a maltohexaose hexasaccharide in which the glucose residue at the reducing end is in the pyranose ring form and has alpha configuration at the anomeric carbon atom.
Maltohexaose is a metabolite found in or produced by Escherichia coli (strain K12, MG1655).
alpha-D-glucopyranosyl-(1->4)-alpha-D-glucopyranosyl-(1->4)-alpha-D-glucopyranosyl-(1->4)-alpha-D-glucopyranosyl-(1->4)-alpha-D-glucopyranosyl-(1->4)-alpha-D-glucopyranose is a natural product found in Homo sapiens and Bos taurus with data available.
Constituent of corn starch. Amylolysis production from starch. Maltooligosaccharide mixtures are important food additives (sweeteners, gelling agents and viscosity modifiers)
A maltohexaose hexasaccharide in which the glucose residue at the reducing end is in the pyranose ring form and has alpha configuration at the anomeric carbon atom.
Maltohexaose is a natural saccharide, and can be produced from amylose, amylopectin and whole starch.
Maltohexaose is a natural saccharide, and can be produced from amylose, amylopectin and whole starch.
同义名列表
17 个代谢物同义名
(2R,3R,4S,5S,6R)-2-{[(2R,3S,4R,5R,6R)-6-{[(2R,3S,4R,5R,6R)-6-{[(2R,3S,4R,5R,6R)-6-{[(2R,3S,4R,5R,6R)-4,5-dihydroxy-2-(hydroxymethyl)-6-{[(2R,3S,4R,5R,6S)-4,5,6-trihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}oxan-3-yl]oxy}-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol; alpha-D-Glucopyranose, O-alpha-D-glucopyranosyl-(1-->4)-O-alpha-D-glucopyranosyl-(1-->4)-O-alpha-D-glucopyranosyl-(1-->4)-O-alpha-D-glucopyranosyl-(1-->4)-O-alpha-D-glucopyranosyl-(1-->4)-; O-alpha-D-Glucopyranosyl-(1-->4)-O-alpha-D-glucopyranosyl-(1-->4)-O-alpha-D-glucopyranosyl-(1-->4)-O-alpha-D-glucopyranosyl-(1-->4)-O-alpha-D-glucopyranosyl-(1-->4)-alpha-D-glucopyranose; alpha-D-glucopyranosyl-(1->4)-alpha-D-glucopyranosyl-(1->4)-alpha-D-glucopyranosyl-(1->4)-alpha-D-glucopyranosyl-(1->4)-alpha-D-glucopyranosyl-(1->4)-alpha-D-glucopyranose; alpha-D-Glcp-(1->4)-alpha-D-Glcp-(1->4)-alpha-D-Glcp-(1->4)-alpha-D-Glcp-(1->4)-alpha-D-Glcp-(1->4)-alpha-D-Glcp; a-D-GLCP-(1->4)-a-D-GLCP-(1->4)-a-D-GLCP-(1->4)-a-D-GLCP-(1->4)-a-D-GLCP-(1->4)-a-D-GLCP; Α-D-GLCP-(1->4)-α-D-GLCP-(1->4)-α-D-GLCP-(1->4)-α-D-GLCP-(1->4)-α-D-GLCP-(1->4)-α-D-GLCP; WURCS=2.0/1,6,5/[a2122h-1a_1-5]/1-1-1-1-1-1/a4-b1_b4-c1_c4-D1_d4-e1_e4-F1; alpha-maltohexaose; Maltohexanose, DP6; Maltohexanose DP6; α-maltohexaose; a-Maltohexaose; Maltohexaose; CEY; Amylohexaose; Maltohexaose
数据库引用编号
22 个数据库交叉引用编号
- ChEBI: CHEBI:143182
- ChEBI: CHEBI:61953
- KEGG: C01936
- PubChem: 5288409
- PubChem: 439606
- PubChem: 4071695
- HMDB: HMDB0012253
- Metlin: METLIN62889
- MeSH: maltohexaose
- MetaCyc: MALTOHEXAOSE
- foodb: FDB001191
- chemspider: 4450599
- CAS: 133644-78-7
- CAS: 34620-77-4
- medchemexpress: HY-N2559
- PMhub: MS000017399
- MetaboLights: MTBLC61953
- PubChem: 5041
- PDB-CCD: CEY
- NIKKAJI: J133.214G
- RefMet: Maltohexaose
- KNApSAcK: 143182
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
0 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
4 个相关的物种来源信息
- 7461 - Apis cerana: -
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
- 33090 - Plants: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Kiyoko Takemiya, Joachim J Røise, Maomao He, Chung Taing, Alexander G Rodriguez, Niren Murthy, Mark M Goodman, W Robert Taylor. Maltohexaose-indocyanine green (MH-ICG) for near infrared imaging of endocarditis.
PloS one.
2021; 16(3):e0247673. doi:
10.1371/journal.pone.0247673
. [PMID: 33647027] - Alexander Axer, Sven Hermann, Gerald Kehr, David Clases, Uwe Karst, Lena Fischer-Riepe, Johannes Roth, Manfred Fobker, Michael Schäfers, Ryan Gilmour, Andreas Faust. Harnessing the Maltodextrin Transport Mechanism for Targeted Bacterial Imaging: Structural Requirements for Improved in vivo Stability in Tracer Design.
ChemMedChem.
2018 02; 13(3):241-250. doi:
10.1002/cmdc.201700543
. [PMID: 29195027] - Mark E Larson, Daniel J Falconer, Alan M Myers, Adam W Barb. Direct Characterization of the Maize Starch Synthase IIa Product Shows Maltodextrin Elongation Occurs at the Non-reducing End.
The Journal of biological chemistry.
2016 Nov; 291(48):24951-24960. doi:
10.1074/jbc.m116.754705
. [PMID: 27733678] - David A Meekins, Hou-Fu Guo, Satrio Husodo, Bradley C Paasch, Travis M Bridges, Diana Santelia, Oliver Kötting, Craig W Vander Kooi, Matthew S Gentry. Structure of the Arabidopsis glucan phosphatase like sex four2 reveals a unique mechanism for starch dephosphorylation.
The Plant cell.
2013 Jun; 25(6):2302-14. doi:
10.1105/tpc.113.112706
. [PMID: 23832589] - Iván Bárcena-Uribarri, Marcus Thein, Elke Maier, Mari Bonde, Sven Bergström, Roland Benz. Use of nonelectrolytes reveals the channel size and oligomeric constitution of the Borrelia burgdorferi P66 porin.
PloS one.
2013; 8(11):e78272. doi:
10.1371/journal.pone.0078272
. [PMID: 24223145] - Debin Wan, Lili Jiao, Hongmei Yang, Shuying Liu. Structural characterization and immunological activities of the water-soluble oligosaccharides isolated from the Panax ginseng roots.
Planta.
2012 Jun; 235(6):1289-97. doi:
10.1007/s00425-011-1574-x
. [PMID: 22183124] - Seon-Kap Hwang, Aiko Nishi, Hikaru Satoh, Thomas W Okita. Rice endosperm-specific plastidial alpha-glucan phosphorylase is important for synthesis of short-chain malto-oligosaccharides.
Archives of biochemistry and biophysics.
2010 Mar; 495(1):82-92. doi:
10.1016/j.abb.2009.12.023
. [PMID: 20045390] - Javier M Hernández, Marianne Gaborieau, Patrice Castignolles, Michael J Gidley, Alan M Myers, Robert G Gilbert. Mechanistic investigation of a starch-branching enzyme using hydrodynamic volume SEC analysis.
Biomacromolecules.
2008 Mar; 9(3):954-65. doi:
10.1021/bm701213p
. [PMID: 18293900] - Elvia García-López, Krzysztof Pawlaczyk, Björn Anderstam, A Rashid Qureshi, Malgorzata Kuzlan-Pawlaczyk, Olof Heimbürger, Andrzej Werynski, Bengt Lindholm. Icodextrin metabolism and alpha-amylase activity in nonuremic rats undergoing chronic peritoneal dialysis.
Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis.
2007 Jul; 27(4):415-23. doi:
. [PMID: 17602150]
- Elvia García-López, Björn Anderstam, Olof Heimbürger, Gianpaolo Amici, Andrzej Werynski, Bengt Lindholm. Determination of high and low molecular weight molecules of icodextrin in plasma and dialysate, using gel filtration chromatography, in peritoneal dialysis patients.
Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis.
2005 Mar; 25(2):181-91. doi:
. [PMID: 15796147]
- Birte Kramhøft, Kristian Sass Bak-Jensen, Haruhide Mori, Nathalie Juge, Jane Nøhr, Birte Svensson. Involvement of individual subsites and secondary substrate binding sites in multiple attack on amylose by barley alpha-amylase.
Biochemistry.
2005 Feb; 44(6):1824-32. doi:
10.1021/bi048100v
. [PMID: 15697208] - Mohammed Saddik Motawia, Iben Damager, Carl Erik Olsen, Birger Lindberg Møller, Søren Balling Engelsen, Steen Hansen, Lars Holm Øgendal, Rogert Bauer. Comparative study of small linear and branched alpha-glucans using size exclusion chromatography and static and dynamic light scattering.
Biomacromolecules.
2005 Jan; 6(1):143-51. doi:
10.1021/bm049634e
. [PMID: 15638514] - Mariam Gaidamashvili, Yuki Ohizumi, Shinichiro Iijima, Tomo Takayama, Tomohisa Ogawa, Koji Muramoto. Characterization of the yam tuber storage proteins from Dioscorea batatas exhibiting unique lectin activities.
The Journal of biological chemistry.
2004 Jun; 279(25):26028-35. doi:
10.1074/jbc.m402139200
. [PMID: 15047697] - Corbin J Zea, Nicola L Pohl. Kinetic and substrate binding analysis of phosphorylase b via electrospray ionization mass spectrometry: a model for chemical proteomics of sugar phosphorylases.
Analytical biochemistry.
2004 Apr; 327(1):107-13. doi:
10.1016/j.ab.2003.12.022
. [PMID: 15033517] - Christophe Danelon, Thérèse Brando, Mathias Winterhalter. Probing the orientation of reconstituted maltoporin channels at the single-protein level.
The Journal of biological chemistry.
2003 Sep; 278(37):35542-51. doi:
10.1074/jbc.m305434200
. [PMID: 12835320] - Gerhard Schwarz, Christophe Danelon, Mathias Winterhalter. On translocation through a membrane channel via an internal binding site: kinetics and voltage dependence.
Biophysical journal.
2003 May; 84(5):2990-8. doi:
10.1016/s0006-3495(03)70025-3
. [PMID: 12719230] - Lisen Kullman, Mathias Winterhalter, Sergey M Bezrukov. Transport of maltodextrins through maltoporin: a single-channel study.
Biophysical journal.
2002 Feb; 82(2):803-12. doi:
10.1016/s0006-3495(02)75442-8
. [PMID: 11806922] - I Damager, K Denyer, M S Motawia, B L Møller, A Blennow. The action of starch synthase II on 6"'-alpha-maltotriosyl-maltohexaose comprising the branch point of amylopectin.
European journal of biochemistry.
2001 Sep; 268(18):4878-84. doi:
10.1046/j.1432-1327.2001.02413.x
. [PMID: 11559356] - C Hilty, M Winterhalter. Facilitated substrate transport through membrane proteins.
Physical review letters.
2001 Jun; 86(24):5624-7. doi:
10.1103/physrevlett.86.5624
. [PMID: 11415317] - D R de Waart, M M Zweers, D G Struijk, R T Krediet. Icodextrin degradation products in spent dialysate of CAPD patients and the rat, and its relation with dialysate osmolality.
Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis.
2001 May; 21(3):269-74. doi:
10.1177/089686080102100307
. [PMID: 11475342] - P Van Gelder, F Dumas, J P Rosenbusch, M Winterhalter. Oriented channels reveal asymmetric energy barriers for sugar translocation through maltoporin of Escherichia coli.
European journal of biochemistry.
2000 Jan; 267(1):79-84. doi:
10.1046/j.1432-1327.2000.00960.x
. [PMID: 10601853] - A Blennow, A Viksø-Nielsen, M K Morell. Alpha-glucan binding of potato-tuber starch-branching enzyme I as determined by tryptophan fluorescence quenching, affinity electrophoresis and steady-state kinetics.
European journal of biochemistry.
1998 Mar; 252(2):331-8. doi:
10.1046/j.1432-1327.1998.2520331.x
. [PMID: 9523705]