4,4-dinitrostilbene-2,2-disulfonic acid (BioDeep_00001868644)

Main id: BioDeep_00000009521

 


代谢物信息卡片


4,4-dinitrostilbene-2,2-disulfonic acid

化学式: C14H10N2O10S2 (429.9777)
中文名称: 4,4-二硝基二苯乙烯-2,2-二磺酸
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: C1=CC(=C(C=C1[N+](=O)[O-])S(=O)(=O)O)C=CC2=C(C=C(C=C2)[N+](=O)[O-])S(=O)(=O)O
InChI: InChI=1S/C14H10N2O10S2/c17-15(18)11-5-3-9(13(7-11)27(21,22)23)1-2-10-4-6-12(16(19)20)8-14(10)28(24,25)26/h1-8H,(H,21,22,23)(H,24,25,26)/b2-1+

描述信息

同义名列表

2 个代谢物同义名

4,4-dinitrostilbene-2,2-disulfonic acid; 4,4-dinitro-2,2-stilbenedisulfonic acid



数据库引用编号

11 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 7 CA1, CA2, CFTR, NPPB, PATL2, PRKX, SLC9A1
Endosome membrane 2 CFTR, CLCN5
Endoplasmic reticulum membrane 2 CALU, CFTR
Nucleus 3 CFTR, PATL2, PRKX
cytosol 6 CA1, CA2, CFTR, CLCN5, PRKCQ, SLC26A6
nucleoplasm 5 ATP2B1, CD2, PRKX, SCNN1G, SLC9A1
Cell membrane 13 ATP2B1, CA2, CD2, CFTR, CLCN5, SLC12A1, SLC12A2, SLC26A1, SLC26A3, SLC26A6, SLC4A1, SLC4A4, SLC9A1
lamellipodium 1 SLC9A1
Early endosome membrane 1 CFTR
Multi-pass membrane protein 12 ATP2B1, CFTR, CLCN5, SCNN1G, SLC12A1, SLC12A2, SLC26A1, SLC26A3, SLC26A6, SLC4A1, SLC4A4, SLC9A1
Golgi apparatus membrane 1 CLCN5
Synapse 1 ATP2B1
cell surface 4 CD2, CFTR, SLC4A4, SLC9A1
glutamatergic synapse 1 ATP2B1
Golgi apparatus 3 CALU, CD2, CLCN5
Golgi membrane 1 CLCN5
lysosomal membrane 2 CFTR, CLCN5
neuronal cell body 1 SLC12A2
presynaptic membrane 1 ATP2B1
synaptic vesicle 1 CLCN5
plasma membrane 15 ATP2B1, CA2, CD2, CFTR, CLCN5, PRKCQ, SCNN1G, SLC12A1, SLC12A2, SLC26A1, SLC26A3, SLC26A6, SLC4A1, SLC4A4, SLC9A1
synaptic vesicle membrane 1 ATP2B1
Membrane 12 ATP2B1, CALU, CFTR, CLCN5, SLC12A1, SLC12A2, SLC26A1, SLC26A3, SLC26A6, SLC4A1, SLC4A4, SLC9A1
apical plasma membrane 7 CFTR, SCNN1G, SLC12A1, SLC12A2, SLC26A3, SLC26A6, SLC9A1
basolateral plasma membrane 7 ATP2B1, SLC12A2, SLC26A1, SLC26A6, SLC4A1, SLC4A4, SLC9A1
extracellular exosome 9 ATP2B1, CA1, CA2, SCNN1G, SLC12A1, SLC12A2, SLC4A1, SLC4A4, SLC9A1
endoplasmic reticulum 2 CALU, SLC26A6
extracellular space 1 NPPB
perinuclear region of cytoplasm 1 SLC9A1
intercalated disc 1 SLC9A1
mitochondrion 1 SLC9A1
protein-containing complex 3 CD2, CFTR, NPPB
intracellular membrane-bounded organelle 1 ATP2B1
Single-pass type I membrane protein 1 CD2
Secreted 1 CALU
extracellular region 3 CALU, CD2, NPPB
cytoplasmic side of plasma membrane 2 CD2, SLC4A1
centriolar satellite 1 PRKCQ
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle membrane 1 ATP2B1
external side of plasma membrane 2 CD2, SCNN1G
Extracellular vesicle 1 SLC12A2
T-tubule 1 SLC9A1
Z disc 1 SLC4A1
P-body 1 PATL2
Early endosome 2 CFTR, CLCN5
apical part of cell 2 CA2, CLCN5
cell-cell junction 1 CD2
recycling endosome 1 CFTR
vesicle 1 SLC26A6
Apical cell membrane 5 CFTR, SCNN1G, SLC12A1, SLC26A3, SLC26A6
Membrane raft 1 SLC9A1
focal adhesion 1 SLC9A1
lateral plasma membrane 3 ATP2B1, SLC12A2, SLC4A4
neuron projection 1 SLC12A2
cell projection 2 ATP2B1, SLC12A2
cell periphery 1 SLC12A2
brush border membrane 2 SLC26A3, SLC26A6
blood microparticle 1 SLC4A1
sperm midpiece 2 SLC26A3, SLC26A6
Basolateral cell membrane 7 ATP2B1, SLC12A2, SLC26A1, SLC26A6, SLC4A1, SLC4A4, SLC9A1
Recycling endosome membrane 1 CFTR
chloride channel complex 2 CFTR, SLC26A6
Cytoplasmic vesicle membrane 2 SLC12A2, SLC26A6
sodium channel complex 1 SCNN1G
Melanosome 1 CALU
Golgi-associated vesicle membrane 1 CFTR
Presynaptic cell membrane 1 ATP2B1
cell body 1 SLC12A2
myelin sheath 1 CA2
basal plasma membrane 1 SLC12A2
Microsome 1 SLC26A6
endoplasmic reticulum lumen 1 CALU
immunological synapse 2 ATP2B1, PRKCQ
aggresome 1 PRKCQ
vesicle membrane 1 SLC26A6
clathrin-coated endocytic vesicle membrane 1 CFTR
Sarcoplasmic reticulum lumen 1 CALU
ankyrin-1 complex 1 SLC4A1
cortical cytoskeleton 1 SLC4A1
[Isoform 6]: Cell membrane 1 SLC26A6
[Isoform 4]: Cell membrane 1 SLC26A6
[Isoform 5]: Cell membrane 1 SLC26A6
photoreceptor ribbon synapse 1 ATP2B1
cell body membrane 1 SLC12A2
cell projection membrane 1 SLC12A2
[NT-proBNP]: Secreted 1 NPPB
[proBNP(3-108)]: Secreted 1 NPPB
[Brain natriuretic peptide 32]: Secreted 1 NPPB
[BNP(3-32)]: Secreted 1 NPPB
cation-transporting ATPase complex 1 SLC9A1


文献列表

  • Luce M Mattio, Giorgia Catinella, Andrea Pinto, Sabrina Dallavalle. Natural and nature-inspired stilbenoids as antiviral agents. European journal of medicinal chemistry. 2020 Sep; 202(?):112541. doi: 10.1016/j.ejmech.2020.112541. [PMID: 32652408]
  • Makoto Nishiyama, Melanie J von Schimmelmann, Kazunobu Togashi, William M Findley, Kyonsoo Hong. Membrane potential shifts caused by diffusible guidance signals direct growth-cone turning. Nature neuroscience. 2008 Jul; 11(7):762-71. doi: 10.1038/nn.2130. [PMID: 18536712]
  • Julia E Raftos, Stephney Whillier, Bogdan E Chapman, Philip W Kuchel. Kinetics of uptake and deacetylation of N-acetylcysteine by human erythrocytes. The international journal of biochemistry & cell biology. 2007; 39(9):1698-706. doi: 10.1016/j.biocel.2007.04.014. [PMID: 17544838]
  • E Gross, O Fedotoff, A Pushkin, N Abuladze, D Newman, I Kurtz. Phosphorylation-induced modulation of pNBC1 function: distinct roles for the amino- and carboxy-termini. The Journal of physiology. 2003 Jun; 549(Pt 3):673-82. doi: 10.1113/jphysiol.2003.042226. [PMID: 12730338]
  • Ryan W Carlin, Rebecca R Quesnell, Ling Zheng, Kathy E Mitchell, Bruce D Schultz. Functional and molecular evidence for Na(+)-HCO cotransporter in porcine vas deferens epithelia. American journal of physiology. Cell physiology. 2002 Oct; 283(4):C1033-44. doi: 10.1152/ajpcell.00493.2001. [PMID: 12225967]
  • E Gross, N Abuladze, A Pushkin, I Kurtz, C U Cotton. The stoichiometry of the electrogenic sodium bicarbonate cotransporter pNBC1 in mouse pancreatic duct cells is 2 HCO(3)(-):1 Na(+). The Journal of physiology. 2001 Mar; 531(Pt 2):375-82. doi: 10.1111/j.1469-7793.2001.0375i.x. [PMID: 11230510]
  • X B Tang, J R Casey. Trapping of inhibitor-induced conformational changes in the erythrocyte membrane anion exchanger AE1. Biochemistry. 1999 Nov; 38(44):14565-72. doi: 10.1021/bi991524i. [PMID: 10545179]
  • S Schwarz, C W Haest, B Deuticke. Extensive electroporation abolishes experimentally induced shape transformations of erythrocytes: a consequence of phospholipid symmetrization?. Biochimica et biophysica acta. 1999 Oct; 1421(2):361-79. doi: 10.1016/s0005-2736(99)00138-8. [PMID: 10518706]
  • S Bröer, A Bröer, H P Schneider, C Stegen, A P Halestrap, J W Deitmer. Characterization of the high-affinity monocarboxylate transporter MCT2 in Xenopus laevis oocytes. The Biochemical journal. 1999 Aug; 341 ( Pt 3)(?):529-35. doi: 10.1042/0264-6021:3410529. [PMID: 10417314]
  • E Gross, U Hopfer. Effects of pH on kinetic parameters of the Na-HCO3 cotransporter in renal proximal tubule. Biophysical journal. 1999 Jun; 76(6):3066-75. doi: 10.1016/s0006-3495(99)77459-x. [PMID: 10354432]
  • R T Timmer, R B Gunn. Inducible expression of erythrocyte band 3 protein. The American journal of physiology. 1999 01; 276(1):C66-75. doi: 10.1152/ajpcell.1999.276.1.c66. [PMID: 9886921]
  • W van't Hof, A Malik, S Vijayakumar, J Qiao, J van Adelsberg, Q Al-Awqati. The effect of apical and basolateral lipids on the function of the band 3 anion exchange protein. The Journal of cell biology. 1997 Nov; 139(4):941-9. doi: 10.1083/jcb.139.4.941. [PMID: 9362512]
  • A Eliassi, L Garneau, G Roy, R Sauvé. Characterization of a chloride-selective channel from rough endoplasmic reticulum membranes of rat hepatocytes: evidence for a block by phosphate. The Journal of membrane biology. 1997 Oct; 159(3):219-29. doi: 10.1007/s002329900285. [PMID: 9312211]
  • P Linsdell, J W Hanrahan. Disulphonic stilbene block of cystic fibrosis transmembrane conductance regulator Cl- channels expressed in a mammalian cell line and its regulation by a critical pore residue. The Journal of physiology. 1996 Nov; 496 ( Pt 3)(?):687-93. doi: 10.1113/jphysiol.1996.sp021719. [PMID: 8930836]
  • A K Singh, C J Venglarik, R J Bridges. Development of chloride channel modulators. Kidney international. 1995 Oct; 48(4):985-93. doi: 10.1038/ki.1995.380. [PMID: 8569108]
  • C Townsend, R L Rosenberg. Characterization of a chloride channel reconstituted from cardiac sarcoplasmic reticulum. The Journal of membrane biology. 1995 Sep; 147(2):121-36. doi: 10.1007/bf00233541. [PMID: 8568849]
  • W L Galanter, O S Ruiz, R J Labotka, J A Arruda. Binding of nitrate to renal brush border membranes studied with 14N nuclear magnetic resonance (NMR). Biochimica et biophysica acta. 1995 Jul; 1237(1):16-22. doi: 10.1016/0005-2736(95)00070-j. [PMID: 7619837]
  • I Sekler, R S Lo, T Mastrocola, R R Kopito. Sulfate transport mediated by the mammalian anion exchangers in reconstituted proteoliposomes. The Journal of biological chemistry. 1995 May; 270(19):11251-6. doi: 10.1074/jbc.270.19.11251. [PMID: 7744759]
  • C J Venglarik, A K Singh, R J Bridges. Comparison of -nitro versus -amino 4,4'-substituents of disulfonic stilbenes as chloride channel blockers. Molecular and cellular biochemistry. 1994 Nov; 140(2):137-46. doi: 10.1007/bf00926752. [PMID: 7898486]
  • K R McConnell, P S Aronson. Effects of inhibitors on anion exchangers in rabbit renal brush border membrane vesicles. The Journal of biological chemistry. 1994 Aug; 269(34):21489-94. doi: . [PMID: 8063783]
  • J A DeBin, M R Wood, K H Pfenninger, G R Strichartz. A chloride channel reconstituted from fetal rat brain growth cones. The Journal of membrane biology. 1994 Jul; 141(1):7-19. doi: 10.1007/bf00232869. [PMID: 7966248]
  • W B Reeves, R W Gurich. Calcium-dependent chloride channels in endosomes from rabbit kidney cortex. The American journal of physiology. 1994 Mar; 266(3 Pt 1):C741-50. doi: 10.1152/ajpcell.1994.266.3.c741. [PMID: 8166237]
  • T Furukawa, L Virág, T Sawanobori, M Hiraoka. Stilbene disulfonates block ATP-sensitive K+ channels in guinea pig ventricular myocytes. The Journal of membrane biology. 1993 Dec; 136(3):289-302. doi: 10.1007/bf00233668. [PMID: 8114079]
  • S Kawano, M Hiraoka. Protein kinase A-activated chloride channel is inhibited by the Ca(2+)-calmodulin complex in cardiac sarcoplasmic reticulum. Circulation research. 1993 Oct; 73(4):751-7. doi: 10.1161/01.res.73.4.751. [PMID: 8396507]
  • M Soleimani, G L Bizal, C C Anderson. A protein with anion exchange properties found in the kidney proximal tubule. Kidney international. 1993 Sep; 44(3):565-73. doi: 10.1038/ki.1993.282. [PMID: 8231029]
  • E R Swenson, H T Robertson, M P Hlastala. Effects of carbonic anhydrase inhibition on ventilation-perfusion matching in the dog lung. The Journal of clinical investigation. 1993 Aug; 92(2):702-9. doi: 10.1172/jci116640. [PMID: 8349809]
  • M Soleimani, Y J Hattabaugh, G L Bizal. Identification and covalent modification of a renal brush-border anion exchanger. Biochimica et biophysica acta. 1993 Jun; 1149(1):127-34. doi: 10.1016/0005-2736(93)90033-v. [PMID: 8318524]
  • P K Gasbjerg, J Funder, J Brahm. Kinetics of residual chloride transport in human red blood cells after maximum covalent 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid binding. The Journal of general physiology. 1993 May; 101(5):715-32. doi: 10.1085/jgp.101.5.715. [PMID: 8393066]
  • E R Swenson, J Grønlund, J Ohlsson, M P Hlastala. In vivo quantitation of carbonic anhydrase and band 3 protein contributions to pulmonary gas exchange. Journal of applied physiology (Bethesda, Md. : 1985). 1993 Feb; 74(2):838-48. doi: 10.1152/jappl.1993.74.2.838. [PMID: 8458804]
  • A K Singh, G B Afink, C J Venglarik, R P Wang, R J Bridges. Colonic Cl channel blockade by three classes of compounds. The American journal of physiology. 1991 Jul; 261(1 Pt 1):C51-63. doi: 10.1152/ajpcell.1991.261.1.c51. [PMID: 1713412]
  • A M Garcia, H F Lodish. Lysine 539 of human band 3 is not essential for ion transport or inhibition by stilbene disulfonates. The Journal of biological chemistry. 1989 Nov; 264(33):19607-13. doi: NULL. [PMID: 2511191]
  • M Soleimani, P S Aronson. Ionic mechanism of Na+-HCO3- cotransport in rabbit renal basolateral membrane vesicles. The Journal of biological chemistry. 1989 Nov; 264(31):18302-8. doi: 10.1016/s0021-9258(18)51463-0. [PMID: 2509453]
  • R J Bridges, R T Worrell, R A Frizzell, D J Benos. Stilbene disulfonate blockade of colonic secretory Cl- channels in planar lipid bilayers. The American journal of physiology. 1989 Apr; 256(4 Pt 1):C902-12. doi: 10.1152/ajpcell.1989.256.4.c902. [PMID: 2539732]