Subcellular Location: Single-pass type II membrane protein

Found 500 associated metabolites.

408 associated genes. A3GALT2, A4GALT, A4GNT, AADACL4, ABHD1, ABHD13, ABHD14A, ABHD2, ABHD3, ABHD6, ABO, AGRN, ANPEP, AOC2, AOC3, APMAP, ASAH2, ASGR1, ASGR2, ASPH, ASPHD1, ASPHD2, ATF6, ATF6B, ATP1B1, ATP1B2, ATP1B3, ATP1B4, ATP4B, B3GALNT1, B3GALNT2, B3GALT1, B3GALT2, B3GALT4, B3GALT5, B3GALT6, B3GALT9, B3GAT1, B3GAT2, B3GAT3, B3GLCT, B3GNT2, B3GNT3, B3GNT4, B3GNT5, B3GNT6, B3GNT7, B3GNT8, B3GNT9, B4GALNT1, B4GALNT2, B4GALNT3, B4GALNT4, B4GALT1, B4GALT2, B4GALT4, B4GALT6, B4GAT1, BPNT2, BRAP, BRI3, BTNL2, C1GALT1, C1GALT1C1, C1GALT1C1L, C6orf89, CANT1, CCPG1, CD207, CD209, CD38, CD40LG, CD69, CD70, CD74, CEMIP2, CHPF, CHPF2, CHST1, CHST10, CHST11, CHST12, CHST13, CHST14, CHST15, CHST2, CHST3, CHST4, CHST5, CHST6, CHST7, CHST8, CHST9, CHSY1, CHSY3, CLEC10A, CLEC12A, CLEC12B, CLEC17A, CLEC1A, CLEC1B, CLEC2A, CLEC2B, CLEC2D, CLEC4A, CLEC4C, CLEC4D, CLEC4E, CLEC4F, CLEC4G, CLEC4M, CLEC5A, CLEC6A, CLEC7A, CLEC9A, CLECL1P, CLN5, CLP1, COL13A1, COL23A1, COL25A1, COLEC12, COMT, COMTD1, CORIN, CREB3, CREB3L1, CREB3L2, CREB3L3, CREB3L4, CSGALNACT1, CSGALNACT2, CT83, CYP4Z1, CYP4Z2P, DBH, DHRS7B, DIO3, DIPK1A, DIPK1B, DIPK1C, DPP10, DPP4, DPP6, DYSF, ECE1, ECE2, ECEL1, EDA, EDEM1, ENPEP, ENPP3, ENTPD6, EPHX4, ERAP1, ERAP2, ERLIN1, ERLIN2, EXT1, EXT2, EXTL1, EXTL2, EXTL3, FAM20B, FAM20C, FAM234A, FAP, FASLG, FCER2, FIBCD1, FICD, FKRP, FKTN, FOLH1, FREY1, FUT1, FUT10, FUT11, FUT2, FUT3, FUT6, FUT8, FUT9, GAL3ST1, GAL3ST2, GAL3ST3, GAL3ST4, GALNT1, GALNT10, GALNT11, GALNT12, GALNT13, GALNT14, GALNT15, GALNT16, GALNT17, GALNT18, GALNT2, GALNT3, GALNT4, GALNT5, GALNT6, GALNT7, GALNT8, GALNT9, GALNTL5, GALNTL6, GASK1B, GBGT1, GCNT1, GCNT2, GCNT3, GCNT4, GCNT7, GGT1, GGT3P, GGT5, GGT6, GGT7, GGTA1, GLCE, GLDN, GLT6D1, GLT8D1, GLT8D2, GNPTAB, GOLM1, GOLM2, GXYLT1, GXYLT2, HPN, HS2ST1, HS3ST2, HS3ST3A1, HS3ST3B1, HS3ST4, HS3ST5, HS3ST6, HS6ST1, HS6ST2, HS6ST3, HSD11B1, HSD17B2, IER3, IFITM2, IFITM3, ITM2A, ITM2B, ITM2C, KLRB1, KLRC1, KLRC2, KLRC4-KLRK1, KLRD1, KLRF1, KLRF2, KLRG1, KLRK1, LARGE1, LARGE2, LFNG, LNPEP, LPCAT1, LPCAT2, LRRC59, LTB, LVRN, MAFA, MAN1B1, MAN2A1, MAN2A2, MANEA, MANEAL, MARCO, MCEMP1, MFNG, MFRP, MGAT1, MGAT2, MGAT3, MGAT4A, MGAT4B, MGAT4C, MGAT4D, MGAT5, MGAT5B, MME, MMP21, MMP23B, MOGS, MSR1, MTARC1, MYORG, NAALAD2, NAALADL1, NAALADL2, NAT8B, NCEH1, NDST1, NDST2, NDST3, NDST4, NFE2L1, NPTXR, NRF1, NSG1, NSG2, OGFOD3, OLR1, OTOF, P4HTM, PEX26, PHEX, PLD3, PLD4, PLSCR1, PLSCR2, PLSCR3, PLSCR4, PLVAP, PNPLA3, POC1B-GALNT4, POMGNT1, POMGNT2, POMK, PRG1, PRRT1, PXYLP1, RDH11, RFNG, RXYLT1, SCARA3, SCARA5, SEC11A, SEC11B, SEC11C, SERPINA11, SERPINA9, SGCB, SGCD, SGCG, SGCZ, SLC3A1, SLC3A2, SMIM1, SMIM23, SPACA3, SPCS3, ST14, ST3GAL1, ST3GAL2, ST3GAL3, ST3GAL4, ST3GAL5, ST3GAL6, ST6GAL1, ST6GAL2, ST6GALNAC1, ST6GALNAC2, ST6GALNAC3, ST6GALNAC4, ST6GALNAC5, ST6GALNAC6, ST8SIA1, ST8SIA2, ST8SIA3, ST8SIA4, ST8SIA5, ST8SIA6, SUN1, SUN2, SYNDIG1, TFRC, TMEM106B, TMEM98, TMPRSS11A, TMPRSS11B, TMPRSS11E, TMPRSS11F, TMPRSS13, TMPRSS15, TMPRSS2, TMPRSS3, TMPRSS4, TMPRSS5, TMPRSS6, TMPRSS7, TMPRSS9, TNF, TNFSF10, TNFSF11, TNFSF12, TNFSF15, TNFSF18, TNMD, TPST1, TPST2, TRDN, UQCC6, UST, UXS1, WSCD1, WSCD2, XBP1, XCE, XXYLT1, XYLT1, XYLT2

Sudan_II

1-[(1E)-2-(2,4-Dimethylphenyl)diazen-1- yl]naphthalen-2-ol

C18H16N2O (276.1263)


C.i. solvent orange 7 appears as red crystals. Insoluble in water. Sudan II is a member of azobenzenes.

   

Luteolin 7-glucuronide

(2S,3S,4S,5R,6S)-6-{[2-(3,4-dihydroxyphenyl)-5-hydroxy-4-oxo-4H-chromen-7-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

C21H18O12 (462.0798)


Luteolin 7-glucuronide, also known as cyanidenon-7-O-B-D-glucuronate or luteolin 7-O-beta-D-glucuronopyranoside, is a member of the class of compounds known as flavonoid-7-o-glucuronides. Flavonoid-7-o-glucuronides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to glucuronic acid at the C7-position. Luteolin 7-glucuronide is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Luteolin 7-glucuronide can be found in a number of food items such as globe artichoke, wild carrot, carrot, and lettuce, which makes luteolin 7-glucuronide a potential biomarker for the consumption of these food products. Luteolin 7-O-glucuronide could inhibit Matrix Metalloproteinases (MMP) activities, with IC50s of 17.63, 7.99, 11.42, 12.85, 0.03 μM for MMP-1, MMP-3, MMP-8, MMP-9, MMP-13, respectively. Luteolin 7-O-glucuronide could inhibit Matrix Metalloproteinases (MMP) activities, with IC50s of 17.63, 7.99, 11.42, 12.85, 0.03 μM for MMP-1, MMP-3, MMP-8, MMP-9, MMP-13, respectively.

   

Gentianine

NICOTINIC ACID, 4-(2-HYDROXYETHYL)-5-VINYL-, .DELTA.-LACTONE

C10H9NO2 (175.0633)


Gentianine, also known as 4-(2-hydroxyethyl)-5-vinylnicotinate g-lactone, is a member of the class of compounds known as pyranopyridines. Pyranopyridines are polycyclic aromatic compounds containing a pyran ring fused to a pyridine ring. Gentianine is soluble (in water) and a strong basic compound (based on its pKa). Gentianine is a bitter tasting compound found in fenugreek, which makes gentianine a potential biomarker for the consumption of this food product. Gentianine is a pyranopyridine, a lactone and a pyridine alkaloid. Gentianine is a natural product found in Strychnos angolensis, Strychnos xantha, and other organisms with data available. See also: Fenugreek seed (part of); Centaurium erythraea whole (part of).

   

Nordihydrocapsaicin

N-[(4-Hydroxy-3-methoxyphenyl)methyl]-7-methyl-octanamide;7-Methyl-N-vanillyl-octanamide; Norhydrocapsaicin

C17H27NO3 (293.1991)


Nordihydrocapsaicin is a member of methoxybenzenes and a member of phenols. Nordihydrocapsaicin is a natural product found in Capsicum pubescens and Capsicum annuum with data available. See also: Capsicum (part of); Paprika (part of); Habanero (part of) ... View More ... Isolated from the pungent principle of red pepper (Capsicum annuum). Nordihydrocapsaicin is found in many foods, some of which are herbs and spices, pepper (c. annuum), italian sweet red pepper, and green bell pepper. Nordihydrocapsaicin is found in herbs and spices. Nordihydrocapsaicin is isolated from the pungent principle of red pepper (Capsicum annuum Nordihydrocapsaicin is a capsaicinoid analog and congener of capsaicin in chili peppers[1]. Nordihydrocapsaicin is a capsaicinoid analog and congener of capsaicin in chili peppers[1].

   

Magnocurarine

Isoquinolinium, 1,2,3,4-tetrahydro-7-hydroxy-1-((4-hydroxyphenyl)methyl)-6-methoxy-2,2-dimethyl-, (R)-

C19H24NO3+ (314.1756)


Magnocurarine is a member of isoquinolines. Magnocurarine is a natural product found in Lindera megaphylla, Litsea cubeba, and other organisms with data available.

   

Rescinnamine

methyl (1R,15S,17R,18R,19S,20S)-6,18-dimethoxy-17-{[3-(3,4,5-trimethoxyphenyl)prop-2-enoyl]oxy}-3,13-diazapentacyclo[11.8.0.0^{2,10}.0^{4,9}.0^{15,20}]henicosa-2(10),4(9),5,7-tetraene-19-carboxylate

C35H42N2O9 (634.289)


Rescinnamine is only found in individuals that have used or taken this drug. It is an angiotensin-converting enzyme inhibitor used as an antihypertensive drug. It is an alkaloid obtained from Rauwolfia serpentina and other species of Rauwolfia. [Wikipedia]Rescinnamine Binds to and inhibits the angiotensin converting enzyme. Rescinnamine competes with angiotensin I for binding at the angiotensin-converting enzyme, blocking the conversion of angiotensin I to angiotensin II. Inhibition of ACE results in decreased plasma angiotensin II. As angiotensin II is a vasoconstrictor and a negative-feedback mediator for renin activity, lower concentrations result in a decrease in blood pressure and stimulation of baroreceptor reflex mechanisms, which leads to decreased vasopressor activity and to decreased aldosterone secretion. C - Cardiovascular system > C02 - Antihypertensives > C02A - Antiadrenergic agents, centrally acting > C02AA - Rauwolfia alkaloids C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent Rescinnamine is an odorless white to cream colored crystalline powder. (NTP, 1992) Rescinnamine is a methyl ester, an organic heteropentacyclic compound and an indole alkaloid. It has a role as an antihypertensive agent. It derives from a hydride of a yohimban. Rescinnamine is a natural product found in Vinca major, Aspidosperma excelsum, and other organisms with data available.

   

Picrotoxinin

3,6-Methano-8H-1,5,7-trioxacyclopenta(ij)cycloprop(a)azulene-4,8(3H)-dione, hexahydro-2a-hydroxy-8b-methyl-9-(1-methylethenyl)-, (1aR-(1a-alpha,2a-beta,3-beta,6-beta,6a-beta,8as*,8b-beta,9R*))-

C15H16O6 (292.0947)


Picrotoxinin belongs to the class of organic compounds known as furopyrans. These are organic polycyclic compounds containing a furan ring fused to a pyran ring. Furan is a five-membered aromatic ring with four carbon atoms and one oxygen atom. Pyran a six-membered heterocyclic, non-aromatic ring, made up of five carbon atoms and one oxygen atom and containing two double bonds. Picrotoxinin is soluble (in water) and a very weakly acidic compound (based on its pKa). D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018756 - GABA Antagonists Picrotoxinin is a picrotoxane sesquiterpenoid that is 3a,4,5,6,7,7a-hexahydro-1H-indene-3,7-dicarboxylic acid which is substituted at positions 3a, 6, and 7a by methyl, isopropenyl, and hydroxy groups, respectively; in which the double bond at position 2-3 has been epoxidised; and in which the carboxy groups at positions 3 and 7 have undergone gamma-lactone formation by O-alkylation to positions 4 and 5, respectively. A component of picrotoxin. It has a role as a plant metabolite, a GABA antagonist and a serotonergic antagonist. It is an organic heteropentacyclic compound, an epoxide, a tertiary alcohol, a gamma-lactone and a picrotoxane sesquiterpenoid. Picrotoxinin is a natural product found in Picrodendron baccatum and Anamirta cocculus with data available. Picrotoxinin, a potent convulsant, is a chloride channel blocker. Picrotoxinin is a noncompetitive GABAA receptor antagonist, which negatively modulates the action of GABA on GABAA receptors. Picrotoxinin inhibits α1β2γ2L GABAA receptor with an IC50 of 1.15 μM[1]. Picrotoxinin, a potent convulsant, is a chloride channel blocker. Picrotoxinin is a noncompetitive GABAA receptor antagonist, which negatively modulates the action of GABA on GABAA receptors. Picrotoxinin inhibits α1β2γ2L GABAA receptor with an IC50 of 1.15 μM[1].

   

25d20E

(2S,3R,5R,9R,10R,13R,14S,17S)-17-((2R,3R)-2,3-dihydroxy-6-methylheptan-2-yl)-2,3,14-trihydroxy-10,13-dimethyl-2,3,4,5,9,11,12,13,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-6(10H)-one

C27H44O6 (464.3138)


Ponasterone A is a 2beta-hydroxy steroid, a 3beta-hydroxy steroid, a 14alpha-hydroxy steroid, a 20-hydroxy steroid, a 22-hydroxy steroid, a 6-oxo steroid and a phytoecdysteroid. Ponasterone A is a natural product found in Zoanthus, Lomaridium contiguum, and other organisms with data available. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones Ponasterone A (25-Deoxyecdysterone), an ecdysteroid, has strong affinity for the ecdysone receptor. Ponasterone A is a potent regulator of gene expression in cells and transgenic animals, enabling reporter genes to be turned on and off rapidly[1][2].

   

Maclurin

(3,4-Dihydroxyphenyl)(2,4,6-trihydroxyphenyl)methanone, 9CI

C13H10O6 (262.0477)


Maclurin is a member of benzophenones. Maclurin is a natural product found in Garcinia multiflora, Garcinia assugu, and other organisms with data available. Maclurin is found in fruits. Extract from heartwood of Garcinia mangostana (mangosteen). Also from Morus alba (white mulberry D007155 - Immunologic Factors > D000373 - Agglutinins > D037121 - Plant Lectins D007155 - Immunologic Factors > D000373 - Agglutinins > D037102 - Lectins Macurin is a xanthone that can be isolated from Garcinia lancilimba[1]. Macurin is a xanthone that can be isolated from Garcinia lancilimba[1].

   

Liriodenine

3,5-dioxa-11-azapentacyclo[10.7.1.0^{2,6.0^{8,20.0^{14,19]icosa-1(20),2(6),7,9,11,14,16,18-octaen-13-one

C17H9NO3 (275.0582)


Liriodenine is an oxoaporphine alkaloid that is 4,5,6,6a-tetradehydronoraporphin-7-one substituted by a methylenedioxy group across positions 1 and 2. It is isolated from Annona glabra and has been shown to exhibit antimicrobial and cytotoxic activities. It has a role as a metabolite, an antineoplastic agent, an antimicrobial agent, an EC 3.1.1.7 (acetylcholinesterase) inhibitor, an EC 3.2.1.20 (alpha-glucosidase) inhibitor and an antifungal agent. It is a cyclic ketone, an oxacycle, an organic heteropentacyclic compound, an alkaloid antibiotic and an oxoaporphine alkaloid. It is functionally related to an aporphine. Liriodenine is a natural product found in Magnolia mexicana, Annona purpurea, and other organisms with data available. Liriodenine, also known as oxoushinsunine or micheline b, is a member of the class of compounds known as aporphines. Aporphines are quinoline alkaloids containing the dibenzo[de,g]quinoline ring system or a dehydrogenated derivative thereof. Liriodenine is practically insoluble (in water) and a strong basic compound (based on its pKa). Liriodenine can be found in cherimoya and custard apple, which makes liriodenine a potential biomarker for the consumption of these food products. Liriodenine is a bio-active isolate of the Chinese medicinal herb Zanthoxylum nitidum .

   

Isoscoparin

5,7-Dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-6-((2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)-4H-chromen-4-one

C22H22O11 (462.1162)


Isoscoparin is a C-glycosyl compound that consists of chrysoeriol substituted by a 1,5-anhydro-D-glucitol moiety at position 6. It has a role as a metabolite. It is a trihydroxyflavone, a monomethoxyflavone, a monosaccharide derivative and a C-glycosyl compound. It is functionally related to a 4,5,7-trihydroxy-3-methoxyflavone. It is a conjugate acid of an isoscoparin-7-olate. Isoscoparin is a natural product found in Gentiana orbicularis, Gentianopsis barbata, and other organisms with data available.

   

Nonacosane

Nonacosane; Celidoniol, deoxy- (7CI); n-Nonacosane

C29H60 (408.4695)


Nonacosane, also known as CH3-[CH2]27-CH3, belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Nonacosane is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Thus, nonacosane is considered to be a hydrocarbon lipid molecule. Nonacosane is a straight-chain hydrocarbon with a molecular formula of C29H60. Nonacosane has been identified within several essential oils. Nonacosane has been detected, but not quantified, in several different foods, such as peachs, ginkgo nuts, cauliflowers, arabica coffee, and lambsquarters. This could make nonacosane a potential biomarker for the consumption of these foods. Nonacosane occurs naturally and has been reported to be a component of a pheromone of Orgyia leucostigma, and evidence suggests it plays a role in the chemical communication of several insects, including the female Anopheles stephensi (a mosquito). It can also be prepared synthetically. It has 1,590,507,121 constitutional isomers. Nonacosane, also known as ch3-[ch2]27-ch3, is a member of the class of compounds known as alkanes. Alkanes are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, nonacosane is considered to be a hydrocarbon lipid molecule. Nonacosane can be found in a number of food items such as garden tomato (variety), papaya, brussel sprouts, and wild carrot, which makes nonacosane a potential biomarker for the consumption of these food products. Nonacosane occurs naturally and has been reported to be a component of a pheromone of Orgyia leucostigma, and evidence suggests it plays a role in the chemical communication of several insects, including the female Anopheles stephensi (a mosquito) . Nonacosane is a straight-chain alkane comprising of 29 carbon atoms. It has a role as a plant metabolite and a volatile oil component. Nonacosane is a natural product found in Euphorbia larica, Quercus salicina, and other organisms with data available. See also: Moringa oleifera leaf oil (part of). A straight-chain alkane comprising of 29 carbon atoms. Nonacosane, isolated from Baphia massaiensis, exhibits weak activities against E. coli, B. subtilis, P. aeruginosa and S. aureus[1]. Nonacosane, isolated from Baphia massaiensis, exhibits weak activities against E. coli, B. subtilis, P. aeruginosa and S. aureus[1].

   

Crocin 3

(2E,4E,6E,8E,10E,12E,14E)-2,6,11,15-tetramethyl-16-oxo-16-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxyhexadeca-2,4,6,8,10,12,14-heptaenoic acid

C32H44O14 (652.2731)


Beta-D-gentiobiosyl crocetin is a dicarboxylic acid monoester resulting from the formal condensation of one of the carboxylic acid groups of crocetin with the anomeric hydroxy group of beta-D-gentiobiose. It is a dicarboxylic acid monoester, a glycoside and a disaccharide derivative. It is functionally related to a crocetin and a gentiobiose. It is a conjugate acid of a beta-D-gentiobiosyl crocetin(1-). beta-D-gentiobiosyl crocetin is a natural product found in Gardenia jasminoides, Apis cerana, and Crocus sativus with data available. Isolated from saffron. Crocin 3 is found in saffron and herbs and spices. Crocin 3 is found in herbs and spices. Crocin 3 is isolated from saffron.

   

beta-Carotinal

2,4,6,8,10,12,14,16-Heptadecaoctaenal, 2,6,11,15-tetramethyl-17-(2,6,6-trimethyl-1-cyclohexen-1-yl)-, (2E,4E,6E,8E,10E,12E,14E,16E)-

C30H40O (416.3079)


8-apo-beta,psi-caroten-8-al is an apo carotenoid triterpenoid compound arising from oxidative degradation of the beta,beta-carotene skeleton at the 8-position. It is an enal and an apo carotenoid triterpenoid. Apocarotenal is a natural product found in Dracaena draco, Palisota barteri, and other organisms with data available. Constituent of orange peel, spinach, marigolds and egg yolks. Colour additive. beta-Carotinal is found in many foods, some of which are eggs, green vegetables, sweet orange, and citrus. beta-Carotinal is found in citrus. beta-Carotinal is a constituent of orange peel, spinach, marigolds and egg yolks. Colour additive. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids β-Apo-8'-carotenal (Apocarotenal), a provitamin A carotenoid, is an inducer of CYPlA1 and CYPlA2 in rat. β-Apo-8'-carotenal is present in many fruits and vegetables[1]. β-Apo-8'-carotenal (Apocarotenal), a provitamin A carotenoid, is an inducer of CYPlA1 and CYPlA2 in rat. β-Apo-8'-carotenal is present in many fruits and vegetables[1].

   

Cauloside C

(4aS,6aR,6aS,6bR,8aR,9R,10S,12aR,14bS)-10-[(2S,3R,4S,5S)-4,5-dihydroxy-3-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a-carboxylic acid

C41H66O13 (766.4503)


Akeboside Std is a triterpenoid. Cauloside C is a natural product found in Lonicera japonica, Lonicera macrantha, and other organisms with data available. See also: Caulophyllum robustum Root (part of). Cauloside C is a triterpene glycoside isolated from Caulophyllum robustum Max. Cauloside C exerts anti-inflammatory effects through the inhibition of expression of iNOS and proinflammatory cytokines[1]. Cauloside C is a triterpene glycoside isolated from Caulophyllum robustum Max. Cauloside C exerts anti-inflammatory effects through the inhibition of expression of iNOS and proinflammatory cytokines[1].

   

Erucic acid

(13Z)-docos-13-enoic acid

C22H42O2 (338.3185)


Before genetic engineering, plant breeders were aiming to produce a less-bitter-tasting multi-purpose oil from rapeseed that would appeal to a larger market by making it more palatable for cattle and other livestock. While it was possible to breed out much of the pungent-tasting glucosinolates, one of the dominant erucic acid genes would get stripped out of the genome as well, greatly reducing its valuable erucic acid content. Studies on rats show lipodosis problems when fed high quantities of erucic acid, however, so this did not hinder saleability. Later trials showed that rats had the same problems with other vegetable fatty acids, because rats are poor at metabolising some fats. The plant breeding industry later changed "low erucic acid" to be its unique selling proposition over that of its competitors.; Erucic acid is a monounsaturated omega-9 fatty acid found mainly in the Brassica family of plants such as canola, rapeseed, wallflower seed, mustard seed as well as Brussels spouts and broccoli. Some Brassica cultivars can have up to 40 to 50 percent of their oil recovered as erucic acid. Erucic acid is also known as cis-13-docosenoic acid. The trans isomer is known as brassidic acid. Erucic acid occurs in nature only along with bitter-tasting compounds. Erucic acid has many of the same uses as mineral oils but with the advantage that it is more readily bio-degradable. Its high tolerance to temperature makes it suitable for transmission oil. Its ability to polymerize and dry means it can be - and is - used as a binder for oil paints. Increased levels of eicosenoic acid (20:ln9) and erucic acid (22:1n9) have been found in the red blood cell membranes of autistic subjects with developmental regression (PMID: 16581239). Erucic acid is broken down long-chain acyl-coenzyme A (CoA) dehydrogenase, which is produced in the liver. This enzyme breaks this long chain fatty acid into shorter-chain fatty acids. human infants have relatively low amounts of this enzyme and because of this, babies should not be given foods high in erucic acid.; Erucic acid is a monounsaturated omega-9 fatty acid, denoted 22:1 ?-9. It is prevalent in rapeseed, wallflower seed, and mustard seed, making up 40-50\\% of their oils. Erucic acid is also known as cis-13-docosenoic acid and the trans isomer is known as brassidic acid.; The name erucic means: of or pertaining to eruca; which is a genus of flowering plants in the family Brassicaceae. It is also the Latin for coleworth, which today is better known as kale. Erucic acid is produced naturally (together with other fatty acids) across a great range of green plants, but especially so in members of the brassica family. It is highest in some of the rapeseed varieties of brassicas, kale and mustard being some of the highest, followed by Brussels spouts and broccoli. For industrial purposes, a High-Erucic Acid Rapeseed (HEAR) has been developed. These cultivars can yield 40\\% to 60\\% of the total oil recovered as erucic acid. Erucic acid is a 22-carbon, monounsaturated omega-9 fatty acid found mainly in the Brassica family of plants such as canola, rapeseed, wallflower seed, mustard seed as well as Brussels spouts and broccoli. Some Brassica cultivars can have up to 40 to 50 percent of their oil recovered as erucic acid. Erucic acid is also known as cis-13-docosenoic acid. The trans isomer is known as brassidic acid. Erucic acid occurs in nature only along with bitter-tasting compounds. Erucic acid has many of the same uses as mineral oils but with the advantage that it is more readily bio-degradable. Its high tolerance to temperature makes it suitable for transmission oil. Erucic acid’s ability to polymerize and dry means it can be - and is - used as a binder for oil paints. Increased levels of eicosenoic acid (20:Ln9) and erucic acid (22:1N9) have been found in the red blood cell membranes of autistic subjects with developmental regression (PMID: 16581239 ). Erucic acid is broken down long-chain acyl-coenzyme A (CoA) dehydrogenase, which is produced in the liver. This enzyme breaks this long chain fatty acid into shorter-chain fatty acids. Human infants have relatively low amounts of this enzyme and because of this, babies should not be given foods high in erucic acid. Food-grade rapeseed oil (also known as canola oil) is regulated to a maximum of 2\\% erucic acid by weight in the US and 5\\% in the EU, with special regulations for infant food. Canola was bred from rapeseed cultivars of B. napus and B. rapa at the University of Manitoba, Canada. Canola oil is derived from a variety of rapeseed that is low in erucic acid. Erucic acid is a docosenoic acid having a cis- double bond at C-13. It is found particularly in brassicas - it is a major component of mustard and rapeseed oils and is produced by broccoli, Brussels sprouts, kale, and wallflowers. It is a conjugate acid of an erucate. Erucic acid is a natural product found in Dipteryx lacunifera, Myrtus communis, and other organisms with data available. Erucic Acid is a monounsaturated very long-chain fatty acid with a 22-carbon backbone and a single double bond originating from the 9th position from the methyl end, with the double bond in the cis- configuration. See also: Cod Liver Oil (part of). A docosenoic acid having a cis- double bond at C-13. It is found particularly in brassicas - it is a major component of mustard and rapeseed oils and is produced by broccoli, Brussels sprouts, kale, and wallflowers.

   

beta-Phellandrene

3-methylidene-6-(propan-2-yl)cyclohex-1-ene

C10H16 (136.1252)


beta-Phellandrene is found in allspice. beta-Phellandrene is widely distributed in essential oils (Angelica, Eucalyptus, Lavandula, Mentha, Pinus species). beta-Phellandrene is a flavour ingredient.Phellandrene is the name for a pair of organic compounds that have a similar molecular structure and similar chemical properties. alpha-Phellandrene and beta-phellandrene are cyclic monoterpenes and are double-bond isomers. The phellandrenes are used in fragrances because of their pleasing aromas. (Wikipedia Beta-phellandrene is one of a pair of phellandrene cyclic monoterpene double-bond isomers in which one double bond is exocyclic (cf. alpha-phellandrene, where both of them are endoocyclic). It has a role as a plant metabolite. beta-Phellandrene is a natural product found in Xylopia aromatica, Dacrydium nausoriense, and other organisms with data available. See also: Cannabis sativa subsp. indica top (part of). One of a pair of phellandrene cyclic monoterpene double-bond isomers in which one double bond is exocyclic (cf. alpha-phellandrene, where both of them are endoocyclic). Widely distributed in essential oils (Angelica, Eucalyptus, Lavandula, Mentha, Pinus subspecies). Flavour ingredient β-Phellandrene is obtained from Carum petroselinum. β-Phellandrene can be used to essential oil additives[1]. β-Phellandrene is obtained from Carum petroselinum. β-Phellandrene can be used to essential oil additives[1].

   

(R)-Menthofuran

(6R)-3,6-Dimethyl-4,5,6,7-tetrahydro-1-benzofuran

C10H14O (150.1045)


Menthofuran is a monoterpenoid that is 4,5,6,7-tetrahydro-1-benzofuran substituted by methyl groups at positions 3 and 6. It has a role as a nematicide and a plant metabolite. It is a member of 1-benzofurans and a monoterpenoid. Menthofuran is a natural product found in Methanobacterium and Mentha pulegium with data available. Constituent of peppermint oil (Mentha piperita) and other Mentha subspecies as minor but essential organoleptic. It is used in peppermint oil formulations. (R)-Menthofuran is found in mentha (mint), orange mint, and herbs and spices. (R)-Menthofuran is found in herbs and spices. (R)-Menthofuran is a constituent of peppermint oil (Mentha piperita) and other Mentha species as minor but essential organoleptic. (R)-Menthofuran is used in peppermint oil formulations A monoterpenoid that is 4,5,6,7-tetrahydro-1-benzofuran substituted by methyl groups at positions 3 and 6.

   

Tiglic acid

alpha,beta-dimethyl acrylic acid; 2-Methyl-2-butenoic acid; (E)-2-methyl-Crotonic acid

C5H8O2 (100.0524)


Tiglic acid is a monocarboxylic unsaturated organic acid. It is found in croton oil and in several other natural products. It has also been isolated from the defensive secretion of certain beetles. Tiglic acid, also known as tiglate or tiglinsaeure, belongs to the class of organic compounds known as methyl-branched fatty acids. These are fatty acids with an acyl chain that has a methyl branch. Usually, they are saturated and contain only one or more methyl group. However, branches other than methyl may be present. Tiglic acid has a double bond between the second and third carbons of the chain. Tiglic acid and angelic acid form a pair of cis-trans isomers. Tiglic acid is a volatile and crystallizable substance with a sweet, warm, spicy odour. It is used in making perfumes and flavoring agents. The salts and esters of tiglic acid are called tiglates. Tiglic acid is a 2-methylbut-2-enoic acid having its double bond in trans-configuration. It has a role as a plant metabolite. It is functionally related to a crotonic acid. Tiglic acid is a natural product found in Aloe africana, Azadirachta indica, and other organisms with data available. See also: Arctium lappa Root (part of); Petasites hybridus root (part of). A branched-chain fatty acid consisting of 2-butenoic acid having a methyl group at position 2. Flavouring ingredient KEIO_ID T016 Tiglic acid is a monocarboxylic unsaturated organic acid found in croton oil and in several other natural products. Tiglic aci has a role as a plant metabolite[1]. Tiglic acid is a monocarboxylic unsaturated organic acid found in croton oil and in several other natural products. Tiglic aci has a role as a plant metabolite[1].

   

BROMACIL

BROMACIL

C9H13BrN2O2 (260.016)


D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals CONFIDENCE standard compound; INTERNAL_ID 1265; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3915; ORIGINAL_PRECURSOR_SCAN_NO 3912 CONFIDENCE standard compound; INTERNAL_ID 1265; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3781; ORIGINAL_PRECURSOR_SCAN_NO 3780 CONFIDENCE standard compound; INTERNAL_ID 1265; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3766; ORIGINAL_PRECURSOR_SCAN_NO 3764 CONFIDENCE standard compound; INTERNAL_ID 1265; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3789; ORIGINAL_PRECURSOR_SCAN_NO 3784 CONFIDENCE standard compound; INTERNAL_ID 1265; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3917; ORIGINAL_PRECURSOR_SCAN_NO 3915 CONFIDENCE standard compound; INTERNAL_ID 1265; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3887; ORIGINAL_PRECURSOR_SCAN_NO 3886 CONFIDENCE standard compound; EAWAG_UCHEM_ID 266

   

(±)-Metalaxyl

methyl 2-[N-(2,6-dimethylphenyl)-2-methoxyacetamido]propanoate

C15H21NO4 (279.1471)


CONFIDENCE standard compound; INTERNAL_ID 643; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8605; ORIGINAL_PRECURSOR_SCAN_NO 8603 CONFIDENCE standard compound; INTERNAL_ID 643; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8561; ORIGINAL_PRECURSOR_SCAN_NO 8560 CONFIDENCE standard compound; INTERNAL_ID 643; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8595; ORIGINAL_PRECURSOR_SCAN_NO 8594 CONFIDENCE standard compound; INTERNAL_ID 643; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8508; ORIGINAL_PRECURSOR_SCAN_NO 8507 CONFIDENCE standard compound; INTERNAL_ID 643; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8544; ORIGINAL_PRECURSOR_SCAN_NO 8543 CONFIDENCE standard compound; INTERNAL_ID 643; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8588; ORIGINAL_PRECURSOR_SCAN_NO 8583 CONFIDENCE standard compound; EAWAG_UCHEM_ID 135 CONFIDENCE standard compound; INTERNAL_ID 8391 CONFIDENCE standard compound; INTERNAL_ID 2567 Systemic agricultural fungicid

   

Goltix

4-amino-3-methyl-6-phenyl-4,5-dihydro-1,2,4-triazin-5-one

C10H10N4O (202.0855)


CONFIDENCE standard compound; INTERNAL_ID 919; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6698; ORIGINAL_PRECURSOR_SCAN_NO 6696 CONFIDENCE standard compound; INTERNAL_ID 919; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6758; ORIGINAL_PRECURSOR_SCAN_NO 6757 CONFIDENCE standard compound; INTERNAL_ID 919; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3205; ORIGINAL_PRECURSOR_SCAN_NO 3203 CONFIDENCE standard compound; INTERNAL_ID 919; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3208; ORIGINAL_PRECURSOR_SCAN_NO 3206 CONFIDENCE standard compound; INTERNAL_ID 919; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6726; ORIGINAL_PRECURSOR_SCAN_NO 6725 CONFIDENCE standard compound; INTERNAL_ID 919; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6740; ORIGINAL_PRECURSOR_SCAN_NO 6738 CONFIDENCE standard compound; INTERNAL_ID 919; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6706; ORIGINAL_PRECURSOR_SCAN_NO 6705 CONFIDENCE standard compound; INTERNAL_ID 919; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6743; ORIGINAL_PRECURSOR_SCAN_NO 6739 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 83 CONFIDENCE standard compound; EAWAG_UCHEM_ID 58 CONFIDENCE standard compound; INTERNAL_ID 4017 CONFIDENCE standard compound; INTERNAL_ID 8401 CONFIDENCE standard compound; INTERNAL_ID 2316 CONFIDENCE standard compound; INTERNAL_ID 3538

   

Monuron

3-(p-Chlorophenyl)-1,1-dimethylurea

C9H11ClN2O (198.056)


CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7858; ORIGINAL_PRECURSOR_SCAN_NO 7856 CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7928; ORIGINAL_PRECURSOR_SCAN_NO 7925 CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7944; ORIGINAL_PRECURSOR_SCAN_NO 7942 CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3857; ORIGINAL_PRECURSOR_SCAN_NO 3854 CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7900; ORIGINAL_PRECURSOR_SCAN_NO 7898 CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3846; ORIGINAL_PRECURSOR_SCAN_NO 3844 CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7885; ORIGINAL_PRECURSOR_SCAN_NO 7882 CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3870; ORIGINAL_PRECURSOR_SCAN_NO 3866 CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7933; ORIGINAL_PRECURSOR_SCAN_NO 7931 CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3859; ORIGINAL_PRECURSOR_SCAN_NO 3857 CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3877; ORIGINAL_PRECURSOR_SCAN_NO 3875 CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3866; ORIGINAL_PRECURSOR_SCAN_NO 3861

   

2-Methylpyridine

2-Picolinium bromide

C6H7N (93.0578)


2-methylpyridine, also known as 2-picoline or 2-mepy, is a member of the class of compounds known as methylpyridines. Methylpyridines are organic compounds containing a pyridine ring substituted at one or more positions by a methyl group. 2-methylpyridine is soluble (in water) and a very strong basic compound (based on its pKa). 2-methylpyridine is a bitter and sweat tasting compound found in tea, which makes 2-methylpyridine a potential biomarker for the consumption of this food product. 2-methylpyridine can be found primarily in saliva. 2-methylpyridine exists in all eukaryotes, ranging from yeast to humans. 2-Methylpyridine, or 2-picoline, is the compound described with formula C6H7N. 2-Picoline is a colorless liquid that has an unpleasant odor similar to pyridine. It is mainly used to make vinylpyridine and the agrichemical nitrapyrin . 2-Methylpyridine, or 2-picoline, is the compound described with formula C6H7N. 2-Picoline is a colorless liquid that has an unpleasant odor similar to pyridine. Pyridines including 2-picoline are most crudely prepared by the reaction of acetylene and hydrogen cyanide.

   

1-Methyluric acid

1-methyl-2,3,6,7,8,9-hexahydro-1H-purine-2,6,8-trione

C6H6N4O3 (182.044)


1-Methyluric acid is one of the three main theophylline metabolites in man. 1-Methyluric acid is one of the purine components in urinary calculi. Methylated purines originate from the metabolism of methylxanthines (caffeine, theophylline and theobromine). Methyluric acids are indistinguishable from uric acid by simple methods routinely used in clinical laboratories, requiring the use of high-performance liquid chromatography (HPLC). Purine derivatives in urinary calculi could be considered markers of abnormal purine metabolism. The content of a purine derivative in stone depends on its average urinary excretion in the general population, similarity to the chemical structure of uric acid, and content of the latter in stone. This suggests that purines in stones represent a solid solution with uric acid as solvent. It is also plausible that methylxanthines, ubiquitous components of the diet and drugs, are involved in the pathogenesis of urolithiasis. Caffeine is metabolized via successive pathways mainly catalyzed by CYP1A2, xanthine oxidase or N-acetyltransferase-2 to give 14 different metabolites. CYP1A2 activity shows an inter-individual variability among the population. CYP1A2, an isoform of the CYP1A cytochrome P450 super-family, is involved in the metabolism of many drugs and plays a potentially important role in the induction of chemical carcinogenesis. (PMID: 11712316, 15833286, 3506820, 15013152, 4039734, 9890610) [HMDB] 1-Methyluric acid is one of the three main theophylline metabolites in man. 1-Methyluric acid is one of the purine components in urinary calculi. Methylated purines originate from the metabolism of methylxanthines (caffeine, theophylline, and theobromine). Methyluric acids can be distinguished from uric acid via simple methods routinely used in clinical laboratories, requiring the use of high-performance liquid chromatography (HPLC). Purine derivatives in urinary calculi could be considered markers of abnormal purine metabolism. The content of a purine derivative in stone depends on its average urinary excretion in the general population, similarity to the chemical structure of uric acid, and content of the latter in stone. This suggests that purines in stones represent a solid solution with uric acid as solvent. It is also plausible that methylxanthines, ubiquitous components of the diet and drugs, are involved in the pathogenesis of urolithiasis. Caffeine is metabolized via successive pathways mainly catalyzed by CYP1A2, xanthine oxidase, or N-acetyltransferase-2 to give 14 different metabolites. CYP1A2 activity shows an inter-individual variability among the population. CYP1A2, an isoform of the CYP1A cytochrome P450 superfamily, is involved in the metabolism of many drugs and plays a potentially important role in the induction of chemical carcinogenesis (PMID:11712316, 15833286, 3506820, 15013152, 4039734, 9890610).

   

2-Chlorobenzoic acid

2-Chlorobenzoic acid, copper (2+) salt

C7H5ClO2 (155.9978)


KEIO_ID C088

   

2-Hydroxybenzyl alcohol

Salicyl alcohol, monosodium salt

C7H8O2 (124.0524)


Salicyl alcohol, also known as saligenin or 2-hydroxybenzyl alcohol, is a member of the class of compounds known as benzyl alcohols. Benzyl alcohols are organic compounds containing the phenylmethanol substructure. Salicyl alcohol is soluble (in water) and a very weakly acidic compound (based on its pKa). Salicyl alcohol can be synthesized from phenol and benzyl alcohol. Salicyl alcohol can also be synthesized into salicin. Salicyl alcohol can be found in a number of food items such as red huckleberry, rye, jerusalem artichoke, and ceylon cinnamon, which makes salicyl alcohol a potential biomarker for the consumption of these food products. Salicyl alcohol (saligenin) is precursor of salicylic acid and is formed from salicin by enzymatic hydrolysis by Salicyl-alcohol beta-D-glucosyltransferase or by acid hydrolysis . 2-Hydroxybenzyl alcohol (CAS Number 90-01-7) is a stable light brown crystalline powder. C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent Salicyl alcohol is an intermediate for medicine, perfume, pesticide. Salicyl alcohol is an intermediate for medicine, perfume, pesticide.

   

2-Oxo-4-methylthiobutanoic acid

2-Keto-4-methylthiobutyric acid, monosodium salt

C5H8O3S (148.0194)


2-oxo-4-methylthiobutanoate, also known as 2-keto-4-methylthiobutyric acid, 2-keto-4-methylthiobutyrate or 4-(methylsulfanyl)-2-oxobutanoic acid, is a member of the class of compounds known as thia- fatty acids. Thia-fatty acids are fatty acid derivatives obtained by insertion of a sulfur atom at specific positions in the chain. Thus, 2-oxo-4-methylthiobutanoate is a fatty acid lipid molecule. 2-oxo-4-methylthiobutanoate is slightly soluble (in water) and a weakly acidic compound (based on its pKa). 2-oxo-4-methylthiobutanoate can be synthesized from L-methionine and butyric acid. 2-oxo-4-methylthiobutanoate can also be synthesized into S-adenosyl-4-methylthio-2-oxobutanoic acid. 2-oxo-4-methylthiobutanoate can be found in a number of food items such as cloves, highbush blueberries, common beets, and cashew nuts. 2-oxo-4-methylthiobutanoate can be found in urine. Within the cell, 2-oxo-4-methylthiobutanoate is primarily located in the cytoplasm and in the membrane. 2-oxo-4-methylthiobutanoate has been found in all living species, from bacteria to humans. In humans, 2-oxo-4-methylthiobutanoate is found to be involved in several metabolic disorders, some of those are S-adenosylhomocysteine (SAH) hydrolase deficiency, methylenetetrahydrofolate reductase deficiency (MTHFRD), methionine adenosyltransferase deficiency, and glycine N-methyltransferase deficiency. 4-Methylthio-2-oxobutanoic acid is the direct precursor of methional, which is a potent inducer of apoptosis in a BAF3 murine lymphoid cell line which is interleukin-3 (IL3)-dependent (PMID: 7848263). 2-oxo-4-methylthiobutanoic acid, also known as 2-keto-4-methylthiobutyrate or 4-methylthio-2-oxobutanoate, is a member of the class of compounds known as thia fatty acids. Thia fatty acids are fatty acid derivatives obtained by insertion of a sulfur atom at specific positions in the chain. Thus, 2-oxo-4-methylthiobutanoic acid is considered to be a fatty acid lipid molecule. 2-oxo-4-methylthiobutanoic acid is slightly soluble (in water) and a weakly acidic compound (based on its pKa). 2-oxo-4-methylthiobutanoic acid can be synthesized from L-methionine and butyric acid. 2-oxo-4-methylthiobutanoic acid can also be synthesized into S-adenosyl-4-methylthio-2-oxobutanoic acid. 2-oxo-4-methylthiobutanoic acid can be found in a number of food items such as leek, hickory nut, brussel sprouts, and giant butterbur, which makes 2-oxo-4-methylthiobutanoic acid a potential biomarker for the consumption of these food products. 2-oxo-4-methylthiobutanoic acid can be found primarily in urine. 2-oxo-4-methylthiobutanoic acid exists in all living species, ranging from bacteria to humans. In humans, 2-oxo-4-methylthiobutanoic acid is involved in the methionine metabolism. 2-oxo-4-methylthiobutanoic acid is also involved in several metabolic disorders, some of which include s-adenosylhomocysteine (SAH) hydrolase deficiency, homocystinuria-megaloblastic anemia due to defect in cobalamin metabolism, cblg complementation type, glycine n-methyltransferase deficiency, and cystathionine beta-synthase deficiency.

   

Beta-Tyrosine

3-Amino-3-(4-hydroxyphenyl)propionic acid

C9H11NO3 (181.0739)


The use of tyrosine kinase receptor inhibitors is increasingly becoming a valuable therapeutic alternative in tumors carrying activated tyrosine kinase receptors. GMR beta tyrosine residues are not necessary for activation of the JAK/STAT pathway, or for proliferation, viability, or adhesion signaling in Ba/F3 cells, although tyrosine residues significantly affect the magnitude of the response. (PMID:10372132). The use of tyrosine kinase receptor inhibitors is increasingly becoming a valuable therapeutic alternative in tumors carrying activated tyrosine kinase receptors. KEIO_ID A176

   

Cholestenone

(1S,2R,10S,11S,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-6-en-5-one

C27H44O (384.3392)


Cholestenone belongs to the class of organic compounds known as cholesterols and derivatives. Cholesterols and derivatives are compounds containing a 3-hydroxylated cholestane core. Thus, cholestenone is considered to be a sterol lipid molecule. Cholestenone is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Cholestenone is a dehydrocholestanone. It is a product of cholesterol oxidase {EC 1.1.3.6] in the Bile acid biosynthesis pathway (KEGG). [HMDB] Cholestenone (4-Cholesten-3-one), the intermediate oxidation product of cholesterol, is metabolized primarily in the liver. Cholestenone is highly mobile in membranes and influences cholesterol flip-flop and efflux. Cholestenone may cause long-term functional defects in cells[1][2]. Cholestenone (4-Cholesten-3-one), the intermediate oxidation product of cholesterol, is metabolized primarily in the liver. Cholestenone is highly mobile in membranes and influences cholesterol flip-flop and efflux. Cholestenone may cause long-term functional defects in cells[1][2].

   

12-Hydroxydodecanoic acid

ω-Hydroxydodecanoic acid

C12H24O3 (216.1725)


12-hydroxydodecanoic acid is the substrate of the human glutathione-dependent formaldehyde dehydrogenase (EC1.1.1.1). The enzyme that catalyzes the conversion of alcohols to aldehydes is a zinc-containing dimeric enzyme responsible for the oxidation of long-chain alcohols and omega-hydroxy fatty acids. (OMIM). The human glutathione-dependent formaldehyde dehydrogenase is unique among the structurally studied members of the alcohol dehydrogenase family in that it follows a random bi kinetic mechanism forming a binary complex, and a ternary complex with NAD+. (PMID 12196016). 12-hydroxydodecanoic acid is the substrate of the human glutathione-dependent formaldehyde dehydrogenase (EC1.1.1.1) . The enzyme that catalyzes the conversion of alcohols to aldehydes is a zinc-containing dimeric enzyme responsible for the oxidation of long-chain alcohols and omega-hydroxy fatty acids. (OMIM) 12-Hydroxydodecanoic acid is an endogenous metabolite.

   

Argininosuccinic acid disodium

(2S)-2-[[N-[(4S)-4-amino-4-carboxybutyl]carbamimidoyl]amino]butanedioic acid

C10H18N4O6 (290.1226)


Arginosuccinic acid is a basic amino acid. Some cells synthesize it from citrulline, aspartic acid and use it as a precursor for arginine in the urea cycle or Citrulline-NO cycle. The enzyme that catalyzes the reaction is argininosuccinate synthetase. Argininosuccinic acid is a precursor to fumarate in the citric acid cycle via argininosuccinate lyase. Defects in the argininosuccinate lyase enzyme can lead to argininosuccinate lyase deficiency, which is an inborn error of metabolism. Argininosuccinate (ASA) lyase deficiency results in defective cleavage of ASA. This leads to an accumulation of ASA in cells and an excessive excretion of ASA in urine (argininosuccinic aciduria). In virtually all respects, this disorder shares the characteristics of other urea cycle defects. The most important characteristic of ASA lyase deficiency is its propensity to cause hyperammonemia in affected individuals. ASA in affected individuals is excreted by the kidney at a rate practically equivalent to the glomerular filtration rate (GFR). Whether ASA itself causes a degree of toxicity due to hepatocellular accumulation is unknown; such an effect could help explain hyperammonemia development in affected individuals. Regardless, the name of the disease is derived from the rapid clearance of ASA in urine, although elevated levels of ASA can be found in plasma. ASA lyase deficiency is associated with high mortality and morbidity rates. Symptoms of ASA lyase deficiency include anorexia, irritability rapid breathing, lethargy and vomiting. Extreme symptoms include coma and cerebral edema. Arginosuccinic acid is a basic amino acid. Some cells synthesize it from citrulline, aspartic acid and use it as a precursor for arginine in the urea cycle or Citrulline-NO cycle. The enzyme that catalyzes the reaction is argininosuccinate synthetase. Argininosuccinic acid is a precursor to fumarate in the citric acid cycle via argininosuccinate lyase. Defects in the arginosuccinate lyase enzyme can lead to arginosuccinate lyase deficiency. Argininosuccinate (ASA) lyase deficiency results in defective cleavage of ASA. This leads to an accumulation of ASA in cells and an excessive excretion of ASA in urine (arginosuccinic aciduria). In virtually all respects, this disorder shares the characteristics of other urea cycle defects. The most important characteristic of ASA lyase deficiency is its propensity to cause hyperammonemia in affected individuals. ASA in affected individuals is excreted by the kidney at a rate practically equivalent to the glomerular filtration rate (GFR). Whether ASA itself causes a degree of toxicity due to hepatocellular accumulation is unknown; such an effect could help explain hyperammonemia development in affected individuals. Regardless, the name of the disease is derived from the rapid clearance of ASA in urine, although elevated levels of ASA can be found in plasma. ASA lyase deficiency is associated with high mortality and morbidity rates. Symptoms of ASA lyase deficiency include anorexia, irritability rapid breathing, lethargy and vomiting. Extreme symptoms include coma and cerebral edema. [HMDB] KEIO_ID A039; [MS2] KO008844 KEIO_ID A039

   

Asparagine

(2S)-2-Amino-3-carbamoylpropanoic acid

C4H8N2O3 (132.0535)


Asparagine (Asn) or L-asparagine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-asparagine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Asparagine is found in all organisms ranging from bacteria to plants to animals. In humans, asparagine is not an essential amino acid, which means that it can be synthesized from central metabolic pathway intermediates in humans and is not required in the diet. The precursor to asparagine is oxaloacetate. Oxaloacetate is converted to aspartate using a transaminase enzyme. This enzyme transfers the amino group from glutamate to oxaloacetate producing alpha-ketoglutarate and aspartate. The enzyme asparagine synthetase produces asparagine, AMP, glutamate, and pyrophosphate from aspartate, glutamine, and ATP. In the asparagine synthetase reaction, ATP is used to activate aspartate, forming beta-aspartyl-AMP. Glutamine donates an ammonium group which reacts with beta-aspartyl-AMP to form asparagine and free AMP. Since the asparagine side chain can make efficient hydrogen bond interactions with the peptide backbone, asparagines are often found near the beginning and end of alpha-helices, and in turn motifs in beta sheets. Its role can be thought as "capping" the hydrogen bond interactions which would otherwise need to be satisfied by the polypeptide backbone. Asparagine also provides key sites for N-linked glycosylation, a modification of the protein chain that is characterized by the addition of carbohydrate chains. A reaction between asparagine and reducing sugars or reactive carbonyls produces acrylamide (acrylic amide) in food when heated to sufficient temperature (i.e. baking). These occur primarily in baked goods such as French fries, potato chips, and roasted coffee. Asparagine was first isolated in 1806 from asparagus juice --hence its name. Asparagine was the first amino acid to be isolated. The smell observed in the urine of some individuals after the consumption of asparagus is attributed to a byproduct of the metabolic breakdown of asparagine, asparagine-amino-succinic-acid monoamide. However, some scientists disagree and implicate other substances in the smell, especially methanethiol. [Spectral] L-Asparagine (exact mass = 132.05349) and L-Aspartate (exact mass = 133.03751) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. One of the nonessential amino acids. Dietary supplement, nutrient. Widely distributed in the plant kingdom. Isolated from asparagus, beetroot, peas, beans, etc. (-)-Asparagine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=70-47-3 (retrieved 2024-07-15) (CAS RN: 70-47-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Asparagine ((-)-Asparagine) is a non-essential amino acid that is involved in the metabolic control of cell functions in nerve and brain tissue. L-Asparagine ((-)-Asparagine) is a non-essential amino acid that is involved in the metabolic control of cell functions in nerve and brain tissue.

   

Guanidinosuccinic acid

(2S)-2-(diaminomethylideneamino)butanedioic acid

C5H9N3O4 (175.0593)


Guanidinosuccinic acid (GSA) has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID:22626821). It is one of the earliest uremic toxins isolated and its toxicity identified. Its metabolic origins show that it arose from the oxidation of argininosuccinic acid (ASA) by free radicals. The stimulus for this oxidation, occurring optimally in the presence of the failed kidney, is the rising level of urea which, through enzyme inhibition, results in a decline in hepatic levels of the semi-essential amino acid, arginine. It is further noted that concentrations of GSA in both serum and urine decline sharply in animals and humans exposed to the essential amino acid, methionine. Uremic patients suffer from a defective ability to generate methyl groups due to anorexia, dietary restrictions and renal protein leakage. This leads to the accumulation of homocysteine, a substance known to produce vascular damage. Even in healthy subjects intake of choline together with methionine is insufficient to satisfy total metabolic requirements for methyl groups. In end-stage renal disease, therefore, protein restriction contributes to the build-up of toxins in uremia. Replacement using specific amino acid mixtures should be directed toward identified deficiencies and adequacy monitored by following serum levels of the related toxins, in this case GSA and homocysteine. (PMID 12701806). Guanidinosuccinic acid (GSA) is one of the earliest uremic toxins isolated and its toxicity identified. Its metabolic origins show that it arose from the oxidation of argininosuccinic acid (ASA) by free radicals. The stimulus for this oxidation, occurring optimally in the presence of the failed kidney, is the rising level of urea which, through enzyme inhibition, results in a decline in hepatic levels of the semi-essential amino acid, arginine. It is further noted that concentrations of GSA in both serum and urine decline sharply in animals and humans exposed to the essential amino acid, methionine. Uremic patients suffer from a defective ability to generate methyl groups due to anorexia, dietary restrictions and renal protein leakage. This leads to the accumulation of homocysteine, a substance known to produce vascular damage. Even in healthy subjects intake of choline together with methionine is insufficient to satisfy total metabolic requirements for methyl groups. In end-stage renal disease, therefore, protein restriction contributes to the build-up of toxins in uremia. Replacement using specific amino acid mixtures should be directed toward identified deficiencies and adequacy monitored by following serum levels of the related toxins, in this case GSA and homocysteine. (PMID 12701806) [HMDB] Guanidinosuccinic acid is a nitrogenous metabolite.

   

L-2,4-diaminobutyric acid

2,4-Diaminobutyric acid monohydrochloride, (+-)-isomer

C4H10N2O2 (118.0742)


L-3-Amino-isobutanoic acid is a component of branched-chain amino acid biosynthesis and metabolism. It can also be used in pyrimidine metabolism. L-3-Amino-isobutanoic acid is produced from S-methylmalonate semialdehyde by the enzyme 4-aminobutyrate aminotransferase. KEIO_ID D038 L-DABA (L-2,4-Diaminobutyric acid) is a week GABA transaminase inhibitor with an IC50 of larger than 500 μM; exhibits antitumor activity in vivo and in vitro. L-DABA (L-2,4-Diaminobutyric acid) is a week GABA transaminase inhibitor with an IC50 of larger than 500 μM; exhibits antitumor activity in vivo and in vitro.

   

DL-Homocystine

2-amino-4-[(3-amino-3-carboxypropyl)disulfanyl]butanoic acid

C8H16N2O4S2 (268.0551)


Homocystine is the oxidized form of homocysteine. Homocystine is a dipeptide consisting of two homocysteine molecules joined by a disulfide bond. Homocysteine is a sulfur-containing amino acid that arises during methionine metabolism. Homocystine occurs only transiently before being reduced to homocysteine and converted to the harmless cystathionine via a vitamin B6-dependent enzyme. Homocystine and homocysteine-cysteine mixed disulfides account for >98\\\\\% of total homocysteine in plasma from healthy individuals (PMID 11592966). Homocystine has been shown to stereospecifically induce endothelial nitric oxide synthase-dependent lipid peroxidation in endothelial cells, thereby inducing a vascular cell type-specific oxidative stress. This vascular stress is associated with atherothrombotic cardiovascular disease (PMID: 14980706). High levels of homocysteine (and homocysteine) can be found in individuals suffering from homocystinura due to cystathionine synthase deficiency (PMID: 4685596) Homocystine is the double-bonded form of homocysteine, but it occurs only transiently before being converted to the harmless cystathionine via a vitamin B6-dependent enzyme. Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID H041 4,4'-Disulfanediylbis(2-aminobutanoic acid) is an endogenous metabolite. DL-Homocystine is the double-bonded form of homocysteine and homocysteine is recognized as an important substance in the pathogenesis and pathophysiology of schizophrenia. L-Homocystine is the oxidized member of the L-homocysteine. Homocysteine is a pro-thrombotic factor, vasodilation impairing agent, pro-inflammatory factor and endoplasmatic reticulum-stress inducer used to study cardiovascular disease mechanisms.

   

Glutethimide

3-ethyl-3-phenylpiperidine-2,6-dione

C13H15NO2 (217.1103)


Glutethimide is only found in individuals that have used or taken this drug. It is a hypnotic and sedative. Its use has been largely superseded by other drugs. [PubChem]Glutethimide seems to be a GABA agonist which helps induced sedation. It also induces CYP 2D6. When taken with codeine, it enables the body to convert higher amounts of the codeine (higher than the average 5 - 10\\%) to morphine. The general sedative effect also adds to the power of the combination. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CE - Piperidinedione derivatives C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic

   

Dihydrobiopterin

2-amino-6-[(1R,2S)-1,2-dihydroxypropyl]-1,4,7,8-tetrahydropteridin-4-one

C9H13N5O3 (239.1018)


Dihydrobiopterin, also known as BH2, 7,8-dihydrobiopterin, L-erythro-7,8-dihydrobiopterin, quinonoid dihydrobiopterin or q-BH2, belongs to the class of organic compounds known as biopterins and derivatives. These are coenzymes containing a 2-amino-pteridine-4-one derivative. Dihydrobiopterin is also classified as a pteridine. Pteridines are aromatic compounds composed of fused pyrimidine and pyrazine rings. Dihydrobiopterin is produced during the synthesis of neurotransmitters L-DOPA, dopamine, norepinephrine and epinephrine. It is restored to the required cofactor tetrahydrobiopterin via the NADPH-dependant reduction of dihydrobiopterin reductase. Dihydrobiopterin can also be converted to tetrahydrobiopterin by nitric oxide synthase (NOS) which is catalyzed by the flavoprotein "diaphorase" activity of NOS. This activity is located on the reductase (C-terminal) domain of NOS, whereas the high affinity tetrahydrobiopterin site involved in NOS activation is located on the oxygenase (N-terminal) domain (PMID: 8626754). Sepiapterin reductase (SPR) is another enzyme that plays a role in the production of dihydrobiopterin. SPR catalyzes the reduction of sepiapterin to dihydrobiopterin (BH2), the precursor for tetrahydrobiopterin (BH4). BH4 is a cofactor critical for nitric oxide biosynthesis and alkylglycerol and aromatic amino acid metabolism (PMID: 25550200). Dihydrobiopterin is known to be synthesized in several parts of the body, including the pineal gland. Dihydrobiopterin exists in all eukaryotes, ranging from yeast to humans. In humans, dihydrobiopterin is involved in several metabolic disorders including dihydropteridine reductase (DHPR) deficiency. DHPR deficiency is a severe form of hyperphenylalaninemia (HPA) due to impaired regeneration of tetrahydrobiopterin (BH4) leading to decreased levels of neurotransmitters (dopamine, serotonin) and folate in cerebrospinal fluid, and causing neurological symptoms such as psychomotor delay, hypotonia, seizures, abnormal movements, hypersalivation, and swallowing difficulties. Dihydrobiopterin is also associated with another metabolic disorder known as sepiapterin reductase deficiency (SRD). Sepiapterin reductase catalyzes the (NADP-dependent) reduction of carbonyl derivatives, including pteridines, and plays an important role in tetrahydrobiopterin biosynthesis. Low dihydrofolate reductase activity in the brain leads to the accumulation of dihydrobiopterin, which in turn, inhibits tyrosine and tryptophan hydroxylases. This uncouples neuronal nitric oxide synthase, leading to neurotransmitter deficiencies and neuronal cell death. SRD is characterized by low cerebrospinal fluid neurotransmitter levels and the presence of elevated cerebrospinal fluid dihydrobiopterin. SRD is characterized by motor delay, axial hypotonia, language delay, diurnal fluctuation of symptoms, dystonia, weakness, oculogyric crises, dysarthria, parkinsonian signs and hyperreflexia. Dihydrobiopterin (BH2) is an oxidation product of tetrahydrobiopterin. Tetrahydrobiopterin is a natural occurring cofactor of the aromatic amino acid hydroxylase and is involved in the synthesis of tyrosine and the neurotransmitters dopamine and serotonin. Tetrahydrobiopterin is also essential for nitric oxide synthase catalyzed oxidation of L-arginine to L-citrulline and nitric oxide. [HMDB] 7,8-Dihydro-L-biopterin is an oxidation product of tetrahydrobiopterin.

   

Tebufenozide

3,5-Dimethylbenzoic acid 1-(1,1-dimethylethyl)-2-(4-ethylbenzoyl)hydrazide

C22H28N2O2 (352.2151)


CONFIDENCE standard compound; INTERNAL_ID 1270; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4696; ORIGINAL_PRECURSOR_SCAN_NO 4694 CONFIDENCE standard compound; INTERNAL_ID 1270; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4687; ORIGINAL_PRECURSOR_SCAN_NO 4683 CONFIDENCE standard compound; INTERNAL_ID 1270; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9485; ORIGINAL_PRECURSOR_SCAN_NO 9481 CONFIDENCE standard compound; INTERNAL_ID 1270; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4702; ORIGINAL_PRECURSOR_SCAN_NO 4700 CONFIDENCE standard compound; INTERNAL_ID 1270; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4698; ORIGINAL_PRECURSOR_SCAN_NO 4696 CONFIDENCE standard compound; INTERNAL_ID 1270; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9523; ORIGINAL_PRECURSOR_SCAN_NO 9521 CONFIDENCE standard compound; INTERNAL_ID 1270; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9469; ORIGINAL_PRECURSOR_SCAN_NO 9467 CONFIDENCE standard compound; INTERNAL_ID 1270; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4672; ORIGINAL_PRECURSOR_SCAN_NO 4668 CONFIDENCE standard compound; INTERNAL_ID 1270; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9480; ORIGINAL_PRECURSOR_SCAN_NO 9479 CONFIDENCE standard compound; INTERNAL_ID 1270; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4704; ORIGINAL_PRECURSOR_SCAN_NO 4703 CONFIDENCE standard compound; INTERNAL_ID 1270; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9513; ORIGINAL_PRECURSOR_SCAN_NO 9510 CONFIDENCE standard compound; INTERNAL_ID 1270; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9506; ORIGINAL_PRECURSOR_SCAN_NO 9503 D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

6-Hydroxyhexanoic acid

5-Hydroxypentanecarboxylic acid

C6H12O3 (132.0786)


6-Hydroxyhexanoate was identified as the immediate product of hexanoate w-hydroxylation by whole cells and was further oxidized into adipic acid and an unexpected metabolite identified as 2-tetrahydrofuranacetic acid. This same metabolite, together with adipic acid, was also detected when similarly induced cells were incubated with hexanoate or 1,6-hexanediol, but not with 6-oxohexanoate (adipic semialdehyde).Cells grown on hexanoate and incubated with 6-hydroxyhexanoate were also found to accumulate 2-tetrahydrofuranacetic acid, which was not further degraded. Utilization of 6-hydroxyhexanoate for growth was restricted to those organisms also able to utilize adipate. Similar observations were made with 1,6-hexanediol serving as the carbon source and cells obtained from one organism,Pseudomonas aeruginosa PAO, grown either on 1,6-hexanediol or 6-hydroxyhexanoate,were found to be well induced for both 6-oxohexanoate and adipate oxidation. The results indicate that 6-hydroxyhexanoate and 1,6-hexanediol are susceptible to both 1B- and w-oxidative attack; however, the former pathway appears to be of no physiological significance since it generates 2-tetrahydrofuranacetic acid as a nonmetabolizable intermediate, making w-oxidation via adipate the exclusive pathway for degradation. [HMDB] 6-Hydroxyhexanoate was identified as the immediate product of hexanoate w-hydroxylation by whole cells and was further oxidized into adipic acid and an unexpected metabolite identified as 2-tetrahydrofuranacetic acid. This same metabolite, together with adipic acid, was also detected when similarly induced cells were incubated with hexanoate or 1,6-hexanediol, but not with 6-oxohexanoate (adipic semialdehyde).Cells grown on hexanoate and incubated with 6-hydroxyhexanoate were also found to accumulate 2-tetrahydrofuranacetic acid, which was not further degraded. Utilization of 6-hydroxyhexanoate for growth was restricted to those organisms also able to utilize adipate. Similar observations were made with 1,6-hexanediol serving as the carbon source and cells obtained from one organism,Pseudomonas aeruginosa PAO, grown either on 1,6-hexanediol or 6-hydroxyhexanoate,were found to be well induced for both 6-oxohexanoate and adipate oxidation. The results indicate that 6-hydroxyhexanoate and 1,6-hexanediol are susceptible to both 1B- and w-oxidative attack; however, the former pathway appears to be of no physiological significance since it generates 2-tetrahydrofuranacetic acid as a nonmetabolizable intermediate, making w-oxidation via adipate the exclusive pathway for degradation. KEIO_ID H061

   

Cinchonidine

(S)-[(2R,5R)-5-ethenyl-1-azabicyclo[2.2.2]octan-2-yl]-quinolin-4-ylmethanol

C19H22N2O (294.1732)


Cinchonine is found in fruits. Cinchonine is an alkaloid from the leaves of Olea europaea Cinchonine is an alkaloidwith molecular formula C19H22N2O used in asymmetric synthesis in organic chemistry. It is a stereoisomer and pseudo-enantiomer of cinchonidine D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents [Raw Data] CB216_Cinchonine_pos_10eV_CB000075.txt [Raw Data] CB216_Cinchonine_pos_30eV_CB000075.txt [Raw Data] CB216_Cinchonine_pos_40eV_CB000075.txt [Raw Data] CB216_Cinchonine_pos_50eV_CB000075.txt [Raw Data] CB216_Cinchonine_pos_20eV_CB000075.txt Alkaloid from the leaves of Olea europaea Cinchonidine (α-Quinidine) is a cinchona alkaloid found in Cinchona officinalis and Gongronema latifolium. A building block used in asymmetric synthesis in organic chemistry. Weak inhibitor of serotonin transporter (SERT) with Kis of 330, 4.2, 36, 196, 15 μM for dSERT, hSERT, hSERT I172M, hSERT S438T, hSERT Y95F, respectively. Antimalarial activities[1]. Cinchonidine (α-Quinidine) is a cinchona alkaloid found in Cinchona officinalis and Gongronema latifolium. A building block used in asymmetric synthesis in organic chemistry. Weak inhibitor of serotonin transporter (SERT) with Kis of 330, 4.2, 36, 196, 15 μM for dSERT, hSERT, hSERT I172M, hSERT S438T, hSERT Y95F, respectively. Antimalarial activities[1]. Cinchonine is a natural compound present in Cinchona bark. Cinchonine activates endoplasmic reticulum stress-induced apoptosis in human liver cancer cells[1]. Cinchonine is a natural compound present in Cinchona bark. Cinchonine activates endoplasmic reticulum stress-induced apoptosis in human liver cancer cells[1].

   

Pimelic acid

1,5-Pentanedicarboxylic acid

C7H12O4 (160.0736)


Pimelic acid, also known as heptanedioic acid is a dicarboxylic acid. Derivatives of pimelic acid are involved in the biosynthesis of the amino acid called lysine. Pimelic acid is one methylene longer than a related dicarboxylic acid, adipic acid, a precursor to many polyesters and polyamides. Pimelic acid is essential for the synthesis of biotin (also called vitamin B7). Biotin is a heterocyclic, S-containing monocarboxylic acid that is made from two precursors, alanine and pimeloyl-CoA. Biotin is important in fatty acid synthesis, branched-chain amino acid catabolism, and gluconeogenesis. Biotin is found in a wide range of foods. Likewise, intestinal bacteria synthesize biotin, which is then absorbed by the host animal. Pimelic acid (which is the precursor for pimeloyl-CoA) is synthesized in many bacteria via a head-to-tail incorporation of acetate units through a modified fatty acid synthetic pathway using O-methyl esters disguised to resemble the canonical intermediates of the fatty acid synthetic pathway (PMID:21435937). Some bacteria and yeast synthesize pimelic acid not by biosynthesis, but via cleavage of longer chain fatty acids (such as linolenic acid) via a cytochrome P450-like enzyme (PMID:28196402, 21435937, 3236079). Pimelic acid is excreted in elevated amounts in the urine of individuals with mitochondrial beta-oxidation disorders and peroxisomal beta oxidation disorders (PMID:1527989) A group of compounds that are derivatives of heptanedioic acid with the general formula R-C7H11O4. KEIO_ID P063 Pimelic acid is the organic compound and its derivatives are involved in the biosynthesis of the amino acid called lysine. Pimelic acid is the organic compound and its derivatives are involved in the biosynthesis of the amino acid called lysine.

   

8-HETE

(5Z,9E,11Z,14Z)-(8S)-8-Hydroxyeicosa-5,9,11,14-tetraenoic acid

C20H32O3 (320.2351)


8(S)-HETE is a naturally occurring hydroxyeicosatetraenoic acid eicosanoid. 8(S)-HETE is a strong activator of peroxisome proliferator-activated receptors (PPARs) alpha and a weak activator of PPAR gamma. PPARs are nuclear hormone receptors that regulate gene transcription in response to peroxisome proliferators and fatty acids. PPARs also play an important role in the regulation of adipocyte differentiation. It is unclear however what naturally occurring compounds activate each of the PPAR subtypes. Additionally, 8(S)-HETE is able to induce differentiation of preadipocytes. (PMID: 7592593, 9113987) [HMDB] 8(S)-HETE is a naturally occurring hydroxyeicosatetraenoic acid eicosanoid. 8(S)-HETE is a strong activator of peroxisome proliferator-activated receptors (PPARs) alpha and a weak activator of PPAR gamma. PPARs are nuclear hormone receptors that regulate gene transcription in response to peroxisome proliferators and fatty acids. PPARs also play an important role in the regulation of adipocyte differentiation. It is unclear however what naturally occurring compounds activate each of the PPAR subtypes. Additionally, 8(S)-HETE is able to induce differentiation of preadipocytes. (PMID: 7592593, 9113987).

   

Mannitol 1-phosphate

{[(2R,3R,4R,5R)-2,3,4,5,6-pentahydroxyhexyl]oxy}phosphonic acid

C6H15O9P (262.0454)


Mannitol-1-phosphate is a sugar alcohol. Mannitol-1-phosphate dehydrogenase, (EC 1.1.1.17) reduces fructose 6-phosphate into mannitol 1-phosphate, in the mannitol cycle of organisms such as Lactobacillus plantarum, a lactic acid bacterium found in many fermented food products and in the gastrointestinal tract of mammals. Mannitol-1-phosphate is also produced in many organisms that have a range of biological interactions with humans: parasitic, mutualism, or commensalism (Examples. A. niger; A. parasiticus; B. subtilis; C. difficile; E. faecalis; E. coli; K. pneumoniae; L. salivarius; M. hyopneumoniae; M. mycoides; M. pneumoniae; P. multocida; S. typhi; S. typhimurium; S. aureus; S. pneumoniae; V. cholerae; V. parahaemolyticus; Y. pestis). [HMDB] Mannitol 1-phosphate is a sugar alcohol. Mannitol 1-phosphate dehydrogenase (EC 1.1.1.17) reduces fructose 6-phosphate into mannitol 1-phosphate in the gastrointestinal tract of mammals and the mannitol cycle of organisms such as Lactobacillus plantarum, a lactic acid bacterium found in many fermented food products. Mannitol 1-phosphate is also produced in many organisms that have a range of biological interactions with humans (e.g. A. niger, A. parasiticus, B. subtilis, C. difficile, E. faecalis, E. coli, K. pneumoniae, L. salivarius, M. hyopneumoniae, M. mycoides, M. pneumoniae, P. multocida, S. typhi, S. typhimurium, S. aureus, S. pneumoniae, V. cholerae, V. parahaemolyticus, Y. pestis). KEIO_ID M011

   

Sedoheptulose 7-phosphate

[(2R,3R,4R,5S)-2,3,4,5,7-pentahydroxy-6-oxoheptyl] dihydrogen phosphate

C7H15O10P (290.0403)


KEIO_ID S083

   

Albendazole sulfone

N-[6-(Propane-1-sulphonyl)-1H-1,3-benzodiazol-2-yl]methoxycarboximidic acid

C12H15N3O4S (297.0783)


Albendazole sulfone is a metabolite of albendazole. Albendazole, marketed as Albenza, Eskazole, Zentel, Andazol and Alworm, is a member of the benzimidazole compounds used as a drug indicated for the treatment of a variety of worm infestations. Although this use is widespread in the United States, the U.S. Food and Drug Administration (FDA) has not approved albendazole for this indication. It is marketed by Amedra Pharmaceuticals. Albendazole was first discovered at the SmithKline Animal Health Laboratories in 1972. (Wikipedia) D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics CONFIDENCE standard compound; EAWAG_UCHEM_ID 3647 CONFIDENCE standard compound; INTERNAL_ID 1059

   

Fentrazamide

4-(2-chlorophenyl)-N-cyclohexyl-N-ethyl-5-oxo-4,5-dihydro-1H-1,2,3,4-tetrazole-1-carboxamide

C16H20ClN5O2 (349.1305)


   

Lincomycin

(4R)-N-[(1R,2R)-2-hydroxy-1-[(2R,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(methylsulfanyl)oxan-2-yl]propyl]-1-methyl-4-propylpyrrolidine-2-carboxamide

C18H34N2O6S (406.2137)


Lincomycin is only found in individuals that have used or taken this drug. It is an antibiotic produced by Streptomyces lincolnensis var. lincolnensis. It has been used in the treatment of staphylococcal, streptococcal, and Bacteroides fragilis infections. [PubChem]Lincomycin inhibits protein synthesis in susceptible bacteria by binding to the 50 S subunits of bacterial ribosomes and preventing peptide bond formation upon transcription. It is usually considered bacteriostatic, but may be bactericidal in high concentrations or when used against highly susceptible organisms. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01F - Macrolides, lincosamides and streptogramins > J01FF - Lincosamides D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D055231 - Lincosamides D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors C784 - Protein Synthesis Inhibitor > C82922 - Lincosamide Antibiotic C254 - Anti-Infective Agent > C258 - Antibiotic

   

Oxyphenbutazone

3,5-Dioxo-1-phenyl-2-(p-hydroxyphenyl)-4-N-butylpyrazolidene

C19H20N2O3 (324.1474)


M - Musculo-skeletal system > M02 - Topical products for joint and muscular pain > M02A - Topical products for joint and muscular pain > M02AA - Antiinflammatory preparations, non-steroids for topical use M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AA - Butylpyrazolidines S - Sensory organs > S01 - Ophthalmologicals > S01B - Antiinflammatory agents > S01BC - Antiinflammatory agents, non-steroids C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Oxyphenbutazone is a Phenylbutazone (HY-B0230) metabolite, with anti-inflammatory effect. Oxyphenbutazone is an orally active non-selective COX inhibitor. Oxyphenbutazone selectively kills non-replicating Mycobaterium tuberculosis[1][2].

   

Tetraethyl pyrophosphate

Diethyl [(diethoxyphosphoryl)oxy]phosphonic acid

C8H20O7P2 (290.0684)


C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor

   

tropinone

8-methyl-8-azabicyclo[3.2.1]octan-3-one

C8H13NO (139.0997)


Tropinone, also known as 3-tropanone, is a member of the class of compounds known as tropane alkaloids. Tropane alkaloids are organic compounds containing the nitrogenous bicyclic alkaloid parent N-Methyl-8-azabicyclo[3.2.1]octane. Tropinone is soluble (in water) and an extremely weak acidic compound (based on its pKa). Tropinone can be found in a number of food items such as walnut, japanese persimmon, komatsuna, and chicory roots, which makes tropinone a potential biomarker for the consumption of these food products. Tropinone is an alkaloid, famously synthesised in 1917 by Robert Robinson as a synthetic precursor to atropine, a scarce commodity during World War I. Tropinone and the alkaloids cocaine and atropine all share the same tropane core structure. Its corresponding conjugate acid at pH 7.3 major species is known as tropiniumone . KEIO_ID T061 Tropinone, an alkaloid, acts as a synthetic intermediate to?Atropine[1].

   

(S)-2-Propylpiperidine

coniine hydrochloride, (+-)-isomer

C8H17N (127.1361)


(S)-2-Propylpiperidine is found in black elderberry. (S)-2-Propylpiperidine is an alkaloid of Amorphophalus rivieri (devils tongue Alkaloid of Amorphophalus rivieri (devils tongue). (S)-2-Propylpiperidine is found in pomegranate and black elderberry.

   

Phenylpropanolamine

(1S,2R)-2-amino-1-phenylpropan-1-ol

C9H13NO (151.0997)


Phenylpropanolamine is a sympathomimetic that acts mainly by causing release of norepinephrine but also has direct agonist activity at some adrenergic receptors. It is most commonly used as a nasal vasoconstrictor and an appetite depressant. -- Pubchem [HMDB] Phenylpropanolamine is a sympathomimetic that acts mainly by causing release of norepinephrine but also has direct agonist activity at some adrenergic receptors. It is most commonly used as a nasal vasoconstrictor and an appetite depressant. -- Pubchem. R - Respiratory system > R01 - Nasal preparations > R01B - Nasal decongestants for systemic use > R01BA - Sympathomimetics D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D019141 - Respiratory System Agents > D014663 - Nasal Decongestants D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents D019440 - Anti-Obesity Agents > D001067 - Appetite Depressants CONFIDENCE standard compound; INTERNAL_ID 1547

   

Protriptyline

methyl(3-{tricyclo[9.4.0.0³,⁸]pentadeca-1(15),3,5,7,9,11,13-heptaen-2-yl}propyl)amine

C19H21N (263.1674)


Protriptyline hydrochloride is a dibenzocycloheptene-derivative tricyclic antidepressant (TCA). TCAs are structurally similar to phenothiazines. They contain a tricyclic ring system with an alkyl amine substituent on the central ring. In non-depressed individuals, protriptyline does not affect mood or arousal, but may cause sedation. In depressed individuals, protriptyline exerts a positive effect on mood. TCAs are potent inhibitors of serotonin and norepinephrine reuptake. In addition, TCAs down-regulate cerebral cortical β-adrenergic receptors and sensitize post-synaptic serotonergic receptors with chronic use. The antidepressant effects of TCAs are thought to be due to an overall increase in serotonergic neurotransmission. TCAs also block histamine H1 receptors, α1-adrenergic receptors and muscarinic receptors, which accounts for their sedative, hypotensive and anticholinergic effects (e.g. blurred vision, dry mouth, constipation, urinary retention), respectively. See toxicity section below for a complete listing of side effects. Protriptyline may be used for the treatment of depression. N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AA - Non-selective monoamine reuptake inhibitors D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent > C94727 - Tricyclic Antidepressant D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D049990 - Membrane Transport Modulators

   

Pirbuterol

2-Hydroxymethyl-3-hydroxy-6-(1-hydroxy-2-tert-butylamino ethyl)pyridine, dihydrochloride

C12H20N2O3 (240.1474)


Pirbuterol is a beta-2 adrenergic bronchodilator. In vitro studies and in vivo pharmacologic studies have demonstrated that pirbuterol has a preferential effect on beta-2 Adrenergic receptors compared with isoproterenol. While it is recognized that beta-2 adrenergic receptors are the predominant receptors in bronchial smooth muscle, data indicate that there is a population of beta-2 receptors in the human heart, existing in a concentration between 10-50\\%. The precise function of these receptors has not been established. The pharmacologic effects of beta adrenergic agonist drugs, including pirbuterol, are at least in proof attributable to stimulation through beta adrenergic receptors of intracellular adenyl cyclase, the enzyme which catalyzes the conversion of adenosine triphosphate (AlP) to cyclic-3† ,5†-adenosine monophosphate (c-AMP). Increased c-AMP levels are associated with relaxation of bronchial smooth muscle and inhibition of release of mediators of immediate hypersensitivity from cells, especially from mast cells. R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03C - Adrenergics for systemic use > R03CC - Selective beta-2-adrenoreceptor agonists R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03A - Adrenergics, inhalants > R03AC - Selective beta-2-adrenoreceptor agonists D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents C78273 - Agent Affecting Respiratory System > C29712 - Anti-asthmatic Agent > C319 - Bronchodilator C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents D020011 - Protective Agents > D002316 - Cardiotonic Agents D002317 - Cardiovascular Agents

   

4-Chlorophenoxyacetic acid

4-Chlorophenoxyacetic acid, potassium salt

C8H7ClO3 (186.0084)


CONFIDENCE standard compound; INTERNAL_ID 1191; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3757; ORIGINAL_PRECURSOR_SCAN_NO 3752 CONFIDENCE standard compound; INTERNAL_ID 1191; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3829; ORIGINAL_PRECURSOR_SCAN_NO 3825 CONFIDENCE standard compound; INTERNAL_ID 1191; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4159; ORIGINAL_PRECURSOR_SCAN_NO 4154 CONFIDENCE standard compound; INTERNAL_ID 1191; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3737; ORIGINAL_PRECURSOR_SCAN_NO 3736 CONFIDENCE standard compound; INTERNAL_ID 1191; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4074; ORIGINAL_PRECURSOR_SCAN_NO 4072 CONFIDENCE standard compound; INTERNAL_ID 1191; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4080; ORIGINAL_PRECURSOR_SCAN_NO 4076 KEIO_ID C151

   

bas 320i

Pesticide4_Metaflumizone_C24H16F6N4O2_(2E)-2-{2-(4-Cyanophenyl)-1-[3-(trifluoromethyl)phenyl]ethylidene}-N-[4-(trifluoromethoxy)phenyl]hydrazinecarboxamide

C24H16F6N4O2 (506.1177)


   

Nafcillin

(2S,5R,6R)-6-{[(2-ethoxynaphthalen-1-yl)carbonyl]amino}-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid

C21H22N2O5S (414.1249)


Nafcillin is only found in individuals that have used or taken this drug. It is a semi-synthetic antibiotic related to penicillin. [PubChem]Penicillinase-resistant penicillins exert a bactericidal action against penicillin-susceptible microorganisms during the state of active multiplication. All penicillins inhibit the biosynthesis of the bacterial cell wall. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01C - Beta-lactam antibacterials, penicillins > J01CF - Beta-lactamase resistant penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic CONFIDENCE standard compound; EAWAG_UCHEM_ID 3206

   

Propazine

6-chloro-N2,N4-bis(propan-2-yl)-1,3,5-triazine-2,4-diamine

C9H16ClN5 (229.1094)


CONFIDENCE standard compound; INTERNAL_ID 842; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8960; ORIGINAL_PRECURSOR_SCAN_NO 8958 INTERNAL_ID 842; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8960; ORIGINAL_PRECURSOR_SCAN_NO 8958 CONFIDENCE standard compound; INTERNAL_ID 842; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9098; ORIGINAL_PRECURSOR_SCAN_NO 9096 CONFIDENCE standard compound; INTERNAL_ID 842; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8923; ORIGINAL_PRECURSOR_SCAN_NO 8922 CONFIDENCE standard compound; INTERNAL_ID 842; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8943; ORIGINAL_PRECURSOR_SCAN_NO 8941 CONFIDENCE standard compound; INTERNAL_ID 842; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9124; ORIGINAL_PRECURSOR_SCAN_NO 9123 CONFIDENCE standard compound; INTERNAL_ID 842; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8882; ORIGINAL_PRECURSOR_SCAN_NO 8880 CONFIDENCE standard compound; EAWAG_UCHEM_ID 2741 D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

Picloram

4-Amino-3,5,6-trichloropyridine-2-carboxylic acid

C6H3Cl3N2O2 (239.926)


CONFIDENCE standard compound; INTERNAL_ID 227; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2943; ORIGINAL_PRECURSOR_SCAN_NO 2939 CONFIDENCE standard compound; INTERNAL_ID 227; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2946; ORIGINAL_PRECURSOR_SCAN_NO 2942 CONFIDENCE standard compound; INTERNAL_ID 227; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2930; ORIGINAL_PRECURSOR_SCAN_NO 2927 CONFIDENCE standard compound; INTERNAL_ID 227; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3021; ORIGINAL_PRECURSOR_SCAN_NO 3019 CONFIDENCE standard compound; INTERNAL_ID 227; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2942; ORIGINAL_PRECURSOR_SCAN_NO 2939 CONFIDENCE standard compound; INTERNAL_ID 227; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2945; ORIGINAL_PRECURSOR_SCAN_NO 2941 D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

Dihydromorphine

(1S,5R,13R,14S,17R)-4-methyl-12-oxa-4-azapentacyclo[9.6.1.0^{1,13}.0^{5,17}.0^{7,18}]octadeca-7(18),8,10-triene-10,14-diol

C17H21NO3 (287.1521)


Dihydromorphine is a metabolite of Hydromorphone. Dihydromorphine is a semi-synthetic opioid structurally related to and derived from morphine. The 7,8-double bond in morphine is reduced to a single bond to get dihydromorphine. (Wikipedia) D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics

   

THIODICARB

N,N-(Thiobis((methylimino)carbonyloxy))bisethanimidothioic acid dimethyl ester

C10H18N4O4S3 (354.049)


CONFIDENCE standard compound; INTERNAL_ID 457; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8163; ORIGINAL_PRECURSOR_SCAN_NO 8160 CONFIDENCE standard compound; INTERNAL_ID 457; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8215; ORIGINAL_PRECURSOR_SCAN_NO 8210 CONFIDENCE standard compound; INTERNAL_ID 457; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8251; ORIGINAL_PRECURSOR_SCAN_NO 8248 CONFIDENCE standard compound; INTERNAL_ID 457; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8269; ORIGINAL_PRECURSOR_SCAN_NO 8264

   

(3R,4R,5R)-1,3,4,5,6-Pentahydroxyhexan-2-one

(3R,4R,5R)-1,3,4,5,6-Pentahydroxyhexan-2-one

C6H12O6 (180.0634)


   

3,3'-Dimethylbenzidine

3,3-dimethyl-[1,1-biphenyl]-4,4-diamine

C14H16N2 (212.1313)


CONFIDENCE standard compound; INTERNAL_ID 2434

   

Fonofos

Dyphonate

C10H15OPS2 (246.0302)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals CONFIDENCE standard compound; EAWAG_UCHEM_ID 3112

   

Tyrosine methylester

2-Amino-3-(4-hydroxy-phenyl)-propionic acid methyl ester

C10H13NO3 (195.0895)


Tyrosine methylester, also known as Tyrosine methyl ester hydrochloride, (L)-isomer or Tyr-ome, is classified as a tyrosine or a Tyrosine derivative. Tyrosines are compounds containing tyrosine or a derivative thereof resulting from reaction of tyrosine at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. Tyrosine methylester is considered to be a slightly soluble (in water) and a very weak acidic compound. Tyrosine methylester can be found in humans. KEIO_ID T032 H-Tyr-OMe, an amino acid, is an endogenous metabolite[1].

   

Tamsulosin

5-[(2R)-2-{[2-(2-ethoxyphenoxy)ethyl]amino}propyl]-2-methoxybenzene-1-sulfonamide

C20H28N2O5S (408.1719)


Tamsulosin is a selective antagonist at alpha-1A and alpha-1B-adrenoceptors in the prostate, prostatic capsule, prostatic urethra, and bladder neck. At least three discrete alpha1-adrenoceptor subtypes have been identified: alpha-1A, alpha-1B and alpha-1D; their distribution differs between human organs and tissue. Approximately 70\\\% of the alpha1-receptors in human prostate are of the alpha-1A subtype. Blockage of these receptors causes relaxation of smooth muscles in the bladder neck and prostate. G - Genito urinary system and sex hormones > G04 - Urologicals > G04C - Drugs used in benign prostatic hypertrophy > G04CA - Alpha-adrenoreceptor antagonists C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D000089162 - Genitourinary Agents > D064804 - Urological Agents Tamsulosin ((R)-(-)-YM12617 free base) is an inhibitor of α1-adrenergic receptor. Tamsulosin is used for the research of prostatic hyperplasia. Tamsulosin attenuates abdominal aortic aneurysm growth in animal models[1].

   

Tetrahydrocorticosterone

1-[(1S,2S,5R,7R,10S,11S,14S,15S,17S)-5,17-dihydroxy-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-14-yl]-2-hydroxyethan-1-one

C21H34O4 (350.2457)


Tetrahydrocorticosterone belongs to the class of organic compounds known as 21-hydroxysteroids. These are steroids carrying a hydroxyl group at the 21-position of the steroid backbone. Thus, tetrahydrocorticosterone is considered to be a steroid lipid molecule. Tetrahydrocorticosterone is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Tetrahydrocorticosterone is one of the major urinary metabolites from corticosterone. Premenopausal patients with early breast cancer excrete subnormal amounts of tetrahydrocorticosterone as compared with the normal subjects of corresponding ages (PMID: 1133844). D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

Promazine

N-Dimethylamino-1-methylethyl thiodiphenylamine

C17H20N2S (284.1347)


Promazine is only found in individuals that have used or taken this drug. It is a phenothiazine with actions similar to chlorpromazine but with less antipsychotic activity. It is primarily used in short-term treatment of disturbed behavior and as an antiemetic. [PubChem]Promazine is an antagonist at types 1, 2, and 4 dopamine receptors, 5-HT receptor types 2A and 2C, muscarinic receptors 1 through 5, alpha(1)-receptors, and histamine H1-receptors. Promazines antipsychotic effect is due to antagonism at dopamine and serotonin type 2 receptors, with greater activity at serotonin 5-HT2 receptors than at dopamine type-2 receptors. This may explain the lack of extrapyramidal effects. Promazine does not appear to block dopamine within the tubero-infundibular tract, explaining the lower incidence of hyperprolactinemia than with typical antipsychotic agents or risperidone. Antagonism at muscarinic receptors, H1-receptors, and alpha(1)-receptors also occurs with promazine. N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AA - Phenothiazines with aliphatic side-chain D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent > C740 - Phenothiazine D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent D005765 - Gastrointestinal Agents > D000932 - Antiemetics

   

Fenoprofen

calcium(-1) anion; 2-(3-phenoxyphenyl)propanoate

C15H14O3 (242.0943)


Fenoprofen is only found in individuals that have used or taken this drug. It is an anti-inflammatory analgesic and antipyretic highly bound to plasma proteins. It is pharmacologically similar to aspirin, but causes less gastrointestinal bleeding. [PubChem]Fenoprofens exact mode of action is unknown, but it is thought that prostaglandin synthetase inhibition is involved. Fenoprofen has been shown to inhibit prostaglandin synthetase isolated from bovine seminal vesicles. M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AE - Propionic acid derivatives D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor D000893 - Anti-Inflammatory Agents D004791 - Enzyme Inhibitors

   

5-(8-Pentadecenyl)-1,3-benzenediol

5-[(8E)-pentadec-8-en-1-yl]benzene-1,3-diol

C21H34O2 (318.2559)


5-(8-Pentadecenyl)-1,3-benzenediol is found in cashew nut. 5-(8-Pentadecenyl)-1,3-benzenediol is isolated from Ginkgo biloba (ginkgo) fruit Isolated from Ginkgo biloba (ginkgo) fruits. 5-(8-Pentadecenyl)-1,3-benzenediol is found in cashew nut, ginkgo nuts, and fats and oils.

   

4-Methylumbelliferyl acetate

7-(Acetyloxy)-4-methyl-2H-1-benzopyran-2-one

C12H10O4 (218.0579)


Isolated from fenugreek (Trigonella foenum-graecum). 4-Methylumbelliferyl acetate is found in herbs and spices, green vegetables, and fenugreek. 4-Methylumbelliferyl acetate is found in fenugreek. 4-Methylumbelliferyl acetate is isolated from fenugreek (Trigonella foenum-graecum).

   

20alpha-Dihydroprogesterone

(1S,2R,10S,11S,14S,15S)-14-[(1S)-1-hydroxyethyl]-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-6-en-5-one

C21H32O2 (316.2402)


20alpha-Dihydroprogesterone is a biologically active 20-alpha-reduced metabolite of progesterone. It is converted from progesterone to 20-alpha-hydroxypregn-4-en-3-one by the 20-alpha-hydroxysteroid dehydrogenase in the corpus luteum and the placenta. Progesterone is a C-21 steroid hormone involved in the female menstrual cycle, pregnancy (supports gestation), and embryogenesis of humans and other species. Progesterone belongs to a class of hormones called progestagens, and is the major naturally occurring human progestagen (Wikipedia). During implantation and gestation, progesterone appears to decrease the maternal immune response to allow for the acceptance of the pregnancy. Progesterone decreases contractility of the uterine smooth muscle. The fetus metabolizes placental progesterone in the production of adrenal mineralo- and glucosteroids. A drop in progesterone levels is possibly one step that facilitates the onset of labour. In addition, progesterone inhibits lactation during pregnancy. The fall in progesterone levels following delivery is one of the triggers for milk production (Wikipedia). A biologically active 20-alpha-reduced metabolite of progesterone. It is converted from progesterone to 20-alpha-hydroxypregn-4-en-3-one by the 20-alpha-hydroxysteroid dehydrogenase in the corpus luteum and the placenta. -- Pubchem; Progesterone is a C-21 steroid hormone involved in the female menstrual cycle, pregnancy (supports gestation) and embryogenesis of humans and other species. Progesterone belongs to a class of hormones called progestagens, and is the major naturally occurring human progestagen. -- Wikipedia; During implantation and gestation, progesterone appears to decrease the maternal immune response to allow for the acceptance of the pregnancy. Progesterone decreases contractility of the uterine smooth muscle. The fetus metabolizes placental progesterone in the production of adrenal mineralo- and glucosteroids. A drop in progesterone levels is possibly one step that facilitates the onset of labor. In addition progesterone inhibits lactation during pregnancy. The fall in progesterone levels following delivery is one of the triggers for milk production. -- Wikipedia [HMDB] D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D011372 - Progestins

   

Minopentol

Aminopentol

C22H47NO5 (405.3454)


   

N-NITROSOMORPHOLINE

alpha-Acetoxy-N-nitrosomorpholine

C4H8N2O2 (116.0586)


CONFIDENCE standard compound; EAWAG_UCHEM_ID 3454 CONFIDENCE standard compound; INTERNAL_ID 4127 CONFIDENCE standard compound; INTERNAL_ID 8689 D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens

   

Anthraflavin

2,6-DIHYDROXY-ANTHRAQUINONE

C14H8O4 (240.0423)


A dihydroxyanthraquinone that is anthracene substituted by hydroxy groups at C-3 and C-7 and oxo groups at C-9 and C-10. CONFIDENCE standard compound; INTERNAL_ID 8171

   

Tetrachlorosalicylanilide

2-Hydroxy-3,4,5,6-tetrachlorobenzanilide

C13H7Cl4NO2 (348.9231)


CONFIDENCE standard compound; INTERNAL_ID 2369 D004791 - Enzyme Inhibitors CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 8640 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 8243

   

Hydrocortisoni acetas

11beta,17,21-trihydroxypregn-4-ene-3,20-dione, 21-acetate

C23H32O6 (404.2199)


C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones D000893 - Anti-Inflammatory Agents Hydrocortisone acetate is a corticosteroid used to reduce swelling, itching and pain caused by minor skin irritations or hemorrhoids.

   

1,2-CYCLOHEXANEDIOL

(1R,2R)-2-AMINO-CYCLOPETANECARBOXYLICACIDHYDROCHLORIDESALT

C6H12O2 (116.0837)


trans-Cyclohexane-1,2-diol is an endogenous metabolite.

   

2-Phenylacetamide

(alpha-)2-Phenylacetamide

C8H9NO (135.0684)


2-Phenylacetamide is an intermediate in phenylalanine metabolism and styrene degradation(KEGG ID C02505). It is the third to last step in the synthesis of phenylacetylglutamine and is converted from phenylalanine via the enzyme phenylalanine 2-monooxygenase [EC:1.13.12.9]. It is then converted to phenylacetate via the enzyme amidase [EC:3.5.1.4]. [HMDB] 2-Phenylacetamide is an intermediate in phenylalanine metabolism and styrene degradation(KEGG ID C02505). It is the third to last step in the synthesis of phenylacetylglutamine and is converted from phenylalanine via the enzyme phenylalanine 2-monooxygenase [EC:1.13.12.9]. It is then converted to phenylacetate via the enzyme amidase [EC:3.5.1.4]. 2-Phenylacetamide is an endogenous metabolite.

   

4-Hydroxyquinoline

1,4-dihydroquinolin-4-one

C9H7NO (145.0528)


CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 53 CONFIDENCE standard compound; INTERNAL_ID 2492 KEIO_ID H139

   

bestatin

(2R)-2-[[(2S,3R)-3-Amino-2-hydroxy-4-phenyl-butanoyl]amino]-4-methyl-pentanoic acid

C16H24N2O4 (308.1736)


KEIO_ID B018; [MS2] KO009090 KEIO_ID B018 Bestatin is a natural, broad-spectrum, and competitive CD13 (Aminopeptidase N)/APN and leukotriene A4 hydrolase inhibitor. Bestatin has anticancer effects[1][2].

   

N-(3-Methylbut-2-EN-1-YL)-9H-purin-6-amine

(3-Methyl-but-2-enyl)-(7(9)H-purin-6-yl)-amine

C10H13N5 (203.1171)


N6-prenyladenine, also known as isopentenyladenine or ip, is a member of the class of compounds known as 6-alkylaminopurines. 6-alkylaminopurines are compounds that contain an alkylamine group attached at the 6-position of a purine. Purine is a bicyclic aromatic compound made up of a pyrimidine ring fused to an imidazole ring. N6-prenyladenine is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). N6-prenyladenine can be found in a number of food items such as lime, lemon thyme, nectarine, and napa cabbage, which makes n6-prenyladenine a potential biomarker for the consumption of these food products. D006133 - Growth Substances > D010937 - Plant Growth Regulators > D003583 - Cytokinins Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 74 6-(γ,γ-Dimethylallylamino)purine is a plant growth substance. 6-(γ,γ-Dimethylallylamino)purine is a plant growth substance.

   

Homoserine, O-succinyl-

Homoserine, O-succinyl-

C8H13NO6 (219.0743)


Acquisition and generation of the data is financially supported in part by CREST/JST.

   

TES (buffer)

N-Tris[hydroxymethyl]methyl-2-aminoethanesulfonic acid [TES]

C6H15NO6S (229.062)


   

1-Hydroxy-2-naphthoic acid

1-Hydroxy-2-naphthoic acid, monosodium salt

C11H8O3 (188.0473)


1-Hydroxy-2-naphthoic acid is an endogenous metabolite.

   

3-Methylcatechol

3-methylbenzene-1,2-diol

C7H8O2 (124.0524)


3-methylcatechol, also known as 2,3-dihydroxytoluene or 2,3-toluenediol, is a member of the class of compounds known as catechols. Catechols are compounds containing a 1,2-benzenediol moiety. 3-methylcatechol is soluble (in water) and a very weakly acidic compound (based on its pKa). 3-methylcatechol can be found in arabica coffee, beer, cocoa powder, and coffee, which makes 3-methylcatechol a potential biomarker for the consumption of these food products. 3-methylcatechol is a chemical compound . 3-Methylcatechol is a building block in the chemical synthesis produced by Pseudomonas putida MC2[1]. 3-Methylcatechol is a building block in the chemical synthesis produced by Pseudomonas putida MC2[1].

   

L-3-Cyanoalanine

(2S)-2-Amino-3-cyanopropionic acid

C4H6N2O2 (114.0429)


3-cyano-l-alanine, also known as L-beta-cyanoalanine or 3-cyanoalanine, (D)-isomer, is a member of the class of compounds known as L-alpha-amino acids. L-alpha-amino acids are alpha amino acids which have the L-configuration of the alpha-carbon atom. 3-cyano-l-alanine is soluble (in water) and an extremely strong acidic compound (based on its pKa). 3-cyano-l-alanine can be found in a number of food items such as conch, abiyuch, rubus (blackberry, raspberry), and lemon thyme, which makes 3-cyano-l-alanine a potential biomarker for the consumption of these food products. 3-cyano-l-alanine exists in all living organisms, ranging from bacteria to humans. L-3-Cyanoalanine, also known as L-beta-cyanoalanine, belongs to the class of organic compounds known as L-alpha-amino acids. These are alpha-amino acids which have the L-configuration of the alpha-carbon atom. L-3-Cyanoalanine is a very strong basic compound (based on its pKa). L-3-Cyanoalanine exists in all living organisms, ranging from bacteria to humans. Outside of the human body, L-3-cyanoalanine has been detected, but not quantified in, several different foods, such as summer savouries, orange bell peppers, red rices, mixed nuts, and green bell peppers. This could make L-3-cyanoalanine a potential biomarker for the consumption of these foods.

   

4-Methoxyglucobrassicin

4-Methoxy-3-indolylmethyl glucosinolate

C17H22N2O10S2 (478.0716)


An indolylmethylglucosinolic acid that is glucobrassicin bearing a methoxy substituent at position 4 on the indole ring.

   

Benzo[k]fluoranthene

pentacyclo[10.7.1.0^{2,11}.0^{4,9}.0^{16,20}]icosa-1(19),2,4,6,8,10,12,14,16(20),17-decaene

C20H12 (252.0939)


   

Endrin

3,4,5,6,9,9-hexachloro-1a,2,2a,3,6,6a,7,7a-octahydro-2,7:3,6-Dimethanonaph[2,3-b]oxirene, 9ci

C12H8Cl6O (377.8706)


Endrin has been found as a contaminant throughout the environment, including foodstuffs, fish, human milk, etc Has been found as a contaminant throughout the environment, including foodstuffs, fish, human milk, etc.

   

N-Acetyl-D-Glucosamine 6-Phosphate

{[(2R,3S,4R,5R)-5-acetamido-3,4,6-trihydroxyoxan-2-yl]methoxy}phosphonic acid

C8H16NO9P (301.0563)


N-Acetyl-D-Glucosamine 6-Phosphate is an intermediate in the metabolism of Aminosugars. It is a substrate for Glucosamine 6-phosphate N-acetyltransferase. [HMDB] N-Acetyl-D-Glucosamine 6-Phosphate is an intermediate in the metabolism of Aminosugars. It is a substrate for Glucosamine 6-phosphate N-acetyltransferase. KEIO_ID A144

   

3,5-Dinitrosalicylic acid

3,5-Dinitrosalicylic acid, monopotassium salt

C7H4N2O7 (228.0019)


D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates KEIO_ID D050

   

D-ribulose-1,5-bisphosphate

{[(3R,4R)-3,4-dihydroxy-2-oxo-5-(phosphonooxy)pentyl]oxy}phosphonic acid

C5H12O11P2 (309.9855)


D-ribulose-1,5-bisphosphate, also known as ribulose-1,5-diphosphoric acid or ribulose-1,5 diphosphate, (D)-isomer, is a member of the class of compounds known as pentose phosphates. Pentose phosphates are carbohydrate derivatives containing a pentose substituted by one or more phosphate groups. D-ribulose-1,5-bisphosphate is soluble (in water) and a moderately acidic compound (based on its pKa). D-ribulose-1,5-bisphosphate can be found in a number of food items such as bamboo shoots, bog bilberry, chestnut, and other cereal product, which makes D-ribulose-1,5-bisphosphate a potential biomarker for the consumption of these food products. D-ribulose-1,5-bisphosphate may be a unique E.coli metabolite. Ribulose 1,5-bisphosphate (RuBP) is an organic substance that is involved in photosynthesis. It is a colourless anion, a double phosphate ester of the ketopentose (ketone-containing sugar with five carbon atoms) called ribulose. Salts of RuBP can be isolated, but its crucial biological function happens in solution. To simplify the presentation, the image in the above table depicts the acid form of this anion . KEIO_ID R005

   

3-Amino-1,2-propanediol

(S)-3-Amino-1,2-propanediol

C3H9NO2 (91.0633)


KEIO_ID A046

   

Sissotrin

5-hydroxy-3-(4-methoxyphenyl)-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4H-chromen-4-one

C22H22O10 (446.1213)


Sissotrin is found in chickpea. Sissotrin is a constituent of Cicer arietinum (chickpea). Constituent of Cicer arietinum (chickpea). Biochanin A 7-glucoside is found in chickpea. Acquisition and generation of the data is financially supported in part by CREST/JST.

   

(3S,6E)-Nerolidol

(S-(e))-3,7,11-Trimethyldodeca-1,6,10-trien-3-ol

C15H26O (222.1984)


(3S,6E)-Nerolidol, also known as nerolidol or peruviol, belongs to the class of organic compounds known as sesquiterpenoids. These are terpenes with three consecutive isoprene units. Thus, (3S,6E)-nerolidol is considered to be an isoprenoid lipid molecule. (3S,6E)-Nerolidol is an isomer of nerolidol, a naturally occurring sesquiterpene found in the essential oils of many types of plants and flowers. An isomer of nerolidol, a naturally occurring sesquiterpene found in the essential oils of many types of plants and flowers [Wikipedia] Nerolidol is a natural membrane-active sesquiterpene, with antitumor, antibacterial, antifungal and antiparasitic activity[1]. Nerolidol is a natural membrane-active sesquiterpene, with antitumor, antibacterial, antifungal and antiparasitic activity[1].

   

UDP-L-rhamnose

{[(2R,3S,4R,5R)-3,4-dihydroxy-5-(4-hydroxy-2-oxo-1,2-dihydropyrimidin-1-yl)oxolan-2-yl]methoxy}({[hydroxy({[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy})phosphoryl]oxy})phosphinic acid

C15H24N2O16P2 (550.0601)


UDP-L-rhamnose is synthesized from UDP-D-glucose. [HMDB]. UDP-L-rhamnose is found in many foods, some of which are maitake, orange bell pepper, common mushroom, and horseradish tree. Acquisition and generation of the data is financially supported in part by CREST/JST. UDP-L-rhamnose is synthesized from UDP-D-glucose.

   

6-Hydroxydaidzein

6,7-Dihydroxy-3-(4-hydroxyphenyl)-4H-1-benzopyran-4-one, 9CI

C15H10O5 (270.0528)


6-Hydroxydaidzein is found in pulses. 6-Hydroxydaidzein is isolated from fermented soybeans (Glycine max Isolated from fermented soybeans (Glycine max). 6-Hydroxydaidzein is found in soy bean and pulses.

   

Lufenuron

1-[2,5-dichloro-4-(1,1,2,3,3,3-hexafluoropropoxy)phenyl]-3-[(2,6-difluorophenyl)(hydroxy)methylidene]urea

C17H8Cl2F8N2O3 (509.9784)


CONFIDENCE standard compound; INTERNAL_ID 195; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4912; ORIGINAL_PRECURSOR_SCAN_NO 4910 CONFIDENCE standard compound; INTERNAL_ID 195; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4941; ORIGINAL_PRECURSOR_SCAN_NO 4937 CONFIDENCE standard compound; INTERNAL_ID 195; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4954; ORIGINAL_PRECURSOR_SCAN_NO 4953 CONFIDENCE standard compound; INTERNAL_ID 195; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4964; ORIGINAL_PRECURSOR_SCAN_NO 4962 CONFIDENCE standard compound; INTERNAL_ID 195; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4913; ORIGINAL_PRECURSOR_SCAN_NO 4912 CONFIDENCE standard compound; INTERNAL_ID 195; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4945; ORIGINAL_PRECURSOR_SCAN_NO 4943 D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

2-Naphthoic acid

2-Naphthoic acid, palladium (2+) salt

C11H8O2 (172.0524)


CONFIDENCE standard compound; INTERNAL_ID 48

   

Antheraxanthin A

6-[(1E,3Z,5E,7E,9E,11Z,13E,15E,17E)-18-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]-1,5,5-trimethyl-7-oxabicyclo[4.1.0]heptan-3-ol

C40H56O3 (584.4229)


Antheraxanthin a is a member of the class of compounds known as xanthophylls. Xanthophylls are carotenoids containing an oxygenated carotene backbone. Carotenes are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Carotenes belonging form a subgroup of the carotenoids family. Xanthophylls arise by oxygenation of the carotene backbone. Antheraxanthin a is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Antheraxanthin a can be found in herbs and spices, which makes antheraxanthin a a potential biomarker for the consumption of this food product. Antheraxanthin A is found in herbs and spices. Antheraxanthin A is a constituent of Capsicum fruit; potential nutriceutical D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

Ergokryptine

alpha-Ergocryptine

C32H41N5O5 (575.3108)


D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018491 - Dopamine Agonists

   

chaulmoogric acid

2-Cyclopentene-1-tridecanoicacid, (1S)-

C18H32O2 (280.2402)


A monounsaturated long-chain fatty acid composed of tridecanoic acid having a 2-cyclopentenyl substituent at the 13-position.

   

4-Methoxyflavanone

4-Methoxyflavanone

C16H14O3 (254.0943)


   

Pinoquercetin

2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-6-methyl-4H-chromen-4-one

C16H12O7 (316.0583)


   

Apigenin 7,4'-dimethyl ether

5-hydroxy-7-methoxy-2-(4-methoxyphenyl)-4H-1-benzopyran-4-one

C17H14O5 (298.0841)


Apigenin 7,4-dimethyl ether, also known as apigenin dimethylether or 4,7-dimethylapigenin, belongs to the class of organic compounds known as 7-O-methylated flavonoids. These are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, apigenin 7,4-dimethyl ether is considered to be a flavonoid lipid molecule. Apigenin 7,4-dimethyl ether is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Outside of the human body, apigenin 7,4-dimethyl ether has been detected, but not quantified in, common sages and sweet basils. This could make apigenin 7,4-dimethyl ether a potential biomarker for the consumption of these foods. BioTransformer predicts that apigenin 7,4-dimethyl ether is a product of 4,5,7-trimethoxyflavone metabolism via an O-dealkylation reaction and catalyzed by CYP2C9 and CYP2C19 enzymes (PMID: 30612223). 4-methylgenkwanin, also known as apigenin dimethylether or 4,7-dimethylapigenin, is a member of the class of compounds known as 7-o-methylated flavonoids. 7-o-methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, 4-methylgenkwanin is considered to be a flavonoid lipid molecule. 4-methylgenkwanin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 4-methylgenkwanin can be found in common sage and sweet basil, which makes 4-methylgenkwanin a potential biomarker for the consumption of these food products. The compound 7,4'-Di-O-methylapigenin may be partly responsible for the reported antifungal activity of C. zeyheri, and may serve as a potential source of lead compounds that can be developed as antifungal phytomedicines.And it also showed inhibition of the drug efflux pumps (with IC50 = 51.64 μg/ml). IC50:51.64 μg/ml(Candida albicans drug efflux pumps)[2] In vitro: The isolated 7,4'-Di-O-methylapigenin was further investigated for its inhibitory activity on ABC drug efflux pumps in C. albicans by monitoring an increase in ciprofloxacin, assessing the level of its accumulation, in response to reserpine. There was a higher accumulation of ciprofloxacin in Candida cells in the presence of 7,4'-Di-O-methylapigenin than with reserpine. The compound 7,4'-Di-O-methylapigenine demonstrated the activity in a dose-dependent manner with IC50 value of 51.64 μg/ml. These results support those obtained from synergism assays where by the underlying synergistic antifungal mechanisms could be due to blockage of ABC efflux pumps and increasing the susceptibility of Candida to miconazole.[2] In vivo: In searching for natural products as potential anti-inflammatory agents, 7,4'-Di-O-methylapigenin wasn't evaluated in vivo for its ability to inhibit acute inflammation.[1] The compound 7,4'-Di-O-methylapigenin may be partly responsible for the reported antifungal activity of C. zeyheri, and may serve as a potential source of lead compounds that can be developed as antifungal phytomedicines.And it also showed inhibition of the drug efflux pumps (with IC50 = 51.64 μg/ml). IC50:51.64 μg/ml(Candida albicans drug efflux pumps)[2] In vitro: The isolated 7,4'-Di-O-methylapigenin was further investigated for its inhibitory activity on ABC drug efflux pumps in C. albicans by monitoring an increase in ciprofloxacin, assessing the level of its accumulation, in response to reserpine. There was a higher accumulation of ciprofloxacin in Candida cells in the presence of 7,4'-Di-O-methylapigenin than with reserpine. The compound 7,4'-Di-O-methylapigenine demonstrated the activity in a dose-dependent manner with IC50 value of 51.64 μg/ml. These results support those obtained from synergism assays where by the underlying synergistic antifungal mechanisms could be due to blockage of ABC efflux pumps and increasing the susceptibility of Candida to miconazole.[2] In vivo: In searching for natural products as potential anti-inflammatory agents, 7,4'-Di-O-methylapigenin wasn't evaluated in vivo for its ability to inhibit acute inflammation.[1]

   

lupinine

Octahydro-2H-quinolizin-1-ylmethanol

C10H19NO (169.1467)


relative retention time with respect to 9-anthracene Carboxylic Acid is 0.053 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 41 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 55 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 34 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 19 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 11 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 26 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 4

   

2,6-Dimethoxy-1,4-benzoquinone

3,5-Dimethoxy-1,4-benzoquinone; 3,5-Dimethoxybenzoquinone; NSC 24500

C8H8O4 (168.0423)


2,6-Dimethoxy-1,4-benzoquinone is a natural product found in Diospyros eriantha, Iris milesii, and other organisms with data available. 2,6-Dimethoxyquinone is a methoxy-substituted benzoquinone and bioactive compound found in fermented wheat germ extracts, with potential antineoplastic and immune-enhancing activity. 2,6-Dimethoxyquinone (2,6-DMBQ) inhibits anaerobic glycolysis thereby preventing cellular metabolism and inducing apoptosis. As cancer cells use the anaerobic glycolysis pathway to metabolize glucose and cancer cells proliferate at an increased rate as compared to normal, healthy cells, this agent is specifically cytotoxic towards cancer cells. In addition, 2,6-DMBQ exerts immune-enhancing effects by increasing natural killer (NK) cell and T-cell activity against cancer cells. See also: Acai fruit pulp (part of). 2,6-Dimethoxy-1,4-benzoquinone is found in common wheat. 2,6-Dimethoxy-1,4-benzoquinone is a constituent of bark of Phyllostachys heterocycla var. pubescens (moso bamboo) Constituent of bark of Phyllostachys heterocycla variety pubescens (moso bamboo). 2,6-Dimethoxy-1,4-benzoquinone is found in green vegetables and common wheat. 2,6-Dimethoxy-1,4-benzoquinone, a natural phytochemical, is a known haustorial inducing factor. 2,6-Dimethoxy-1,4-benzoquinone exerts anti-cancer, anti-inflammatory, anti-adipogenic, antibacterial, and antimalaria effects[1]. 2,6-Dimethoxy-1,4-benzoquinone, a natural phytochemical, is a known haustorial inducing factor. 2,6-Dimethoxy-1,4-benzoquinone exerts anti-cancer, anti-inflammatory, anti-adipogenic, antibacterial, and antimalaria effects[1].

   

Shikomol

4-Allylpyrocatechol formaldehyde acetal

C10H10O2 (162.0681)


   

Equilin

Estra-1,3,5(10),7-tetraen-17-one, 3-hydroxy-

C18H20O2 (268.1463)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones Same as: D04041

   

5(S)-Hydroperoxyeicosatetraenoic acid

(6E,8Z,11Z,14Z)-(5S)-5-Hydroperoxyeicosa-6,8,11,14-tetraenoic acid

C20H32O4 (336.23)


5(S)-Hydroperoxyeicosatetraenoic acid is a lipid hydroperoxide precursor of leukotrienes. The first step of biosynthesis of leukotrienes is conversion of arachidonic acid into 5(S)-hydroperoxy-6,8,11,14-(E,Z,Z,Z)-eicosatetraenoic acid [5(S)-HpETE] by 5- lipoxygenases (5-LOX). Lipid hydroperoxides undergo homolytic decomposition into bifunctional electrophiles, which react with DNA bases to form DNA adducts. These DNA modifications are proposed to be involved in the etiology of cancer, cardiovascular disease, and neurodegeneration. 5-LOX, the enzyme responsible for the formation of 5(S)-HpETE in vivo, is expressed primarily in leukocytes, including monocytes and macrophages. Studies have implicated the 5-LOX pathway as an important mediator in the pathology of atherosclerosis. (PMID: 15777099). Endogenously generated 5-hydroperoxyeicosatetraenoic acid is the preferred substrate for human leukocyte leukotriene A4 synthase activity. Thus, the arachidonic acid moiety is preferentially converted to LTA4 in a concerted reaction without dissociation of a 5-HPETE intermediate. (PMID: 3036580). 5(S)-Hydroperoxyeicosatetraenoic acid is a lipid hydroperoxide precursor of leukotrienes. The first step of biosynthesis of leukotrienes is conversion of arachidonic acid into 5(S)-hydroperoxy-6,8,11,14-(E,Z,Z,Z)-eicosatetraenoic acid [5(S)-HpETE] by 5- lipoxygenases (5-LOX). Lipid hydroperoxides undergo homolytic decomposition into bifunctional electrophiles, which react with DNA bases to form DNA adducts. These DNA modifications are proposed to be involved in the etiology of cancer, cardiovascular disease, and neurodegeneration.

   

Wighteone

4H-1-BENZOPYRAN-4-ONE, 5,7-DIHYDROXY-3-(4-HYDROXYPHENYL)-6-(3-METHYL-2-BUTEN-1-YL)-

C20H18O5 (338.1154)


A natural product found in Ficus mucuso. Wighteone is a member of the class of 7-hydroxyisoflavones that is isoflavone substituted by hydroxy groups at positions 5, 7 and 4 and a prenyl group at position 6. It has been isolated from Ficus mucuso. It has a role as a plant metabolite and an antifungal agent. It is functionally related to an isoflavone. Wighteone is a natural product found in Genista ephedroides, Erythrina suberosa, and other organisms with data available. A member of the class of 7-hydroxyisoflavones that is isoflavone substituted by hydroxy groups at positions 5, 7 and 4 and a prenyl group at position 6. It has been isolated from Ficus mucuso. Wighteone is a compound isolated from the aerial parts of Genista ephedroides[1]. Wighteone is a compound isolated from the aerial parts of Genista ephedroides[1].

   

CE(18:1(9Z))

[(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-[(2R)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl] (Z)-octadec-9-enoate

C45H78O2 (650.6001)


Cholesteryl oleate is an ester of cholesterol. Fatty acid esters of cholesterol constitute about two-thirds of the cholesterol in the plasma. Cholesterol is a sterol (a combination steroid and alcohol) and a lipid found in the cell membranes of all body tissues, and transported in the blood plasma of all animals. The accumulation of cholesterol esters in the arterial intima (the innermost layer of an artery, in direct contact with the flowing blood) is a characteristic feature of atherosclerosis. Atherosclerosis is a disease affecting arterial blood vessels. It is a chronic inflammatory response in the walls of arteries, in large part to the deposition of lipoproteins (plasma proteins that carry cholesterol and triglycerides). Cholesteryl esters, formed by the esterification of cholesterol with long-chain fatty acids, on one hand, are the means by which cholesterol is transported through the blood by lipoproteins, on the other, the way cholesterol itself can be accumulated in the cells. (PMID: 15939411) [HMDB] Cholesteryl oleate is an ester of cholesterol. Fatty acid esters of cholesterol constitute about two-thirds of the cholesterol in the plasma. Cholesterol is a sterol (a combination steroid and alcohol) and a lipid found in the cell membranes of all body tissues, and transported in the blood plasma of all animals. The accumulation of cholesterol esters in the arterial intima (the innermost layer of an artery, in direct contact with the flowing blood) is a characteristic feature of atherosclerosis. Atherosclerosis is a disease affecting arterial blood vessels. It is a chronic inflammatory response in the walls of arteries, in large part to the deposition of lipoproteins (plasma proteins that carry cholesterol and triglycerides). Cholesteryl esters, formed by the esterification of cholesterol with long-chain fatty acids, on one hand, are the means by which cholesterol is transported through the blood by lipoproteins, on the other, the way cholesterol itself can be accumulated in the cells. (PMID: 15939411). Cholesteryl oleate is an esterified form of Cholesterol. Cholesteryl oleate can be used in the generation of solid lipid nanoparticle (SLN, a nanoparticle-based method for gene therapy)[1][2].

   

Capsorubin

(2E,4E,6E,8E,10E,12E,14E,16E,18E)-1,20-bis[(1R,4S)-4-hydroxy-1,2,2-trimethylcyclopentyl]-4,8,13,17-tetramethylicosa-2,4,6,8,10,12,14,16,18-nonaene-1,20-dione

C40H56O4 (600.4178)


Capsorubin is found in herbs and spices. Capsorubin is a constituent of paprika (Capsicum annuum). Potential nutriceutical.Capsorubin is one of the main colouring constituant of paprika oleoresin (paprika extract). (Wikipedia). D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Constituent of paprika (Capsicum annuum). Potential nutriceutical

   

Fucose 1-phosphate

{[(2R,3S,4R,5S,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}phosphonic acid

C6H13O8P (244.0348)


Fucose 1-phosphate (CAS: 16562-58-6) belongs to the class of organic compounds known as monosaccharide phosphates. These are monosaccharides comprising a phosphate group linked to the carbohydrate unit. Fucose 1-phosphate is an intermediate in the reversible synthesis of GDP-L-fucose catalyzed by the enzyme guanosine triphosphate fucose pyrophosphorylase (GFPP, EC 2.7.7.30). The reversible reaction is magnesium-dependent, although the enzyme is partially active when cobalt or manganese is substituted. The reaction is unusual in that, of the four canonical nucleoside triphosphates, only guanosine can be utilized efficiently to form a nucleotide-sugar. Free cytosolic fucose is phosphorylated by L-fucokinase (EC 2.7.1.52) to form fucose-1-phosphate in the salvage pathway of GDP-L-fucose (PMID: 16185085, 14686921). Fucose-1-phosphate is an intermediate in the reversible synthesis of GDP-L-fucose, in a reaction catalyzed by the enzyme guanosine triphosphate fucose pyrophosphorylase (GFPP, E.C. 2.7.7.30) . The reversible reaction is magnesium-dependent, although the enzyme is partially active when cobalt or manganese is substituted. The reaction is unusual in that, of the four canonical nucleoside triphosphates, only guanosine can be utilized efficiently to form a nucleotide-sugar. Free cytosolic fucose is phosphorylated by L-fucokinase (EC 2.7.1.52) to form fucose-1-phosphate in the salvage pathway of GDP-L-fucose. (PMID: 16185085, 14686921) [HMDB]

   

(R)-1-Octen-3-ol

1-Octen-3-ol, (+-)-isomer

C8H16O (128.1201)


Isolated from a number of essential oils, e.g. lavender, leek, mint and mushrooms. Food odorant responsible for typical mushroom odour. Flavouring ingredient. (R)-1-Octen-3-ol is found in mushrooms, onion-family vegetables, and herbs and spices. (R)-1-Octen-3-ol, also known as 1-vinylhexanol or 3-hydroxy-1-octene, belongs to the class of organic compounds known as fatty alcohols. These are aliphatic alcohols consisting of a chain of a least six carbon atoms Oct-1-en-3-ol, a fatty acid fragrant, is a self-stimulating oxylipin messenger. Oct-1-en-3-ol serves as a signaling molecule in plant cellular responses, plant-herbivore interactions, and plant-plant interactions. Oct-1-en-3-ol causes dopamine neuron degeneration through disruption of dopamine handling[1][2]. Oct-1-en-3-ol, a fatty acid fragrant, is a self-stimulating oxylipin messenger. Oct-1-en-3-ol serves as a signaling molecule in plant cellular responses, plant-herbivore interactions, and plant-plant interactions. Oct-1-en-3-ol causes dopamine neuron degeneration through disruption of dopamine handling[1][2].

   

2,3-Naphthalenediol

2,3-Dihydroxynaphthalene

C10H8O2 (160.0524)


   

Ethyl pentyl ketone

Ethyl N-pentyl ketone

C8H16O (128.1201)


Ethyl pentyl ketone, also known as 3-oxooctane or eak, is a member of the class of compounds known as ketones. Ketones are organic compounds in which a carbonyl group is bonded to two carbon atoms R2C=O (neither R may be a hydrogen atom). Ketones that have one or more alpha-hydrogen atoms undergo keto-enol tautomerization, the tautomer being an enol. Thus, ethyl pentyl ketone is considered to be an oxygenated hydrocarbon lipid molecule. Ethyl pentyl ketone is slightly soluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Ethyl pentyl ketone is a sweet, butter, and fresh tasting compound and can be found in a number of food items such as rosemary, hyssop, spearmint, and rocket salad (sspecies), which makes ethyl pentyl ketone a potential biomarker for the consumption of these food products. Ethyl pentyl ketone can be found primarily in feces and saliva. Ethyl pentyl ketone exists in all eukaryotes, ranging from yeast to humans. Ethyl pentyl ketone, also known as 3-oxooctane or EAK, belongs to the class of organic compounds known as ketones. These are organic compounds in which a carbonyl group is bonded to two carbon atoms R2C=O (neither R may be a hydrogen atom). Ketones that have one or more alpha-hydrogen atoms undergo keto-enol tautomerization, the tautomer being an enol. Thus, ethyl pentyl ketone is considered to be an oxygenated hydrocarbon lipid molecule. A dialkyl ketone that is octane in which the two methylene protons at position 3 have been replaced by an oxo group. Ethyl pentyl ketone is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Ethyl pentyl ketone has been detected, but not quantified, in cardamoms and lemons. This could make ethyl pentyl ketone a potential biomarker for the consumption of these foods. Ethyl pentyl ketone, with regard to humans, has been linked to the inborn metabolic disorder celiac disease.

   

Hydroxypyruvic acid

2-oxo-3-hydroxy-propanoic acid

C3H4O4 (104.011)


3-hydroxypyruvic acid, also known as beta-hydroxypyruvate or oh-pyr, belongs to beta hydroxy acids and derivatives class of compounds. Those are compounds containing a carboxylic acid substituted with a hydroxyl group on the C3 carbon atom. 3-hydroxypyruvic acid is soluble (in water) and a moderately acidic compound (based on its pKa). 3-hydroxypyruvic acid can be found in a number of food items such as fox grape, black mulberry, elliotts blueberry, and silver linden, which makes 3-hydroxypyruvic acid a potential biomarker for the consumption of these food products. 3-hydroxypyruvic acid can be found primarily in blood and urine. 3-hydroxypyruvic acid exists in all living organisms, ranging from bacteria to humans. In humans, 3-hydroxypyruvic acid is involved in the glycine and serine metabolism. 3-hydroxypyruvic acid is also involved in several metabolic disorders, some of which include dihydropyrimidine dehydrogenase deficiency (DHPD), 3-phosphoglycerate dehydrogenase deficiency, hyperglycinemia, non-ketotic, and non ketotic hyperglycinemia. Hydroxypyruvic acid is a pyruvic acid derivative with the formula C3H4O4 and a neutral charge with an atomic mass of 104.06146 . Hydroxypyruvic acid is an intermediate in the metabolism of Glycine, serine and threonine. It is a substrate for Serine--pyruvate aminotransferase and Glyoxylate reductase/hydroxypyruvate reductase. Hydroxypyruvic acid (β-Hydroxypyruvic acid) is an intermediate in the metabolism of glycine, serine and threonine. Hydroxypyruvic acid is a substrate for serine-pyruvate aminotransferase and glyoxylate reductase/hydroxypyruvate reductase. Hydroxypyruvic acid is involved in the metabolic disorder which is the dimethylglycine dehydrogenase deficiency pathway.

   

Glyceric acid 1,3-biphosphate

(R)-2-Hydroxy-3-(phosphonooxy)-1-monoanhydride with phosphoric propanoic acid

C3H8O10P2 (265.9593)


Glyceric acid 1,3-biphosphate (CAS: 1981-49-3), also known as 1,3-bisphosphoglycerate (1,3BPG) or PGAP, is a 3-carbon organic molecule present in most, if not all living creatures. It primarily exists as a metabolic intermediate in glycolysis during respiration. 1,3BPG has been recognized as regulatory signal implicated in the control of metabolism, oxygen affinity of red cells, and other cellular functions. 1,3BPG concentration in erythrocytes changes in a number of pathological conditions, such as inherited phosphoglycerate kinase deficiency in erythrocytes (involved in the synthesis and breakdown of 1,3BPG) (PMID: 3555887). Glyceric acid 1,3-biphosphate is phosphorylated at the number 1 and 3 carbons. The result of this phosphorylation gives 1,3BPG important biological properties such as the ability to phosphorylate ADP to form the energy storage molecule ATP (Wikipedia). 3-phospho-d-glyceroyl phosphate, also known as 1,3-bisphospho-D-glycerate or D-glycerate 1,3-diphosphate, is a member of the class of compounds known as acyl monophosphates. Acyl monophosphates are organic compounds containing a monophosphate linked to an acyl group. They have the general structure R-CO-P(O)(O)OH, R=H or organyl. 3-phospho-d-glyceroyl phosphate is slightly soluble (in water) and a moderately acidic compound (based on its pKa). 3-phospho-d-glyceroyl phosphate can be found in a number of food items such as tamarind, narrowleaf cattail, mustard spinach, and cereals and cereal products, which makes 3-phospho-d-glyceroyl phosphate a potential biomarker for the consumption of these food products. 3-phospho-d-glyceroyl phosphate exists in E.coli (prokaryote) and yeast (eukaryote).

   

Acetoacetyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-2,2-dimethyl-3-{[2-({2-[(3-oxobutanoyl)sulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}propoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C25H40N7O18P3S (851.1363)


Acetoacetyl-CoA is an intermediate in the metabolism of Butanoate. It is a substrate for Succinyl-CoA:3-ketoacid-coenzyme A transferase 1 (mitochondrial), Hydroxymethylglutaryl-CoA synthase (mitochondrial), Short chain 3-hydroxyacyl-CoA dehydrogenase (mitochondrial), Trifunctional enzyme beta subunit (mitochondrial), Hydroxymethylglutaryl-CoA synthase (cytoplasmic), Peroxisomal bifunctional enzyme, Acetyl-CoA acetyltransferase (cytosolic), Acetyl-CoA acetyltransferase (mitochondrial), 3-hydroxyacyl-CoA dehydrogenase type II, Succinyl-CoA:3-ketoacid-coenzyme A transferase 2 (mitochondrial), 3-ketoacyl-CoA thiolase (mitochondrial), 3-ketoacyl-CoA thiolase (peroxisomal) and Trifunctional enzyme alpha subunit (mitochondrial). [HMDB]. Acetoacetyl-CoA is found in many foods, some of which are bog bilberry, lemon balm, pineapple, and pak choy. Acetoacetyl-CoA belongs to the class of organic compounds known as aminopiperidines. Aminopiperidines are compounds containing a piperidine that carries an amino group. Acetoacetyl-CoA is a strong basic compound (based on its pKa). In humans, acetoacetyl-CoA is involved in the metabolic disorder called the short-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (HADH) pathway. Acetoacetyl-CoA is an intermediate in the metabolism of butanoate. It is a substrate for succinyl-CoA:3-ketoacid-coenzyme A transferase, hydroxymethylglutaryl-CoA synthase, short-chain 3-hydroxyacyl-CoA dehydrogenase, peroxisomal bifunctional enzyme, acetyl-CoA acetyltransferase, and 3-ketoacyl-CoA thiolase.

   

5,10-Methenyl-tetrahydrofolate

5,10-Methenyl-tetrahydrofolate

C20H22N7O6+ (456.1631)


   

Triphosphate

Bis(dihydroxidodioxidophosphato)hydroxidooxidophosphorus

H5O10P3 (257.9096)


Triphosphate is a salt or ester containing three phosphate groups. It is the ionic form of triphosphoric acid, a condensed form of phosphoric acid. Triphosphate is an intermediate in the biosynthesis of folate, the metabolism of purine, the metabolism of porphyrin and chlorophyll, the metabolism of pyrimidine, and the metabolism of thiamine. It is a substrate for transforming protein p21/H-Ras-1, bis(5-adenosyl)-triphosphatase, ectonucleoside triphosphate diphosphohydrolase, DNA polymerase gamma subunit 1, DNA nucleotidylexotransferase, inosine triphosphate pyrophosphatase, cob(I)yrinic acid a,c-diamide adenosyltransferase (mitochondrial), thiamine-triphosphatase, DNA-directed RNA polymerase III 32 kDa polypeptide, and 6-pyruvoyl tetrahydrobiopterin synthase. Compounds such as ATP (adenosine triphosphate) are esters of triphosphoric acid. Polyphosphates are hydrolyzed into smaller units (orthophosphates) in the gut before absorption, which may induce metabolic acidosis. The acute toxicity of polyphosphonates is low as the lowest LD50 after oral administration is > 1,000 mg/kg body weight. Polyphosphates are moderately irritating to skin and mucous membrane because of their alkalinity. No mutagenic potential was observed when TTP was tested in a Salmonella/microsome assay (Ames test) and in a chromosomal aberration assay in vitro using a Chinese hamster fibroblast cell line (Ishidate et al. 1984). Tetrasodium pyrophosphate was not mutagenic in an in vitro assay using S. cerevisiae strains and S. typhimurium strains with and without the addition of mammalian metabolic activation preparations (IPCS 1982). Reproduction studies in three generations of rats on diets with 0.5\\% TTP were performed. TTP had no effects on fertility or litter size, or on growth or survival on offspring (Hodge 1964). Triphosphoric acid, also tripolyphosphoric acid, with formula H5P3O10, is a condensed form of phosphoric acid. In polyphosphoric acids, it is the next after pyrophosphoric acid, H4P2O7, also called diphosphoric acid. Compounds such as ATP (adenosine triphosphate) are esters of triphosphoric acid. [Wikipedia]

   

Acrylyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-2,2-dimethyl-3-[(2-{[2-(prop-2-enoylsulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]propoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C24H38N7O17P3S (821.1258)


Acrylyl-CoA is involved in alternative pathways of propionate metabolism. [HMDB]. Acrylyl-CoA is found in many foods, some of which are custard apple, mexican oregano, coconut, and soy bean. Acrylyl-CoA is involved in alternative pathways of propionate metabolism.

   

2-Ketohexanoic acid

alpha-Ketocaproic acid, sodium salt

C6H10O3 (130.063)


2-Ketohexanoic acid is a potent insulin secretagogue (PMID 7045091). 2-Ketohexanoic acid directly inhibits the ATP-sensitive K+ channel (KATP channel) in pancreatic beta-cells (stimulated in isolated mouse islets), but it is unknown whether direct KATP channel inhibition contributes to insulin release by 2-ketohexanoic acid and related alpha-keto acid anions, which are generally believed to act via beta-cell metabolism (PMID 16014804). 2-Ketohexanoic acid is a potent insulin secretagogue. (PMID 7045091)

   

Gentamicinc1A

gentamycin C1a

C19H39N5O7 (449.2849)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D005839 - Gentamicins C784 - Protein Synthesis Inhibitor > C2363 - Aminoglycoside Antibiotic C254 - Anti-Infective Agent > C258 - Antibiotic

   

N-Sulfo-D-glucosamine

N-[(2R,3R,4R,5S,6R)-2,4,5-Trihydroxy-6-(hydroxymethyl)oxan-3-yl]sulphamic acid

C6H13NO8S (259.0362)


N-Sulfo-D-glucosamine is a structurally altered form of N-acetyl-D-glucosamine (a polysaccharide found in animal tissues) by heparan sulfate N-deacetylase /N-sulfotransferase enzymes. No human references found [HMDB]

   

O-Phosphohomoserine

L-2-amino-4-Hydroxy-butyric acid dihydrogen phosphate (ester)

C4H10NO6P (199.0246)


O-phosphohomoserine is a naturally occurring analogue of phosphonate amino acids. O-phosphohomoserine has been found in trace amounts in shotgun-metabolomics analysis in mouse tissue extracts, and is the substrate of a threonine analog enzyme in murine species. O-phosphohomoserine, an analogue of the excitatory amino acid antagonist 2-amino-phosphonovalerate is an N-methyl-D-aspartate (NMDA) antagonist. (PMID: 3528930, 17034760, 17665876) [HMDB] O-phosphohomoserine is a naturally occurring analogue of phosphonate amino acids. O-phosphohomoserine has been found in trace amounts in shotgun-metabolomics analysis in mouse tissue extracts, and is the substrate of a threonine analog enzyme in murine species. O-phosphohomoserine, an analogue of the excitatory amino acid antagonist 2-amino-phosphonovalerate is an N-methyl-D-aspartate (NMDA) antagonist. (PMID: 3528930, 17034760, 17665876).

   

Dimethylaniline-N-oxide

N,N-dimethylbenzeneamine oxide

C8H11NO (137.0841)


Dimethylaniline-N-oxide is a substrate for Dimethylaniline monooxygenase 4, Dimethylaniline monooxygenase 3, Dimethylaniline monooxygenase 1, Dimethylaniline monooxygenase 5, Putative dimethylaniline monooxygenase 6 and Dimethylaniline monooxygenase 2. [HMDB]. Dimethylaniline-N-oxide is found in many foods, some of which are lemon thyme, star anise, chinese mustard, and gooseberry. Dimethylaniline-N-oxide is a substrate for Dimethylaniline monooxygenase 4, Dimethylaniline monooxygenase 3, Dimethylaniline monooxygenase 1, Dimethylaniline monooxygenase 5, Putative dimethylaniline monooxygenase 6 and Dimethylaniline monooxygenase 2.

   

Tyr-OEt

Ethyl 2-amino-3-(4-hydroxyphenyl)propanoate

C11H15NO3 (209.1052)


   

Benzene oxide

7-oxabicyclo[4.1.0]hepta-2,4-diene

C6H6O (94.0419)


   

Choloyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({[hydroxy({3-hydroxy-2,2-dimethyl-3-[(2-{[2-({4-[(1S,5R,9R,11S,16S)-5,9,16-trihydroxy-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-14-yl]pentanoyl}sulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]propoxy})phosphoryl]oxy})phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C45H74N7O20P3S (1157.3922)


Choloyl-CoA is an intermediate metabolite in the Bile acid biosynthesis (KEGG). The conjugation of bile acids to glycine and taurine for excretion into bile occurs via a reaction catalyzed by the enzyme Bile acid-CoA:amino acid N-acyltransferase (BACAT) catalyzes. Choloyl-CoA is an intermediate metabolite in the Bile acid biosynthesis (KEGG) D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids

   

Lauroyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-2-({[({[(3R)-3-[(2-{[2-(dodecanoylsulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]-3-hydroxy-2,2-dimethylpropoxy](hydroxy)phosphoryl}oxy)(hydroxy)phosphoryl]oxy}methyl)-4-hydroxyoxolan-3-yl]oxy}phosphonic acid

C33H58N7O17P3S (949.2823)


Lauroyl-CoA is a substrate for Protein FAM34A. [HMDB]. Lauroyl-CoA is found in many foods, some of which are apricot, hazelnut, other soy product, and thistle. Lauroyl-CoA is a substrate for Protein FAM34A.

   

Bleomycin B2

Dehydrophleomycin D1

C55H84N20O21S2 (1424.5561)


C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C259 - Antineoplastic Antibiotic C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D000970 - Antineoplastic Agents

   

Piperitenone

3-Methyl-6-(1-methylethylidene)-2-cyclohexen-1-one, 9ci

C10H14O (150.1045)


Piperitenone is a flavouring agent. It is found in grapefruit juice lemon juice, orange juice, spearmint oil and peppermint oil. It is also found in rosemary, mentha (mint), cornmint, and other herbs and spices. Piperitenone is found in citrus. Piperitenone is a flavouring agent. Piperitenone is present in grapefruit juice lemon juice, orange juice, spearmint oil and peppermint oi

   

Phytanoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[3-hydroxy-2,2-dimethyl-3-({2-[(2-{[(3S,7R,11R)-3,7,11,15-tetramethylhexadecanoyl]sulfanyl}ethyl)carbamoyl]ethyl}carbamoyl)propoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C41H74N7O17P3S (1061.4075)


Phytanoyl CoA is a coenzyme A derivative of phytanic acid. Phytanic acid is present in human diet or in animal tissues where it may be derived from chlorophyll in plant extracts. Specifically it is an epimeric metabolite of the isoprenoid side chain of chlorophyll. Owing to the presence of its epimeric beta-methyl group, phytanic acid cannot be metabolized by beta-oxidation. Instead, it is metabolized in peroxisomes via alpha-oxidation to give pristanic acid, which is then oxidized by beta-oxidation. PhyH (phytanoyl-CoA 2-hydroxylase) catalyses hydroxylation of phytanoyl-CoA. Mutations of PhyH can lead to phytanic acid accumulation. High levels of phytanic acid are found in patients suffering from Refsums syndrome. This inherited neurological disorder is characterized by an accumulation of phytanic acid in blood and tissues. Clinically it is characterized by adult onset retinitis pigmentosa, anosmia, sensory neuropathy, and phytanic acidaemia. This disorder has been found to be related to deficiency in the α-oxidation pathway in the liver. (PMID: 17956235). Phytanoyl CoA and other branched-chain fatty acid CoA products are potent inducers of the peroxisome proliferator-activated receptor PPARalpha, a nuclear receptor that enhances transcription of peroxisomal enzymes mediating beta-oxidation of these potentially toxic fatty acids (PMID: 16768463). Pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase are strongly inhibited by phytanoyl-CoA. Decreased activity of these important mitochondrial metabolism complexes might therefore contribute to neurological symptoms upon accumulation of phytanic acid in Refsum disease (PMID: 16737698). [HMDB] Phytanoyl CoA is a coenzyme A derivative of phytanic acid. Phytanic acid is present in human diet or in animal tissues where it may be derived from chlorophyll in plant extracts. Specifically it is an epimeric metabolite of the isoprenoid side chain of chlorophyll. Owing to the presence of its epimeric beta-methyl group, phytanic acid cannot be metabolized by beta-oxidation. Instead, it is metabolized in peroxisomes via alpha-oxidation to give pristanic acid, which is then oxidized by beta-oxidation. PhyH (phytanoyl-CoA 2-hydroxylase) catalyses hydroxylation of phytanoyl-CoA. Mutations of PhyH can lead to phytanic acid accumulation. High levels of phytanic acid are found in patients suffering from Refsums syndrome. This inherited neurological disorder is characterized by an accumulation of phytanic acid in blood and tissues. Clinically it is characterized by adult onset retinitis pigmentosa, anosmia, sensory neuropathy, and phytanic acidaemia. This disorder has been found to be related to deficiency in the α-oxidation pathway in the liver. (PMID: 17956235). Phytanoyl CoA and other branched-chain fatty acid CoA products are potent inducers of the peroxisome proliferator-activated receptor PPARalpha, a nuclear receptor that enhances transcription of peroxisomal enzymes mediating beta-oxidation of these potentially toxic fatty acids (PMID: 16768463). Pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase are strongly inhibited by phytanoyl-CoA. Decreased activity of these important mitochondrial metabolism complexes might therefore contribute to neurological symptoms upon accumulation of phytanic acid in Refsum disease (PMID: 16737698).

   

Gentiotriose

6-({[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}methyl)oxane-2,3,4,5-tetrol

C18H32O16 (504.169)


Manninotriose is found in cocoa and cocoa products. Manninotriose is found free in cocoa beans, hazelnuts and in various plant mannans. Selectively utilised by bifidobacteria in the intestine but hardly utilised by other microorganisms. Increases faecal bifidobacteria and decreases Clostridia.

   

Questiomycin A

2-Acetylamino-(3H)-phenoxazin-3-one

C12H8N2O2 (212.0586)


Questiomycin A, also known as 2-aminophenoxazin-3-one (APO), is found in mushrooms such as Calocybe gambosa (St Georges mushroom). 2-Aminophenoxazin-3-one is a benzoxazinoid metabolite. It was found excreted in the feces of rats that were fed a rye bread-based diet which makes this compound a potential fecal biomarker of whole grain intake (PMID: 23113707).

   

Udp-glucosamine

UDP-D-GALACTOSAMINE DISODIUM SALT

C15H25N3O16P2 (565.071)


   

Diethyl sulfide

1-(Ethylsulphanyl)ethane

C4H10S (90.0503)


Diethyl sulfide is found in alcoholic beverages. Diethyl sulfide is a food additive listed in the EAFUS food Additive Database (Jan 2001). Diethyl sulfide is found in various foods and brandies. Diethyl sulfide is a food flavour ingredient. Diethyl sulfide is a clear, flammable chemical compound with a pungent garlic-like odor. It has the chemical formula C4H10S. It is prepared by treating ethanol with concentrated sulfuric acid, partially neutralizing the new solution with sodium carbonate, then distilling the resulting sodium ethyl sulfate in a solution containing potassium sulfide Food additive listed in the EAFUS Food Additive Database (Jan 2001). Found in various foods and brandies. Food flavour ingredient

   

Sucrose 6-phosphate

sucrose 6F-phosphate

C12H23O14P (422.0825)


   

3,4-Pyridinediol

3-Hydroxypyridin-4(1H)-one

C5H5NO2 (111.032)


   

Diisopropylphosphate

Phosphoric acid, bis(1-methylethyl) ester

C6H15O4P (182.0708)


   

Z-Gly-Pro-Leu-Gly-Pro

N-[(Phenylmethoxy)carbonyl]glycyl-L-prolyl-L-leucylglycyl-L-proline

C28H39N5O8 (573.2798)


   

2-Keto-6-aminocaproate

alpha-keto-epsilon-Aminohexanoic acid

C6H11NO3 (145.0739)


2-Keto-6-aminocaproate is an intermediate in lysine degradation and can be formed from L-lysine. L-Lysine is an essential amino-acid that is a necessary building block for all protein in the body. L-Lysine plays a major role in calcium absorption; building muscle protein; recovering from surgery or sports injuries; and the bodys production of hormones, enzymes, and antibodies. L-Lysine can be converted to 2-keto-6-aminocaproate via the enzyme L-lysine alpha-oxidase. 2-Keto-6-aminocaproate can spontaneously decarboxylate to 5-aminovalerate in the presence of the reaction product, hydrogen peroxide. It can also be spontaneously converted in solution to its cyclic form delta-piperideine-2-carboxylate. This has been demonstrated in vitro in the presence of catalase, which splits hydrogen peroxide. [HMDB] 2-Keto-6-aminocaproate is an intermediate in lysine degradation and can be formed from L-lysine. L-Lysine is an essential amino-acid that is a necessary building block for all protein in the body. L-Lysine plays a major role in calcium absorption; building muscle protein; recovering from surgery or sports injuries; and the bodys production of hormones, enzymes, and antibodies. L-Lysine can be converted to 2-keto-6-aminocaproate via the enzyme L-lysine alpha-oxidase. 2-Keto-6-aminocaproate can spontaneously decarboxylate to 5-aminovalerate in the presence of the reaction product, hydrogen peroxide. It can also be spontaneously converted in solution to its cyclic form delta-piperideine-2-carboxylate. This has been demonstrated in vitro in the presence of catalase, which splits hydrogen peroxide.

   

3beta-Hydroxy-delta5-steroid

2,3,4,7,8,9,10,11,12,13,14,15,16,17-TETRADECAHYDRO-10,13-DIMETHYL-1H-CYCLOPENTA[A]PHENANTHREN-3-OL

C19H30O (274.2297)


   

5-Methylthioribose 1-phosphate

{[(2R,3R,4S,5S)-3,4-dihydroxy-5-[(methylsulfanyl)methyl]oxolan-2-yl]oxy}phosphonic acid

C6H13O7PS (260.012)


5-Methylthioribose 1-phosphate belongs to the class of organic compounds known as pentoses. These are monosaccharides in which the carbohydrate moiety contains five carbon atoms. 5-Methylthioribose 1-phosphate is an intermediate in methionine biosynthesis. It is converted from 5-deoxy-5-methylthioadenosine by 5-deoxy-5-methylthioadenosine phosphorylase. Then it is converted to methionine (PMID: 2153115). In the methionine salvage pathway, 5-methylthioribose 1-phosphate isomerase (M1Pi) catalyzes the conversion of 5-methylthioribose 1-phosphate (MTR-1-P) into 5-methylthioribulose 1-phosphate (MTRu-1-P). 5-Methylthioribose 1-phosphate is an intermediate in methionine biosynthesis. It is converted from 5-Deoxy-5-methylthioadenosine by 5-Deoxy-5-methylthioadenosine phosphorylase. Then it is converted to methionine (PMID 2153115). In the methionine salvage pathway 5-methylthioribose 1-phosphate isomerase (M1Pi) catalyzes the conversion of 5-methylthioribose 1-phosphate (MTR-1-P) to 5-methylthioribulose 1-phosphate (MTRu-1-P) [HMDB]

   

6-Lactoyltetrahydropterin

2-amino-6-(2-hydroxypropanoyl)-3,4,5,6,7,8-hexahydropteridin-4-one

C9H13N5O3 (239.1018)


6-Lactoyltetrahydropterin is a putative intermediate in the de novo synthesis of tetrahydrobiopterin (BH4) pathway, in a reaction involving the enzyme sepiapterin reductase (E.C. 1.1.1.153) in human liver. In brain, an enzyme distinct from sepiapterin reductase catalyzes the TPNH-dependent reduction of 6-pyruvoyl-tetrahydropterin to 6-lactoyl-tetrahydropterin. (PMID: 4004850). In brain, the expression of other enzymes involved in BH4 biosynthesis includes aldose reductase, carbonyl reductase, GTP-cyclohydrolase I, and 6-pyruvoyltetrahydrobiopterin. Sepiapterin reductase expression is increased in Parkinsons disease brain tissue. (PMID: 17270157). 6-Lactoyltetrahydropterin is a putative intermediate in the de novo synthesis of tetrahydrobiopterin (BH4) pathway, in a reaction involving the enzyme sepiapterin reductase (E.C. 1.1.1.153) in human liver. In brain, an enzyme distinct from sepiapterin reductase catalyzes the TPNH-dependent reduction of 6-pyruvoyl-tetrahydropterin to 6-lactoyl-tetrahydropterin. (PMID: 4004850)

   

Inositol cyclic phosphate

(3aR,4R,5S,6S,7R,7aS)-2,4,5,6,7-pentahydroxy-hexahydro-2H-1,3,2λ⁵-benzodioxaphosphol-2-one

C6H11O8P (242.0192)


Inositol cyclic phosphate is a substrate for Annexin A3. [HMDB] Inositol cyclic phosphate is a substrate for Annexin A3.

   

Ac-Phe-3,5-diiodo-Tyr-OH

N-Acetyl-L-phenylalanyl-3,5-diiodo-L-tyrosine

C20H20I2N2O5 (621.9462)


   

Uridine diphosphate acetylgalactosamine 4-sulfate

[({[(2R,3S,4R,5R)-3-[({[(2R,3R,4R,5R)-5-amino-1,2,4-trihydroxy-6,7-dioxooctan-3-yl]oxy}sulfonyl)oxy]-5-(2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-yl)-4-hydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]phosphonic acid

C17H27N3O20P2S (687.0384)


Uridine diphosphate, abbreviated UDP, is a nucleotide. It is an ester of pyrophosphoric acid with the nucleoside uridine. UDP consists of the pyrophosphate group, the pentose sugar ribose, and the nucleobase uracil. [HMDB] Uridine diphosphate, abbreviated UDP, is a nucleotide. It is an ester of pyrophosphoric acid with the nucleoside uridine. UDP consists of the pyrophosphate group, the pentose sugar ribose, and the nucleobase uracil.

   

N-Succinyl-2-amino-6-ketopimelate

(2S)-2-(3-carboxypropanamido)-6-Oxoheptanedioic acid

C11H15NO8 (289.0798)


N-Succinyl-2-amino-6-ketopimelate is an intermediate in lysine biosynthesis. It is the fourth to last step in the synthesis of lysine and is converted. from tetrahydrodipicolinate via the enzyme tetrahydrodipicolinate N-succinyltransferase (EC 2.3.1.117). It is then converted to N-succinyl-L,L-2,6-diaminopimelate via the enzyme Succinyldiaminopimelate transferase (EC 2.6.1.17). N-Succinyl-2-amino-6-ketopimelate is an intermediate in lysine biosynthesis. It is the fourth to last step in the synthesis of lysine and is converted

   

Methylisocitric acid

1-hydroxy-1-methylpropane-1,2,3-tricarboxylic acid

C7H10O7 (206.0427)


Methylisocitric acid is a product of bacterial metabolism in the gut. It can be produced by 2-methylisocitrate lyase and by 2-methylisocitrate dehydratase. Methylisocitric acid has also been found to be a metabolite of Candida (https://www.tandfonline.com/doi/pdf/10.1080/00021369.1974.10861293). Methylisocitric acid is a product of bacterial metabolism in the gut. It can be produced by 2-methylisocitrate lyase and by 2-methylisocitrate dehydratase. [HMDB]

   

(13E)-11a-Hydroxy-9,15-dioxoprost-13-enoic acid

7-[(1R,2R,3R)-3-hydroxy-5-oxo-2-[(1E)-3-oxooct-1-en-1-yl]cyclopentyl]heptanoic acid

C20H32O5 (352.225)


(13E)-11a-Hydroxy-9,15-dioxoprost-13-enoic acid is a substrate for Carbonyl reductase 1.Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. (13E)-11a-Hydroxy-9,15-dioxoprost-13-enoic acid is a substrate for Carbonyl reductase 1.

   

5-Amino-6-ribitylamino uracil

5-amino-6-{[(2S,3S,4R)-2,3,4,5-tetrahydroxypentyl]amino}-1,2,3,4-tetrahydropyrimidine-2,4-dione

C9H16N4O6 (276.107)


5-Amino-6-ribitylamino uracil is an intermediate in riboflavin metabolism. It is converted from 5-amino-6-(5-phosphoribitylamino)uracil via dephosphorylation by the enzyme phosphohistidine phosphatase 1 (EC 3.1.3.-). It is considered to be the second product of the riboflavin synthase reaction (PMID: 14245407). Humans do not have all the enzymes needed to synthesize or metabolize riboflavin. However, gut microflora do have the necessary enzymatic machinery to produce and metabolize this vitamin. Riboflavin (or vitamin B2) is an easily absorbed micronutrient with a key role in maintaining health in humans and animals. It is the central component of the cofactors FAD and FMN, and is therefore required by all flavoproteins. Riboflavin is yellow or yellow-orange in colour and in addition to being used as a food colouring it is also used to fortify some foods including baby foods, breakfast cereals, pastas, sauces, processed cheese, fruit drinks, vitamin-enriched milk products, some energy drinks, and vitamin supplements. 5-amino-6-(d-ribitylamino)uracil, also known as 5-amino-6-ribitylamino-2,4-(1h,3h)pyrimidinedione or 5-arpd, is a member of the class of compounds known as pentoses. Pentoses are monosaccharides in which the carbohydrate moiety contains five carbon atoms. 5-amino-6-(d-ribitylamino)uracil is soluble (in water) and a very weakly acidic compound (based on its pKa). 5-amino-6-(d-ribitylamino)uracil can be found in a number of food items such as radish (variety), chinese cabbage, common beet, and spinach, which makes 5-amino-6-(d-ribitylamino)uracil a potential biomarker for the consumption of these food products. 5-amino-6-(d-ribitylamino)uracil exists in E.coli (prokaryote) and yeast (eukaryote).

   

2-(a-Hydroxyethyl)thiamine diphosphate

3-[(4-amino-2-methylpyrimidin-5-yl)methyl]-5-(2-{[hydroxy(phosphonooxy)phosphoryl]oxy}ethyl)-2-(1-hydroxyethyl)-4-methyl-1,3-thiazol-3-ium

C14H23N4O8P2S+ (469.0712)


2-Hydroxyethyl-ThPP is involved in Glycolysis, Gluconeogenesis, Alanine and aspartate matabolism, Valine, Leucine and isoleucine biosynthesis, Pyruvate metabolism, and Butanoate metabolism [Kegg: c05125] [HMDB] 2-Hydroxyethyl-ThPP is involved in Glycolysis, Gluconeogenesis, Alanine and aspartate matabolism, Valine, Leucine and isoleucine biosynthesis, Pyruvate metabolism, and Butanoate metabolism [Kegg: c05125].

   

Hydroxyacetone

Hydroxymethyl methyl ketone

C3H6O2 (74.0368)


Hydroxyacetone, also known as acetol or acetone alcohol, belongs to the class of organic compounds known as alpha-hydroxy ketones. These are organic compounds containing a carboxylic acid, and an amine group attached to the alpha carbon atom, relative to the C=O group. Hydroxyacetone exists in all living organisms, ranging from bacteria to humans. Hydroxyacetone is a sweet, caramel, and ethereal tasting compound. hydroxyacetone has been detected, but not quantified in several different foods, such as bog bilberries, cardoons, amaranths, black salsifies, and komatsuna. This could make hydroxyacetone a potential biomarker for the consumption of these foods. Hydroxyacetone is an intermediate in glycine, serine, and threonine metabolism. Present in beer, tobacco and honey Hydroxyacetone is an endogenous metabolite. Hydroxyacetone is an endogenous metabolite.

   

(S)-Hydroxydecanoyl-CoA

{[(2R,3R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-3-({2-[(2-{[(3S)-3-hydroxydecanoyl]sulfanyl}ethyl)carbamoyl]ethyl}carbamoyl)-2,2-dimethylpropoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C31H54N7O18P3S (937.2459)


(s)-hydroxydecanoyl-coa, also known as S-(3-hydroxydecanoate) CoA or 3S-hydroxy-decanoyl-CoA is an acyl-CoA or acyl-coenzyme A. More specifically, it is a 3-hydroxydecanoic acid thioester of coenzyme A. (s)-hydroxydecanoyl-coa is an acyl-CoA with 10 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. (s)-hydroxydecanoyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. (s)-hydroxydecanoyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, (S)-Hydroxydecanoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of (S)-Hydroxydecanoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts (S)-Hydroxydecanoyl-CoA into 3-Hydroxydecanoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 3-Hydroxydecanoylcarnitine is converted back to (S)-Hydroxydecanoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of (S)-Hydroxydecanoyl-CoA occurs in four steps. First, since (S)-Hydroxydecanoyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of (S)-Hydroxydecanoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bo... (S)-Hydroxydecanoyl-CoA has a role in the synthesis and oxidation of fatty acids. It is involved in fatty acid elongation in mitochondria. In this pathway 3-Oxodecanoyl-CoA is acted upon by two enzymes, 3-hydroxyacyl-CoA dehydrogenase and long-chain-3-hydroxyacyl-CoA dehydrogenase to produce (S)-Hydroxydecanoyl-CoA. Since coenzyme A is chemically a thiol, it can react with carboxylic acids to form thioesters, thus functioning as an acyl group carrier. It assists in transferring fatty acids from the cytoplasm to mitochondria. A molecule of coenzyme A carrying an acetyl group is also referred to as acetyl-CoA. When it is not attached to an acyl group it is usually referred to as CoASH or HSCoA. [HMDB]

   

2-Amino-4-cyanobutanoic acid

alpha-Amino-gamma-cyanobutanoate; 2-Amino-4-cyanobutanoic acid

C5H8N2O2 (128.0586)


   

20-Carboxy-leukotriene B4

(5S,6Z,8E,10E,12R,14Z)-5,12-Dihydroxyicosa-6,8,10,14-tetraenedioic acid

C20H30O6 (366.2042)


20-Carboxyleukotriene B4 is an omega-oxidized metabolite of leukotriene B4 (LTB4). Neutrophil microsomes are known to oxidize 20-hydroxy-LTB4 (20-OH-LTB4) to its 20-oxo and 20-carboxy derivatives in the presence of NADPH. This activity has been ascribed to LTB4 omega-hydroxylase (cytochrome P-450LTB omega). Leukotriene B4 release from polymorphonuclear granulocytes of severely burned patients was reduced as compared to healthy donor cells. This decrease is due to an enhanced conversion of LTB4 into the 20-hydroxy- and 20-carboxy-metabolites and further to a decreased LTB4-synthesis. LTB4 is the major metabolite in neutrophil polymorphonuclear leukocytes. Leukotrienes are metabolites of arachidonic acid derived from the action of 5-LO (5-lipoxygenase). The immediate product of 5-LO is LTA4 (leukotriene A4), which is enzymatically converted into either LTB4 (leukotriene B4) by LTA4 hydrolase or LTC4 (leukotriene C4) by LTC4 synthase. The regulation of leukotriene production occurs at various levels, including expression of 5-LO, translocation of 5-LO to the perinuclear region and phosphorylation to either enhance or inhibit the activity of 5-LO. Biologically active LTB4 is metabolized by w-oxidation carried out by specific cytochrome P450s (CYP4F) followed by beta-oxidation from the w-carboxy position and after CoA ester formation. Other specific pathways of leukotriene metabolism include the 12-hydroxydehydrogenase/ 15-oxo-prostaglandin-13-reductase that form a series of conjugated diene metabolites that have been observed to be excreted into human urine. Metabolism of LTC4 occurs by sequential peptide cleavage reactions involving a gamma-glutamyl transpeptidase that forms LTD4 (leukotriene D4) and a membrane-bound dipeptidase that converts LTD4 into LTE4 (leukotriene E4) before w-oxidation. These metabolic transformations of the primary leukotrienes are critical for termination of their biological activity, and defects in expression of participating enzymes may be involved in specific genetic disease. (PMID 17623009, 7633595, 2155225, 3039534)Leukotrienes are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways.

   

Prostaglandin-c2

(5Z)-7-[(1R)-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopent-2-en-1-yl]hept-5-enoic acid

C20H30O4 (334.2144)


This compound belongs to the family of Prostaglandins and related compounds. These are unsaturated carboxylic acids consisting of of a 20 carbon skeleton that also contains a five member ring, and are based upon the fatty acid arachidonic acid.

   

3-Butyn-1-al

3-Butyn-1-al

C4H4O (68.0262)


3-Butyn-1-al is an intermediate in Butanoate metabolism (KEGG ID C06145). It is the third to last step in the synthesis and degradation of ketone bodies and is converted from 3-Butyn-1-ol via the enzyme alcohol dehydrogenase (acceptor) [EC:1.1.99.8]. It is then converted to 3-Butynoate via the enzyme aldehyde dehydrogenase (NAD+) [EC:1.2.1.3]. 3-Butyn-1-al is an intermediate in Butanoate metabolism (KEGG ID

   

Metanilic acid

3-Aminobenzenesulfonic acid

C6H7NO3S (173.0147)


   

3,6-Anhydrogalactose

3,6-Anhydro-D-galactose

C6H10O5 (162.0528)


   

8-O-4'-Diferulic acid

1-chloro-4-[2,2-dichloro-1-(4-chlorophenyl)ethyl]benzene

C14H10Cl4 (317.9537)


D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

2-Aminoacetaldehyde

2-Aminoacetaldehyde

C2H5NO (59.0371)


   

Azlocillin

(2S,5R,6R)-3,3-Dimethyl-7-oxo-6-{[(2R)-2-{[(2-oxoimidazolidin-1-yl)carbonyl]amino}-2-phenylacetyl]amino}-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid

C20H23N5O6S (461.1369)


Azlocillin is only found in individuals that have used or taken this drug. It is a semisynthetic ampicillin-derived acylureido penicillin.By binding to specific penicillin-binding proteins (PBPs) located inside the bacterial cell wall, azlocillin inhibits the third and last stage of bacterial cell wall synthesis. Cell lysis is then mediated by bacterial cell wall autolytic enzymes such as autolysins; it is possible that azlocillin interferes with an autolysin inhibitor. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01C - Beta-lactam antibacterials, penicillins > J01CA - Penicillins with extended spectrum D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   

Mezlocillin

(2S,5R,6R)-3,3-Dimethyl-6-{[(2R)-2-({[3-(methylsulphonyl)-2-oxoimidazolidin-1-yl]carbonyl}amino)-2-phenylacetyl]amino}-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid

C21H25N5O8S2 (539.1144)


Mezlocillin is only found in individuals that have used or taken this drug. It is a semisynthetic ampicillin-derived acylureido penicillin. It has been proposed for infections with certain anaerobes and may be useful in inner ear, bile, and CNS infections. [PubChem]By binding to specific penicillin-binding proteins (PBPs) located inside the bacterial cell wall, mezlocillin inhibits the third and last stage of bacterial cell wall synthesis. Cell lysis is then mediated by bacterial cell wall autolytic enzymes such as autolysins; it is possible that mezlocillin interferes with an autolysin inhibitor. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01C - Beta-lactam antibacterials, penicillins > J01CA - Penicillins with extended spectrum D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   

Latamoxef

(6R,7R)-7-[2-carboxy-2-(4-hydroxyphenyl)acetamido]-7-methoxy-3-{[(1-methyl-1H-1,2,3,4-tetrazol-5-yl)sulfanyl]methyl}-8-oxo-5-oxa-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid

C20H20N6O9S (520.1012)


Broad- spectrum beta-lactam antibiotic similar in structure to the cephalosporins except for the substitution of an oxaazabicyclo moiety for the thiaazabicyclo moiety of certain cephalosporins. It has been proposed especially for the meningitides because it passes the blood-brain barrier and for anaerobic infections. [PubChem] J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DD - Third-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   

Pteroic acid

4-(((2-Amino-4-oxo-3,4-dihydropteridin-6-yl)methyl)amino)benzoic acid

C14H12N6O3 (312.0971)


   

Apraclonidine

2,6-dichloro-N1-(4,5-dihydro-1H-imidazol-2-yl)benzene-1,4-diamine

C9H10Cl2N4 (244.0282)


Apraclonidine is only found in individuals that have used or taken this drug.Apraclonidine, also known as iopidine, is a sympathomimetic used in glaucoma therapy.Apraclonidine is a relatively selective alpha2 adrenergic receptor agonist that stimulates alpha1 receptors to a lesser extent. It has a peak ocular hypotensive effect occurring at two hours post-dosing. The exact mechanism of action is unknown, but fluorophotometric studies in animals and humans suggest that Apraclonidine has a dual mechanism of action by reducing aqueous humor production through the constriction of afferent ciliary process vessels, and increasing uveoscleral outflow. S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01EA - Sympathomimetics in glaucoma therapy C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists

   

24,25-Dihydroxyvitamin D

(6R)-6-[(1R,3aS,4E,7aR)-4-{2-[(1Z,5R)-5-hydroxy-2-methylidenecyclohexylidene]ethylidene}-7a-methyl-octahydro-1H-inden-1-yl]-2-methylheptane-2,3-diol

C27H44O3 (416.329)


24,25-Dihydroxyvitamin D (24R,25(OH)2D3) circulates in blood at concentrations about 1000 times higher than 1alpha,25(OH)2D3. 24-Hydroxylase is present in the proximal convoluted tubule cells of the kidney and in virtual all target cells of 1alpha,25(OH)2D3. Interestingly, 1alpha,25(OH)2D3 is a very strong inducer of 24-hydroxylase activity and 24R,25(OH)2D3 formation. Also parathyroid hormone (PTH) regulates 24-hydroxylase activity but in a tissue specific manner, i.e. inhibitory in the kidney while a synergistic effect together with 1alpha,25(OH)2D3 is observed in osteoblasts. Generally, 24-hydroxylation has been considered the first step in the degradation pathway of 1alpha,25(OH)2D3 and 25-(OH)D3. However, through the past decades data have accumulated that 24R,25(OH)2D3 is not merely a degradation product but has effects on its own. Classic studies have demonstrated the significance of 24R,25(OH)2D3 for normal chicken egg hatchability and calcium and phosphorus homeostasis. More recently it became apparent that 24R,25(OH)2D3 also has distinct effects on cartilage in particular the resting zone cells. 24R,25(OH)2D3 stimulates osteocalcin synthesis in human osteoblasts. 24R,25(OH)2D3 plays a role in bone metabolism but that it acts in concert with 1alpha,25(OH)2D3 to obtain an optimal effect. (PMID: 11179746). D018977 - Micronutrients > D014815 - Vitamins > D004100 - Dihydroxycholecalciferols D018977 - Micronutrients > D014815 - Vitamins > D006887 - Hydroxycholecalciferols D000077264 - Calcium-Regulating Hormones and Agents D050071 - Bone Density Conservation Agents

   

Thiamylal

Dihydro-5-(1-methylbutyl)-5-(2-propenyl)-2-thioxo-4,6(1H,5H)-pyrimidinedione

C12H18N2O2S (254.1089)


Thiamylal is only found in individuals that have used or taken this drug. It is a barbiturate that is administered intravenously for the production of complete anesthesia of short duration, for the induction of general anesthesia, or for inducing a hypnotic state. (From Martindale, The Extra Pharmacopoeia, 30th ed, p919)Thiamylal binds at a distinct binding site associated with a Cl- ionopore at the GABAA receptor, increasing the duration of time for which the Cl- ionopore is open. The post-synaptic inhibitory effect of GABA in the thalamus is, therefore, prolonged. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C67084 - Barbiturate D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent

   

Dalfopristin

(6R,10R,11R,12Z,17Z,19Z,21S)-6-[2-(Diethylamino)ethanesulphonyl]-14,21-dihydroxy-11,19-dimethyl-10-(propan-2-yl)-9,26-dioxa-3,15,28-triazatricyclo[23.2.1.0³,⁷]octacosa-1(27),12,14,17,19,25(28)-hexaene-2,8,23-trione

C34H50N4O9S (690.3298)


Dalfopristin is a combination of two antibiotics (Dalfopristin and quinupristin) used to treat infections by staphylococci and by vancomycin-resistant Enterococcus faecium. It is not effective against Enterococcus faecalis infections. Dalfopristin inhibits the early phase of protein synthesis in the bacterial ribosome and quinupristin inhibits the late phase of protein synthesis. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D025361 - Streptogramins

   

Dienestrol

4,4-Hydroxy-gamma,delta-diphenyl-beta,delta-hexadiene

C18H18O2 (266.1307)


Dienestrol is a synthetic, non-steroidal estrogen. It is an estrogen receptor agonist. Estrogens work partly by increasing a normal clear discharge from the vagina and making the vulva and urethra healthy. Using or applying an estrogen relieves or lessens: dryness and soreness in the vagina, itching, redness, or soreness of the vulva. Conditions that are treated with vaginal estrogens include a genital skin condition (vulvar atrophy), inflammation of the vagina (atrophic vaginitis), and inflammation of the urethra (atrophic urethritis). G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03C - Estrogens > G03CC - Estrogens, combinations with other drugs G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03C - Estrogens > G03CB - Synthetic estrogens, plain D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen

   

Sarmentosin

(Z)-2-(hydroxymethyl)-4-[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxybut-2-enenitrile

C11H17NO7 (275.1005)


Sarmentosin is found in fruits. Sarmentosin is isolated from Ribes nigrum (blackcurrant

   

Dimethyldisulfide

(Methyldisulfanyl)methane

C2H6S2 (93.9911)


Dimethyldisulfide is a volatile organic compound. Methyl disulfide is occasionally found as a volatile component of normal human breath and biofluids. Dimethyldisulfide is one of the representative volatile components found in oral malodor. Dimethyldisulfide concentrations in breath is a practical noninvasive way to assess recent exposure to sulfur compounds in sulfate pulp mills, and therefore it should be applicable to workplaces contaminated. (PMID: 5556886, 14691119, 11236158, 8481097). Isolated from garlic oil (Allium sativum), also in onion (Allium cepa), ramsons (Allium ursinum), morello cherry, melon, pineapple, strawberry, wheat bread, cocoa, roasted barley, roasted filberts, roasted peanuts, crispbread, American potato chips, soybean and other foodstuffs. Flavouring ingredient.

   

Dipropyl disulfide

1-(propyldisulfanyl)propane

C6H14S2 (150.0537)


Dipropyl disulfide, also known as 1,1-dithiodipropane or 4,5-dithiaoctane, belongs to the class of organic compounds known as dialkyldisulfides. These are organic compounds containing a disulfide group R-SS-R where R and R are both alkyl groups. Dipropyl disulfide is possibly neutral. Dipropyl disulfide is a burnt, earthy, and green tasting compound. Dipropyl disulfide has been detected, but not quantified, in several different foods, such as chives, cabbages, garden onions, nuts, and brassicas. Constituent of garlic, onion and other Allium subspecies Also present in raw cabbage, roast beef and roasted peanuts. Flavouring agent. Dipropyl disulfide is found in many foods, some of which are garden onion, onion-family vegetables, brassicas, and allium (onion).

   

Neurosporaxanthin

Neurosporaxanthin; all-trans-Neurosporaxanthin

C35H46O2 (498.3498)


D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

Precocene II

6,7-Dimethoxy-2,2-dimethyl-2H-benzo(b)pyran

C13H16O3 (220.1099)


D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals Precocene II is the insect antijuvenile hormone[1].

   

Elaeagnine

1-METHYL-2,3,4,9-TETRAHYDRO-1H-BETA-CARBOLINE

C12H14N2 (186.1157)


   

Ibogamine

CID 442109

C19H24N2 (280.1939)


A monoterpenoid indole alkaloid with formula C19H24N2. It is isolated from the flowering plant genus, Tabernaemontana and exhibits anti-addictive properties.

   

Arbusculin A

[3aS-(3aalpha,5abeta,9alpha,9aalpha,9bbeta)]-Decahydro-9-hydroxy-5a,9-dimethyl-3-methylenenaphtho[1,2-b]furan-2(3H)-one

C15H22O3 (250.1569)


A sesquiterpene lactone isolated from Saussureae Radix and has been shown to exhibit inhibitory activity against melanogenesis.

   

Plenolin

(1S,3aR,5R,5aR,8aR,9S,9aS)-9-hydroxy-1,5,8a-trimethyl-3a,4,5,5a,9,9a-hexahydro-1H-azuleno[7,6-d]furan-2,8-quinone

C15H20O4 (264.1362)


   

beta-Cubebene

(3AS-(3aalpha,3bbata,4beta,7alpha,7as*))-octahydro-7-methyl-3-methylene-4-(1-methylethyl)-1Hcyclopenta(1,3)cyclopropa(1,2)benzene

C15H24 (204.1878)


Beta-cubebene, also known as (-)-B-cubebene, is a member of the class of compounds known as sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units. Beta-cubebene is a citrus and fruity tasting compound and can be found in a number of food items such as sweet basil, roman camomile, pot marjoram, and sweet bay, which makes beta-cubebene a potential biomarker for the consumption of these food products. Beta-cubebene can be found primarily in saliva. Piper cubeba, cubeb or tailed pepper is a plant in genus Piper, cultivated for its fruit and essential oil. It is mostly grown in Java and Sumatra, hence sometimes called Java pepper. The fruits are gathered before they are ripe, and carefully dried. Commercial cubebs consist of the dried berries, similar in appearance to black pepper, but with stalks attached – the "tails" in "tailed pepper". The dried pericarp is wrinkled, and its color ranges from grayish brown to black. The seed is hard, white and oily. The odor of cubebs is described as agreeable and aromatic and the taste as pungent, acrid, slightly bitter and persistent. It has been described as tasting like allspice, or like a cross between allspice and black pepper . beta-Cubebene belongs to the class of organic compounds known as sesquiterpenoids. These are terpenes with three consecutive isoprene units.

   

Laserpitin

SCHEMBL11029669

C25H38O7 (450.2617)


   
   

Xanthochymol

3-(3,4-dihydroxybenzoyl)-4-hydroxy-8,8-dimethyl-5-[5-methyl-2-(prop-1-en-2-yl)hex-5-en-1-yl]-1,7-bis(3-methylbut-2-en-1-yl)bicyclo[3.3.1]non-3-ene-2,9-dione

C38H50O6 (602.3607)


Xanthochymol is found in fruits. Xanthochymol is a constituent of the famine food Garcinia xanthochymus

   

N-Acetylpuromycin

N-Acetylpuromycin

C24H31N7O6 (513.2336)


   

Pollinastanol

12,16-dimethyl-15-(6-methylheptan-2-yl)pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-ol

C28H48O (400.3705)


Pollinastanol is found in dandelion. Pollinastanol is isolated from Smilax medica (Sarsaparilla

   

Gartanin

1,3,5,8-Tetrahydroxy-2,4-bis(3-methyl-2-butenyl)-9H-xanthen-9-one, 9CI

C23H24O6 (396.1573)


Gartanin is a member of the class of xanthones that is 9H-xanthen-9-one substituted by hydroxy groups at positions 1, 3, 5 and 8 and prenyl groups at positions 2 and 4. It has a role as an antineoplastic agent and a plant metabolite. It is a member of xanthones and a polyphenol. Gartanin is a natural product found in Morus insignis, Pentadesma butyracea, and other organisms with data available. A member of the class of xanthones that is 9H-xanthen-9-one substituted by hydroxy groups at positions 1, 3, 5 and 8 and prenyl groups at positions 2 and 4. Constituent of the fruits of Garcinia mangostana (mangosteen). Gartanin is found in fruits and purple mangosteen. Gartanin is found in fruits. Gartanin is a constituent of the fruits of Garcinia mangostana (mangosteen) Gartanin is a natural xanthone of mangosteen, with antioxidant, anti-inflammatory, antifungal, neuroprotective and antineoplastic properties. Gartanin induces cell cycle arrest and autophagy and suppresses migration in human glioma cells[1][2]. Gartanin is a natural xanthone of mangosteen, with antioxidant, anti-inflammatory, antifungal, neuroprotective and antineoplastic properties. Gartanin induces cell cycle arrest and autophagy and suppresses migration in human glioma cells[1][2].

   

Hypolaetin

2-(3,4-dihydroxyphenyl)-5,7,8-trihydroxy-4H-chromen-4-one

C15H10O7 (302.0427)


A pentahydroxyflavone that consists of luteolin substituted by an additional hydroxy group at position 8.

   

Norswertianin

9H-Xanthen-9-one, 1,2,6,8-tetrahydroxy- (9CI)

C13H8O6 (260.0321)


Norswertianin is a member of the class of xanthones that is 9H-xanthen-9-one substituted by hydroxy groups at positions 1, 2, 6 and 8. It has a role as a plant metabolite. It is a member of xanthones and a polyphenol. Norswertianin is a natural product found in Swertia japonica, Swertia ciliata, and other organisms with data available. A member of the class of xanthones that is 9H-xanthen-9-one substituted by hydroxy groups at positions 1, 2, 6 and 8.

   

2-(3,4-Dihydroxyphenyl)-5,6-dihydroxy-7-methoxy-4H-1-benzopyran-4-one

2-(3,4-Dihydroxyphenyl)-5,6-dihydroxy-7-methoxy-4H-1-benzopyran-4-one; 5,6,3,4-Tetrahydroxy-7-methoxyflavone; 6-Hydroxyluteolin-7-methyl ether

C16H12O7 (316.0583)


Pedalitin is a tetrahydroxy-monohydroxy-flavone, with the four hydroxy groups at C-3,-4,-5 and 6, and the methoxy group at C-7. It has been isolated from a number of plant species, including Eremosparton songoricum, Rabdosia japonica and Ruellia tuberosa. It has a role as an EC 1.17.3.2 (xanthine oxidase) inhibitor and a metabolite. It is a tetrahydroxyflavone and a monomethoxyflavone. Pedalitin is a natural product found in Teucrium hircanicum, Tanacetum vulgare, and other organisms with data available. A tetrahydroxy-monohydroxy-flavone, with the four hydroxy groups at C-3,-4,-5 and 6, and the methoxy group at C-7. It has been isolated from a number of plant species, including Eremosparton songoricum, Rabdosia japonica and Ruellia tuberosa. 2-(3,4-Dihydroxyphenyl)-5,6-dihydroxy-7-methoxy-4H-1-benzopyran-4-one is found in fats and oils. 2-(3,4-Dihydroxyphenyl)-5,6-dihydroxy-7-methoxy-4H-1-benzopyran-4-one is isolated from Sesamum indicum (sesame Isolated from Sesamum indicum (sesame). 2-(3,4-Dihydroxyphenyl)-5,6-dihydroxy-7-methoxy-4H-1-benzopyran-4-one is found in fats and oils and sesame.

   

Allosedamine

(-)-Sedamine

C14H21NO (219.1623)


   
   

Frangulin B

Frangulin B

C20H18O9 (402.0951)


   

Tectoquinone

2-methylanthracene-9,10-dione

C15H10O2 (222.0681)


CONFIDENCE standard compound; INTERNAL_ID 1128; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9354; ORIGINAL_PRECURSOR_SCAN_NO 9353 CONFIDENCE standard compound; INTERNAL_ID 1128; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9397; ORIGINAL_PRECURSOR_SCAN_NO 9396 CONFIDENCE standard compound; INTERNAL_ID 1128; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9371; ORIGINAL_PRECURSOR_SCAN_NO 9370 CONFIDENCE standard compound; INTERNAL_ID 1128; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9424; ORIGINAL_PRECURSOR_SCAN_NO 9423 CONFIDENCE standard compound; INTERNAL_ID 1128; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9336; ORIGINAL_PRECURSOR_SCAN_NO 9335 CONFIDENCE standard compound; INTERNAL_ID 1128; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9398; ORIGINAL_PRECURSOR_SCAN_NO 9396 Tectoquinone (2-Methylanthraquinone) is a SARSCoV-2 main protease inhibitor against COVID-19. Tectoquinone exhibits strong mosquito larvicidal activity with the LC50 values of 3.3 and 5.4 μg/ml against A. aegypti and A. albopictus in 24 h, respectively[1][2]. Tectoquinone (2-Methylanthraquinone) is a SARSCoV-2 main protease inhibitor against COVID-19. Tectoquinone exhibits strong mosquito larvicidal activity with the LC50 values of 3.3 and 5.4 μg/ml against A. aegypti and A. albopictus in 24 h, respectively[1][2].

   

Grevillol

5-tridecylbenzene-1,3-diol

C19H32O2 (292.2402)


   

Adipostatin A

5-pentadecylbenzene-1,3-diol

C21H36O2 (320.2715)


Isolated from cereals and other plants. Adipostatin A is found in many foods, some of which are hard wheat, rye, cereals and cereal products, and common wheat. Adipostatin A is found in barley. Adipostatin A is isolated from cereals and other plant 5-Pentadecylresorcinol (Adipostatin A) is a glycerol-3-phosphate dehydrogenase (GPDH) inhibitor with an IC50 of 4.1 μM. Adipostatin A shows good larvicidal activity against Aedes aegypti[1][2]. 5-Pentadecylresorcinol (Adipostatin A) is a glycerol-3-phosphate dehydrogenase (GPDH) inhibitor with an IC50 of 4.1 μM. Adipostatin A shows good larvicidal activity against Aedes aegypti[1][2].

   

7-Ethoxycoumarin

7-ethoxy-2H-1-benzopyran-2-one

C11H10O3 (190.063)


7-Ethoxycoumarin is a substrate for cytochrome P450(CYP450) and has been used in the functional characterization of various CYPs[1]. 7-Ethoxycoumarin is a substrate for cytochrome P450(CYP450) and has been used in the functional characterization of various CYPs[1].

   

MC-338

2,4,6-Trichlorophenyl 4-nitrophenyl ether

C12H6Cl3NO3 (316.9413)


   

Proflavine

Hemisulfate, proflavine

C13H11N3 (209.0953)


Proflavine is only found in individuals that have used or taken this drug. It is a topical antiseptic used mainly in wound dressings. [PubChem]Proflavine acts by interchelating DNA (intercalation), thereby disrupting DNA synthesis and leading to high levels of mutation in the copied DNA strands. This prevents bacterial reproduction. C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D000890 - Anti-Infective Agents

   

FMLP OMe

Formylmethionyl-leucyl-phenylalanine methyl ester

C22H33N3O5S (451.2141)


   

8-Azaadenosine

8-Azaadenosine

C9H12N6O4 (268.092)


   

Mikamycin A

Virginiamycin Complex

C28H35N3O7 (525.2475)


C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C259 - Antineoplastic Antibiotic D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D025361 - Streptogramins Virginiamycin M1 (Pristinamycin IIA; Ostreogrycin A), produced by?Streptomyces virginiae, is an polyunsaturated macrocyclic lactone antibiotic and acts as a component of Virginiamycin (HY-112665)[1]. Virginiamycin M1 alone is against Staphylococcus aureus with a MIC of 0.25 μg/mL. The combination of Virginiamycin M1 and Virginiamycin S1 (HY-N6680) is 0.125 μg/mL (MIC Value), which can improve the bactericidal effect 1-30 times[2].

   

Calpain Inhibitor I

Acetylleucyl-leucyl-norleucinal

C20H37N3O4 (383.2784)


D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D015853 - Cysteine Proteinase Inhibitors D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D007976 - Leupeptins

   

CHAPS

3-((3-Cholamidopropyl)dimethylammonium)-1-propanesulfonate

C32H58N2O7S (614.3965)


D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids D013501 - Surface-Active Agents > D003902 - Detergents

   

TTFB

4,5,6,7-Tetrachloro-2-trifluoromethylbenzimidazole

C8HCl4F3N2 (321.8846)


   

N-Acetyl-DL-phenylalanine beta-naphthyl ester

naphthalen-2-yl 2-acetamido-3-phenylpropanoate

C21H19NO3 (333.1365)


   

N-Ethylmaleimide-S-glutathione

N-Ethylmaleimide-S-glutathione

C16H22N4O8S (430.1158)


   

Anhydrovinblastin

Vincaleukoblastine, 3,4-didehydro-4-deoxy-

C46H56N4O8 (792.4098)


   

R-Soterenol

N-[2-hydroxy-5-[1-hydroxy-2-(propan-2-ylamino)ethyl]phenyl]methanesulfonamide

C12H20N2O4S (288.1144)


C78273 - Agent Affecting Respiratory System > C29712 - Anti-asthmatic Agent > C319 - Bronchodilator

   

Aluminium hydroxide

Dried aluminum hydroxide gel fine granules

Al(OH)3 (77.9898)


It is used in foods as a buffer, neutralising agent or firming agent. Aluminium hydroxide is an intermediate product in the Bayer process. In this process, bauxite is dissolved in hot sodium hydroxide solution, and insolubilities are filtered off. On cooling, aluminium hydroxide precipitates. The aluminium hydroxide is further calcined to give alumina, which may be smelted in the Hall-Héroult process in order to produce aluminium. C308 - Immunotherapeutic Agent > C210 - Immunoadjuvant > C2554 - Vaccine Adjuvant It is used in foods as a buffer, neutralising agent or firming agent C2140 - Adjuvant Same as: D02416

   

N-phenylanthranilic acid

N-Phenyl-ortho-aminobenzoic acid

C13H11NO2 (213.079)


D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002491 - Central Nervous System Agents > D000700 - Analgesics D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents

   

NS-102

5-Nitro-6,7,8,9-tetrahydrobenzo(G)indole-2,3-dione-3-oxime

C12H11N3O4 (261.075)


NS-102 is a selective kainate (GluK2) receptor antagonist. NS-102 is a potent GluR6/7 receptor antagonist[1][2][3].

   

1,2,3,4-Tetrahydronaphthalene

Naphthalene 1,2,3,4-tetrahydride

C10H12 (132.0939)


   

(1,2-diphenylethenyl)benzene

(1,2-diphenylethenyl)benzene

C20H16 (256.1252)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D004965 - Estrogen Antagonists

   

Cyclopropanamine

Cyclopropanamine

C3H7N (57.0578)


A primary aliphatic amine that consists of cyclopropane bearing a single amino substituent.

   

Heptachlor

1,5,7,8,9,10,10-heptachlorotricyclo[5.2.1.02,6]deca-3,8-diene

C10H5Cl7 (369.8211)


Heptachlor is a manufactured chemical and doesn't occur naturally. Pure heptachlor is a white powder that smells like camphor (mothballs). The less pure grade is tan. Trade names include Heptagran®, Basaklor®, Drinox®, Soleptax®, Termide®, and Velsicol 104®. Heptachlor was used extensively in the past for killing insects in homes, buildings, and on food crops, especially corn. These uses stopped in 1988. Currently it can only be used for fire ant control in power transformers. Heptachlor epoxide is also a white powder. Bacteria and animals break down heptachlor to form heptachlor epoxide. The epoxide is more likely to be found in the environment than heptachlor. D004785 - Environmental Pollutants > D012989 - Soil Pollutants D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals Heptachlor. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=76-44-8 (retrieved 2024-10-28) (CAS RN: 76-44-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

FOH 8:0;O

(R)-(+)-1,2-EPOXYHEXANE

C8H18O2 (146.1307)


   

2,4'-Dichlorobiphenyl

1-chloro-4-(2-chlorophenyl)benzene

C12H8Cl2 (222.0003)


D004785 - Environmental Pollutants > D011078 - Polychlorinated Biphenyls

   

Diphenolic acid

4,4-Bis(4-hydroxyphenyl)pentanoic acid

C17H18O4 (286.1205)


   

equilenin

3-hydroxy-estra-1,3,5(10),6,8-pentaen-17-one

C18H18O2 (266.1307)


A 3-hydroxy steroid that is estrone which carries two double bonds at positions 6 and 8. It is found in the urine of pregnant mares and extensively used for estrogen replacement therapy in postmenopausal women. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

Org 4333

11beta-Chloromethylestradiol; Org 4333

C19H25ClO2 (320.1543)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

Heptachlor exo-epoxide

1,6,8,9,10,11,11-heptachloro-4-oxatetracyclo[6.2.1.0²,⁷.0³,⁵]undec-9-ene

C10H5Cl7O (385.816)


D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

16-Ketoestradiol

(1S,10R,11S,14R,15S)-5,14-dihydroxy-15-methyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadeca-2(7),3,5-trien-13-one

C18H22O3 (286.1569)


16-Ketoestradiol is found in the estrogen patch. The estrogen patch is a delivery system for estradiol used as hormone replacement therapy to treat the symptoms of menopause, such as hot flashes and vaginal dryness, and to prevent osteoporosis. Originally marketed as Vivelle (Novartis), it was discontinued in 2003 and reintroduced in a smaller form as Vivelle-Dot. Although the estrogen is given transdermally rather than in the standard oral tablets, the estrogen patch carries similar risks and benefits as more conventional forms of estrogen-only hormone replacement therapy. [HMDB] 16-Ketoestradiol is found in the estrogen patch. The estrogen patch is a delivery system for estradiol used as hormone replacement therapy to treat the symptoms of menopause, such as hot flashes and vaginal dryness, and to prevent osteoporosis. Originally marketed as Vivelle (Novartis), it was discontinued in 2003 and reintroduced in a smaller form as Vivelle-Dot. Although the estrogen is given transdermally rather than in the standard oral tablets, the estrogen patch carries similar risks and benefits as more conventional forms of estrogen-only hormone replacement therapy. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

2-Ethylphenol

O-Ethylphenol

C8H10O (122.0732)


2-ethylphenol, also known as phlorol or 1-ethyl-2-hydroxybenzene, is a member of the class of compounds known as 1-hydroxy-4-unsubstituted benzenoids. 1-hydroxy-4-unsubstituted benzenoids are phenols that are unsubstituted at the 4-position. 2-ethylphenol is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). 2-ethylphenol can be found in arabica coffee, which makes 2-ethylphenol a potential biomarker for the consumption of this food product. Ethylphenol may refer to: 2-Ethylphenol 3-Ethylphenol 4-Ethylphenol .

   

alpha-Methylstyrene

1-Methyl-1-phenylethylene

C9H10 (118.0782)


alpha-Methylstyrene belongs to the family of Phenylpropenes. These are compounds containing a phenylpropene moeity, which consists of a propene substituent bound to a phenyl group.

   

Mesitylene

1,3,5-Trimethylbenzene (mesitylene)

C9H12 (120.0939)


Mesitylene or 1,3,5-trimethylbenzene is a derivative of benzene with three methyl substituents symmetrically placed on the ring. Isomeric trimethylbenzenes include hemimellitene (1,2,3-trimethylbenzene) and pseudocumene (1,2,4-trimethylbenzene). All three compounds have the formula C6H3(CH3)3, which is commonly abbreviated C6H3Me3. Mesitylene is a colourless liquid with sweet aromatic odor. It is a component of coal tar, which is its traditional source. It is a precursor to diverse fine chemicals. The mesityl group (Mes) is a substituent with the formula C6H3Me3.

   

Indenestrol B

(S)-Indenestrol B

C18H18O2 (266.1307)


   

2-Ethoxyethanol

Ether monoethylique de lethylene-glycol

C4H10O2 (90.0681)


2-Ethoxyethanol is a diluent in colour additive mixtures for marking food. 2-Ethoxyethanol, also known by the trademark Cellosolve or ethyl cellosolve, is a solvent used widely in commercial and industrial applications. It is a clear, colorless, nearly odorless liquid that is miscible with water, ethanol, diethyl ether, acetone, and ethyl acetate. As with other glycol ethers, 2-ethoxyethanol has the useful property of being able to dissolve chemically diverse compounds. It will dissolve oils, resins, grease, waxes, nitrocellulose, and lacquers. This is an ideal property as a multi-purpose cleaner and therefore 2-ethoxyethanol is used in products such as varnish removers and degreasing solutions

   

Stilben-4-ol

trans-4-hydroxystilbene;

C14H12O (196.0888)


   

CE(18:2(9Z,12Z))

(2R,5S,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-yl (9Z,12Z)-octadeca-9,12-dienoate

C45H76O2 (648.5845)


Cholesteryl linoleic acid is a cholesteryl ester. A cholesteryl ester is an ester of cholesterol. Fatty acid esters of cholesterol constitute about two-thirds of the cholesterol in the plasma. Cholesterol is a sterol (a combination steroid and alcohol) and a lipid found in the cell membranes of all body tissues, and transported in the blood plasma of all animals. The accumulation of cholesterol esters in the arterial intima (the innermost layer of an artery, in direct contact with the flowing blood) is a characteristic feature of atherosclerosis. Atherosclerosis is a disease affecting arterial blood vessels. It is a chronic inflammatory response in the walls of arteries, in large part to the deposition of lipoproteins (plasma proteins that carry cholesterol and triglycerides). Cholesteryl linoleate is contained in low density lipoprotein and atherosclerotic lesions. The oxidation products of cholesteryl linoleate may cause chronic inflammatory processes. (PMID 9684755, 11950694) [HMDB] Cholesteryl linoleic acid is a cholesteryl ester. A cholesteryl ester is an ester of cholesterol. Fatty acid esters of cholesterol constitute about two-thirds of the cholesterol in the plasma. Cholesterol is a sterol (a combination steroid and alcohol) and a lipid found in the cell membranes of all body tissues, and transported in the blood plasma of all animals. The accumulation of cholesterol esters in the arterial intima (the innermost layer of an artery, in direct contact with the flowing blood) is a characteristic feature of atherosclerosis. Atherosclerosis is a disease affecting arterial blood vessels. It is a chronic inflammatory response in the walls of arteries, in large part to the deposition of lipoproteins (plasma proteins that carry cholesterol and triglycerides). Cholesteryl linoleate is contained in low density lipoprotein and atherosclerotic lesions. The oxidation products of cholesteryl linoleate may cause chronic inflammatory processes. (PMID 9684755, 11950694). Cholesteryl linoleate is shown to be the major cholesteryl ester contained in LDL and atherosclerotic lesions.

   

Cgp 52608

1-methyl-3-[(Z)-(4-oxo-3-prop-2-enyl-1,3-thiazolidin-2-ylidene)amino]thiourea

C8H12N4OS2 (244.0453)


   

Gamma-glutamyl-L-putrescine

(2S)-2-amino-4-[(4-aminobutyl)carbamoyl]butanoic acid

C9H19N3O3 (217.1426)


Gamma-glutamyl-L-putrescine is involved in the putrescine II degradation pathway. γ-glutamyl-L-putrescine reacts with H2O and O2 to produce γ-glutamyl-γ-aminobutyraldehyde, H2O2, and NH4+. γ-glutamyl-L-putrescine is formed from an ATP-driven reaction between putrescine, L-glutamate. Gamma-glutamyl-L-putrescine is involved in the putrescine II degradation pathway.

   

Coelichelin

Coelichelin

C21H39N7O11 (565.2707)


A tetrapeptide hydroxamate siderophore that is isolated from Streptomyces coelicolor.

   

6alpha-Hydroxymaackiain

5,7,11,19-tetraoxapentacyclo[10.8.0.0²,¹⁰.0⁴,⁸.0¹³,¹⁸]icosa-2,4(8),9,13(18),14,16-hexaene-1,16-diol

C16H12O6 (300.0634)


Isolated from leaves of Trifolium pratense (red clover) as a phytoalexin. 6alpha-Hydroxymaackiain is found in many foods, some of which are pulses, tea, common pea, and herbs and spices. 6alpha-Hydroxymaackiain is found in common pea. 6alpha-Hydroxymaackiain is isolated from leaves of Trifolium pratense (red clover) as a phytoalexin.

   

2-Nitrobenzoic acid

O-Carboxynitrobenzene

C7H5NO4 (167.0219)


   

2,6-Dibromophenol

2,6-Dibromo-phenol

C6H4Br2O (249.8629)


2,6-Dibromophenol is found in crustaceans. 2,6-Dibromophenol is an important flavour component of marine fish, molluses and crustacean 2,6-Dibromophenol is an endogenous metabolite.

   

alpha-Hydroxytamoxifen

(3E)-4-{4-[2-(dimethylamino)ethoxy]phenyl}-3,4-diphenylbut-3-en-2-ol

C26H29NO2 (387.2198)


alpha-Hydroxytamoxifen is a metabolite of tamoxifen. Tamoxifen is an antagonist of the estrogen receptor in breast tissue via its active metabolite, hydroxytamoxifen. In other tissues such as the endometrium, it behaves as an agonist, and thus may be characterized as a mixed agonist/antagonist. Tamoxifen is the usual endocrine therapy for hormone receptor-positive breast cancer in pre-menopausal women, and is also a standard in post-menopausal women although aromatase inhibitors are also frequently used in that setting. (Wikipedia)

   

4-Hydroxyifosfamide

3-(2-chloroethyl)-2-[(2-chloroethyl)amino]-4-hydroxy-1,3,2λ⁵-oxazaphosphinan-2-one

C7H15Cl2N2O3P (276.0197)


4-Hydroxyifosfamide is the active metabolite of the bifunctional alkylating cytostatic drug known as ifosfamide. 4-Hydroxyifosfamide is a member of the compound class known as oxazaphosphorines. Oxazaphosphorines are any saturated six-membered heterocycle containing three carbon atoms and one each of oxygen, nitrogen and phosphorus, especially one in which the phosphorus atom is linked to both the nitrogen and oxygen atoms. 4-Hydroxyifosfamide is very unstable in plasma and a stabilization procedure by adding citric acid has been developed (PMID: 9172103). 4-Hydroxyifosfamide is known to pass through the blood-brain barrier, and can reach cerebrospinal fluid concentrations that are almost as high as plasma concentrations (PMID: 9677448). 4-Hydroxyifosfamide is only found in individuals who have consumed or received the drug Ifosfamide. D000970 - Antineoplastic Agents > D018906 - Antineoplastic Agents, Alkylating > D009588 - Nitrogen Mustard Compounds D000970 - Antineoplastic Agents > D018906 - Antineoplastic Agents, Alkylating > D010752 - Phosphoramide Mustards

   

Hydnocarpic acid

11-[(1R)-cyclopent-2-en-1-yl]undecanoic acid

C16H28O2 (252.2089)


An optically active form of hydnocarpic acid having (R)-configuration. A cyclopentenyl fatty acid consisting of undecanoic acid having a cyclopent-2-enyl group at the 11-position.

   

Cilazprilat

(4S,7S)-7-[[(1S)-1-carboxy-3-phenylpropyl]amino]-6-oxo-1,2,3,4,7,8,9,10-octahydropyridazino[1,2-a]diazepine-4-carboxylic acid

C20H27N3O5 (389.1951)


D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D000806 - Angiotensin-Converting Enzyme Inhibitors C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent C471 - Enzyme Inhibitor > C783 - Protease Inhibitor > C247 - ACE Inhibitor D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents

   

Cimigenol

(1S,2R,3S,4R,7R,9S,12R,14S,17R,18R,19R,21R,22S)-22-(2-hydroxypropan-2-yl)-3,8,8,17,19-pentamethyl-23,24-dioxaheptacyclo[19.2.1.01,18.03,17.04,14.07,12.012,14]tetracosane-2,9-diol

C30H48O5 (488.3502)


Cimigenol is a triterpenoid. It derives from a hydride of a cycloartane. Cimigenol is a natural product found in Actaea pachypoda, Actaea dahurica, and other organisms with data available. See also: Black Cohosh (part of).

   

Coixenolide

Coixenolide

C38H70O4 (590.5274)


   

JI-20A

Antibiotic JI-20A

C19H39N5O9 (481.2748)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D005839 - Gentamicins

   

Arcapillin

4H-1-Benzopyran-4-one, 2-(2,4-dihydroxy-5-methoxyphenyl)-5-hydroxy-6,7-dimethoxy-

C18H16O8 (360.0845)


A trihydroxyflavone that is flavone substituted by hydroxy groups at positions 2, 4 and 5 and methoxy groups at positions 5, 6 and 7 respectively.

   

Astragaloside VII

Astragaloside VII

C47H78O19 (946.5137)


   

Cysteinyldopa

5-S-Cysteinyl-DOPA

C12H16N2O6S (316.0729)


   

Deltorphin

Deltorphin A; Dermenkephalin

C44H62N10O10S2 (954.4092)


   

(±)-Tryptophan

alpha-Amino-beta-(3-indolyl)-propionic acid

C11H12N2O2 (204.0899)


(±)-Tryptophan is a dietary supplement, nutrient.Tryptophan is one of the 20 standard amino acids, as well as an essential amino acid in the human diet. Only the L-stereoisomer of tryptophan is used in structural or enzyme proteins, but the D-stereoisomer is occasionally found in naturally produced peptides (for example, the marine venom peptide contryphan). (Wikipedia Dietary supplement, nutrient DL-Tryptophan is an endogenous metabolite.

   

(+)-Nicotine

(±)-3-(1-Methyl-2-pyrrolidinyl)pyridine

C10H14N2 (162.1157)


Chemical Structure of (+)-Nicotine: (+)-Nicotine, also known as d-nicotine, has a complex chemical structure that consists of a pyridine ring with a methyl group at position 3 and a pyrrolidine ring at position 2. The molecular formula of nicotine is C10H14N2. The presence of a nitrogen-containing pyridine ring and a pyrrolidine ring makes nicotine a type of alkaloid. The (+) sign indicates that this is the dextrorotatory isomer, meaning it rotates plane-polarized light to the right. The chemical structure can be described as follows: A six-membered pyridine ring, which is a nitrogen-containing aromatic heterocycle. A methyl group (-CH3) attached to the pyridine ring at the 3-position. A five-membered pyrrolidine ring, which is a saturated nitrogen-containing heterocycle, fused to the pyridine ring at the 2-position. The pyrrolidine ring contains a secondary amine group (-NH-), which is part of the ring structure. Biological Functions of (+)-Nicotine: Neurotransmitter Mimic: (+)-Nicotine acts as an agonist at nicotinic acetylcholine receptors (nAChRs), which are ligand-gated ion channels found in both the central and peripheral nervous systems. By binding to these receptors, nicotine mimics the action of the neurotransmitter acetylcholine, leading to the release of various neurotransmitters and hormones. Central Nervous System Stimulation: When (+)-nicotine binds to nAChRs in the brain, it can increase the release of dopamine, a neurotransmitter associated with reward and pleasure. This effect contributes to the addictive properties of nicotine. Cardiovascular Effects: (+)-Nicotine can have various effects on the cardiovascular system, including increasing heart rate and blood pressure due to the stimulation of nAChRs on adrenergic neurons, which leads to the release of catecholamines (e.g., adrenaline). Metabolic Effects: Nicotine can increase metabolic rate and decrease appetite, which can lead to weight loss in some individuals. Insecticide: (+)-Nicotine has insecticidal properties and has been used historically as a pesticide. It acts by binding to nAChRs in insects, causing paralysis and death. Therapeutic Uses: (+)-Nicotine is used in nicotine replacement therapies (NRT), such as patches, gum, lozenges, and inhalers, to help smokers reduce withdrawal symptoms and quit smoking. It is also being investigated for its potential therapeutic effects in neurological disorders like Alzheimer’s disease and Parkinson’s disease. Toxicity: At high doses, (+)-nicotine can be toxic, leading to nausea, vomiting, dizziness, and in severe cases, respiratory failure and death due to its paralytic effects on the respiratory center. (+)-Nicotine, also known as nikotin or L-nicotine, belongs to the class of organic compounds known as pyrrolidinylpyridines. Pyrrolidinylpyridines are compounds containing a pyrrolidinylpyridine ring system, which consists of a pyrrolidine ring linked to a pyridine ring (+)-Nicotine is a primary metabolite. Primary metabolites are metabolically or physiologically essential metabolites. They are directly involved in an organism’s growth, development or reproduction. Based on a literature review a significant number of articles have been published on (+)-Nicotine. This compound has been identified in human blood as reported by (PMID: 31557052 ). (+)-nicotine is not a naturally occurring metabolite and is only found in those individuals exposed to this compound or its derivatives. Technically (+)-Nicotine is part of the human exposome. The exposome can be defined as the collection of all the exposures of an individual in a lifetime and how those exposures relate to health. An individual's exposure begins before birth and includes insults from environmental and occupational sources.

   

D-Histidine

2-amino-3-(1H-imidazol-5-yl)propanoic acid

C6H9N3O2 (155.0695)


   

METALAXYL

Pesticide4_Metalaxyl_C15H21NO4_N-(2,6-Dimethylphenyl)-N-(methoxyacetyl)-DL-alanine methyl ester

C15H21NO4 (279.1471)


D016573 - Agrochemicals D010575 - Pesticides

   

endrin

2,7:3,6-Dimethanonaphth[2,3-b]oxirene, 3,4,5,6,9,9-hexachloro-1a,2,2a,3,6,6a,7,7a-octahydro-, (1aalpha,2beta,2abeta,3alpha,6alpha,6abeta,7beta,7aalpha)-

C12H8Cl6O (377.8706)


D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

D-Psicose

(3R,4R,5R)-1,3,4,5,6-Pentahydroxyhexan-2-one

C6H12O6 (180.0634)


The D-enantiomer of psicose.

   

3-amino-3-(4-hydroxyphenyl)propanoic acid

(R)-3-Amino-3-(4-hydroxy-phenyl)-propionic acid

C9H11NO3 (181.0739)


A beta-amino acid comprising propionic acid having amino and 4-hydroxyphenyl groups attached at the 3-position.

   

Luteolin

(2S,3S,4S,5R,6S)-6-((2-(3,4-Dihydroxyphenyl)-5-hydroxy-4-oxo-4H-chromen-7-yl)oxy)-3,4,5-trihydroxytetrahydro-2H-pyran-2-carboxylic acid

C21H18O12 (462.0798)


Luteolin 7-O-beta-D-glucosiduronic acid is a luteolin glucosiduronic acid consisting of luteolin having a beta-D-glucosiduronic acid residue attached at the 7-position. It has a role as a metabolite. It is a trihydroxyflavone, a glycosyloxyflavone, a monosaccharide derivative and a luteolin O-glucuronoside. It is a conjugate acid of a luteolin 7-O-beta-D-glucosiduronate and a luteolin 7-O-beta-D-glucosiduronate(2-). Luteolin 7-glucuronide is a natural product found in Galeopsis tetrahit, Galeopsis ladanum, and other organisms with data available. A luteolin glucosiduronic acid consisting of luteolin having a beta-D-glucosiduronic acid residue attached at the 7-position. Luteolin 7-O-glucuronide could inhibit Matrix Metalloproteinases (MMP) activities, with IC50s of 17.63, 7.99, 11.42, 12.85, 0.03 μM for MMP-1, MMP-3, MMP-8, MMP-9, MMP-13, respectively. Luteolin 7-O-glucuronide could inhibit Matrix Metalloproteinases (MMP) activities, with IC50s of 17.63, 7.99, 11.42, 12.85, 0.03 μM for MMP-1, MMP-3, MMP-8, MMP-9, MMP-13, respectively.

   

2,4-Diaminobutyric acid

2,4-Diaminobutyric acid monohydrochloride, (+-)-isomer

C4H10N2O2 (118.0742)


2,4-Diaminobutyric acid, also known as 2,4-diaminobutanoate or Dbu, belongs to the class of organic compounds known as alpha amino acids. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). 2,4-Diaminobutyric acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. 2,4-Diaminobutyric acid exists in all living organisms, ranging from bacteria to humans. Outside of the human body, 2,4-Diaminobutyric acid has been detected, but not quantified in cow milk. This could make 2,4-diaminobutyric acid a potential biomarker for the consumption of these foods. 2,4-Diaminobutyric acid is a non-physiological, cationic amino acid analogue that is transported into cells by System A with potent antitumoral activity in vitro against human glioma cells, the result of the pronounced concentrated uptake of DAB in glioma cells to the extent that a cellular lysis could occur due to osmotic reasons. 2,4-Diaminobutyric acid is a non-physiological, cationic amino acid analogue that is transported into cells by System A with potent antitumoral activity in vitro against human glioma cells, the result of the pronounced concentrated uptake of DAB in glioma cells to the extent that a cellular lysis could occur due to osmotic reasons. (PMID: 1561943) [HMDB] L-DABA (L-2,4-Diaminobutyric acid) is a week GABA transaminase inhibitor with an IC50 of larger than 500 μM; exhibits antitumor activity in vivo and in vitro. L-DABA (L-2,4-Diaminobutyric acid) is a week GABA transaminase inhibitor with an IC50 of larger than 500 μM; exhibits antitumor activity in vivo and in vitro.

   

Sedoheptulose 7-phosphate

sedoheptulose-7-phosphate

C7H15O10P (290.0403)


   

Nerolidol

[S-(E)]-3,7,11-trimethyldodeca-1,6,10-trien-3-ol

C15H26O (222.1984)


A component of many essential oils. The (S)-enantiomer is the commoner and occurs mostly as the (S)-(E)-isomer. Flavouring agent. Nerolidol is found in many foods, some of which are coriander, sweet basil, roman camomile, and sweet orange. Nerolidol is found in bitter gourd. Nerolidol is a component of many essential oils. The (S)-enantiomer is the commoner and occurs mostly as the (S)-(E)-isomer. Nerolidol is a flavouring agent Nerolidol is a natural membrane-active sesquiterpene, with antitumor, antibacterial, antifungal and antiparasitic activity[1]. Nerolidol is a natural membrane-active sesquiterpene, with antitumor, antibacterial, antifungal and antiparasitic activity[1].

   

Luteolin 7-glucuronide

Luteolin 7-O-glucuronide

C21H18O12 (462.0798)


Luteolin 7-O-glucuronide could inhibit Matrix Metalloproteinases (MMP) activities, with IC50s of 17.63, 7.99, 11.42, 12.85, 0.03 μM for MMP-1, MMP-3, MMP-8, MMP-9, MMP-13, respectively. Luteolin 7-O-glucuronide could inhibit Matrix Metalloproteinases (MMP) activities, with IC50s of 17.63, 7.99, 11.42, 12.85, 0.03 μM for MMP-1, MMP-3, MMP-8, MMP-9, MMP-13, respectively.

   

L-Homocystine

2-Amino-4-{[(3S)-3-amino-3-carboxypropyl]disulphanyl}butanoic acid

C8H16N2O4S2 (268.0551)


Homocystine is the oxidized form of homocysteine. Homocystine is a dipeptide consisting of two homocysteine molecules joined by a disulfide bond. Homocysteine is a sulfur-containing amino acid that arises during methionine metabolism. Homocystine occurs only transiently before being reduced to homocysteine and converted to the harmless cystathionine via a vitamin B6-dependent enzyme. Homocystine and homocysteine-cysteine mixed disulfides account for >98\\\% of total homocysteine in plasma from healthy individuals (PMID 11592966). Homocystine has been shown to stereospecifically induce endothelial nitric oxide synthase-dependent lipid peroxidation in endothelial cells, thereby inducing a vascular cell type-specific oxidative stress. This vascular stress is associated with atherothrombotic cardiovascular disease (PMID: 14980706). High levels of homocysteine (and homocysteine) can be found in individuals suffering from homocystinura due to cystathionine synthase deficiency (PMID: 4685596) Homocystine is the double-bonded form of homocysteine, but it occurs only transiently before being converted to the harmless cystathionine via a vitamin B6-dependent enzyme. L-Homocystine is the oxidized member of the L-homocysteine. Homocysteine is a pro-thrombotic factor, vasodilation impairing agent, pro-inflammatory factor and endoplasmatic reticulum-stress inducer used to study cardiovascular disease mechanisms.

   

Methadyl Acetate

(3R,6R)-3-Acetoxy-6-dimethylamino-4,4-diphenylheptane

C23H31NO2 (353.2355)


Methadyl Acetate is only found in individuals that have used or taken this drug. It is a narcotic analgesic with a long onset and duration of action. It is used mainly in the treatment of narcotic dependence. [PubChem]Methadyl Acetate is primarily a mu-type opioid receptor agonist. It functions similarily to methadone. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D000700 - Analgesics

   

(1S,2S)-(+)-1,2-Diaminocyclohexane

1,2-Cyclohexanediamine, (trans)-(S)-isomer

C6H14N2 (114.1157)


   

1,2-Cyclohexanediol

1,2-Cyclohexanediol, (trans)-isomer

C6H12O2 (116.0837)


   

15-Hydroperoxyicosa-5,8,11,13-tetraenoic acid

15-Hydroperoxy-5,8,11,13-eicosatetraenoic acid, (S)-(e,Z,Z,Z)-isomer

C20H32O4 (336.23)


   

15-Hydroxy-5,8,11,13-eicosatetraenoic acid

15-Hydroxy-5,8,11,13-eicosatetraenoic acid, (S-(e,Z,Z,Z))-isomer

C20H32O3 (320.2351)


   

Androst-5-ene-3beta,17beta-diol

2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-7-ene-5,14-diol

C19H30O2 (290.2246)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D045930 - Anabolic Agents

   

2,3-Butanedione monoxime

Potassium 2,3-butanedione monoximate

C4H7NO2 (101.0477)


   

3,3',4',5-Tetrachlorosalicylanilide

3,5-dichloro-N-(3,4-dichlorophenyl)-2-hydroxybenzene-1-carboximidic acid

C13H7Cl4NO2 (348.9231)


D004791 - Enzyme Inhibitors

   

5,8,11,14-Icosatetraenoic Acid

Eicosa-5,8,11,14-tetraenoic acids

C20H32O2 (304.2402)


   

8-Prenylnaringenin

5,7-dihydroxy-2-(4-hydroxyphenyl)-8-(3-methylbut-2-en-1-yl)-3,4-dihydro-2H-1-benzopyran-4-one

C20H20O5 (340.1311)


(s)-4,5,7-trihydroxy-8-prenylflavanone is a member of the class of compounds known as 8-prenylated flavanones. 8-prenylated flavanones are flavanones that features a C5-isoprenoid substituent at the 8-position. Thus, (s)-4,5,7-trihydroxy-8-prenylflavanone is considered to be a flavonoid lipid molecule (s)-4,5,7-trihydroxy-8-prenylflavanone is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (s)-4,5,7-trihydroxy-8-prenylflavanone can be found in beer, which makes (s)-4,5,7-trihydroxy-8-prenylflavanone a potential biomarker for the consumption of this food product.

   

Ergokryptine

N-[2-hydroxy-7-(2-methylpropyl)-5,8-dioxo-4-(propan-2-yl)-3-oxa-6,9-diazatricyclo[7.3.0.0²,⁶]dodecan-4-yl]-6-methyl-6,11-diazatetracyclo[7.6.1.0²,⁷.0¹²,¹⁶]hexadeca-1(16),2,9,12,14-pentaene-4-carboxamide

C32H41N5O5 (575.3108)


   

ARGININOSUCCINATE

2-[N-(4-amino-4-carboxybutyl)carbamimidamido]butanedioic acid

C10H18N4O6 (290.1226)


   

Epilincomycin

N-{2-hydroxy-1-[3,4,5-trihydroxy-6-(methylsulphanyl)oxan-2-yl]propyl}-1-methyl-4-propylpyrrolidine-2-carboximidic acid

C18H34N2O6S (406.2137)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D055231 - Lincosamides D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors

   

4-Aminohex-5-ynoic acid

4-Amino-5-hexynoic acid

C6H9NO2 (127.0633)


D004791 - Enzyme Inhibitors

   

Iodofiltic Acid

15-(4-iodophenyl)-3-methylpentadecanoic acid

C22H35IO2 (458.1682)


   

N-Formyl-DL-methionine

2-formamido-4-(methylsulfanyl)butanoic acid

C6H11NO3S (177.046)


   

pyridine-3,4-diol

3-hydroxy-1,4-dihydropyridin-4-one

C5H5NO2 (111.032)


   

Soterenol monohydrochloride

2-Hydroxy-5-(1-hydroxy-2-(isopropylamino)ethyl)methane sulfonanilide monohydrochloride

C12H20N2O4S (288.1144)


C78273 - Agent Affecting Respiratory System > C29712 - Anti-asthmatic Agent > C319 - Bronchodilator

   

virginiamycin m1

21-hydroxy-11,19-dimethyl-10-(propan-2-yl)-9,26-dioxa-3,15,28-triazatricyclo[23.2.1.0³,⁷]octacosa-1(27),6,12,17,19,25(28)-hexaene-2,8,14,23-tetrone

C28H35N3O7 (525.2475)


   

Benzenesulfonamide, 5-(2-((2-(2-ethoxyphenoxy)ethyl)amino)propyl)-2-methoxy-

Benzenesulfonamide, 5-(2-((2-(2-ethoxyphenoxy)ethyl)amino)propyl)-2-methoxy-

C20H28N2O5S (408.1719)


D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists

   

6-Octadecenoic acid

petroselinic acid, sodium salt, (Z)-isomer

C18H34O2 (282.2559)


Isolated from volatiles of Coriandrum sativum (coriander), Anethum sowa (Indian dill), Cuminum cyminum (cumin), Daucus carota (carrot), Nigella sativa (black cumin), Apium graveolens (celery), Pimpinella anisum (anise) and Petroselinum sativum (parsley) [CCD]. 6-Octadecenoic acid is found in dill. Minor constituent of plant oils. Constituent of milk fat and from porcine parasites Oesophagostomum dentatum and Oesophagostomum quadrispinulatum [CCD]. Petroselaidic acid is found in fats and oils.

   

6-Hydroxydaidzein

6,7-Dihydroxy-3-(4-hydroxyphenyl)-4H-1-benzopyran-4-one, 9CI

C15H10O5 (270.0528)


4,6,7-trihydroxyisoflavone is a hydroxyisoflavone that is daidzein bearing an additional hydroxy substituent at position 6. It has a role as a metabolite, a PPARalpha agonist, a PPARgamma agonist, an anti-inflammatory agent, an antimutagen and an EC 1.14.18.1 (tyrosinase) inhibitor. It is functionally related to a daidzein. 6,7,4-Trihydroxyisoflavone is a natural product found in Capsicum annuum with data available. 6-Hydroxydaidzein is found in pulses. 6-Hydroxydaidzein is isolated from fermented soybeans (Glycine max Isolated from fermented soybeans (Glycine max). 6-Hydroxydaidzein is found in soy bean and pulses. A hydroxyisoflavone that is daidzein bearing an additional hydroxy substituent at position 6.

   

Apigenin 7,4'-dimethyl ether

4H-1-Benzopyran-4-one, 5-hydroxy-7-methoxy-2-(4-methoxyphenyl)-

C17H14O5 (298.0841)


Apigenin 7,4-dimethyl ether, also known as apigenin dimethylether or 4,7-dimethylapigenin, belongs to the class of organic compounds known as 7-O-methylated flavonoids. These are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, apigenin 7,4-dimethyl ether is considered to be a flavonoid lipid molecule. Apigenin 7,4-dimethyl ether is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Outside of the human body, apigenin 7,4-dimethyl ether has been detected, but not quantified in, common sages and sweet basils. This could make apigenin 7,4-dimethyl ether a potential biomarker for the consumption of these foods. BioTransformer predicts that apigenin 7,4-dimethyl ether is a product of 4,5,7-trimethoxyflavone metabolism via an O-dealkylation reaction and catalyzed by CYP2C9 and CYP2C19 enzymes (PMID: 30612223). 4-methylgenkwanin, also known as apigenin dimethylether or 4,7-dimethylapigenin, is a member of the class of compounds known as 7-o-methylated flavonoids. 7-o-methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, 4-methylgenkwanin is considered to be a flavonoid lipid molecule. 4-methylgenkwanin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 4-methylgenkwanin can be found in common sage and sweet basil, which makes 4-methylgenkwanin a potential biomarker for the consumption of these food products. Apigenin 7,4-dimethyl ether is a dimethoxyflavone that is the 7,4-dimethyl ether derivative of apigenin. It has a role as a plant metabolite. It is a dimethoxyflavone and a monohydroxyflavone. It is functionally related to an apigenin. Apigenin 7,4-dimethyl ether is a natural product found in Teucrium polium, Calea jamaicensis, and other organisms with data available. A dimethoxyflavone that is the 7,4-dimethyl ether derivative of apigenin. The compound 7,4'-Di-O-methylapigenin may be partly responsible for the reported antifungal activity of C. zeyheri, and may serve as a potential source of lead compounds that can be developed as antifungal phytomedicines.And it also showed inhibition of the drug efflux pumps (with IC50 = 51.64 μg/ml). IC50:51.64 μg/ml(Candida albicans drug efflux pumps)[2] In vitro: The isolated 7,4'-Di-O-methylapigenin was further investigated for its inhibitory activity on ABC drug efflux pumps in C. albicans by monitoring an increase in ciprofloxacin, assessing the level of its accumulation, in response to reserpine. There was a higher accumulation of ciprofloxacin in Candida cells in the presence of 7,4'-Di-O-methylapigenin than with reserpine. The compound 7,4'-Di-O-methylapigenine demonstrated the activity in a dose-dependent manner with IC50 value of 51.64 μg/ml. These results support those obtained from synergism assays where by the underlying synergistic antifungal mechanisms could be due to blockage of ABC efflux pumps and increasing the susceptibility of Candida to miconazole.[2] In vivo: In searching for natural products as potential anti-inflammatory agents, 7,4'-Di-O-methylapigenin wasn't evaluated in vivo for its ability to inhibit acute inflammation.[1] The compound 7,4'-Di-O-methylapigenin may be partly responsible for the reported antifungal activity of C. zeyheri, and may serve as a potential source of lead compounds that can be developed as antifungal phytomedicines.And it also showed inhibition of the drug efflux pumps (with IC50 = 51.64 μg/ml). IC50:51.64 μg/ml(Candida albicans drug efflux pumps)[2] In vitro: The isolated 7,4'-Di-O-methylapigenin was further investigated for its inhibitory activity on ABC drug efflux pumps in C. albicans by monitoring an increase in ciprofloxacin, assessing the level of its accumulation, in response to reserpine. There was a higher accumulation of ciprofloxacin in Candida cells in the presence of 7,4'-Di-O-methylapigenin than with reserpine. The compound 7,4'-Di-O-methylapigenine demonstrated the activity in a dose-dependent manner with IC50 value of 51.64 μg/ml. These results support those obtained from synergism assays where by the underlying synergistic antifungal mechanisms could be due to blockage of ABC efflux pumps and increasing the susceptibility of Candida to miconazole.[2] In vivo: In searching for natural products as potential anti-inflammatory agents, 7,4'-Di-O-methylapigenin wasn't evaluated in vivo for its ability to inhibit acute inflammation.[1]

   

Tiglic acid

4-02-00-01552 (Beilstein Handbook Reference)

C5H8O2 (100.0524)


A 2-methylbut-2-enoic acid having its double bond in trans-configuration. Tiglic acid is a monocarboxylic unsaturated organic acid found in croton oil and in several other natural products. Tiglic aci has a role as a plant metabolite[1]. Tiglic acid is a monocarboxylic unsaturated organic acid found in croton oil and in several other natural products. Tiglic aci has a role as a plant metabolite[1].

   

Isoscoparin

5,7-Dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-6-((2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)-4H-chromen-4-one

C22H22O11 (462.1162)


Isoscoparin is a C-glycosyl compound that consists of chrysoeriol substituted by a 1,5-anhydro-D-glucitol moiety at position 6. It has a role as a metabolite. It is a trihydroxyflavone, a monomethoxyflavone, a monosaccharide derivative and a C-glycosyl compound. It is functionally related to a 4,5,7-trihydroxy-3-methoxyflavone. It is a conjugate acid of an isoscoparin-7-olate. Isoscoparin is a natural product found in Gentiana orbicularis, Gentianopsis barbata, and other organisms with data available. A C-glycosyl compound that consists of chrysoeriol substituted by a 1,5-anhydro-D-glucitol moiety at position 6.

   

Pinoquercetin

3,3,4,5,7-Pentahydroxy-6-methylflavone

C16H12O7 (316.0583)


A pentahydroxyflavone that is quercetin substituted by a methyl group at position 6.

   

Pedalitin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-5,6-dihydroxy-7-methoxy-

C16H12O7 (316.0583)


   

3,3,4,5-Tetrachlorosalicylanilide

3,3,4,5-Tetrachlorosalicylanilide

C13H7Cl4NO2 (348.9231)


D004791 - Enzyme Inhibitors

   

Liriodenine

3,5-dioxa-11-azapentacyclo[10.7.1.0^{2,6.0^{8,20.0^{14,19]icosa-1(20),2(6),7,9,11,14,16,18-octaen-13-one

C17H9NO3 (275.0582)


Liriodenine is an oxoaporphine alkaloid that is 4,5,6,6a-tetradehydronoraporphin-7-one substituted by a methylenedioxy group across positions 1 and 2. It is isolated from Annona glabra and has been shown to exhibit antimicrobial and cytotoxic activities. It has a role as a metabolite, an antineoplastic agent, an antimicrobial agent, an EC 3.1.1.7 (acetylcholinesterase) inhibitor, an EC 3.2.1.20 (alpha-glucosidase) inhibitor and an antifungal agent. It is a cyclic ketone, an oxacycle, an organic heteropentacyclic compound, an alkaloid antibiotic and an oxoaporphine alkaloid. It is functionally related to an aporphine. Liriodenine is a natural product found in Magnolia mexicana, Annona purpurea, and other organisms with data available. An oxoaporphine alkaloid that is 4,5,6,6a-tetradehydronoraporphin-7-one substituted by a methylenedioxy group across positions 1 and 2. It is isolated from Annona glabra and has been shown to exhibit antimicrobial and cytotoxic activities.

   

Bilobol

5-[(8Z)-Pentadec-8-en-1-yl]benzene-1,3-diol

C21H34O2 (318.2559)


   

(S)-2-Propylpiperidine

Cicutin; Cicutine; Conicine;(S)-2-Propylpiperidine;(S)-beta-Propylpiperidine

C8H17N (127.1361)


Coniine is a natural product found in Conium, Sarracenia flava, and other organisms with data available. (S)-2-Propylpiperidine is found in black elderberry. (S)-2-Propylpiperidine is an alkaloid of Amorphophalus rivieri (devils tongue). (S)-2-Propylpiperidine belongs to the family of Alkaloids and Derivatives. These are naturally occurring chemical compounds that contain mostly basic nitrogen atoms. This group also includes some related compounds with neutral and even weakly acidic properties. Also some synthetic compounds of similar structure are attributed to alkaloids. In addition to carbon, hydrogen and nitrogen, alkaloids may also contain oxygen, sulfur and more rarely other elements such as chlorine, bromine, and phosphorus. (S)-2-Propylpiperidine is found in black elderberry. (S)-2-Propylpiperidine is an alkaloid of Amorphophalus rivieri (devils tongue Alkaloid of Amorphophalus rivieri (devils tongue). (S)-2-Propylpiperidine is found in pomegranate and black elderberry.

   

Ethylumbelliferone

2H-1-Benzopyran-2-one, 7-ethoxy-

C11H10O3 (190.063)


7-ethoxycoumarin is a member of the class of coumarins that is umbelliferone in which the hydroxy group at position 7 is replaced by an ethoxy group. It is an aromatic ether and a member of coumarins. It is functionally related to an umbelliferone. A member of the class of coumarins that is umbelliferone in which the hydroxy group at position 7 is replaced by an ethoxy group. 7-Ethoxycoumarin is a substrate for cytochrome P450(CYP450) and has been used in the functional characterization of various CYPs[1]. 7-Ethoxycoumarin is a substrate for cytochrome P450(CYP450) and has been used in the functional characterization of various CYPs[1].

   

2-Methylanthraquinone

InChI=1/C15H10O2/c1-9-6-7-12-13(8-9)15(17)11-5-3-2-4-10(11)14(12)16/h2-8H,1H

C15H10O2 (222.0681)


2-methylanthraquinone is an anthraquinone that is 9,10-anthraquinone in which the hydrogen at position 2 is substituted by a methyl group. It is functionally related to a 9,10-anthraquinone. 2-Methylanthraquinone is a natural product found in Clausena heptaphylla, Ophiorrhiza pumila, and other organisms with data available. Tectoquinone (2-Methylanthraquinone) is a SARSCoV-2 main protease inhibitor against COVID-19. Tectoquinone exhibits strong mosquito larvicidal activity with the LC50 values of 3.3 and 5.4 μg/ml against A. aegypti and A. albopictus in 24 h, respectively[1][2]. Tectoquinone (2-Methylanthraquinone) is a SARSCoV-2 main protease inhibitor against COVID-19. Tectoquinone exhibits strong mosquito larvicidal activity with the LC50 values of 3.3 and 5.4 μg/ml against A. aegypti and A. albopictus in 24 h, respectively[1][2].

   

Erucic acid

cis-Delta(13)-docosenoic acid

C22H42O2 (338.3185)


   

MONURON

MONURON

C9H11ClN2O (198.056)


CONFIDENCE standard compound; EAWAG_UCHEM_ID 161

   

Tebufenozide

Pesticide4_Tebufenozide_C22H28N2O2_Benzoic acid, 3,5-dimethyl-, 1-(1,1-dimethylethyl)-2-(4-ethylbenzoyl)hydrazide

C22H28N2O2 (352.2151)


D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals CONFIDENCE standard compound; EAWAG_UCHEM_ID 2952 EAWAG_UCHEM_ID 2952; CONFIDENCE standard compound

   

Norephedrine

2-Amino-1-phenyl-1-propanol

C9H13NO (151.0997)


R - Respiratory system > R01 - Nasal preparations > R01B - Nasal decongestants for systemic use > R01BA - Sympathomimetics D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D019141 - Respiratory System Agents > D014663 - Nasal Decongestants D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents D019440 - Anti-Obesity Agents > D001067 - Appetite Depressants CONFIDENCE standard compound; EAWAG_UCHEM_ID 3684

   

Cinchonine

(R)-alpha-[(8R)-8-Vinyl-1-azabicyclo[2.2.2]octane-2-yl]-4-quinolinemethanol

C19H22N2O (294.1732)


Cinchonan in which a hydrogen at position 9 is substituted by hydroxy (S configuration). It occurs in the bark of most varieties of Cinchona shrubs, and is frequently used for directing chirality in asymmetric synthesis. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents Origin: Plant; Formula(Parent): C19H22N2O; Bottle Name:Cinchonine; PRIME Parent Name:Cinchonine; PRIME in-house No.:V0325; SubCategory_DNP: Alkaloids derived from anthranilic acid, Quinoline alkaloids Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.610 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 2401; CONFIDENCE confident structure Cinchonine is a natural compound present in Cinchona bark. Cinchonine activates endoplasmic reticulum stress-induced apoptosis in human liver cancer cells[1]. Cinchonine is a natural compound present in Cinchona bark. Cinchonine activates endoplasmic reticulum stress-induced apoptosis in human liver cancer cells[1].

   

sissotrin

Biochanin a 7-O-beta-D-glucoside

C22H22O10 (446.1213)


relative retention time with respect to 9-anthracene Carboxylic Acid is 0.909 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.907 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.906

   

Picrotoxinin

picrotoxinine

C15H16O6 (292.0947)


D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018756 - GABA Antagonists relative retention time with respect to 9-anthracene Carboxylic Acid is 0.577 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.570 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.573 Picrotoxinin, a potent convulsant, is a chloride channel blocker. Picrotoxinin is a noncompetitive GABAA receptor antagonist, which negatively modulates the action of GABA on GABAA receptors. Picrotoxinin inhibits α1β2γ2L GABAA receptor with an IC50 of 1.15 μM[1]. Picrotoxinin, a potent convulsant, is a chloride channel blocker. Picrotoxinin is a noncompetitive GABAA receptor antagonist, which negatively modulates the action of GABA on GABAA receptors. Picrotoxinin inhibits α1β2γ2L GABAA receptor with an IC50 of 1.15 μM[1].

   

isosafrole

InChI=1\C10H10O2\c1-2-3-8-4-5-9-10(6-8)12-7-11-9\h2-6H,7H2,1H3\b3-2

C10H10O2 (162.0681)


relative retention time with respect to 9-anthracene Carboxylic Acid is 1.089

   

O-Succinyl-L-homoserine

O-Succinyl-L-homoserine

C8H13NO6 (219.0743)


The O-succinyl derivative of L-homoserine.

   

Guanidinosuccinic acid

Guanidinosuccinic acid

C5H9N3O4 (175.0593)


Guanidinosuccinic acid is a nitrogenous metabolite.

   

L-Homocystine

4,4-Dithiobis[2-aminobutyric Acid]

C8H16N2O4S2 (268.0551)


A homocystine in which both chiral centres have L configuration. 4,4'-Disulfanediylbis(2-aminobutanoic acid) is an endogenous metabolite. L-Homocystine is the oxidized member of the L-homocysteine. Homocysteine is a pro-thrombotic factor, vasodilation impairing agent, pro-inflammatory factor and endoplasmatic reticulum-stress inducer used to study cardiovascular disease mechanisms.

   
   

Hydrocortisonacetate

Hydrocortisone acetate

C23H32O6 (404.2199)


C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones CONFIDENCE standard compound; INTERNAL_ID 2828 D000893 - Anti-Inflammatory Agents CONFIDENCE standard compound; INTERNAL_ID 8748 Hydrocortisone acetate is a corticosteroid used to reduce swelling, itching and pain caused by minor skin irritations or hemorrhoids.

   

Lufenuron

Pesticide3_Lufenuron_C17H8Cl2F8N2O3_N-[[[2,5-Dichloro-4-(1,1,2,3,3,3-hexafluoropropoxy)phenyl]amino]carbonyl]-2,6-difluorobenzamide

C17H8Cl2F8N2O3 (509.9784)


D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals CONFIDENCE Reference Standard (Level 1); Source lufenuron_28102013_11_HCD15.txt

   

(all-E)-Antheraxanthin

(3S,5R,6S,3R)-5,6-Epoxy-5,6-dihydro-beta,beta-carotene-3,3-diol

C40H56O3 (584.4229)


An epoxycarotenol that is beta-carotene-3,3-diol in which one of the one of the endocyclic double bonds has been oxidised to the corresponding epoxide. It is a neutral yellow plant pigment found in Euglenophyta. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Window width for selecting the precursor ion was 3 Da.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 16HP2005 to the Mass Spectrometry Society of Japan.

   

dihydrobiopterin

7,8-Dihydro-L-biopterin

C9H13N5O3 (239.1018)


7,8-Dihydro-L-biopterin is an oxidation product of tetrahydrobiopterin.

   

pimelic acid

6-Carboxyhexanoate

C7H12O4 (160.0736)


An alpha,omega-dicarboxylic acid that is pentane with two carboxylic acid groups at positions C-1 and C-5. Pimelic acid is the organic compound and its derivatives are involved in the biosynthesis of the amino acid called lysine. Pimelic acid is the organic compound and its derivatives are involved in the biosynthesis of the amino acid called lysine.

   

Cholestenone

Cholestenone (delta 4)

C27H44O (384.3392)


Cholestenone (4-Cholesten-3-one), the intermediate oxidation product of cholesterol, is metabolized primarily in the liver. Cholestenone is highly mobile in membranes and influences cholesterol flip-flop and efflux. Cholestenone may cause long-term functional defects in cells[1][2]. Cholestenone (4-Cholesten-3-one), the intermediate oxidation product of cholesterol, is metabolized primarily in the liver. Cholestenone is highly mobile in membranes and influences cholesterol flip-flop and efflux. Cholestenone may cause long-term functional defects in cells[1][2].

   

12-Hydroxydodecanoic acid

12-Hydroxydodecanoic acid

C12H24O3 (216.1725)


12-Hydroxydodecanoic acid is an endogenous metabolite.

   

2-Phenylglycine

(±)-α-Aminophenylacetic acid

C8H9NO2 (151.0633)


   

1-Methyluric acid

1-Methyluric acid

C6H6N4O3 (182.044)


An oxopurine that is 7,9-dihydro-1H-purine-2,6,8(3H)-trione substituted by a methyl group at N-1. It is one of the metabolites of caffeine found in human urine.

   

2-PHENYLACETAMIDE

2-PHENYLACETAMIDE

C8H9NO (135.0684)


A monocarboxylic acid amide that is acetamide substituted by a phenyl group at position 2. 2-Phenylacetamide is an endogenous metabolite.

   

4-Methylumbelliferyl acetate

4-Methylumbelliferyl acetate

C12H10O4 (218.0579)


An acetate ester consiting of umbelliferone carrying a 7-O-acetyl group.

   

6-HYDROXYCAPROIC ACID

6-Hydroxyhexanoic acid

C6H12O3 (132.0786)


An omega-hydroxy fatty acid comprising hexanoic acid having a hydroxy group at the 6-position.

   

3-methylcatechol

3-methylcatechol

C7H8O2 (124.0524)


A methylcatechol carrying a methyl substituent at position 3. It is a xenobiotic metabolite produced by some bacteria capable of degrading nitroaromatic compounds present in pesticide-contaminated soil samples. 3-Methylcatechol is a building block in the chemical synthesis produced by Pseudomonas putida MC2[1]. 3-Methylcatechol is a building block in the chemical synthesis produced by Pseudomonas putida MC2[1].

   

Rescinnamine

methyl (1R,15S,17R,18R,19S,20S)-6,18-dimethoxy-17-{[3-(3,4,5-trimethoxyphenyl)prop-2-enoyl]oxy}-3,13-diazapentacyclo[11.8.0.0^{2,10}.0^{4,9}.0^{15,20}]henicosa-2(10),4(9),5,7-tetraene-19-carboxylate

C35H42N2O9 (634.289)


Rescinnamine is an odorless white to cream colored crystalline powder. (NTP, 1992) Rescinnamine is a methyl ester, an organic heteropentacyclic compound and an indole alkaloid. It has a role as an antihypertensive agent. It derives from a hydride of a yohimban. Rescinnamine is a natural product found in Vinca major, Aspidosperma excelsum, and other organisms with data available. C - Cardiovascular system > C02 - Antihypertensives > C02A - Antiadrenergic agents, centrally acting > C02AA - Rauwolfia alkaloids C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent

   

2,6-Dimethoxyquinone

2,6-Dimethoxy-1,4-benzoquinone

C8H8O4 (168.0423)


2,6-Dimethoxy-1,4-benzoquinone, a natural phytochemical, is a known haustorial inducing factor. 2,6-Dimethoxy-1,4-benzoquinone exerts anti-cancer, anti-inflammatory, anti-adipogenic, antibacterial, and antimalaria effects[1]. 2,6-Dimethoxy-1,4-benzoquinone, a natural phytochemical, is a known haustorial inducing factor. 2,6-Dimethoxy-1,4-benzoquinone exerts anti-cancer, anti-inflammatory, anti-adipogenic, antibacterial, and antimalaria effects[1].

   

4-CPA

4-CHLOROPHENOXYACETIC ACID

C8H7ClO3 (186.0084)


   

protriptyline

protriptyline

C19H21N (263.1674)


N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AA - Non-selective monoamine reuptake inhibitors D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent > C94727 - Tricyclic Antidepressant D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D049990 - Membrane Transport Modulators

   

fenoprofen

calcium(-1) anion; 2-(3-phenoxyphenyl)propanoate

C15H14O3 (242.0943)


M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AE - Propionic acid derivatives D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor D000893 - Anti-Inflammatory Agents D004791 - Enzyme Inhibitors

   

Albendazole sulfone

Albendazole sulfone

C12H15N3O4S (297.0783)


D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics

   

Crocin III

(2E,4E,6E,8E,10E,12E,14E)-2,6,11,15-tetramethyl-16-oxo-16-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxyhexadeca-2,4,6,8,10,12,14-heptaenoic acid

C32H44O14 (652.2731)


Beta-D-gentiobiosyl crocetin is a dicarboxylic acid monoester resulting from the formal condensation of one of the carboxylic acid groups of crocetin with the anomeric hydroxy group of beta-D-gentiobiose. It is a dicarboxylic acid monoester, a glycoside and a disaccharide derivative. It is functionally related to a crocetin and a gentiobiose. It is a conjugate acid of a beta-D-gentiobiosyl crocetin(1-). beta-D-gentiobiosyl crocetin is a natural product found in Gardenia jasminoides, Apis cerana, and Crocus sativus with data available. A dicarboxylic acid monoester resulting from the formal condensation of one of the carboxylic acid groups of crocetin with the anomeric hydroxy group of beta-D-gentiobiose.

   

8-HETE

(5Z,9E,11Z,14Z)-(8R)-8-Hydroxyeicosa-5,9,11,14-tetraenoic acid

C20H32O3 (320.2351)


An HETE having a 8-hydroxy group and (5Z)-, (9E)-, (11Z)- and (14Z)-double bonds. CONFIDENCE standard compound; NATIVE_RUN_ID STD_neg_MSMS_1min0122.mzML; PROCESSING averaging of repeated ion fragments at 30.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID STD_neg_MSMS_1min0122.mzML; PROCESSING averaging of repeated ion fragments at 20.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID STD_neg_MSMS_1min0122.mzML; PROCESSING averaging of repeated ion fragments at 10.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001287.mzML; PROCESSING averaging of repeated ion fragments at 30.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001287.mzML; PROCESSING averaging of repeated ion fragments at 20.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001287.mzML; PROCESSING averaging of repeated ion fragments at 10.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001287.mzML; PROCESSING averaging of repeated ion fragments at 40.0 NCE within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001287.mzML; PROCESSING averaging of repeated ion fragments at 30.0 NCE within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001287.mzML; PROCESSING averaging of repeated ion fragments at 20.0 NCE within 5 ppm window [MS, MS:1000575, mean of spectra, ]

   

5-HpETE

(6E,8Z,11Z,14Z)-(5S)-5-Hydroperoxyeicosa-6,8,11,14-tetraenoic acid

C20H32O4 (336.23)


A HPETE that consists of (6E,8Z,11Z,14Z)-icosatetraenoic acid in which the hydroperoxy group is located at position 5. An icosatetraenoic acid in which the double bonds are located at the 6-7, 8-9, 11-12, and 14-15 positions and have E, Z, Z, and Z geometry, respectively, and in which the pro-S hydrogen is substituted by a hydroperoxy group. CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001297.mzML; PROCESSING averaging of repeated ion fragments at 30.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001297.mzML; PROCESSING averaging of repeated ion fragments at 20.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001297.mzML; PROCESSING averaging of repeated ion fragments at 10.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001297.mzML; PROCESSING averaging of repeated ion fragments at 40.0 NCE within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001297.mzML; PROCESSING averaging of repeated ion fragments at 30.0 NCE within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001297.mzML; PROCESSING averaging of repeated ion fragments at 20.0 NCE within 5 ppm window [MS, MS:1000575, mean of spectra, ]

   

Hydrocortisone acetate

Hydrocortisone acetate

C23H32O6 (404.2199)


C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones D000893 - Anti-Inflammatory Agents Origin: Animal, Pregnanes Hydrocortisone acetate is a corticosteroid used to reduce swelling, itching and pain caused by minor skin irritations or hemorrhoids.

   

2-carboxy-1-naphthol

1-Hydroxy-2-naphthoic acid

C11H8O3 (188.0473)


A naphthoic acid with the carboxy group at position 2 and carrying a hydroxy substituent at the 1-position. It is a xenobiotic metabolite produced by the biodegradation of phenanthrene by microorganisms. 1-Hydroxy-2-naphthoic acid is an endogenous metabolite.

   

Petroselaidic acid

trans-6-octadecenoic acid

C18H34O2 (282.2559)


The trans-isomer of octadec-6-enoic acid, a long-chain fatty acid.

   

1-OCTEN-3-OL

(3R)-oct-1-en-3-ol

C8H16O (128.1201)


Oct-1-en-3-ol, a fatty acid fragrant, is a self-stimulating oxylipin messenger. Oct-1-en-3-ol serves as a signaling molecule in plant cellular responses, plant-herbivore interactions, and plant-plant interactions. Oct-1-en-3-ol causes dopamine neuron degeneration through disruption of dopamine handling[1][2]. Oct-1-en-3-ol, a fatty acid fragrant, is a self-stimulating oxylipin messenger. Oct-1-en-3-ol serves as a signaling molecule in plant cellular responses, plant-herbivore interactions, and plant-plant interactions. Oct-1-en-3-ol causes dopamine neuron degeneration through disruption of dopamine handling[1][2].

   

CHOLESTERYL LINOLEATE

Cholesteryl 9,12-octadecadienoate

C45H76O2 (648.5845)


Cholesteryl linoleate is shown to be the major cholesteryl ester contained in LDL and atherosclerotic lesions.

   

&beta

2-(Hydroxymethyl)-6-methoxytetrahydro-2H-pyran-3,4,5-triol

C7H14O6 (194.079)


   

β-Phellandrene

3-methylidene-6-(propan-2-yl)cyclohex-1-ene

C10H16 (136.1252)


β-Phellandrene is obtained from Carum petroselinum. β-Phellandrene can be used to essential oil additives[1]. β-Phellandrene is obtained from Carum petroselinum. β-Phellandrene can be used to essential oil additives[1].

   

Nordihydrocapsacin

N-[(4-Hydroxy-3-methoxyphenyl)methyl]-7-methyloctanamide, 9CI

C17H27NO3 (293.1991)


Nordihydrocapsaicin is a capsaicinoid analog and congener of capsaicin in chili peppers[1]. Nordihydrocapsaicin is a capsaicinoid analog and congener of capsaicin in chili peppers[1].

   

FA 16:2

11-(2-cyclopenten-1-yl)undecanoic acid

C16H28O2 (252.2089)


   

FA 7:2;O5

(2R,3S)-2-hydroxybutane-1,2,3-tricarboxylic acid;3-C-carboxy-2,4-dideoxy-2-methyl-D-threo-pentaric acid

C7H10O7 (206.0427)


   

Prostaglandin C2

9-oxo-15S-hydroxy-5Z,11Z,13E-prostatrienoic acid

C20H30O4 (334.2144)


A member of the class of prostaglandins C that is prosta-5,11,13-trien-1-oic acid carrying oxo and hydroxy substituents at positions 9 and 15 respectively (the 5Z,13E,15S-stereoisomer).

   

FA 20:5;O4

(5R,6Z,8E,10E,14Z)-5,20,20-trihydroxy-12-oxoicosa-6,8,10,14-tetraenoic acid

C20H30O6 (366.2042)


   

FOH 8:1

4S-(E)-6-Methyl-2-hepten-4-ol

C8H16O (128.1201)


Oct-1-en-3-ol, a fatty acid fragrant, is a self-stimulating oxylipin messenger. Oct-1-en-3-ol serves as a signaling molecule in plant cellular responses, plant-herbivore interactions, and plant-plant interactions. Oct-1-en-3-ol causes dopamine neuron degeneration through disruption of dopamine handling[1][2]. Oct-1-en-3-ol, a fatty acid fragrant, is a self-stimulating oxylipin messenger. Oct-1-en-3-ol serves as a signaling molecule in plant cellular responses, plant-herbivore interactions, and plant-plant interactions. Oct-1-en-3-ol causes dopamine neuron degeneration through disruption of dopamine handling[1][2].

   

CoA 3:1

Acryloyl-coa;Acryloyl-coenzyme A;Acrylyl-coa;Coenzyme A, S-2-propenoate

C24H38N7O17P3S (821.1258)


   

CoA 12:0

Dodecanoyl-CoA

C33H58N7O17P3S (949.2823)


   

3-Octanone

Octan-3-one

C8H16O (128.1201)


A dialkyl ketone that is octane in which the two methylene protons at position 3 have been replaced by an oxo group.

   

ST 21:1;O4

3alpha,11beta,21-5alpha-trihydroxy-pregnane-20-one

C21H34O4 (350.2457)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

Piperitenone

2-CYCLOHEXEN-1-ONE, 3-METHYL-6-(1-METHYLETHYLIDENE)-

C10H14O (150.1045)


   

beta-Cubebene

beta-Cubebene

C15H24 (204.1878)


A tricyclic sesquiterpene, a constituent of the leaf oil cubebene obtained from a variety of species of flowering plant.

   

Capsorubin

(3S,5R,3S,5R)-3,3-Dihydroxy-kappa,kappa-carotene-6,6-dione

C40H56O4 (600.4178)


D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

Sophoraflavanone B

Sophoraflavanone B

C20H20O5 (340.1311)


   

D-Sedoheptulose 7-phosphate

{[(2R,3S,4R,5S,6S)-3,4,5,6-tetrahydroxy-6-(hydroxymethyl)oxan-2-yl]methoxy}phosphonic acid

C7H15O10P (290.0403)


D-Sedoheptulose 7-phosphate (CAS: 2646-35-7) is an intermediate of the pentose phosphate pathway (PPP) that has two functions: (1) the generation of NADPH for reductive syntheses and oxidative stress responses within cells, and (2) the formation of ribose residues for nucleotide and nucleic acid biosynthesis (PMID: 16055050). It is formed by transketolase and acted upon (degraded) by transaldolase. Sedoheptulose 7-phosphate can be increased in the blood of patients affected with a transaldolase deficiency, a genetic disorder (PMID: 12881455). Sedoheptulose is a ketoheptose, a monosaccharide with seven carbon atoms and a ketone functional group. It is one of the few heptoses found in nature (Wikipedia). D-Sedoheptulose 7-phosphate is an intermediate of the Pentose phosphate pathway (PPP) that has two functions: the generation of NADPH for reductive syntheses and oxidative stress responses within cells, and the formation of ribose residues for nucleotide and nucleic acid biosynthesis. (PMID 16055050)

   

Virginiamycin M1

Pristinamycin IIA

C28H35N3O7 (525.2475)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D025361 - Streptogramins C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C259 - Antineoplastic Antibiotic Virginiamycin M1 (Pristinamycin IIA; Ostreogrycin A), produced by?Streptomyces virginiae, is an polyunsaturated macrocyclic lactone antibiotic and acts as a component of Virginiamycin (HY-112665)[1]. Virginiamycin M1 alone is against Staphylococcus aureus with a MIC of 0.25 μg/mL. The combination of Virginiamycin M1 and Virginiamycin S1 (HY-N6680) is 0.125 μg/mL (MIC Value), which can improve the bactericidal effect 1-30 times[2].

   

2-Naphthoic acid

2-Naphthalenecarboxylic acid

C11H8O2 (172.0524)


A naphthoic acid that is naphthalene carrying a carboxy group at position 2.

   

N-phenylanthranilic acid

N-phenylanthranilic acid

C13H11NO2 (213.079)


D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002491 - Central Nervous System Agents > D000700 - Analgesics D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents

   

2-NITROBENZOIC ACID

2-NITROBENZOIC ACID

C7H5NO4 (167.0219)


   

Nonacosane

EINECS 211-126-2

C29H60 (408.4695)


Nonacosane, isolated from Baphia massaiensis, exhibits weak activities against E. coli, B. subtilis, P. aeruginosa and S. aureus[1]. Nonacosane, isolated from Baphia massaiensis, exhibits weak activities against E. coli, B. subtilis, P. aeruginosa and S. aureus[1].

   

Gentianine

NICOTINIC ACID, 4-(2-HYDROXYETHYL)-5-VINYL-, .DELTA.-LACTONE

C10H9NO2 (175.0633)


Gentianine is a pyranopyridine, a lactone and a pyridine alkaloid. Gentianine is a natural product found in Strychnos angolensis, Strychnos xantha, and other organisms with data available. See also: Fenugreek seed (part of); Centaurium erythraea whole (part of).

   

Jerva acid

5-18-08-00646 (Beilstein Handbook Reference)

C7H4O6 (184.0008)


Chelidonic acid is a component of Chelidonium majus L., used as an antimicrobial. Chelidonic acid also shows anti-inflammatory activity. Chelidonic acid has potential to inhibit IL-6 production by blocking NF-κB and caspase-1[1]. Chelidonic acid is a glutamate decarboxylase inhibitor, with a Ki of 1.2 μM[2]. Chelidonic acid is a component of Chelidonium majus L., used as an antimicrobial. Chelidonic acid also shows anti-inflammatory activity. Chelidonic acid has potential to inhibit IL-6 production by blocking NF-κB and caspase-1[1]. Chelidonic acid is a glutamate decarboxylase inhibitor, with a Ki of 1.2 μM[2].

   

Fleet-X

1,3,5-Trimethylbenzene [UN2325] [Flammable liquid]

C9H12 (120.0939)


   

LS-2049

Isopropenylbenzene [UN2303] [Flammable liquid]

C9H10 (118.0782)


   

Phlorol

InChI=1\C8H10O\c1-2-7-5-3-4-6-8(7)9\h3-6,9H,2H2,1H

C8H10O (122.0732)


   

AIDS-071717

4H-1-Benzopyran-4-one, 5-hydroxy-7-methoxy-2-(4-methoxyphenyl)- (9CI)

C17H14O5 (298.0841)


The compound 7,4'-Di-O-methylapigenin may be partly responsible for the reported antifungal activity of C. zeyheri, and may serve as a potential source of lead compounds that can be developed as antifungal phytomedicines.And it also showed inhibition of the drug efflux pumps (with IC50 = 51.64 μg/ml). IC50:51.64 μg/ml(Candida albicans drug efflux pumps)[2] In vitro: The isolated 7,4'-Di-O-methylapigenin was further investigated for its inhibitory activity on ABC drug efflux pumps in C. albicans by monitoring an increase in ciprofloxacin, assessing the level of its accumulation, in response to reserpine. There was a higher accumulation of ciprofloxacin in Candida cells in the presence of 7,4'-Di-O-methylapigenin than with reserpine. The compound 7,4'-Di-O-methylapigenine demonstrated the activity in a dose-dependent manner with IC50 value of 51.64 μg/ml. These results support those obtained from synergism assays where by the underlying synergistic antifungal mechanisms could be due to blockage of ABC efflux pumps and increasing the susceptibility of Candida to miconazole.[2] In vivo: In searching for natural products as potential anti-inflammatory agents, 7,4'-Di-O-methylapigenin wasn't evaluated in vivo for its ability to inhibit acute inflammation.[1] The compound 7,4'-Di-O-methylapigenin may be partly responsible for the reported antifungal activity of C. zeyheri, and may serve as a potential source of lead compounds that can be developed as antifungal phytomedicines.And it also showed inhibition of the drug efflux pumps (with IC50 = 51.64 μg/ml). IC50:51.64 μg/ml(Candida albicans drug efflux pumps)[2] In vitro: The isolated 7,4'-Di-O-methylapigenin was further investigated for its inhibitory activity on ABC drug efflux pumps in C. albicans by monitoring an increase in ciprofloxacin, assessing the level of its accumulation, in response to reserpine. There was a higher accumulation of ciprofloxacin in Candida cells in the presence of 7,4'-Di-O-methylapigenin than with reserpine. The compound 7,4'-Di-O-methylapigenine demonstrated the activity in a dose-dependent manner with IC50 value of 51.64 μg/ml. These results support those obtained from synergism assays where by the underlying synergistic antifungal mechanisms could be due to blockage of ABC efflux pumps and increasing the susceptibility of Candida to miconazole.[2] In vivo: In searching for natural products as potential anti-inflammatory agents, 7,4'-Di-O-methylapigenin wasn't evaluated in vivo for its ability to inhibit acute inflammation.[1]

   

c0201

InChI=1\C8H8O\c1-7-2-4-8(6-9)5-3-7\h2-6H,1H

C8H8O (120.0575)


p-Tolualdehyde is an endogenous metabolite. p-Tolualdehyde is an endogenous metabolite.

   

Tectochinon

InChI=1\C15H10O2\c1-9-6-7-12-13(8-9)15(17)11-5-3-2-4-10(11)14(12)16\h2-8H,1H

C15H10O2 (222.0681)


Tectoquinone (2-Methylanthraquinone) is a SARSCoV-2 main protease inhibitor against COVID-19. Tectoquinone exhibits strong mosquito larvicidal activity with the LC50 values of 3.3 and 5.4 μg/ml against A. aegypti and A. albopictus in 24 h, respectively[1][2]. Tectoquinone (2-Methylanthraquinone) is a SARSCoV-2 main protease inhibitor against COVID-19. Tectoquinone exhibits strong mosquito larvicidal activity with the LC50 values of 3.3 and 5.4 μg/ml against A. aegypti and A. albopictus in 24 h, respectively[1][2].

   

Acetol

4-01-00-03977 (Beilstein Handbook Reference)

C3H6O2 (74.0368)


A propanone that is acetone in which one of the methyl hydrogens is replaced by a hydroxy group. Hydroxyacetone is an endogenous metabolite. Hydroxyacetone is an endogenous metabolite.

   

530-55-2

2,5-Cyclohexadiene-1,4-dione, 2,6-dimethoxy-, radical ion(1-)

C8H8O4 (168.0423)


2,6-Dimethoxy-1,4-benzoquinone, a natural phytochemical, is a known haustorial inducing factor. 2,6-Dimethoxy-1,4-benzoquinone exerts anti-cancer, anti-inflammatory, anti-adipogenic, antibacterial, and antimalaria effects[1]. 2,6-Dimethoxy-1,4-benzoquinone, a natural phytochemical, is a known haustorial inducing factor. 2,6-Dimethoxy-1,4-benzoquinone exerts anti-cancer, anti-inflammatory, anti-adipogenic, antibacterial, and antimalaria effects[1].

   

WLN: 1SS1

Dimethyl disulfide [UN2381] [Flammable liquid]

C2H6S2 (93.9911)


   

SSP-SSP

InChI=1\C6H14S2\c1-3-5-7-8-6-4-2\h3-6H2,1-2H

C6H14S2 (150.0537)


   

CPD-111

InChI=1\C7H8O2\c1-5-3-2-4-6(8)7(5)9\h2-4,8-9H,1H

C7H8O2 (124.0524)


3-Methylcatechol is a building block in the chemical synthesis produced by Pseudomonas putida MC2[1]. 3-Methylcatechol is a building block in the chemical synthesis produced by Pseudomonas putida MC2[1].

   

Tetranap

InChI=1\C10H12\c1-2-6-10-8-4-3-7-9(10)5-1\h1-2,5-6H,3-4,7-8H

C10H12 (132.0939)


   

WLN: 5V2

Ethyl N-pentyl ketone

C8H16O (128.1201)


   

Diathesin

InChI=1\C7H8O2\c8-5-6-3-1-2-4-7(6)9\h1-4,8-9H,5H

C7H8O2 (124.0524)


C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent Salicyl alcohol is an intermediate for medicine, perfume, pesticide. Salicyl alcohol is an intermediate for medicine, perfume, pesticide.

   

Picoline

o-Picoline [UN2313] [Flammable liquid]

C6H7N (93.0578)


   

E160E

2,4,6,8,10,12,14,16-Heptadecaoctaenal, 2,6,11,15-tetramethyl-17-(2,6,6-trimethyl-1-cyclohexen-1-yl)-, (2E,4E,6E,8E,10E,12E,14E,16E)-

C30H40O (416.3079)


D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids β-Apo-8'-carotenal (Apocarotenal), a provitamin A carotenoid, is an inducer of CYPlA1 and CYPlA2 in rat. β-Apo-8'-carotenal is present in many fruits and vegetables[1]. β-Apo-8'-carotenal (Apocarotenal), a provitamin A carotenoid, is an inducer of CYPlA1 and CYPlA2 in rat. β-Apo-8'-carotenal is present in many fruits and vegetables[1].

   

15-Hydroxy-5,8,11,13-eicosatetraenoic acid

15-Hydroxy-5,8,11,13-eicosatetraenoic acid, (S-(e,Z,Z,Z))-isomer

C20H32O3 (320.2351)


15-Hydroxy-5,8,11,13-eicosatetraenoic acid, also known as 15-hete, is a member of the class of compounds known as hydroxyeicosatetraenoic acids. Hydroxyeicosatetraenoic acids are eicosanoic acids with an attached hydroxyl group and four CC double bonds. 15-Hydroxy-5,8,11,13-eicosatetraenoic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa).

   

24 25-Dihydroxy VD3

24,25-Dihydroxyvitamin D3

C27H44O3 (416.329)


24,25-Dihydroxyvitamin D (24R,25(OH)2D3) circulates in blood at concentrations about 1000 times higher than 1alpha,25(OH)2D3. 24-Hydroxylase is present in the proximal convoluted tubule cells of the kidney and in virtual all target cells of 1alpha,25(OH)2D3. Interestingly, 1alpha,25(OH)2D3 is a very strong inducer of 24-hydroxylase activity and 24R,25(OH)2D3 formationand is) also parathyroid hormone (PTH) regulates 24-hydroxylase activity but in a tissue specific manner, i.e. inhibitory in the kidney while a synergistic effect together with 1alpha,25(OH)2D3 is observed in osteoblasts. Generally, 24-hydroxylation has been considered the first step in the degradation pathway of 1alpha,25(OH)2D3 and 25-(OH)D3. However, through the past decades data have accumulated that 24R,25(OH)2D3 is not merely a degradation product but has effects on its own. Classic studies have demonstrated the significance of 24R,25(OH)2D3 for normal chicken egg hatchability and calcium and phosphorus homeostasis. More recently it became apparent that 24R,25(OH)2D3 also has distinct effects on cartilage in particular the resting zone cells. 24R,25(OH)2D3 stimulates osteocalcin synthesis in human osteoblasts. 24R,25(OH)2D3 plays a role in bone metabolism but that it acts in concert with 1alpha,25(OH)2D3 to obtain an optimal effect. (PMID: 11179746 ) [HMDB]

   

Tetrahydrocorticosterone

3alpha,11beta,21-trihydroxy-5beta-pregnan-20-one

C21H34O4 (350.2457)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones Tetrahydrocorticosterone is one of the major urinary metabolites from corticosterone. Premenopausal patients with early breast cancer excrete subnormal amounts of tetrahydrocorticosterone as compared with the normal subjects of corresponding ages. (PMID 1133844) [HMDB]

   

H-Dab.HBr

L-2,4-Diaminobutyric acid

C4H10N2O2 (118.0742)


A 2,4-diaminobutyric acid that has S-configuration. 2,4-diaminobutyric acid, also known as L-2,4-diaminobutanoate or alpha,gamma-diaminobutyrate, is a member of the class of compounds known as L-alpha-amino acids. L-alpha-amino acids are alpha amino acids which have the L-configuration of the alpha-carbon atom. 2,4-diaminobutyric acid is soluble (in water) and a moderately acidic compound (based on its pKa). 2,4-diaminobutyric acid can be synthesized from butyric acid. 2,4-diaminobutyric acid is also a parent compound for other transformation products, including but not limited to, N(4)-acetyl-L-2,4-diaminobutyric acid, (2S)-2-acetamido-4-aminobutanoic acid, and L-alpha-amino-gamma-oxalylaminobutyric acid. 2,4-diaminobutyric acid can be found in a number of food items such as caraway, chia, atlantic herring, and chayote, which makes 2,4-diaminobutyric acid a potential biomarker for the consumption of these food products. 2,4-diaminobutyric acid can be found primarily in blood and urine. Moreover, 2,4-diaminobutyric acid is found to be associated with alzheimers disease. L-DABA (L-2,4-Diaminobutyric acid) is a week GABA transaminase inhibitor with an IC50 of larger than 500 μM; exhibits antitumor activity in vivo and in vitro. L-DABA (L-2,4-Diaminobutyric acid) is a week GABA transaminase inhibitor with an IC50 of larger than 500 μM; exhibits antitumor activity in vivo and in vitro.

   

Formylmethionyl-leucyl-phenylalanine methyl ester

Formylmethionyl-leucyl-phenylalanine methyl ester

C22H33N3O5S (451.2141)


   
   

1-methyl-3-[(Z)-(4-oxo-3-prop-2-enyl-1,3-thiazolidin-2-ylidene)amino]thiourea

1-methyl-3-[(Z)-(4-oxo-3-prop-2-enyl-1,3-thiazolidin-2-ylidene)amino]thiourea

C8H12N4OS2 (244.0453)


   

Picrotoxinin

3,6-Methano-8H-1,5,7-trioxacyclopenta(ij)cycloprop(a)azulene-4,8(3H)-dione, hexahydro-2a-hydroxy-8b-methyl-9-(1-methylethenyl)-, (1aR-(1a-alpha,2a-beta,3-beta,6-beta,6a-beta,8as*,8b-beta,9R*))-

C15H16O6 (292.0947)


Picrotoxinin is a picrotoxane sesquiterpenoid that is 3a,4,5,6,7,7a-hexahydro-1H-indene-3,7-dicarboxylic acid which is substituted at positions 3a, 6, and 7a by methyl, isopropenyl, and hydroxy groups, respectively; in which the double bond at position 2-3 has been epoxidised; and in which the carboxy groups at positions 3 and 7 have undergone gamma-lactone formation by O-alkylation to positions 4 and 5, respectively. A component of picrotoxin. It has a role as a plant metabolite, a GABA antagonist and a serotonergic antagonist. It is an organic heteropentacyclic compound, an epoxide, a tertiary alcohol, a gamma-lactone and a picrotoxane sesquiterpenoid. Picrotoxinin is a natural product found in Picrodendron baccatum and Anamirta cocculus with data available. A picrotoxane sesquiterpenoid that is 3a,4,5,6,7,7a-hexahydro-1H-indene-3,7-dicarboxylic acid which is substituted at positions 3a, 6, and 7a by methyl, isopropenyl, and hydroxy groups, respectively; in which the double bond at position 2-3 has been epoxidised; and in which the carboxy groups at positions 3 and 7 have undergone gamma-lactone formation by O-alkylation to positions 4 and 5, respectively. A component of picrotoxin. D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018756 - GABA Antagonists Picrotoxinin, a potent convulsant, is a chloride channel blocker. Picrotoxinin is a noncompetitive GABAA receptor antagonist, which negatively modulates the action of GABA on GABAA receptors. Picrotoxinin inhibits α1β2γ2L GABAA receptor with an IC50 of 1.15 μM[1]. Picrotoxinin, a potent convulsant, is a chloride channel blocker. Picrotoxinin is a noncompetitive GABAA receptor antagonist, which negatively modulates the action of GABA on GABAA receptors. Picrotoxinin inhibits α1β2γ2L GABAA receptor with an IC50 of 1.15 μM[1].

   

Apocarotenal

2,4,6,8,10,12,14,16-Heptadecaoctaenal, 2,6,11,15-tetramethyl-17-(2,6,6-trimethyl-1-cyclohexen-1-yl)-, (2E,4E,6E,8E,10E,12E,14E,16E)-

C30H40O (416.3079)


8-apo-beta,psi-caroten-8-al is an apo carotenoid triterpenoid compound arising from oxidative degradation of the beta,beta-carotene skeleton at the 8-position. It is an enal and an apo carotenoid triterpenoid. Apocarotenal is a natural product found in Dracaena draco, Palisota barteri, and other organisms with data available. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids β-Apo-8'-carotenal (Apocarotenal), a provitamin A carotenoid, is an inducer of CYPlA1 and CYPlA2 in rat. β-Apo-8'-carotenal is present in many fruits and vegetables[1]. β-Apo-8'-carotenal (Apocarotenal), a provitamin A carotenoid, is an inducer of CYPlA1 and CYPlA2 in rat. β-Apo-8'-carotenal is present in many fruits and vegetables[1].

   

Dimethyl disulfide

Dimethyl disulfide

C2H6S2 (93.9911)


An organic disulfide that is methane in which one of the hydrogens has been replaced by a methyldisulfanyl group.

   

p,p-DDD

p,p-DDD

C14H10Cl4 (317.9537)


D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

G-29701

oxyphenbutazone

C19H20N2O3 (324.1474)


A metabolite of phenylbutazone obtained by hydroxylation at position 4 of one of the phenyl rings. Commonly used (as its hydrate) to treat pain, swelling and stiffness associated with arthritis and gout, it was withdrawn from the market 1984 following association with blood dyscrasis and Stevens-Johnson syndrome. M - Musculo-skeletal system > M02 - Topical products for joint and muscular pain > M02A - Topical products for joint and muscular pain > M02AA - Antiinflammatory preparations, non-steroids for topical use M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AA - Butylpyrazolidines S - Sensory organs > S01 - Ophthalmologicals > S01B - Antiinflammatory agents > S01BC - Antiinflammatory agents, non-steroids C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Oxyphenbutazone is a Phenylbutazone (HY-B0230) metabolite, with anti-inflammatory effect. Oxyphenbutazone is an orally active non-selective COX inhibitor. Oxyphenbutazone selectively kills non-replicating Mycobaterium tuberculosis[1][2].

   

Dienestrol

E,E-Dienestrol

C18H18O2 (266.1307)


G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03C - Estrogens > G03CC - Estrogens, combinations with other drugs G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03C - Estrogens > G03CB - Synthetic estrogens, plain D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen

   

p-Tolualdehyde

4-Methylbenzaldehyde

C8H8O (120.0575)


A tolualdehyde compound with the methyl substituent at the 4-position. p-Tolualdehyde is an endogenous metabolite. p-Tolualdehyde is an endogenous metabolite.

   

Tetraethyl pyrophosphate

Tetraethyl pyrophosphate

C8H20O7P2 (290.0684)


C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor

   

nafcillin

nafcillin

C21H22N2O5S (414.1249)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01C - Beta-lactam antibacterials, penicillins > J01CF - Beta-lactamase resistant penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   

salicyl alcohol

salicyl alcohol

C7H8O2 (124.0524)


A hydroxybenzyl alcohol that is phenol substituted by a hydroxymethyl group at C-2. C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent Salicyl alcohol is an intermediate for medicine, perfume, pesticide. Salicyl alcohol is an intermediate for medicine, perfume, pesticide.

   

Mezlocillin

Mezlocillin

C21H25N5O8S2 (539.1144)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01C - Beta-lactam antibacterials, penicillins > J01CA - Penicillins with extended spectrum D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   

N-NITROSOMORPHOLINE

N-NITROSOMORPHOLINE

C4H8N2O2 (116.0586)


D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens

   

glutethimide

glutethimide

C13H15NO2 (217.1103)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CE - Piperidinedione derivatives C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic

   

2-Chlorobenzoic acid

2-Chlorobenzoic acid

C7H5ClO2 (155.9978)


A monochlorobenzoic acid having the chloro group at the 2-position.

   

DL-Tryptophan

DL-Tryptophan

C11H12N2O2 (204.0899)


DL-Tryptophan is an endogenous metabolite.

   

promazine

promazine

C17H20N2S (284.1347)


N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AA - Phenothiazines with aliphatic side-chain D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent > C740 - Phenothiazine D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent D005765 - Gastrointestinal Agents > D000932 - Antiemetics

   

Azlocillin

Azlocillin

C20H23N5O6S (461.1369)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01C - Beta-lactam antibacterials, penicillins > J01CA - Penicillins with extended spectrum A semisynthetic penicillin antibiotic used in treating infections caused by Pseudomonas aeruginosa, Escherichia coli, and Haemophilus influenzae. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   

Diethyl sulfide

Diethyl sulfide

C4H10S (90.0503)


   

apraclonidine

apraclonidine

C9H10Cl2N4 (244.0282)


S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01EA - Sympathomimetics in glaucoma therapy C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists

   

Latamoxef

Latamoxef

C20H20N6O9S (520.1012)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DD - Third-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   

Propyl disulfide

Dipropyl disulfide

C6H14S2 (150.0537)


An organic disulfide where the alkyl groups specified are propyl. It is a component of the essential oils obtained from Allium.

   

thiamylal

thiamylal

C12H18N2O2S (254.1089)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C67084 - Barbiturate D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent

   

Cholest-4-en-3-one

Cholest-4-en-3-one

C27H44O (384.3392)


A cholestanoid that is cholest-4-ene substituted by an oxo group at position 3. Cholestenone (4-Cholesten-3-one), the intermediate oxidation product of cholesterol, is metabolized primarily in the liver. Cholestenone is highly mobile in membranes and influences cholesterol flip-flop and efflux. Cholestenone may cause long-term functional defects in cells[1][2]. Cholestenone (4-Cholesten-3-one), the intermediate oxidation product of cholesterol, is metabolized primarily in the liver. Cholestenone is highly mobile in membranes and influences cholesterol flip-flop and efflux. Cholestenone may cause long-term functional defects in cells[1][2].

   

(S)-2-Propylpiperidine

(S)-2-Propylpiperidine

C8H17N (127.1361)


   

4-(METHYLsulfanyl)-2-oxobutanoIC ACID

4-(METHYLsulfanyl)-2-oxobutanoIC ACID

C5H8O3S (148.0194)


   

Triphosphoric acid

Triphosphoric acid

H5O10P3 (257.9096)


   

2-Amino-3H-phenoxazin-3-one

2-Amino-3H-phenoxazin-3-one

C12H8N2O2 (212.0586)


   

20-carboxy-Leukotriene B4

20-hydroxy-20-oxoleukotriene B4

C20H30O6 (366.2042)


   

15-Oxoprostaglandin e1

15-dehydro-prostaglandin E1

C20H32O5 (352.225)


   

(3S,6E)-Nerolidol

[S-(E)]-3,7,11-trimethyldodeca-1,6,10-trien-3-ol

C15H26O (222.1984)


A (6E)-nerolidol in which the hydroxy group at positon 3 adopts an S-configuration. Nerolidol is a natural membrane-active sesquiterpene, with antitumor, antibacterial, antifungal and antiparasitic activity[1]. Nerolidol is a natural membrane-active sesquiterpene, with antitumor, antibacterial, antifungal and antiparasitic activity[1].

   

Precocene II

6,7-Dimethoxy-2,2-dimethylchromene

C13H16O3 (220.1099)


D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals Precocene II is the insect antijuvenile hormone[1].

   

2-Oxohexanoic acid

2-Oxohexanoic acid

C6H10O3 (130.063)


A straight-chain fatty acid consisting of hexanoic acid having an oxo group at position 2.

   

N(6)-dimethylallyladenine

N-(3-Methylbut-2-EN-1-YL)-9H-purin-6-amine

C10H13N5 (203.1171)


A 6-isopentenylaminopurine in which has the isopentenyl double bond is located between the 2 and 3 positions of the isopentenyl group. D006133 - Growth Substances > D010937 - Plant Growth Regulators > D003583 - Cytokinins 6-(γ,γ-Dimethylallylamino)purine is a plant growth substance. 6-(γ,γ-Dimethylallylamino)purine is a plant growth substance.

   

Benzene oxide

Benzene oxide

C6H6O (94.0419)


   

4-quinolone

4-Hydroxyquinoline

C9H7NO (145.0528)


   

gentamycin C1a

gentamycin C1a

C19H39N5O7 (449.2849)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D005839 - Gentamicins C784 - Protein Synthesis Inhibitor > C2363 - Aminoglycoside Antibiotic C254 - Anti-Infective Agent > C258 - Antibiotic

   

acryloyl-CoA

acryloyl-CoA

C24H38N7O17P3S (821.1258)


The S-acryloyl derivative of coenzyme A.

   

Lauroyl-CoA

Lauroyl-CoA

C33H58N7O17P3S (949.2823)


A medium-chain fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of lauric (dodecanoic) acid.

   
   

H-Tyr-OMe

Methyl L-tyrosinate

C10H13NO3 (195.0895)


H-Tyr-OMe, an amino acid, is an endogenous metabolite[1].

   

N,N-Dimethylaniline N-oxide

N,N-Dimethylaniline N-oxide

C8H11NO (137.0841)


   

D-Mannitol 1-phosphate

D-Mannitol 1-phosphate

C6H15O9P (262.0454)


An alditol 1-phosphate that is the 1-O-phospho derivative of mannitol with D-configuration.

   

N-Acetyl-D-Glucosamine 6-Phosphate

N-Acetyl-D-Glucosamine 6-Phosphate

C8H16NO9P (301.0563)


An N-acyl-D-glucosamine 6-phosphate that is the N-acetyl derivative of D-glucosamine 6-phosphate. It is a component of the aminosugar metabolism.

   

(2S)-2-(3-carboxypropanamido)-6-Oxoheptanedioic acid

(2S)-2-(3-carboxypropanamido)-6-Oxoheptanedioic acid

C11H15NO8 (289.0798)


   

Pteroic acid

4-(((2-Amino-4-oxo-3,4-dihydropteridin-6-yl)methyl)amino)benzoic acid

C14H12N6O3 (312.0971)


   

Ethyl L-tyrosinate

L-Tyrosine ethyl ester

C11H15NO3 (209.1052)


   

2-Aminoacetaldehyde

2-Aminoacetaldehyde

C2H5NO (59.0371)


An amino aldehyde that is acetaldehyde in which one of the hydrogens of the methyl group has been replaced by an amino group.

   

3-cyano-L-alanine

3-cyano-L-alanine

C4H6N2O2 (114.0429)


A cyanoamino acid that is the 3-cyano-derivative of L-alanine.

   

O-Phosphohomoserine

O-Phosphohomoserine

C4H10NO6P (199.0246)


   

beta-L-Fucose 1-phosphate

beta-L-Fucose 1-phosphate

C6H13O8P (244.0348)


The beta-anomer of L-fucose 1-phosphate.

   

6-Lactoyltetrahydropterin

6-Lactoyl-5,6,7,8-tetrahydropterin

C9H13N5O3 (239.1018)


   

5-Amino-6-(D-ribitylamino)uracil

5-Amino-6-(D-ribitylamino)uracil

C9H16N4O6 (276.107)


An aminouracil that is D-ribitol in which the hydroxy group at position 1 is substituted by the 6-amino group of 5,6-diaminouracil. Early intermediate in bacterial riboflavin synthesis.

   

S-Methyl-5-thio-alpha-D-ribose 1-phosphate

S-Methyl-5-thio-alpha-D-ribose 1-phosphate

C6H13O7PS (260.012)


   

Cilazaprilat

(4S,7S)-7-[[(1S)-1-carboxy-3-phenylpropyl]amino]-6-oxo-1,2,3,4,7,8,9,10-octahydropyridazino[1,2-a]diazepine-4-carboxylic acid

C20H27N3O5 (389.1951)


D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D000806 - Angiotensin-Converting Enzyme Inhibitors C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent C471 - Enzyme Inhibitor > C783 - Protease Inhibitor > C247 - ACE Inhibitor D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents

   

but-3-ynal

but-3-ynal

C4H4O (68.0262)


A butynal which has a monosubstituted triple bond.

   

Sedoheptulose 7-phosphate

Sedoheptulose 7-phosphate

C7H15O10P (290.0403)


A ketoheptose phosphate consisting of sedoheptulose having a phosphate group at the 7-position. It is an intermediate metabolite in the pentose phosphate pathway.

   

(2S,3R)-3-hydroxybutane-1,2,3-tricarboxylic acid

(2S,3R)-3-hydroxybutane-1,2,3-tricarboxylic acid

C7H10O7 (206.0427)


A 3-hydroxybutane-1,2,3-tricarboxylic acid which has (2S,3R) configuration.

   

6-amino-2-oxohexanoic acid

6-amino-2-oxohexanoic acid

C6H11NO3 (145.0739)


   

Choloyl-CoA

Choloyl-CoA

C45H74N7O20P3S (1157.3922)


A steroidal acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of cholic acid. D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids

   

(+)-N-Methylpseudoephedrine

(1s,2s)-(+)-n-methylpseudoephedrine

C11H17NO (179.131)


   

1D-Myo-inositol 1,2-cyclic phosphate

1D-Myo-inositol 1,2-cyclic phosphate

C6H11O8P (242.0192)


   

2-(alpha-Hydroxyethyl)thiamine diphosphate

2-(alpha-Hydroxyethyl)thiamine diphosphate

C14H23N4O8P2S+ (469.0712)


   

Diisopropylphosphate

Diisopropylphosphate

C6H15O4P (182.0708)


   

Pollinastanol

Pollinastanol

C28H48O (400.3705)


   

Antibiotic JI-20A

Antibiotic JI-20A

C19H39N5O9 (481.2748)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D005839 - Gentamicins

   
   
   

3,6-Anhydro-D-galactose

3,6-Anhydro-D-galactose

C6H10O5 (162.0528)


   
   

N-Sulfo-D-glucosamine

N-Sulfo-D-glucosamine

C6H13NO8S (259.0362)


   

2-Ethoxyethanol

2-Ethoxyethanol

C4H10O2 (90.0681)


   

Proflavine

Proflavine

C13H11N3 (209.0953)


C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D000890 - Anti-Infective Agents

   

Dihydromorphine

Dihydromorphine

C17H21NO3 (287.1521)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics

   

METHYL BETA-D-GLUCOPYRANOSIDE

METHYL β-D-GLUCOPYRANOSIDE HEMIHYDRATE

C7H14O6 (194.079)


   

CE 18:2

(Z,Z)-(3beta)-Cholest-5-en-3-ol 9,12-octadecadienoate

C45H76O2 (648.5845)


The (9Z,12Z)-stereoisomer of cholesteryl octadeca-9,12-dienoate. Cholesteryl linoleate is shown to be the major cholesteryl ester contained in LDL and atherosclerotic lesions.

   

Fenamic acid

Diphenylamine-2-carboxylic acid

C13H11NO2 (213.079)


D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002491 - Central Nervous System Agents > D000700 - Analgesics D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents

   

O-Nitrobenzoate

2-NITROBENZOIC ACID

C7H5NO4 (167.0219)


   

O-Ethylphenol

O-Ethylphenol

C8H10O (122.0732)


   

1,3,5-Trimethylbenzene

1,3,5-Trimethylbenzene

C9H12 (120.0939)


   

Cholesteryl oleate

Cholesteryl cis-9-octadecenoate

C45H78O2 (650.6001)


The (Z)-stereoisomer of cholesteryl octadec-9-enoate. Cholesteryl oleate is an esterified form of Cholesterol. Cholesteryl oleate can be used in the generation of solid lipid nanoparticle (SLN, a nanoparticle-based method for gene therapy)[1][2].

   

8,9-EET

(5Z,11Z,14Z)-8,9-Epoxyeicosa-5,11,14-trienoic acid

C20H32O3 (320.2351)


An EET obtained by formal epoxidation of the 8,9-double bond of arachidonic acid. D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents

   

gamma-L-Glutamylputrescine

gamma-L-Glutamylputrescine

C9H19N3O3 (217.1426)


   

(N(omega)-L-arginino)succinic acid

(N(omega)-L-arginino)succinic acid

C10H18N4O6 (290.1226)


   

[(2S,3R)-3-Amino-2-hydroxy-4-phenylbutyryl]-L-leucine

[(2S,3R)-3-Amino-2-hydroxy-4-phenylbutyryl]-L-leucine

C16H24N2O4 (308.1736)


   

heptachlor

Heptachlorane

C10H5Cl7 (369.8211)


D004785 - Environmental Pollutants > D012989 - Soil Pollutants D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

2-Phenylpropene

1-Methyl-1-phenylethylene

C9H10 (118.0782)


   

HEPTACHLOR EPOXIDE

Heptachlor epoxide [Isomer B]

C10H5Cl7O (385.816)


D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

2-picoline

2-METHYLPYRIDINE

C6H7N (93.0578)


   

PICLORAM

PICLORAM

C6H3Cl3N2O2 (239.926)


D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

Benzo[k]fluoranthene

11,12-Benzofluoranthene

C20H12 (252.0939)


   

propazine

propazine

C9H16ClN5 (229.1094)


D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

Tetralin

1,2,3,4-Tetrahydronaphthalene

C10H12 (132.0939)


   

1,2-Diaminocyclohexane

1,2-Diaminocyclohexane

C6H14N2 (114.1157)


   

(±)-nicotine

3-(1-methylpyrrolidin-2-yl)pyridine

C10H14N2 (162.1157)


An N-alkylpyrrolidine that consists of N-methylpyrrolidine bearing a pyridin-3-yl substituent at position 2.

   

2,6-DIBROMOPHENOL

2,6-DIBROMOPHENOL

C6H4Br2O (249.8629)


A dibromophenol that is phenol in which both of the hydrogens that are ortho to the phenolic hydroxy group have been replaced by bromines. 2,6-Dibromophenol is an endogenous metabolite.

   

3,3-dimethylbenzidine

3,3-dimethylbenzidine

C14H16N2 (212.1313)


   

Goltix

METAMITRON

C10H10N4O (202.0855)


   

PCB 8

2,4-DICHLOROBIPHENYL

C12H8Cl2 (222.0003)


D004785 - Environmental Pollutants > D011078 - Polychlorinated Biphenyls

   

TRIPHENYLETHYLENE

TRIPHENYLETHYLENE

C20H16 (256.1252)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D004965 - Estrogen Antagonists

   

Cardol

5-pentadecylbenzene-1,3-diol

C21H36O2 (320.2715)


5-Pentadecylresorcinol (Adipostatin A) is a glycerol-3-phosphate dehydrogenase (GPDH) inhibitor with an IC50 of 4.1 μM. Adipostatin A shows good larvicidal activity against Aedes aegypti[1][2]. 5-Pentadecylresorcinol (Adipostatin A) is a glycerol-3-phosphate dehydrogenase (GPDH) inhibitor with an IC50 of 4.1 μM. Adipostatin A shows good larvicidal activity against Aedes aegypti[1][2].

   

4-Hydroxystilbene

trans-4-hydroxystilbene;

C14H12O (196.0888)


   

For-DL-Met-OH

N-Formyl-DL-methionine

C6H11NO3S (177.046)


   

alpha-Hydroxytamoxifen

alpha-Hydroxytamoxifen

C26H29NO2 (387.2198)


   

6alpha-Hydroxymaackiain

6alpha-Hydroxymaackiain

C16H12O6 (300.0634)


   

Benzenesulfonamide, 5-(2-((2-(2-ethoxyphenoxy)ethyl)amino)propyl)-2-methoxy-

Benzenesulfonamide, 5-(2-((2-(2-ethoxyphenoxy)ethyl)amino)propyl)-2-methoxy-

C20H28N2O5S (408.1719)


D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists

   

N-Acetylphenylalanine beta-naphthyl ester

N-Acetyl-DL-phenylalanine beta-naphthyl ester

C21H19NO3 (333.1365)


   

4-Hydroxyifosfamide

4-Hydroxyifosfamide

C7H15Cl2N2O3P (276.0197)


D000970 - Antineoplastic Agents > D018906 - Antineoplastic Agents, Alkylating > D009588 - Nitrogen Mustard Compounds D000970 - Antineoplastic Agents > D018906 - Antineoplastic Agents, Alkylating > D010752 - Phosphoramide Mustards

   

N-Acetyl-9-O-acetylneuraminic acid

N-Acetyl-9-O-acetylneuraminic acid

C13H21NO10 (351.1165)


   

17-ethyl-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthrene

17-ethyl-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthrene

C21H36 (288.2817)


   

GDP-D-Mannose

GDP-D-Mannose

C16H25N5O16P2 (605.0772)


A GDP-mannose in which the mannose fragment has D-configuration.

   

Uridine diphosphate acetylgalactosamine 4-sulfate

Uridine diphosphate acetylgalactosamine 4-sulfate

C17H27N3O20P2S (687.0384)


   

1,5-Di-o-phosphonopent-2-ulose

1,5-Di-o-phosphonopent-2-ulose

C5H12O11P2 (309.9855)


   

Estriol 3-glucuronide

estra-1,3,5(10)-triene-3,16alpha,17beta-triol 3-D-glucuronide

C24H32O9 (464.2046)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

Glyceric acid 1,3-biphosphate

phosphono 2-hydroxy-3-phosphonooxypropanoate

C3H8O10P2 (265.9593)


1,3-Bisphosphoglycerate. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=1981-49-3 (retrieved 2024-10-16) (CAS RN: 1981-49-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

4,5,6,7-Tetrachloro-2-trifluoromethylbenzimidazole

4,5,6,7-Tetrachloro-2-trifluoromethylbenzimidazole

C8HCl4F3N2 (321.8846)


   

(8S)-2-Bromo alpha-ergocryptine

(8S)-2-Bromo alpha-ergocryptine

C32H40BrN5O5 (653.2213)


D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018491 - Dopamine Agonists