Gene Association: LTB
UniProt Search:
LTB (PROTEIN_CODING)
Function Description: lymphotoxin beta
found 163 associated metabolites with current gene based on the text mining result from the pubmed database.
Agnuside
Agnuside is a benzoate ester resulting from the formal condensation of the carboxy group of 4-hydroxybenzoic acid with the primary hydroxy group of aucubin. It is an iridoid glycoside found in several Vitex plants including Vitex agnus-castus. It has a role as a plant metabolite, an anti-inflammatory agent, a pro-angiogenic agent and a cyclooxygenase 2 inhibitor. It is a terpene glycoside, an iridoid monoterpenoid, a benzoate ester, a member of phenols, a beta-D-glucoside, a cyclopentapyran and a monosaccharide derivative. It is functionally related to an aucubin. Agnuside is a natural product found in Crescentia cujete, Vitex peduncularis, and other organisms with data available. See also: Chaste tree fruit (part of); Vitex negundo leaf (part of). Isolated from Vitex agnus-castus (agnus castus). Agnuside is found in herbs and spices and fruits. Agnuside is found in fruits. Agnuside is isolated from Vitex agnus-castus (agnus castus). Agnuside is a compound isolated from Vitex negundo, down-regulates pro-inflammatory mediators PGE2 and LTB4, and reduces the expression of cytokines, with anti-arthritic activity[1]. Agnuside is used in the study of asthma, inflammation, and angiogenic diseases. Agnuside is an orally active compound that can be extracted from Vitex negundo[1][2][3][4]. Agnuside is a compound isolated from Vitex negundo, down-regulates pro-inflammatory mediators PGE2 and LTB4, and reduces the expression of cytokines, with anti-arthritic activity[1].
Mesaconitine
Mesaconitine is a diterpenoid. Mesaconitine is a natural product found in Aconitum anthora, Aconitum napellus, and other organisms with data available. Origin: Plant; SubCategory_DNP: Terpenoid alkaloids, Diterpene alkaloid, Aconitum alkaloid Annotation level-1 Mesaconitine is the main active component of genus aconitum plants. IC50 value: Target: in vitro: In HUVECs, 30 microM mesaconitine increased the [Ca(2+)](i) level in the presence of extracellular CaCl(2) and NaCl, and the response was inhibited by KBR7943. Mesaconitine increased intracellular Na(+) concentration level in HUVECs. The [Ca(2+)](i) response by mesaconitine was inhibited by 100 microM D-tubocurarine [1]. Mesaconitine at 30 microM inhibited 3 microM phenylephrine-induced contraction in the endothelium-intact, but not endothelium-denuded, aortic rings [2]. MA promoted the alpha-MT-induced decrease in NE levels in hippocampus, medulla oblongata plus pons and spinal cord [3]. Mesaconitine is the main active component of genus aconitum plants. IC50 value: Target: in vitro: In HUVECs, 30 microM mesaconitine increased the [Ca(2+)](i) level in the presence of extracellular CaCl(2) and NaCl, and the response was inhibited by KBR7943. Mesaconitine increased intracellular Na(+) concentration level in HUVECs. The [Ca(2+)](i) response by mesaconitine was inhibited by 100 microM D-tubocurarine [1]. Mesaconitine at 30 microM inhibited 3 microM phenylephrine-induced contraction in the endothelium-intact, but not endothelium-denuded, aortic rings [2]. MA promoted the alpha-MT-induced decrease in NE levels in hippocampus, medulla oblongata plus pons and spinal cord [3].
Aconitine
D049990 - Membrane Transport Modulators > D062687 - Sodium Channel Agonists > D061585 - Voltage-Gated Sodium Channel Agonists D007155 - Immunologic Factors Aconitine is a diterpenoid that is 20-ethyl-3alpha,13,15alpha-trihydroxy-1alpha,6alpha,16beta-trimethoxy-4-(methoxymethyl)aconitane-8,14alpha-diol having acetate and benzoate groups at the 8- and 14-positions respectively. It is functionally related to an aconitane. Aconitine is a natural product found in Aconitum anthora, Aconitum napellus, and other organisms with data available. Aconitine is a plant toxin found in species of wolfsbane (Aconitum genus). It is a neurotoxin previously used as an antipyretic and analgesic, and still has some limited application in herbal medicine. (L1235). The toxic effects of Aconitine have been tested in a variety of different test animals, including mammals (dog, cat, guinea pig, mouse, rat and rabbit), frogs and pigeons. Depending on the route of exposure, the observed toxic effects were: local anesthetic effect, diarrhea, convulsions, arrhythmias or death. According to a review of different reports of aconite poisoning in humans the following clinical features were observed: Neurological, Cardiovascular, Ventricular arrhythmias, Gastrointestinal. A C19 norditerpenoid alkaloid (DITERPENES) from the root of ACONITUM; DELPHINIUM and larkspurs. It activates VOLTAGE-GATED SODIUM CHANNELS. It has been used to induce ARRHYTHMIAS in experimental animals and it has anti-inflammatory and anti-neuralgic properties. See also: Aconitum coreanum root (part of). Origin: Plant; SubCategory_DNP: Terpenoid alkaloids, Diterpene alkaloid, Aconitum alkaloid Annotation level-1 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2309
Andrographolide
Andrographolide is a labdane diterpenoid isolated from the leaves and roots of Andrographis paniculata that exhibits anti-HIV, anti-inflammatory and antineoplastic properties. It has a role as a metabolite, an anti-inflammatory drug, an anti-HIV agent and an antineoplastic agent. It is a gamma-lactone, a primary alcohol, a secondary alcohol, a labdane diterpenoid and a carbobicyclic compound. Andrographolide (HMPL-004) is a botanical product extracted from a herb that occurs naturally in China. The herb has an extensive history of use in TCM for the treatment of upper respiratory tract infections and other inflammatory and infectious diseases. Andrographolide is a natural product found in Andrographis paniculata, Ginkgo biloba, and Cymbopogon schoenanthus with data available. Andrographolide is a labdane diterpenoid that is produced by the Andrographis paniculata plant, which has a broad range of therapeutic applications including anti-inflammatory and anti-platelet aggregation activities and potential antineoplastic properties. Since andrographolide has multiple therapeutic activities there are several proposed mechanisms of action for this agent. The anti-inflammatory effects of this agent appear to be related to the inhibition of nitric oxide (NO) production by macrophages. This agent may activate the NO/cyclic GMP pathway and inhibit both the phospholipase C gamma 2 (PLC gamma2)/protein kinase C (PKC) and PI3K/AKT-MAPK signaling pathways in activated platelets to inhibit platelet aggregation. In activated platelets, these three signaling pathways are downstream of integrin activation mediated by collagen binding and influence the association of fibrinogen with its receptors. Additionally, andrographolide may exert its anti-cancer activity through the induction of cell cycle arrest at G0/G1 phase and the stimulation of lymphocyte proliferation and activation. These processes could result in decreased proliferation of and increased immunocytotoxicity against tumor cells. A labdane diterpenoid isolated from the leaves and roots of Andrographis paniculata that exhibits anti-HIV, anti-inflammatory and antineoplastic properties. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78275 - Agent Affecting Blood or Body Fluid > C1327 - Antiplatelet Agent D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002491 - Central Nervous System Agents > D000700 - Analgesics D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Origin: Plant; SubCategory_DNP: Diterpenoids, Andrographolide diterpenoids relative retention time with respect to 9-anthracene Carboxylic Acid is 0.941 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.939 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.936 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.938 Andrographolide is a NF-κB inhibitor, which inhibits NF-κB activation through covalent modification of a cysteine residue on p50 in endothelial cells without affecting IκBα degradation or p50/p65 nuclear translocation. Andrographolide has antiviral effects. Andrographolide is a NF-κB inhibitor, which inhibits NF-κB activation through covalent modification of a cysteine residue on p50 in endothelial cells without affecting IκBα degradation or p50/p65 nuclear translocation. Andrographolide has antiviral effects.
Hypaconitine
Hypaconitine is a diterpenoid. Hypaconitine is a natural product found in Aconitum japonicum, Aconitum firmum, and other organisms with data available. Annotation level-1 Hypaconitine, an active and highly toxic constituent derived from Aconitum species, is widely used to treat rheumatism. IC50 value: Target: In vitro: The present study investigated the metabolism of hypaconitine in vitro using male human liver microsomes. The primary contributors toward HA metabolism were CYP3A4 and 3A5, with secondary contributions by CYP2C19, 2D6 and CYP2E1 [1]. In vivo: Hypaconitine, an active and highly toxic constituent derived from Aconitum species, is widely used to treat rheumatism. IC50 value: Target: In vitro: The present study investigated the metabolism of hypaconitine in vitro using male human liver microsomes. The primary contributors toward HA metabolism were CYP3A4 and 3A5, with secondary contributions by CYP2C19, 2D6 and CYP2E1 [1]. In vivo:
Phellodendrine
Phellodendrine is an alkaloid. Phellodendrine is a natural product found in Phellodendron chinense, Phellodendron chinense var. glabriusculum, and other organisms with data available.
Fucitol
L-fucitol is the L-enantiomer of fucitol. It is found in nutmeg. It has a role as a plant metabolite and an antibacterial agent. It is an enantiomer of a D-fucitol. L-Fucitol is a natural product found in Carum carvi with data available. The L-enantiomer of fucitol. It is found in nutmeg. L-Fucitol (1-Deoxy-D-galactitol) is a sugar alcohol isolated from Nutmeg[1]. L-Fucitol (1-Deoxy-D-galactitol) is a sugar alcohol isolated from Nutmeg[1].
Sakuranetin
Sakuranetin is a flavonoid phytoalexin that is (S)-naringenin in which the hydroxy group at position 7 is replaced by a methoxy group. It has a role as an antimycobacterial drug and a plant metabolite. It is a dihydroxyflavanone, a monomethoxyflavanone, a flavonoid phytoalexin, a member of 4-hydroxyflavanones and a (2S)-flavan-4-one. It is functionally related to a (S)-naringenin. Sakuranetin is a natural product found in Ageratina altissima, Chromolaena odorata, and other organisms with data available. Sakuranetin is found in black walnut. Sakuranetin is a flavanone, a type of flavonoid. It can be found in Polymnia fruticosa and rice, where it acts as a phytoalexin against spore germination of Pyricularia oryzae Sakuranetin is a flavanone, a type of flavonoid. It can be found in Polymnia fruticosa and rice, where it acts as a phytoalexin against spore germination of Pyricularia oryzae. A flavonoid phytoalexin that is (S)-naringenin in which the hydroxy group at position 7 is replaced by a methoxy group. Sakuranetin is a cherry flavonoid phytoalexin, shows strong antifungal activity[1]. Sakuranetin has anti-inflammatory and antioxidative activities. Sakuranetin ameliorates LPS-induced acute lung injury[2]. Sakuranetin is a cherry flavonoid phytoalexin, shows strong antifungal activity[1]. Sakuranetin has anti-inflammatory and antioxidative activities. Sakuranetin ameliorates LPS-induced acute lung injury[2].
Aloin
C78276 - Agent Affecting Digestive System or Metabolism > C29697 - Laxative D005765 - Gastrointestinal Agents > D002400 - Cathartics Aloin A is a C-glycosyl compound that is beta-D-glucopyranose in which the anomeric hydroxy group is replaced by a 4,5-dihydroxy-2-(hydroxymethyl)-10-oxo-9,10-dihydroanthracen-9-yl moiety (the 9S diastereoisomer). It has a role as a metabolite and a laxative. It is a C-glycosyl compound, a member of anthracenes, a cyclic ketone and a member of phenols. Barbaloin is a natural product found in Aloe africana, Aloe castanea, and other organisms with data available. See also: Aloe Vera Leaf (part of); Frangula purshiana Bark (part of). A C-glycosyl compound that is beta-D-glucopyranose in which the anomeric hydroxy group is replaced by a 4,5-dihydroxy-2-(hydroxymethyl)-10-oxo-9,10-dihydroanthracen-9-yl moiety (the 9S diastereoisomer). Aloin B is a C-glycosyl compound that is beta-D-glucopyranose in which the anomeric hydroxy group is replaced by a 4,5-dihydroxy-2-(hydroxymethyl)-10-oxo-9,10-dihydroanthracen-9-yl moiety (the 9R diastereoisomer). It has a role as a metabolite and a laxative. It is a C-glycosyl compound, a member of anthracenes, a cyclic ketone and a member of phenols. Aloin is a natural product found in Aloe africana, Aloe castanea, and other organisms with data available. See also: Aloe Vera Leaf (part of); Frangula purshiana Bark (part of). A C-glycosyl compound that is beta-D-glucopyranose in which the anomeric hydroxy group is replaced by a 4,5-dihydroxy-2-(hydroxymethyl)-10-oxo-9,10-dihydroanthracen-9-yl moiety (the 9R diastereoisomer). IPB_RECORD: 1881; CONFIDENCE confident structure Aloin (Aloin-A; Barbaloin-A) is a natural anti-tumor anthraquinone glycoside with iron chelating activity. Aloin (Aloin-A; Barbaloin-A) is a natural anti-tumor anthraquinone glycoside with iron chelating activity. Aloin B is an isomer of aloin, a physiologically active anthraquinone compound in aloe. Aloin B is an isomer of aloin, a physiologically active anthraquinone compound in aloe. Aloin (mixture of A&B) is anthraquinone derivative isolated from Aloe vera. Aloin (mixture of A&B) has diverse biological activities such as anti-inflammatory, immunity, antidiabetic, antioxidant, antibacterial, antifungal, and antitumor activities. Aloin (mixture of A&B) also an effective inhibitor of stimulated granulocyte matrix metalloproteinases (MMPs)[1][2].
Cucurbitacin
Cucurbitacin S is an 11-oxo steroid. Cucurbitacin S is a natural product found in Cucurbita foetidissima with data available. Triterpenes that derive from LANOSTEROL by a shift of the C19 methyl to the C9 position. They are found in seeds and roots of CUCURBITACEAE and other plants and are noted for intense bitterness.
Dihydrocucurbitacin B
23,24-dihydrocucurbitacin B is a 23,24-dihydrocucurbitacin in which a lanostane skeleton is multi-substituted with hydroxy, methyl and oxo substituents, with unsaturation at position 5; a hydroxy function at C-25 is acetylated. It is a 23,24-dihydrocucurbitacin, a secondary alpha-hydroxy ketone and a tertiary alpha-hydroxy ketone. It is functionally related to a cucurbitacin B. Dihydrocucurbitacin B is a natural product found in Bryonia alba, Citrullus colocynthis, and other organisms with data available. Dihydrocucurbitacin B, a triterpene isolated from Cayaponia tayuya roots, inhibits nuclear factor of activated T cells (NFAT), induces cell cycle arrested in the G0 phase, and inhibits delayed type hypersensitivity[1]. Dihydrocucurbitacin B, a triterpene isolated from Cayaponia tayuya roots, inhibits nuclear factor of activated T cells (NFAT), induces cell cycle arrested in the G0 phase, and inhibits delayed type hypersensitivity[1].
beta-Elemene
(-)-beta-elemene is the (-)-enantiomer of beta-elemene that has (1S,2S,4R)-configuration. It has a role as an antineoplastic agent. beta-Elemene is a natural product found in Xylopia sericea, Eupatorium cannabinum, and other organisms with data available. Beta-elemene is one of the isomers of elemene, a lipid soluble sesquiterpene and the active component isolated from the Chinese medicinal herb Rhizoma zedoariae with potential antineoplastic and chemopreventive activities. Although the exact mechanism of action through which beta-elemene exerts its effect has yet to be fully elucidated, this agent appears to induce apoptosis through different mechanisms of action and induces cell cycle arrest at different stages based on the tumor cell type involved. Beta-elemene may sensitize cancer cells to other chemotherapeutic agents. See also: Cannabis sativa subsp. indica top (part of). Beta-elemene, also known as B-elemen or 2,4-diisopropenyl-1-methyl-1-vinylcyclohexane, is a member of the class of compounds known as elemane sesquiterpenoids. Elemane sesquiterpenoids are sesquiterpenoids with a structure based on the elemane skeleton. Elemane is a monocyclic compound consisting of a cyclohexane ring substituted with a methyl group, an ethyl group, and two 1-methylethyl groups at the 1-, 1-, 2-, and 4-position, respectively. Beta-elemene is a fresh, herbal, and waxy tasting compound and can be found in a number of food items such as lovage, anise, spearmint, and orange mint, which makes beta-elemene a potential biomarker for the consumption of these food products. Beta-elemene can be found primarily in saliva. beta-Elemene belongs to the class of organic compounds known as elemane sesquiterpenoids. These are sesquiterpenoids with a structure based on the elemane skeleton. Elemane is a monocyclic compound consisting of a cyclohexane ring substituted with a methyl group, an ethyl group, and two 1-methylethyl groups at the 1-, 1-, 2-, and 4-position, respectively. beta-Elemene can be found in herbs, spices, and root vegetables, which makes beta-elemene a potential biomarker for the consumption of these food products. It is a constituent of sweet flag, juniper oils, and Mentha species. β-Elemene ((-)-β-Elemene; Levo-β-elemene) is isolated from natural plant Curcuma aromatica with an antitumor activity. β-Elemene can induce cell apoptosis. β-Elemene ((-)-β-Elemene; Levo-β-elemene) is isolated from natural plant Curcuma aromatica with an antitumor activity. β-Elemene can induce cell apoptosis.
Santonin
Alpha-santonin is a santonin that is 3a,5,5a,9b-tetrahydronaphtho[1,2-b]furan-2,8(3H,4H)-dione substituted by methyl groups at positions 3, 5a and 9. It has a role as a plant metabolite. It is a botanical anti-fungal agent and a santonin. Santonin is a natural product found in Artemisia spicigera, Artemisia diffusa, and other organisms with data available. Anthelmintic isolated from the dried unexpanded flower heads of Artemisia maritima and other species of Artemisia found principally in Russian and Chinese Turkestan and the Southern Ural region. (From Merck, 11th ed.) See also: ... View More ... A santonin that is 3a,5,5a,9b-tetrahydronaphtho[1,2-b]furan-2,8(3H,4H)-dione substituted by methyl groups at positions 3, 5a and 9. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C250 - Antihelminthic Agent ADP-ribose 1"-2" cyclic phosphate is a cyclic phosphate nucleotide that arises from tRNA processing. In eukaryotic cells, pre-tRNAs spliced by a pathway that produces a 3,5-phosphodiester, 2-phosphomonoester linkage contain a 2-phosphate group adjacent to the tRNA anticodon. This 2-phosphate is transferred to NAD to give adenosine diphosphate (ADP)-ribose 1", 2"-cyclic phosphate (Appr>p), which is subsequently metabolized to ADP-ribose 1-phosphate (Appr-1p). The latter reaction is catalyzed by a cyclic phosphodiesterase (CPDase). (PMID: 9148938). One molecule of ADP-ribose 1",2"-cyclic phosphate (Appr>p) is formed during each of the approximately 500 000 tRNA splicing events. [HMDB] Constituent of Physalis peruviana (Cape gooseberry). Withaperuvin F is found in fruits. Alkaloid found on the leaf surfaces of Brassica oleracea cv. botrytis (cauliflower) [DFC]. Cabbage identification factor 1 is found in brassicas. CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2267 INTERNAL_ID 2267; CONFIDENCE Reference Standard (Level 1) relative retention time with respect to 9-anthracene Carboxylic Acid is 0.918 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.917 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.915 [Raw Data] CB081_Santonin_pos_30eV_CB000033.txt [Raw Data] CB081_Santonin_pos_10eV_CB000033.txt [Raw Data] CB081_Santonin_pos_40eV_CB000033.txt [Raw Data] CB081_Santonin_pos_20eV_CB000033.txt [Raw Data] CB081_Santonin_pos_50eV_CB000033.txt Santonin is an active principle of the plant Artemisia cina, which is formely used to treat worms[1]. Santonin is an active principle of the plant Artemisia cina, which is formely used to treat worms[1].
4-hydroxyphenylacetate
p-Hydroxyphenylacetic acid, also known as 4-hydroxybenzeneacetate, is classified as a member of the 1-hydroxy-2-unsubstituted benzenoids. 1-Hydroxy-2-unsubstituted benzenoids are phenols that are unsubstituted at the 2-position. p-Hydroxyphenylacetic acid is considered to be slightly soluble (in water) and acidic. p-Hydroxyphenylacetic acid can be synthesized from acetic acid. It is also a parent compound for other transformation products, including but not limited to, methyl 2-(4-hydroxyphenyl)acetate, ixerochinolide, and lactucopicrin 15-oxalate. p-Hydroxyphenylacetic acid can be found in numerous foods such as olives, cocoa beans, oats, and mushrooms. p-Hydroxyphenylacetic acid can be found throughout all human tissues and in all biofluids. Within a cell, p-hydroxyphenylacetic acid is primarily located in the cytoplasm and in the extracellular space. p-Hydroxyphenylacetic acid is also a microbial metabolite produced by Acinetobacter, Clostridium, Klebsiella, Pseudomonas, and Proteus. Higher levels of this metabolite are associated with an overgrowth of small intestinal bacteria from Clostridia species including C. difficile, C. stricklandii, C. lituseburense, C. subterminale, C. putrefaciens, and C. propionicum (PMID: 476929, 12173102). p-Hydroxyphenylacetic acid is detected after the consumption of whole grain. 4-hydroxyphenylacetic acid is a monocarboxylic acid that is acetic acid in which one of the methyl hydrogens is substituted by a 4-hydroxyphenyl group. It has a role as a plant metabolite, a fungal metabolite, a human metabolite and a mouse metabolite. It is a monocarboxylic acid and a member of phenols. It is functionally related to an acetic acid. It is a conjugate acid of a 4-hydroxyphenylacetate. 4-Hydroxyphenylacetic acid is a natural product found in Guanomyces polythrix, Forsythia suspensa, and other organisms with data available. 4-Hydroxyphenylacetic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A monocarboxylic acid that is acetic acid in which one of the methyl hydrogens is substituted by a 4-hydroxyphenyl group. Constituent of sweet clover (Melilotus officinalis) and yeast Hydroxyphenylacetic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=156-38-7 (retrieved 2024-07-02) (CAS RN: 156-38-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). 4-hydroxyphenylacetic acid, a major microbiota-derived metabolite of polyphenols, is involved in the antioxidative action. 4-hydroxyphenylacetic acid induces expression of Nrf2[1]. 4-hydroxyphenylacetic acid, a major microbiota-derived metabolite of polyphenols, is involved in the antioxidative action. 4-hydroxyphenylacetic acid induces expression of Nrf2[1].
Isochamaejasmin
Chamaejasmin is a natural product found in Brackenridgea zanguebarica, Stellera chamaejasme, and other organisms with data available. Isochamaejasmin is a biflavonoid that consists of two units of 5,7,4-trihydroxyflavanone joined together at position 3 and 3. It has a role as a plant metabolite. It is a biflavonoid and a hydroxyflavone. Isochamaejasmin is a natural product found in Brackenridgea zanguebarica, Stellera chamaejasme, and Ormocarpum kirkii with data available.
p-Menth-1-en-4-ol
p-Menth-1-en-4-ol, also known as terpinen-4-ol, 1-para-menthen-4-ol or p-Menth-1-en-4-ol or 4-carvomenthenol, is an isomer of terpineol. It belongs to the class of organic compounds known as menthane monoterpenoids. These are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. ±-Terpinene-4-ol is a hydrophobic, largely neutral molecule that is essentially insoluble in water. It has a peppery, spicy, musty, citrus odor and a cooling woody or spicy taste. ±-Terpinene-4-ol is widely used as a flavoring agent and as a masking agent in cosmetics. ±-Terpinene-4-ol is a natural product that can be found in a number of plants, such as allspice, anise, apple, basil, cardamom, cinnamon and Melaleuca alternifolia (also called tea tree) and is the main bioactive component of tea tree oil (PMID 22083482 ). ±-Terpinene-4-ol is also one of the monoterpenes found in cannabis plants (PMID:6991645 ). Terpinen-4-ol is a potent bactericidal agent that also possess antifungal properties. In particular, it has shown in vitro activity against Staphylococcus aureus and C. albicans (PMID:27275783 ). It has also been shown that combining this natural substance and conventional drugs may help treat resistant yeast and bacterial infections. Several studies have suggested that terpinen-4-ol induces antitumor effects by selectively causing necrotic cell death and cell-cycle arrest in melanoma cell lines, or by triggering caspase-dependent apoptosis in human melanoma cells (PMID:27275783 ). 4-terpineol is a terpineol that is 1-menthene carrying a hydroxy substituent at position 4. It has a role as a plant metabolite, an antibacterial agent, an antioxidant, an anti-inflammatory agent, an antiparasitic agent, an antineoplastic agent, an apoptosis inducer and a volatile oil component. It is a terpineol and a tertiary alcohol. Terpinen-4-ol is under investigation in clinical trial NCT01647217 (Demodex Blepharitis Treatment Study). 4-Carvomenthenol is a natural product found in Nepeta nepetella, Teucrium montanum, and other organisms with data available. Terpinen-4-ol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Lavender Oil (part of); Juniper Berry Oil (part of); Peumus boldus leaf (part of). Flavouring ingredient. p-Menth-1-en-4-ol is found in many foods, some of which are star anise, spearmint, sweet basil, and black elderberry. A terpineol that is 1-menthene carrying a hydroxy substituent at position 4. Terpinen-4-ol (4-Carvomenthenol), a naturally occurring monoterpene, is the main bioactive component of tea-tree oil. Terpinen-4-ol suppresses inflammatory mediator production by activated human monocytes. Terpinen-4-ol significantly enhances the effect of several chemotherapeutic and biological agents[1][2][3]. Terpinen-4-ol (4-Carvomenthenol), a naturally occurring monoterpene, is the main bioactive component of tea-tree oil. Terpinen-4-ol suppresses inflammatory mediator production by activated human monocytes. Terpinen-4-ol significantly enhances the effect of several chemotherapeutic and biological agents[1][2][3].
Tryptophol
Tryptophol, also known as indole-3-ethanol, is an indolyl alcohol that is ethanol substituted by a 1H-indol-3-yl group at position 2. It has a role as a Saccharomyces cerevisiae metabolite, an auxin and a plant metabolite. Tryptophol is a catabolite of tryptophan converted by the gut microbiota. After absorption through the intestinal epithelium, tryptophan catabolites enter the bloodstream and are later excreted in the urine (PMID:30120222). Tryptophol production was negatively associated with interferon-gamma production (IFNγ) which suggests that tryptophol has anti-inflammatory properties (PMID:27814509). Tryptophol has also been identified as the hypnotic agent in trypanosomal sleeping sickness, and because it is formed in vivo after ethanol or disulfiram treatment, it is also associated with the study of alcoholism (PMID:7241135). Indole-3-ethanol is a dietary indole present in cruciferous vegetables that has been shown to influence estradiol metabolism in humans and may provide a new chemopreventive approach to estrogen-dependent diseases. (PMID 2342128) Tryptophol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=526-55-6 (retrieved 2024-06-29) (CAS RN: 526-55-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Tryptophol (Indole-3-ethanol) is an endogenous metabolite. Tryptophol (Indole-3-ethanol) is an endogenous metabolite.
12-Hydroxydodecanoic acid
12-hydroxydodecanoic acid is the substrate of the human glutathione-dependent formaldehyde dehydrogenase (EC1.1.1.1). The enzyme that catalyzes the conversion of alcohols to aldehydes is a zinc-containing dimeric enzyme responsible for the oxidation of long-chain alcohols and omega-hydroxy fatty acids. (OMIM). The human glutathione-dependent formaldehyde dehydrogenase is unique among the structurally studied members of the alcohol dehydrogenase family in that it follows a random bi kinetic mechanism forming a binary complex, and a ternary complex with NAD+. (PMID 12196016). 12-hydroxydodecanoic acid is the substrate of the human glutathione-dependent formaldehyde dehydrogenase (EC1.1.1.1) . The enzyme that catalyzes the conversion of alcohols to aldehydes is a zinc-containing dimeric enzyme responsible for the oxidation of long-chain alcohols and omega-hydroxy fatty acids. (OMIM) 12-Hydroxydodecanoic acid is an endogenous metabolite.
Prostaglandin E2
The naturally occurring prostaglandin E2 (PGE2) is known in medicine as dinoprostone, and it is the most common and most biologically active of the mammalian prostaglandins. It has important effects during labour and also stimulates osteoblasts to release factors which stimulate bone resorption by osteoclasts (a type of bone cell that removes bone tissue by removing the bones mineralized matrix). PGE2 is also the prostaglandin that ultimately induces fever. PGE2 has been shown to increase vasodilation and cAMP production, enhance the effects of bradykinin and histamine, and induce uterine contractions and platelet aggregation. PGE2 is also responsible for maintaining the open passageway of the fetal ductus arteriosus, decreasing T-cell proliferation and lymphocyte migration, and activating the secretion of IL-1α and IL-2. PGE2 exhibits both pro- and anti-inflammatory effects, particularly on dendritic cells (DC). Depending on the nature of maturation signals, PGE2 has different and sometimes opposite effects on DC biology. PGE2 exerts an inhibitory action, reducing the maturation of DC and their ability to present antigen. PGE2 has also been shown to stimulate DC and promote IL-12 production when given in combination with TNF-alpha. PGE2 is an environmentally bioactive substance. Its action is prolonged and sustained by other factors especially IL-10. It modulates the activities of professional DC by acting on their differentiation, maturation, and their ability to secrete cytokines. PGE2 is a potent inducer of IL-10 in bone marrow-derived DC (BM-DC). PGE2-induced IL-10 is a key regulator of the BM-DC pro-inflammatory phenotype (PMID:16978535). Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent and are able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis through receptor-mediated G-protein linked signalling pathways. Dinoprostone is a naturally occurring prostaglandin E2 (PGE2) and the most common and most biologically active of the mammalian prostaglandins. It has important effects in labour and also stimulates osteoblasts to release factors which stimulate bone resorption by osteoclasts (a type of bone cell that removes bone tissue by removing the bones mineralized matrix). PGE2 has been shown to increase vasodilation and cAMP production, to enhance the effects of bradykinin and histamine, induction of uterine contractions and of platelet aggregation. PGE2 is also responsible for maintaining the open passageway of the fetal ductus arteriosus; decreasing T-cell proliferation and lymphocyte migration and activating the secretion of IL-1α and IL-2. PGE2 exhibits both pro- and anti-inflammatory effects, particularly on dendritic cells (DC). Depending on the nature of maturation signals, PGE2 has different and sometimes opposite effects on DC biology. PGE2 exerts an inhibitory action, reducing the maturation of DC and their ability to present antigen. PGE2 has also been shown to stimulate DC and promote IL-12 production when given in combination with TNF-alpha. PGE2 is an environmentally bioactive substance. Its action is prolonged and sustained by other factors especially IL-10. It modulates the activities of professional DC by acting on their differentiation, maturation and their ability to secrete cytokines. PGE2 is a potent inducer of IL-10 in bone marrow-derived DC (BM-DC), and PGE2-induced IL-10 is a key regulator of the BM-DC pro-inflammatory phenotype. (PMID: 16978535) G - Genito urinary system and sex hormones > G02 - Other gynecologicals > G02A - Uterotonics > G02AD - Prostaglandins Chemical was purchased from CAY14010, (Lot 0410966-34); Diagnostic ions: 351.8, 333.1, 271.1, 188.9 D012102 - Reproductive Control Agents > D010120 - Oxytocics C78568 - Prostaglandin Analogue Prostaglandin E2 (PGE2) is a hormone-like substance that participate in a wide range of body functions such as the contraction and relaxation of smooth muscle, the dilation and constriction of blood vessels, control of blood pressure, and modulation of inflammation.
8-HETE
8(S)-HETE is a naturally occurring hydroxyeicosatetraenoic acid eicosanoid. 8(S)-HETE is a strong activator of peroxisome proliferator-activated receptors (PPARs) alpha and a weak activator of PPAR gamma. PPARs are nuclear hormone receptors that regulate gene transcription in response to peroxisome proliferators and fatty acids. PPARs also play an important role in the regulation of adipocyte differentiation. It is unclear however what naturally occurring compounds activate each of the PPAR subtypes. Additionally, 8(S)-HETE is able to induce differentiation of preadipocytes. (PMID: 7592593, 9113987) [HMDB] 8(S)-HETE is a naturally occurring hydroxyeicosatetraenoic acid eicosanoid. 8(S)-HETE is a strong activator of peroxisome proliferator-activated receptors (PPARs) alpha and a weak activator of PPAR gamma. PPARs are nuclear hormone receptors that regulate gene transcription in response to peroxisome proliferators and fatty acids. PPARs also play an important role in the regulation of adipocyte differentiation. It is unclear however what naturally occurring compounds activate each of the PPAR subtypes. Additionally, 8(S)-HETE is able to induce differentiation of preadipocytes. (PMID: 7592593, 9113987).
20-Hydroxyeicosatetraenoic acid
20-Hydroxyeicosatetraenoic acid (20-HETE) is a metabolite of arachidonic acid. Cytochrome P450 enzymes of the 4A and 4F families catalyze the omega-hydroxylation of arachidonic acid and produce 20-HETE. 20-HETE is a potent constrictor of renal, cerebral, and mesenteric arteries. The vasoconstrictor response to 20-HETE is associated with activation of protein kinase, Rho kinase, and the mitogen-activated protein (MAP) kinase pathway C. 20-HETE also increases intracellular Ca2+ by causing the depolarization of vascular smooth muscle membrane secondary to blocking the large-conductance Ca2+-activated K+-channels and by a direct effect on L-type Ca channels. Elevations in the production of 20-HETE mediate the myogenic response of skeletal, renal, and cerebral arteries to elevations in transmural pressure. There is an important interaction between nitric oxide (NO) and the formation of 20-HETE production. NO inhibits the formation of 20-HETE formation in renal and cerebral arteries. A fall in levels of 20-HETE contributes to the cyclic GMP-independent dilator effect of NO to activate the large-conductance Ca2+-activated K+-channels and to dilate the cerebral arteries (PMID: 16258232). Metabolite produced during NADPH dependent enzymatic oxidation of arachidonic acid. Potent vasoconstrictor [CCD]
Terfenadine
Terfenadine is only found in individuals that have used or taken this drug. In the U.S., Terfenadine was superseded by fexofenadine in the 1990s due to the risk of cardiac arrhythmia caused by QT interval prolongation.Terfenadine competes with histamine for binding at H1-receptor sites in the GI tract, uterus, large blood vessels, and bronchial muscle. This reversible binding of terfenadine to H1-receptors suppresses the formation of edema, flare, and pruritus resulting from histaminic activity. As the drug does not readily cross the blood-brain barrier, CNS depression is minimal. R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist Terfenadine ((±)-Terfenadine) is a potent open-channel blocker of hERG with an IC50 of 204 nM[1]. Terfenadine, an H1 histamine receptor antagonist, acts as a potent apoptosis inducer in melanoma cells through modulation of Ca2+ homeostasis. Terfenadine induces ROS-dependent apoptosis, simultaneously activates Caspase-4, -2, -9[2].
Salmeterol
Salmeterol is only found in individuals that have used or taken this drug. It is a long-acting beta2-adrenergic receptor agonist drug that is currently prescribed for the treatment of asthma and chronic obstructive pulmonary disease COPD. Salmeterols long, lipophilic side chain binds to exosites near beta(2)-receptors in the lungs and on bronchiolar smooth muscle, allowing the active portion of the molecule to remain at the receptor site, continually binding and releasing. Beta(2)-receptor stimulation in the lung causes relaxation of bronchial smooth muscle, bronchodilation, and increased bronchial airflow. R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03A - Adrenergics, inhalants > R03AC - Selective beta-2-adrenoreceptor agonists D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents C78273 - Agent Affecting Respiratory System > C29712 - Anti-asthmatic Agent > C319 - Bronchodilator D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents Salmeterol (GR33343X) is a potent and selective human β2 adrenoceptor agonist. Salmeterol shows potent stimulation of cAMP accumulation in CHO cells expressing human β2, β1 and β3 adrenoceptors with pEC50s of 9.6, 6.1, and 5.9, respectively[1].
rofecoxib
M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AH - Coxibs D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D004791 - Enzyme Inhibitors > D016861 - Cyclooxygenase Inhibitors > D052246 - Cyclooxygenase 2 Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic C274 - Antineoplastic Agent > C1742 - Angiogenesis Inhibitor > C80509 - COX-2 Inhibitor D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor COVID info from COVID-19 Disease Map D000893 - Anti-Inflammatory Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Arachidonic acid
Arachidonic acid is a polyunsaturated, essential fatty acid that has a 20-carbon chain as a backbone and four cis-double bonds at the C5, C8, C11, and C14 positions. It is found in animal and human fat as well as in the liver, brain, and glandular organs, and is a constituent of animal phosphatides. It is synthesized from dietary linoleic acid. Arachidonic acid mediates inflammation and the functioning of several organs and systems either directly or upon its conversion into eicosanoids. Arachidonic acid in cell membrane phospholipids is the substrate for the synthesis of a range of biologically active compounds (eicosanoids) including prostaglandins, thromboxanes, and leukotrienes. These compounds can act as mediators in their own right and can also act as regulators of other processes, such as platelet aggregation, blood clotting, smooth muscle contraction, leukocyte chemotaxis, inflammatory cytokine production, and immune function. Arachidonic acid can be metabolized by cytochrome p450 (CYP450) enzymes into 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acids (EETs), their corresponding dihydroxyeicosatrienoic acids (DHETs), and 20-hydroxyeicosatetraenoic acid (20-HETE). The production of kidney CYP450 arachidonic acid metabolites is altered in diabetes, pregnancy, hepatorenal syndrome, and in various models of hypertension, and it is likely that changes in this system contribute to the abnormalities in renal function that are associated with many of these conditions. Phospholipase A2 (PLA2) catalyzes the hydrolysis of the sn-2 position of membrane glycerophospholipids to liberate arachidonic acid (PMID: 12736897, 12736897, 12700820, 12570747, 12432908). The beneficial effects of omega-3 fatty acids are believed to be due in part to selective alteration of arachidonate metabolism that involves cyclooxygenase (COX) enzymes (PMID: 23371504). 9-Oxononanoic acid (9-ONA), one of the major products of peroxidized fatty acids, was found to stimulate the activity of phospholipase A2 (PLA2), the key enzyme to initiate the arachidonate cascade and eicosanoid production (PMID: 23704812). Arachidonate lipoxygenase (ALOX) enzymes metabolize arachidonic acid to generate potent inflammatory mediators and play an important role in inflammation-associated diseases (PMID: 23404351). Essential fatty acid. Constituent of many animal phospholipids Arachidonic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=506-32-1 (retrieved 2024-07-15) (CAS RN: 506-32-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Arachidonic acid is an essential fatty acid and a major constituent of biomembranes. Arachidonic acid is an essential fatty acid and a major constituent of biomembranes.
Lapachol
Lapachol is a hydroxy-1,4-naphthoquinone that is 1,4-naphthoquinone substituted by hydroxy and 3-methylbut-2-en-1-yl groups at positions 2 and 3, respectively. It is a natural compound that exhibits antibacterial and anticancer properties, first isolated in 1882 from the bark of Tabebuia avellanedae. It has a role as a plant metabolite, an antineoplastic agent, an antibacterial agent and an anti-inflammatory agent. It is a hydroxy-1,4-naphthoquinone and an olefinic compound. NA is a natural product found in Plenckia populnea, Stereospermum colais, and other organisms with data available. A hydroxy-1,4-naphthoquinone that is 1,4-naphthoquinone substituted by hydroxy and 3-methylbut-2-en-1-yl groups at positions 2 and 3, respectively. It is a natural compound that exhibits antibacterial and anticancer properties, first isolated in 1882 from the bark of Tabebuia avellanedae. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000970 - Antineoplastic Agents [Raw Data] CB290_Lapachol_pos_40eV_CB000086.txt [Raw Data] CB290_Lapachol_pos_50eV_CB000086.txt [Raw Data] CB290_Lapachol_pos_10eV_CB000086.txt [Raw Data] CB290_Lapachol_pos_30eV_CB000086.txt [Raw Data] CB290_Lapachol_pos_20eV_CB000086.txt [Raw Data] CB290_Lapachol_neg_10eV_000049.txt [Raw Data] CB290_Lapachol_neg_20eV_000049.txt [Raw Data] CB290_Lapachol_neg_40eV_000049.txt [Raw Data] CB290_Lapachol_neg_50eV_000049.txt [Raw Data] CB290_Lapachol_neg_30eV_000049.txt Lapachol is a naphthoquinone that was first isolated from Tabebuia avellanedae (Bignoniaceae)[1]. Lapachol shows anti-abscess, anti-ulcer, antileishmanial, anticarcinomic, antiedemic, anti-inflammatory, antimalarial, antiseptic, antitumor, antiviral, antibacterial, antifungal and pesticidal activities[2]. Lapachol is a naphthoquinone that was first isolated from Tabebuia avellanedae (Bignoniaceae)[1]. Lapachol shows anti-abscess, anti-ulcer, antileishmanial, anticarcinomic, antiedemic, anti-inflammatory, antimalarial, antiseptic, antitumor, antiviral, antibacterial, antifungal and pesticidal activities[2].
Thromboxane B2
Thromboxanes. A stable, physiologically active compound formed in vivo from the prostaglandin endoperoxides. It is important in the platelet-release reaction (release of ADP and serotonin). -- Pubchem. Thromboxanes are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. Thromboxanes
Montelukast
Montelukast is a leukotriene receptor antagonist (LTRA) used for the maintenance treatment of asthma and to relieve symptoms of seasonal allergies. It is usually administered orally. Montelukast blocks the action of leukotriene D4 on the cysteinyl leukotriene receptor CysLT1 in the lungs and bronchial tubes by binding to it. This reduces the bronchoconstriction otherwise caused by the leukotriene, and results in less inflammation. Because of its method of operation, it is not useful for the treatment of acute asthma attacks. Again because of its very specific locus of operation, it does not interact with other allergy medications such as theophylline. Montelukast is marketed in United States and many other countries by Merck & Co. with the brand name Singulair. It is available as oral tablets, chewable tablets, and oral granules. In India and other countries, it is also marketed under the brand name Montair®, produced by Indian company Cipla. R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03D - Other systemic drugs for obstructive airway diseases > R03DC - Leukotriene receptor antagonists D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D020024 - Leukotriene Antagonists D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists D065693 - Cytochrome P-450 Enzyme Inducers > D065694 - Cytochrome P-450 CYP1A2 Inducers COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78273 - Agent Affecting Respiratory System > C29712 - Anti-asthmatic Agent Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Psoralidin
Psoralidin is a member of the class of coumestans that is coumestan substituted by hydroxy groups at positions 3 and 9 and a prenyl group at position 2 respectively. It has a role as a plant metabolite and an estrogen receptor agonist. It is a member of coumestans, a polyphenol and a delta-lactone. It is functionally related to a coumestan. Psoralidin is a natural product found in Dolichos trilobus, Phaseolus lunatus, and other organisms with data available. See also: Cullen corylifolium fruit (part of). A member of the class of coumestans that is coumestan substituted by hydroxy groups at positions 3 and 9 and a prenyl group at position 2 respectively. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D020847 - Estrogen Receptor Modulators Constituent of papadi (Dolichos biflorus) and the butter bean (Phaseolus lunatus). Psoralidin is found in pulses, lima bean, and fruits. Psoralidin is found in fruits. Psoralidin is a constituent of papadi (Dolichos biflorus) and the butter bean (Phaseolus lunatus). Psoralidin is a dual inhibitor of COX-2 and 5-LOX, regulates ionizing radiation (IR)-induced pulmonary inflammation.Anti-cancer, anti-bacterial, and anti-inflammatory properties[1]. Psoralidin significantly downregulates NOTCH1 signaling. Psoralidin also greatly induces ROS generation[2]. Psoralidin is a dual inhibitor of COX-2 and 5-LOX, regulates ionizing radiation (IR)-induced pulmonary inflammation.Anti-cancer, anti-bacterial, and anti-inflammatory properties[1]. Psoralidin significantly downregulates NOTCH1 signaling. Psoralidin also greatly induces ROS generation[2]. Psoralidin is a dual inhibitor of COX-2 and 5-LOX, regulates ionizing radiation (IR)-induced pulmonary inflammation.Anti-cancer, anti-bacterial, and anti-inflammatory properties[1]. Psoralidin significantly downregulates NOTCH1 signaling. Psoralidin also greatly induces ROS generation[2].
Oxymetazoline
Oxymetazoline is only found in individuals that have used or taken this drug. It is a direct acting sympathomimetic used as a vasoconstrictor to relieve nasal congestion. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1251)Oxymetazoline is a direct acting sympathomimetic amine, which acts on alpha-adrenergic receptors in the arterioles of the conjunctiva and nasal mucosa. It produces vasoconstriction, resulting in decreased conjunctival congestion in ophthalmic. In nasal it produces constriction, resulting in decreased blood flow and decreased nasal congestion. R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AB - Sympathomimetics, combinations excl. corticosteroids R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AA - Sympathomimetics, plain S - Sensory organs > S01 - Ophthalmologicals > S01G - Decongestants and antiallergics > S01GA - Sympathomimetics used as decongestants D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D019141 - Respiratory System Agents > D014663 - Nasal Decongestants D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents D - Dermatologicals
Dihomo-alpha-linolenic acid
Dihomolinolenic acid, also known as 11,14,17-eicosatrienoic acid or (11z,14z,17z)-eicosa-11,14,17-trienoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, dihomolinolenic acid is considered to be a fatty acid lipid molecule. Dihomolinolenic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Dihomolinolenic acid can be found in evening primrose, which makes dihomolinolenic acid a potential biomarker for the consumption of this food product. Dihomolinolenic acid can be found primarily in blood and feces. Dihomo-alpha-linolenic acid, also known as 11,14,17-eicosatrienoic acid, is a rare polyunsaturated fatty acid of the omega-3 series. In normal humans, it represents less than 0.25\\% of serum phospholipid fatty acids. However, it is one of the most active essential fatty acids when assayed for the inhibition of fatty acid elongation/desaturation reactions which convert dietary C-18 fatty acids to C-20 eicosanoid precursors. (http://www.caymanchem.com)
Prostaglandin F1a
Prostaglandin F1a is derived mainly from Prostaglandin E1, and is metabolized to 6-Keto Prostaglandin F1a. Prostaglandin F1a is excreted directly into the urine. Prostaglandin F1a contracts the circular muscle of the gut in opposition to the Prostaglandins of the E series. Prostaglandin F1a is a cytoprotector, protecting mucosal tissue from damage produced by ulcerogenic stimuli.Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. Prostaglandin F1a is derived mainly from Prostaglandin E1, and is metabolized to 6-Keto Prostaglandin F1a. Prostaglandin F1a is excreted directly into the urine. Prostaglandin F1a contracts the circular muscle of the gut in opposition to the Prostaglandins of the E series. Prostaglandin F1a is a cytoprotector, protecting mucosal tissue from damage produced by ulcerogenic stimuli.
Azelastine
Azelastine is only found in individuals that have used or taken this drug. It is a phthalazine derivative, and is an antihistamine and mast cell stabilizer available as a nasal spray for hay fever and as eye drops for allergic conjunctivitis.Azelastine competes with histamine for the H1-receptor sites on effector cells and acts as an antagonist by inhibiting the release of histamine and other mediators involved in the allergic response. R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AC - Antiallergic agents, excl. corticosteroids R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists S - Sensory organs > S01 - Ophthalmologicals > S01G - Decongestants and antiallergics C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents D004791 - Enzyme Inhibitors > D016859 - Lipoxygenase Inhibitors CONFIDENCE standard compound; INTERNAL_ID 8508 CONFIDENCE standard compound; INTERNAL_ID 2734 D018926 - Anti-Allergic Agents
Zafirlukast
Zafirlukast is an oral leukotriene receptor antagonist (LTRA) for the maintenance treatment of asthma, often used in conjunction with an inhaled steroid and/or long-acting bronchodilator. It is available as a tablet and is usually dosed twice daily. Another leukotriene receptor antagonist is montelukast (Singulair), which is usually taken just once daily. Zafirlukast blocks the action of the cysteinyl leukotrienes on the CysLT1 receptors, thus reducing constriction of the airways, build-up of mucus in the lungs and inflammation of the breathing passages. R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03D - Other systemic drugs for obstructive airway diseases > R03DC - Leukotriene receptor antagonists D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D020024 - Leukotriene Antagonists D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists C78273 - Agent Affecting Respiratory System > C29712 - Anti-asthmatic Agent
12-HETE
12-Hydroxyeicosatetraenoic acid (CAS: 71030-37-0), also known as 12-HETE, is an eicosanoid, a 5-lipoxygenase metabolite of arachidonic acid. 5-Lipoxygenase (LO)-derived leukotrienes are involved in inflammatory glomerular injury. LO product 12-HETE is associated with the pathogenesis of hypertension and may mediate angiotensin II and TGFbeta induced mesangial cell abnormality in diabetic nephropathy. 12-HETE is markedly elevated in the psoriatic lesions. 12-HETE is a vasoconstrictor eicosanoid that contributes to high blood pressure in (renovascular) hypertension and pregnancy-induced hypertension. A significant percentage of patients suffering from a selective increase in plasma LDL cholesterol (type IIa hyperlipoproteinemia) exhibits increased platelet reactivity. This includes enhanced platelet responsiveness against a variety of platelet-stimulating agents ex vivo and enhanced arachidonic acid metabolism associated with increased generation of arachidonic acid metabolites such as 12-HETE, and secretion of platelet-storage products (PMID: 7562532, 12480795, 17361113, 8498970, 1333255, 2119633). 12-HETE is a highly selective ligand used to label mu-opioid receptors in both membranes and tissue sections. The 12-S-HETE analog has been reported to augment tumour cell metastatic potential through activation of protein kinase C. 12-HETE has a diversity of biological actions and is generated by a number of tissues including the renal glomerulus and the vasculature. 12-HETE is one of the six monohydroxy fatty acids produced by the non-enzymatic oxidation of arachidonic acid. 12-HETE is a neuromodulator that is synthesized during ischemia. Its neuronal effects include attenuation of calcium influx and glutamate release as well as inhibition of AMPA receptor (AMPA-R) activation. 12-HETE is found to be associated with peroxisomal biogenesis defect and Zellweger syndrome, which are inborn errors of metabolism.
3-HODE + 9-HODE
13-Hydroxyoctadecadienoic acid (13-HODE) (CAS: 18104-45-5), also known as 13(S)-hydroxy-9Z,11E-octadecadienoic acid or 13(S)-HODE, is the major lipoxygenation product synthesized in the body from linoleic acid. 13-HODE prevents cell adhesion to endothelial cells and can inhibit cancer metastasis. 13-HODE synthesis is enhanced by cyclic AMP. gamma-Linolenic acid, a desaturated metabolite of linoleic acid, causes substantial stimulation of 13-HODE synthesis. A fall in gamma-linolenic acid synthesis with age may be related to the age-related fall in 13-HODE formation (PMID: 9561154). 13-HODE is considered an intermediate in linoleic acid metabolism. It is generated from 13(S)-HPODE via the enzyme lipoxygenase (EC 1.13.11.12). 13-HODE has been shown to be involved in cell proliferation and differentiation in a number of systems. 13-HODE is found to be produced by prostate tumours and cell lines and researchers believe that there is a link between linoleic acid metabolism and the development or progression of prostate cancer (PMID: 9367845).
15-HETE
15-HETE is a hydroxyeicosatetraenoic acid. Hydroxyeicosatetraenoic acids (HETEs) are formed by the 5-, 12-, and 15-lipoxygenase (LO) pathways. The 5- and 12-LO products are mainly proinflammatory in the skin whereas the main 15-LO product 15-HETE has antiinflammatory capacities. In vitro, 15-HETE has been shown to inhibit LTB4 formation, 12-HETE formation, and specifically inhibits the neutrophil chemotactic effect of LTB4. The inhibition of LTB4 formation is probably due to modulation of the 5-LO because no changes in PGE2 formation have been determined. In vivo, 15-HETE inhibits LTB4-induced erythema and edema, and reduces LTB4 in the synovial fluid of carragheenan-induced experimental arthritis in dogs. 15-HETE also has some immunomodulatory effects. It inhibits the mixed lymphocyte reaction, induces generation of murine cytotoxic suppressor T cells, and it decreases interferon production by murine lymphoma cells. Furthermore, IL-4 and IL-13 have recently been shown to be potent activators of the 15-LO in mononuclear cells (PMID: 11104340). 15(S)-HETE is found to be associated with Zellweger syndrome, which is an inborn error of metabolism. 15(S)-HETE is a hydroxyeicosatetraenoic acid. Hydroxyeicosatetraenoic acids (HETEs) are formed by the 5-, 12- and 15-lipoxygenase (LO) pathways. 5- and 12-LO products are mainly proinflammatory in the skin whereas the main 15-LO product 15-HETE has antiinflammatory capacities. In vitro 15-HETE has been shown to inhibit LTB4 formation, 12-HETE formation and specifically inhibits the neutrophil chemotactic effect of LTB4. The inhibition of LTB4 formation is probably due to modulation of the 5-LO because no changes in PGE2 formation have been determined. In vivo, 15-HETE inhibits LTB4-induced erythema and edema, and reduces LTB4 in the synovial fluid of carragheenan-induced experimental arthritis in dogs. 15-HETE has also some immunomodulatory effects. It inhibits the mixed lymphocyte reaction, induces generation of murine cytotoxic suppressor T cells, and it decreases interferon production by murine lymphoma cells. Furthermore, IL-4 and IL-13 have recently been shown to be potent activators of the 15-LO in mononuclear cells. (PMID: 11104340) [HMDB] 15(S)-HETE. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=54845-95-3 (retrieved 2024-07-10) (CAS RN: 54845-95-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
5-HETE
5-Hydroxyeicosatetraenoic acid (5-HETE) is an endogenous eicosanoid. 5-HETE is an intermediate in the pathway of leukotriene synthesis. In addition, it is a modulator of tubuloglomerular feedback.; 5-hydroxyeicosatetraenoic acid (5-HETE) is an endogenous eicosanoid. 5-HETE is an intermediate in Arachidonic acid metabolism. It is converted from 5(S)-HPETE via the enzyme glutathione peroxidase (EC 1.11.1.9)and then it is converted to 5-OxoETE. It is also involved in the pathway of leukotriene synthesis. In addition, it is a modulator of tubuloglomerular feedback. 5-HETE is found in corn. 5-hydroxyeicosatetraenoic acid (5-HETE) is an endogenous eicosanoid. 5-HETE is an intermediate in arachidonic acid metabolism. It is converted from 5(S)-HPETE via the enzyme glutathione peroxidase (EC 1.11.1.9)and then converted to 5-OxoETE. It is also involved in the pathway of leukotriene synthesis. In addition, it is a modulator of tubuloglomerular feedback.
5-KETE
5-oxo-6E,8Z,11Z,14Z-eicosatetraenoic acid (5-oxo-ETE), 5-lipoxygenase product is a potent chemoattractant for neutrophils and eosinophils. Its actions are mediated by the oxoeicosanoid (OXE) receptor, a member of the G protein-coupled receptor family.(PMID:18292294) [HMDB] 5-oxo-6E,8Z,11Z,14Z-eicosatetraenoic acid (5-oxo-ETE), 5-lipoxygenase product is a potent chemoattractant for neutrophils and eosinophils. Its actions are mediated by the oxoeicosanoid (OXE) receptor, a member of the G protein-coupled receptor family.(PMID:18292294).
Leukotriene B4
A leukotriene composed of (6Z,8E,10E,14Z)-icosatetraenoic acid having (5S)- and (12R)-hydroxy substituents. It is a lipid mediator of inflammation that is generated from arachidonic acid via the 5-lipoxygenase pathway. Chemical was purchased from CAY20110 (Lot 0439924-0).; Diagnostic ions: 335.1, 317.2, 195.1, 129.0, 115.0, 111.5
Leukotriene C4
Leukotriene C4 (LTC4) is a cysteinyl leukotriene (CysLT), a family of potent inflammatory mediators. Eosinophils, one of the principal cell types recruited to and activated at sites of allergic inflammation, is capable of elaborating lipid mediators, including leukotrienes derived from the oxidative metabolism of arachidonic acid (AA). Potentially activated eosinophils may elaborate greater quantities of LTC4, than normal eosinophils. These activated eosinophils thus are primed for enhanced LTC4 generation in response to subsequent stimuli. Some recognized priming stimuli are chemoattractants (e.g. eotaxin, PAF) that may participate in the recruitment of eosinophils to sites of allergic inflammation. The mechanisms by which chemoattractants and other activating cytokines (e.g. interleukin (IL)-5) or extracellular matrix components (e.g. fibronectin) enhance eosinophil eicosanoid formation are pertinent to the functions of these eicosanoids as paracrine mediators of allergic inflammation. Some eosinophil-derived eicosanoids may be active in down-regulating inflammation. It is increasingly likely that eicosanoids synthesized within cells, including eosinophils, may have intracellular (e.g. intracrine) roles in regulating cell functions, in addition to the more recognized activities of eicosanoids as paracrine mediators of inflammation. Acting extracellularly, the cysteinyl leukotrienes (CysLTs) LTC4 and its extracellular derivatives, LTD4 and LTE4 are key paracrine mediators pertinent to asthma and allergic diseases. Based on their receptor-mediated capabilities, they can elicit bronchoconstriction, mucus hypersecretion, bronchial hyperresponsiveness, increased microvascular permeability, and additional eosinophil infiltration. Eosinophils are a major source of CysLTs and have been identified as the principal LTC4 synthase expressing cells in bronchial mucosal biopsies of asthmatic subjects (PMID: 12895596). Leukotrienes are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. Leukotriene c4, also known as ltc4 or 5s,6r-ltc(sub 4), is a member of the class of compounds known as oligopeptides. Oligopeptides are organic compounds containing a sequence of between three and ten alpha-amino acids joined by peptide bonds. Thus, leukotriene c4 is considered to be an eicosanoid lipid molecule. Leukotriene c4 is practically insoluble (in water) and a moderately acidic compound (based on its pKa). Leukotriene c4 can be synthesized from icosa-7,9,11,14-tetraenoic acid. Leukotriene c4 is also a parent compound for other transformation products, including but not limited to, leukotriene C4 methyl ester, 11,12-dihydro-(12R)-hydroxyleukotriene C4, and 11,12-dihydro-12-oxoleukotriene C4. Leukotriene c4 can be found in a number of food items such as gram bean, maitake, caraway, and burbot, which makes leukotriene c4 a potential biomarker for the consumption of these food products. Leukotriene c4 can be found primarily in blood and cerebrospinal fluid (CSF), as well as throughout most human tissues. In humans, leukotriene c4 is involved in several metabolic pathways, some of which include trisalicylate-choline action pathway, antipyrine action pathway, nepafenac action pathway, and fenoprofen action pathway. Leukotriene c4 is also involved in a couple of metabolic disorders, which include leukotriene C4 synthesis deficiency and tiaprofenic acid action pathway. Moreover, leukotriene c4 is found to be associated with eczema. Leukotriene C4 (LTC4) is a leukotriene. LTC4 has been extensively studied in the context of allergy and asthma. In cells of myeloid origin such as mast cells, its biosynthesis is orchestrated by translocation to the nuclear envelope along with co-localization of cytosolic phospholipase A2 (cPLA2), Arachidonate 5-lipoxygenase (5-LO), 5-lipoxygenase-activating protein (FLAP) and LTC4 synthase (LTC4S), which couples glutathione to an LTA4 intermediate.The MRP1 transporter then secretes cytosolic LTC4 and cell surface proteases further metabolize it by sequential cleavage of the γ-glutamyl and glycine residues off its glutathione segment, generating the more stable products LTD4 and LTE4. All three leukotrienes then bind at different affinities to two G-protein coupled receptors: CYSLTR1 and CYSLTR2, triggering pulmonary vasoconstriction and bronchoconstriction .
Leukotriene D4
Leukotriene D4 (LTD4) is a cysteinyl leukotriene. Cysteinyl leukotrienes (CysLTs) are a family of potent inflammatory mediators that appear to contribute to the pathophysiologic features of allergic rhinitis. LTD4 is a pro-inflammatory mediator known to mediate its effects through specific cell-surface receptors belonging to the G-protein-coupled receptor family, namely the high-affinity CysLT1 (cysteinyl leukotriene 1) receptor. LTD4 is present at high levels in many inflammatory conditions, and areas of chronic inflammation have an increased risk for subsequent cancer development. LTD4 is associated with the pathogenesis of several inflammatory disorders, such as asthma and inflammatory bowel disease. Exposure to LTD4 increases survival and proliferation in intestinal epithelial cells. CysLT1 regulator is up-regulated in colon cancer tissue and LTD4 signalling facilitates the survival of cancer cells. LTD4 could reduce apoptosis in non-transformed epithelial cells. LTD4 causes up-regulation of beta-catenin through the CysLT1 receptor, PI3K (phosphoinositide 3-kinase), and GSK-3β (glycogen synthase kinase 3β). LTD4 induces beta-catenin translocation to the nucleus and activation of TCF/LEF family of transcription factors. LTD4 causes accumulation of free beta-catenin in non-transformed intestinal epithelial cells through the CysLT1 receptor, and this accumulation is dependent upon the activation of PI3K as well as GSK-3β inactivation (PMID: 16042577, 12607939). Leukotrienes are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent and are able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis through receptor-mediated G-protein linked signaling pathways. Leukotriene D4 (LTD4) is a cysteinyl leukotriene a family of potent inflammatory mediators. LTD4 is a pro-inflammatory mediator known to mediate its effects through specific cell-surface receptors belonging to the G-protein-coupled receptor family, namely the high-affinity CysLT1 (cysteinyl leukotriene 1) receptor. LTD4 is present at high levels in many inflammatory conditions, and areas of chronic inflammation have an increased risk for subsequent cancer development; LTD4 is associated with the pathogenesis of several inflammatory disorders, such as asthma and inflammatory bowel disease. Exposure to LTD4 increases survival and proliferation in intestinal epithelial cells. CysLT1 regulator is up-regulated in colon cancer tissue and LTD4 signalling facilitates the survival of cancer cells. LTD4 could reduce apoptosis in non-transformed epithelial cells. LTD4 causes up-regulation of b-catenin through the CysLT1 receptor, PI3K (phosphoinositide 3-kinase) and GSK-3b (glycogen synthase kinase 3b). LTD4 induces b-catenin translocation to the nucleus and activation of TCF/LEF family of transcription factors. LTD4 causes accumulation of free b-catenin in non-transformed intestinal epithelial cells through the CysLT1 receptor, and this accumulation is dependent upon the activation of PI3K as well as GSK-3b inactivation. (PMID: 16042577, 12607939)
Lipoxin A4
Lipoxin A4 (LXA4) was first identified in 1984 by Serhan and colleagues as 5-lipoxygenase interaction product of activated leukocytes. Endogenous transcellular biosynthesis of LXA4 occurs via interaction of leukocytes with epithelium, endothelium or platelets. Lipoxins (LXs) or the lipoxygenase interaction products are generated from arachidonic acid via sequential actions of lipoxygenases and subsequent reactions to give specific trihydroxytetraene-containing eicosanoids. These unique structures are formed during cell-cell interactions and appear to act at both temporal and spatially distinct sites from other eicosanoids produced during the course of inflammatory responses and to stimulate natural resolution. Lipoxin A4 (LXA4) and lipoxin B4 (LXB4) are positional isomers that each possesses potent cellular and in vivo actions. These LX structures are conserved across species. The results of numerous studies reviewed in this work now confirm that they are the first recognized eicosanoid chemical mediators that display both potent anti-inflammatory and pro-resolving actions in vivo in disease models that include rabbit, rat, and mouse systems. LXs act at specific GPCRs as agonists to regulate cellular responses of interest in inflammation and resolution. Aspirin has a direct impact in the LX circuit by triggering the biosynthesis of endogenous epimers of LX, termed the aspirin-triggered 15-epi-LX, that share the potent anti-inflammatory actions of LX. (PMID: 16005201, 16613568). Lipoxin A4 (LXA4) was first identified in 1984 by Serhan and colleagues as 5-lipoxygenase interaction product of activated leukocytes. Endogenous transcellular biosynthesis of LXA4 occurs via interaction of leukocytes with epithelium, endothelium or platelets. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents
Prostaglandin D2
Prostaglandin D2 (or PGD2) is a prostaglandin that is actively produced in various organs such as the brain, spleen, thymus, bone marrow, uterus, ovary, oviduct, testis, prostate and epididymis, and is involved in many physiological events. PGD2 binds to the prostaglandin D2 receptor (PTGDR) which is a G-protein-coupled receptor. Its activity is mainly mediated by G-S proteins that stimulate adenylate cyclase resulting in an elevation of intracellular cAMP and Ca2+. PGD2 promotes sleep; regulates body temperature, olfactory function, hormone release, and nociception in the central nervous system; prevents platelet aggregation; and induces vasodilation and bronchoconstriction. PGD2 is also released from mast cells as an allergic and inflammatory mediator. Prostaglandin H2 is an unstable intermediate formed from PGG2 by the action of cyclooxygenase (COX) in the arachidonate cascade. In mammalian systems, it is efficiently converted into more stable arachidonate metabolites, such as PGD2, PGE2, PGF2a by the action of three groups of enzymes, PGD synthases (PGDS), PGE synthases and PGF synthases, respectively. PGDS catalyzes the isomerization of PGH2 to PGD2. Two types of PGD2 synthase are known. Lipocalin-type PGD synthase is present in cerebrospinal fluid, seminal plasma and may play an important role in male reproduction. Another PGD synthase, hematopoietic PGD synthase is present in the spleen, fallopian tube, endometrial gland cells, extravillous trophoblasts and villous trophoblasts, and perhaps plays an important role in female reproduction. Recent studies demonstrate that PGD2 is probably involved in multiple aspects of inflammation through its dual receptor systems, DP and CRTH2. (PMID:12148545)Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. Prostaglandin D2 (or PGD2) is a prostaglandin that is actively produced in various organs such as the brain, spleen, thymus, bone marrow, uterus, ovary, oviduct, testis, prostate and epididymis, and is involved in many physiological events. PGD2 binds to the prostaglandin D2 receptor (PTGDR) which is a G-protein-coupled receptor. Its activity is mainly mediated by G-S proteins that stimulate adenylate cyclase resulting in an elevation of intracellular cAMP and Ca2+. PGD2 promotes sleep; regulates body temperature, olfactory function, hormone release, and nociception in the central nervous system; prevents platelet aggregation; and induces vasodilation and bronchoconstriction. PGD2 is also released from mast cells as an allergic and inflammatory mediator. Chemical was purchased from CAY 12010, (Lot 0436713-1); Diagnostic ions: 351.1, 333.0, 271.3, 233.1, 189.1
Aloin
Aloin is a constituent of various Aloe species Aloin extracted from natural sources is a mixture of two diastereomers, termed aloin A (also called barbaloin) and aloin B (or isobarbaloin), which have similar chemical properties. Aloin is an anthraquinone glycoside, meaning that its anthraquinone skeleton has been modified by the addition of a sugar molecule. Anthraquinones are a common family of naturally occurring yellow, orange, and red pigments of which many have cathartic properties, attributes shared by aloin. Aloin is related to aloe emodin, which lacks a sugar group but shares aloins biological properties. Aloin, also known as Barbaloin [Reynolds, Aloes - The genus Aloe, 2004], is a bitter, yellow-brown colored compound noted in the exudate of at least 68 Aloe species at levels from 0.1 to 6.6\\\\\% of leaf dry weight (making between 3\\\\\% and 35\\\\\% of the toal exudate) (Groom & Reynolds, 1987), and in another 17 species at indeterminate levels [Reynolds, 1995b]. It is used as a stimulant-laxative, treating constipation by inducing bowel movements. The compound is present in what is commonly referred to as the aloe latex that exudes from cells adjacent to the vascular bundles, found under the rind of the leaf and in between it and the gel. When dried, it has been used as a bittering agent in commerce (alcoholic beverages) [21 CFR 172.510. Scientific names given include Aloe perryi, A. barbadensis (= A. vera), A. ferox, and hybrids of A. ferox with A. africana and A. spicata.]. Aloe is listed in federal regulations as a natural substance that may be safely used in food when used in the minimum quantity required to produce their intended physical or technical effect and in accordance with all the principles of good manufacturing practice. This food application is generally limited to use in quite small quantities as a flavoring in alcoholic beverages and may usually be identified only as a natural flavor. ; In May 2002, the U.S. Aloin is a food and Drug Administration (FDA) issued a ruling that aloe laxatives are no longer generally recognized as safe (GRAS) and effective, meaning that aloin-containing products are no longer available in over-the-counter drug products in the United States. Aloe vera leaf latex is a concentrate of an herb or other botanical, and so meets the statutory description of an ingredient that may be used in dietary supplements Aloin A is a natural product found in Aloe arborescens with data available. D005765 - Gastrointestinal Agents > D002400 - Cathartics Constituent of various Aloe subspecies CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 1 INTERNAL_ID 1; CONFIDENCE Reference Standard (Level 1) Aloin (Aloin-A; Barbaloin-A) is a natural anti-tumor anthraquinone glycoside with iron chelating activity. Aloin (Aloin-A; Barbaloin-A) is a natural anti-tumor anthraquinone glycoside with iron chelating activity. Aloin (mixture of A&B) is anthraquinone derivative isolated from Aloe vera. Aloin (mixture of A&B) has diverse biological activities such as anti-inflammatory, immunity, antidiabetic, antioxidant, antibacterial, antifungal, and antitumor activities. Aloin (mixture of A&B) also an effective inhibitor of stimulated granulocyte matrix metalloproteinases (MMPs)[1][2].
Masoprocol
Masoprocol is the meso-form of nordihydroguaiaretic acid. An antioxidant found in the creosote bush, Larrea divaricata, it is a potent lipoxygenase inhibitor that interferes with arachidonic acid metabolism. It also inhibits (though to a lesser extent) formyltetrahydrofolate synthetase, carboxylesterase, and cyclooxygenase. It has a role as an antineoplastic agent, a lipoxygenase inhibitor, a hypoglycemic agent and a metabolite. Masoprocol is a natural product found in Larrea divaricata, Schisandra chinensis, and Larrea tridentata with data available. Masoprocol is a naturally occurring antioxidant dicatechol originally derived from the creosote bush Larrea divaricatta with antipromoter, anti-inflammatory, and antineoplastic activities. Masoprocol directly inhibits activation of two receptor tyrosine kinases (RTKs), the insulin-like growth factor receptor (IGF-1R) and the c-erbB2/HER2/neu receptor, resulting in decreased proliferation of susceptible tumor cell populations. This agent may induce apoptosis in susceptible tumor cell populations as a result of disruption of the actin cytoskeleton in association with the activation of stress activated protein kinases (SAPKs). In addition, masoprocol inhibits arachidonic acid 5-lipoxygenase (5LOX), resulting in diminished synthesis of inflammatory mediators such as prostaglandins and leukotrienes. It may prevent leukocyte infiltration into tissues and the release of reactive oxygen species. A potent lipoxygenase inhibitor that interferes with arachidonic acid metabolism. The compound also inhibits formyltetrahydrofolate synthetase, carboxylesterase, and cyclooxygenase to a lesser extent. It also serves as an antioxidant in fats and oils. A potent lipoxygenase inhibitor that interferes with arachidonic acid metabolism. The compound also inhibits formyltetrahydrofolate synthetase, carboxylesterase, and cyclooxygenase to a lesser extent. It also serves as an antioxidant in fats and oils. Masoprocol, also known as actinex or meso-ndga, belongs to the class of organic compounds known as dibenzylbutane lignans. These are lignan compounds containing a 2,3-dibenzylbutane moiety. Symptoms of overdose or allergic reaction include bluish coloration of skin, dizziness, or feeling faint, wheezing or trouble in breathing. Masoprocol also inhibits prostaglandins but the significance of this action is not yet known. Masoprocol is a drug which is used for the treatment of actinic keratoses (precancerous skin growths that can become malignant if left untreated). It also serves as an antioxidant in fats and oils. Masoprocol is a potentially toxic compound. It is not known exactly how masoprocol works. Although the exact mechanism of action is not known, studies have shown that masoprocol is a potent 5-lipoxygenase inhibitor and has antiproliferative activity against keratinocytes in tissue culture, but the relationship between this activity and its effectiveness in actinic keratoses is unknown. A potent lipoxygenase inhibitor that interferes with arachidonic acid metabolism. The meso-form of nordihydroguaiaretic acid. An antioxidant found in the creosote bush, Larrea divaricata, it is a potent lipoxygenase inhibitor that interferes with arachidonic acid metabolism. It also inhibits (though to a lesser extent) formyltetrahydrofolate synthetase, carboxylesterase, and cyclooxygenase. D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents D004791 - Enzyme Inhibitors > D016859 - Lipoxygenase Inhibitors D002491 - Central Nervous System Agents > D000700 - Analgesics C471 - Enzyme Inhibitor > C1322 - Lipooxygenase Inhibitor D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant D000893 - Anti-Inflammatory Agents CONFIDENCE standard compound; INTERNAL_ID 611; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4658; ORIGINAL_PRECURSOR_SCAN_NO 4657 CONFIDENCE standard compound; INTERNAL_ID 611; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4580; ORIGINAL_PRECURSOR_SCAN_NO 4576 CONFIDENCE standard compound; INTERNAL_ID 611; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4551; ORIGINAL_PRECURSOR_SCAN_NO 4548 CONFIDENCE standard compound; INTERNAL_ID 611; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4643; ORIGINAL_PRECURSOR_SCAN_NO 4642 CONFIDENCE standard compound; INTERNAL_ID 611; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4651; ORIGINAL_PRECURSOR_SCAN_NO 4650 CONFIDENCE standard compound; INTERNAL_ID 611; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4591; ORIGINAL_PRECURSOR_SCAN_NO 4587 Masoprocol (meso-Nordihydroguaiaretic acid) is a potent and orally active lipoxygenase inhibitor. Masoprocol shows antihyperglycemic activity. Masoprocol decreases the glucose concentration and hepatic triglyceride in vivo. Masoprocol has the potential for the research of type II diabetes[1][2][3]. Masoprocol (meso-Nordihydroguaiaretic acid) is a potent and orally active lipoxygenase inhibitor. Masoprocol shows antihyperglycemic activity. Masoprocol decreases the glucose concentration and hepatic triglyceride in vivo. Masoprocol has the potential for the research of type II diabetes[1][2][3]. Masoprocol (meso-Nordihydroguaiaretic acid) is a potent and orally active lipoxygenase inhibitor. Masoprocol shows antihyperglycemic activity. Masoprocol decreases the glucose concentration and hepatic triglyceride in vivo. Masoprocol has the potential for the research of type II diabetes[1][2][3]. Nordihydroguaiaretic acid is a 5-lipoxygenase (5LOX) (IC50=8 μM) and tyrosine kinase inhibitor. Nordihydroguaiaretic acid is a 5-lipoxygenase (5LOX) (IC50=8 μM) and tyrosine kinase inhibitor. Nordihydroguaiaretic acid is a 5-lipoxygenase (5LOX) (IC50=8 μM) and tyrosine kinase inhibitor.
Resolvin D1
Resolvin D1 (RvD1) is an autacoid resolvin. Autacoids are chemical mediators including the families of resolvins and protectins, defined by their potent bioactions and novel chemical structures. The bioactive local mediators, or autacoids, that require enzymatic generation from the omega-3 essential fatty acid EPA were first identified in resolving inflammatory exudates in vivo and carry potent stereoselective biological actions. Resolvins of the E (RvE) series are derived from eicosapentaenoic acid (EPA). Those derived from docosahexaenoic acid (DHA) were termed resolvins of the D series, for example resolvin D1 (RvD1).Resolvins and protectins have specific stereoselective actions which evoke biological actions in the nanogram range in vivo and are natural exudate products. Resolvins and protectins as distinct chemical families join the lipoxins as potent agonists of endogenous anti-inflammation and are proresolving chemical mediators of interest in human disease as potential new approaches to treatment. The term resolvins (resolution-phase interaction products) was first introduced to signify that these new structures were endogenous mediators, biosynthesized in the resolution phase of inflammatory exudates, possessing very potent anti-inflammatory and immunoregulatory actions. These actions include reducing neutrophil traffic, regulating cytokine and reactive oxygen species, and lowering the magnitude of the response. In recent years, investigators have recognized inflammation as playing a key role in many prevalent diseases not previously considered to be of inflammatory etiology. These include Alzheimers disease, cardiovascular disease, and cancer, which now join those well-appreciated inflammatory disorders such as arthritis and periodontal disease. Identifying the molecular mechanism(s) that underlie the many reports of the benefits of dietary omega-3 PUFAs remains an important challenge for nutrition and medicine. Thus, that these new mediator families, resolvins and protectins, are biosynthesized from EPA and DHA, act locally, and possess potent, novel bioactions is of interest to researchers. (PMID: 17090225).
11,12-DiHETrE
11,12-DiHETrE is a Cytochrome P450 (P450) eicosanoid. Arachidonic acid may be oxygenated by cytochrome P450 in several ways. Epoxidation of the double bonds leads to the regio- and enantioselective formation of four epoxyeicosatrienoic acids (EETs), which are hydrolyzed by epoxide hydrolase to vicinal diols (DHETs). 11,12-DiHETrE excretion is increased in healthy pregnant women compared with nonpregnant female volunteers, and increased even further in patients with pregnancy-induced hypertension (PIH). The physiological significance of arachidonic acid epoxides has been debated and it is unknown whether they play a role in pregnancy and parturition. Vasodilative effects, inhibition of cyclooxygenase, or inhibition of platelet aggregation by EETs have been observed only at micromolar concentrations. On the other hand, effects on the stimulus-secretion coupling during hormone release have been found in the nanomolar and picomolar range. (PMID: 9440131, 2198572) [HMDB] 11,12-DiHETrE is a Cytochrome P450 (P450) eicosanoid. Arachidonic acid may be oxygenated by cytochrome P450 in several ways. Epoxidation of the double bonds leads to the regio- and enantioselective formation of four epoxyeicosatrienoic acids (EETs), which are hydrolyzed by epoxide hydrolase to vicinal diols (DHETs). 11,12-DiHETrE excretion is increased in healthy pregnant women compared with nonpregnant female volunteers, and increased even further in patients with pregnancy-induced hypertension (PIH). The physiological significance of arachidonic acid epoxides has been debated and it is unknown whether they play a role in pregnancy and parturition. Vasodilative effects, inhibition of cyclooxygenase, or inhibition of platelet aggregation by EETs have been observed only at micromolar concentrations. On the other hand, effects on the stimulus-secretion coupling during hormone release have been found in the nanomolar and picomolar range. (PMID: 9440131, 2198572).
8,9-Epoxyeicosatrienoic acid
8,9-Epoxyeicosatrienoic acid is an epoxyeicosatrienoic acid eicosanoid, a metabolite of arachidonic acid. The P450 epoxyeicosatrienoic acids (EETs) are endogenous lipid mediators produced by P450 epoxygenases and metabolized through multiple pathways including soluble epoxide hydrolase (sEH). The cytochrome P-450 (P450) monooxygenase pathway includes enzymes of the CYP1A, CYP2B, CYP2C, CYP2E, and CYP2J subfamilies that catalyze the formation of four regioisomeric products, 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid. EETs are produced in brain and perform important biological functions, including protection from ischemic injury. Both light flashes and direct glial stimulation produce vasodilatation mediated by EETs. EETs may be involved in the development of hypertension and endothelial dysfunction in DOCA-salt rats, but not in excessive collagen deposition or electrophysiological abnormalities. EETs have vasodilator and natriuretic effect. Blockade of EET formation is associated with salt-sensitive hypertension. Four regioisomeric cis-EET are primary products of arachidonic acid metabolism by cytochrome P450 epoxygenases. Upon hydration by soluble epoxide hydrolase (sEH), EET are metabolized to dihydroxyeicosatrienoic acids (DHET). These hydration products are more stable and less biologically active than EETs. (PMID: 17494091, 17468203, 17434916, 17406062, 17361113, 15581597) [HMDB] 8,9-Epoxyeicosatrienoic acid is an epoxyeicosatrienoic acid eicosanoid, a metabolite of arachidonic acid. The P450 epoxyeicosatrienoic acids (EETs) are endogenous lipid mediators produced by P450 epoxygenases and metabolized through multiple pathways including soluble epoxide hydrolase (sEH). The cytochrome P-450 (P450) monooxygenase pathway includes enzymes of the CYP1A, CYP2B, CYP2C, CYP2E, and CYP2J subfamilies that catalyze the formation of four regioisomeric products, 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid. EETs are produced in brain and perform important biological functions, including protection from ischemic injury. Both light flashes and direct glial stimulation produce vasodilatation mediated by EETs. EETs may be involved in the development of hypertension and endothelial dysfunction in DOCA-salt rats, but not in excessive collagen deposition or electrophysiological abnormalities. EETs have vasodilator and natriuretic effect. Blockade of EET formation is associated with salt-sensitive hypertension. Four regioisomeric cis-EET are primary products of arachidonic acid metabolism by cytochrome P450 epoxygenases. Upon hydration by soluble epoxide hydrolase (sEH), EET are metabolized to dihydroxyeicosatrienoic acids (DHET). These hydration products are more stable and less biologically active than EETs. (PMID: 17494091, 17468203, 17434916, 17406062, 17361113, 15581597). D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents
12-HHTrE
12(S)-HHTrE is an unusual product of the cyclooxygenase (COX) pathway and one of the primary arachidonic acid metabolites of the human platelet.1 It is biosynthesized by thromboxane (TX) synthesis from prostaglandin H2 (PGH2) concurrently with TXA2. The biological role of 12(S)-HHTrE is uncertain. It is avidly oxidized to 12-oxoHTrE by porcine 15-hydroxy PGDH. [HMDB] 12(S)-HHTrE is an unusual product of the cyclooxygenase (COX) pathway and one of the primary arachidonic acid metabolites of the human platelet.1 It is biosynthesized by thromboxane (TX) synthesis from prostaglandin H2 (PGH2) concurrently with TXA2. The biological role of 12(S)-HHTrE is uncertain. It is avidly oxidized to 12-oxoHTrE by porcine 15-hydroxy PGDH.
14,15-DiHETrE
14,15-DiHETrE is a Cytochrome P450 (P450) eicosanoid. Eicosanoids generated from arachidonic acid metabolism by cytochrome P450 (P450) enzymes are important autocrine and paracrine factors that have diverse biological functions. P450 eicosanoids are involved in the regulation of vascular tone, renal tubular transport, cardiac contractility, cellular proliferation, and inflammation. Regulation of P450 eicosanoid levels is determined by many factors, including the induction or repression of the P450 enzymes responsible for their formation. Fibrate drugs are part of a diverse group of compounds known as peroxisome proliferators, which also include herbicides and phthalate ester plasticizers. Peroxisome proliferators act via peroxisome proliferator-activated receptor (PPAR ). This receptor is a member of the PPAR nuclear receptor family that also consists of the PPAR and PPAR isoforms. PPAR is mainly expressed in the heart, liver, and kidney, whereas the expression of PPAR is predominantly in the adipose tissue. The biological role of PPAR as a lipid sensor has been well established. 14,15-DiHETrE is a potent activators of PPAR and PPAR . shown to induce the binding of PPAR to a peroxisome proliferator response element (PPRE). Furthermore, 14,15-DiHETrE behaves like peroxisome proliferators in that is able to alter apoA-I and apoA-II mRNA expression. 14,15-DiHETrE is the most potent PPARalpha activator in a COS-7 cell expression system producing a 12-fold increase in PPARalpha-mediated luciferase activity. (PMID: 17431031, 16113065) [HMDB] 14,15-DiHETrE is a Cytochrome P450 (P450) eicosanoid. Eicosanoids generated from arachidonic acid metabolism by cytochrome P450 (P450) enzymes are important autocrine and paracrine factors that have diverse biological functions. P450 eicosanoids are involved in the regulation of vascular tone, renal tubular transport, cardiac contractility, cellular proliferation, and inflammation. Regulation of P450 eicosanoid levels is determined by many factors, including the induction or repression of the P450 enzymes responsible for their formation. Fibrate drugs are part of a diverse group of compounds known as peroxisome proliferators, which also include herbicides and phthalate ester plasticizers. Peroxisome proliferators act via peroxisome proliferator-activated receptor (PPAR). This receptor is a member of the PPAR nuclear receptor family that also consists of the PPAR and PPAR isoforms. PPAR is mainly expressed in the heart, liver, and kidney, whereas the expression of PPAR is predominantly in the adipose tissue. The biological role of PPAR as a lipid sensor has been well established. 14,15-DiHETrE is a potent activators of PPAR and PPAR, shown to induce the binding of PPAR to a peroxisome proliferator response element (PPRE). Furthermore, 14,15-DiHETrE behaves like peroxisome proliferators in that is able to alter apoA-I and apoA-II mRNA expression. 14,15-DiHETrE is the most potent PPARalpha activator in a COS-7 cell expression system producing a 12-fold increase in PPARalpha-mediated luciferase activity. (PMID: 17431031, 16113065).
Norathyriol
A polyphenol metabolite detected in biological fluids [PhenolExplorer]
S-Methyl GSH
S-Methylglutathione is an S-substitued?glutathione and a stronger nucleophile than GSH[1]. S-Methylglutathione has inhibitory effect on glyoxalase 1[2].
Leukotriene A4
Leukotriene A4 (LTA4) is the first metabolite in the series of reactions leading to the synthesis of all leukotrienes. 5-Lipoxygenase (5-LO) catalyzes the two-step conversion of arachidonic acid to LTA4.The first step consists of the oxidation of arachidonic acid to the unstable intermediate 5-hydroperoxyeicosatetraenoic acid (5-HPETE), and the second step is the dehydration of 5-HPETE to form LTA4. Leukotriene A4, an unstable epoxide, is hydrolyzed to leukotriene B4 or conjugated with glutathione to yield leukotriene C4 and its metabolites, leukotriene D4 and leukotriene E4. The leukotrienes participate in host defense reactions and pathophysiological conditions such as immediate hypersensitivity and inflammation. Recent studies also suggest a neuroendocrine role for leukotriene C4 in luteinizing hormone secretion. (PMID: 10591081, 2820055). Leukotrienes are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. Leukotriene A4 (LTA4) is the first metabolite in the series of reactions leading to the synthesis of all leukotrienes. 5-Lipoxygenase (5-LO) catalyzes the two-step conversion of arachidonic acid to LTA4.The first step consists of the oxidation of arachidonic acid to the unstable intermediate 5-hydroperoxyeicosatetraenoic acid (5-HPETE), and the second step is the dehydration of 5-HPETE to form LTA4. Leukotriene A4, an unstable epoxide, is hydrolyzed to leukotriene B4 or conjugated with glutathione to yield leukotriene C4 and its metabolites, leukotriene D4 and leukotriene E4. The leukotrienes participate in host defense reactions and pathophysiological conditions such as immediate hypersensitivity and inflammation. Recent studies also suggest a neuroendocrine role for leukotriene C4 in luteinizing hormone secretion. (PMID: 10591081, 2820055)
Docebenone
D004791 - Enzyme Inhibitors > D016859 - Lipoxygenase Inhibitors C471 - Enzyme Inhibitor > C1322 - Lipooxygenase Inhibitor Docebenone (AA 861) is a potent, selective and orally active 5-LO (5-lipoxygenase) inhibitor.
Presqualene diphosphate
Presqualene diphosphate is an intermediate in the biosynthesis of Terpenoid. It is a substrate for Farnesyl-diphosphate farnesyltransferase. [HMDB]. Presqualene diphosphate is found in many foods, some of which are soft-necked garlic, pomes, roman camomile, and white cabbage. Presqualene diphosphate is an intermediate in the biosynthesis of Terpenoid. It is a substrate for Farnesyl-diphosphate farnesyltransferase.
20-Carboxy-leukotriene B4
20-Carboxyleukotriene B4 is an omega-oxidized metabolite of leukotriene B4 (LTB4). Neutrophil microsomes are known to oxidize 20-hydroxy-LTB4 (20-OH-LTB4) to its 20-oxo and 20-carboxy derivatives in the presence of NADPH. This activity has been ascribed to LTB4 omega-hydroxylase (cytochrome P-450LTB omega). Leukotriene B4 release from polymorphonuclear granulocytes of severely burned patients was reduced as compared to healthy donor cells. This decrease is due to an enhanced conversion of LTB4 into the 20-hydroxy- and 20-carboxy-metabolites and further to a decreased LTB4-synthesis. LTB4 is the major metabolite in neutrophil polymorphonuclear leukocytes. Leukotrienes are metabolites of arachidonic acid derived from the action of 5-LO (5-lipoxygenase). The immediate product of 5-LO is LTA4 (leukotriene A4), which is enzymatically converted into either LTB4 (leukotriene B4) by LTA4 hydrolase or LTC4 (leukotriene C4) by LTC4 synthase. The regulation of leukotriene production occurs at various levels, including expression of 5-LO, translocation of 5-LO to the perinuclear region and phosphorylation to either enhance or inhibit the activity of 5-LO. Biologically active LTB4 is metabolized by w-oxidation carried out by specific cytochrome P450s (CYP4F) followed by beta-oxidation from the w-carboxy position and after CoA ester formation. Other specific pathways of leukotriene metabolism include the 12-hydroxydehydrogenase/ 15-oxo-prostaglandin-13-reductase that form a series of conjugated diene metabolites that have been observed to be excreted into human urine. Metabolism of LTC4 occurs by sequential peptide cleavage reactions involving a gamma-glutamyl transpeptidase that forms LTD4 (leukotriene D4) and a membrane-bound dipeptidase that converts LTD4 into LTE4 (leukotriene E4) before w-oxidation. These metabolic transformations of the primary leukotrienes are critical for termination of their biological activity, and defects in expression of participating enzymes may be involved in specific genetic disease. (PMID 17623009, 7633595, 2155225, 3039534)Leukotrienes are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways.
Leukotriene E4
Leukotriene E4 (LTE4) is a cysteinyl leukotriene. Cysteinyl leukotrienes (CysLTs) are a family of potent inflammatory mediators that appear to contribute to the pathophysiologic features of allergic rhinitis. Nasal blockage induced by CysLTs is mainly due to dilatation of nasal blood vessels, which can be induced by the nitric oxide produced through CysLT1 receptor activation. LTE4 activates contractile and inflammatory processes via specific interaction with putative seven transmembrane-spanning receptors that couple to G proteins and subsequent intracellular signaling pathways. LTE4 is metabolized from leukotriene C4 in a reaction catalyzed by gamma-glutamyl transpeptidase and a particulate dipeptidase from kidney (PMID: 12607939, 12432945, 6311078). Leukotrienes are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent and are able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis through receptor-mediated G-protein linked signaling pathways. Leukotriene E4 (LTE4) is a cysteinyl leukotriene. Cysteinyl leukotrienes (CysLTs) are a family of potent inflammatory mediators that appear to contribute to the pathophysiologic features of allergic rhinitis. Nasal blockage induced by CysLTs is mainly due to dilatation of nasal blood vessels, which can be induced by the nitric oxide produced through CysLT1 receptor activation. LTE4, activate contractile and inflammatory processes via specific interaction with putative seven transmembrane-spanning receptors that couple to G proteins and subsequent intracellular signaling pathways. LTE4 is metabolized from leukotriene C4 in a reaction catalyzed by gamma-glutamyl transpeptidase and a particulate dipeptidase from kidney. (PMID: 12607939, 12432945, 6311078)
Leukotriene F4
Leukotriene F4 is an intermediate in Arachidonic acid metabolism. Leukotriene F4 is converted from Leukotriene E4 via the enzyme Transferases (EC 2.3.2.-).Leukotrienes are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. Leukotriene F4 is an intermediate in Arachidonic acid metabolism. Leukotriene F4 is converted from Leukotriene E4 via the enzyme Transferases (EC 2.3.2.-).
Beclometasone dipropionate
Beclometasone dipropionate is a prodrug of the free form, beclometasone. An anti-inflammatory, synthetic glucocorticoid, it is used topically as an anti-inflammatory agent and in aerosol form for the treatment of asthma. Beclometasone dipropionate is also being investigated for oral treatment in mild-to-moderate Crohns disease of ileal or ileal-right colonic localisation and for topical use mild-to-moderate graft versus host disease. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D005938 - Glucocorticoids C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents D000893 - Anti-Inflammatory Agents
Fluticasone
R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03B - Other drugs for obstructive airway diseases, inhalants > R03BA - Glucocorticoids D - Dermatologicals > D07 - Corticosteroids, dermatological preparations > D07A - Corticosteroids, plain > D07AC - Corticosteroids, potent (group iii) R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AD - Corticosteroids D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents D000893 - Anti-Inflammatory Agents D018926 - Anti-Allergic Agents D003879 - Dermatologic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Rifapentine
Rifapentine is only found in individuals that have used or taken this drug. It is an antibiotic drug used in the treatment of tuberculosis.Rifapentine has shown higher bacteriostatic and bactericidal activities especially against intracellular bacteria growing in human monocyte-derived macrophages. Rifapentine inhibits DNA-dependent RNA polymerase in susceptible strains of M. tuberculosis. Rifapentine acts via the inhibition of DNA-dependent RNA polymerase, leading to a suppression of RNA synthesis and cell death. J - Antiinfectives for systemic use > J04 - Antimycobacterials > J04A - Drugs for treatment of tuberculosis > J04AB - Antibiotics D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D000995 - Antitubercular Agents D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007917 - Leprostatic Agents D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D012294 - Rifamycins C254 - Anti-Infective Agent > C52588 - Antibacterial Agent > C280 - Antitubercular Agent
Econazole
Econazole is only found in individuals that have used or taken this drug. It is a broad spectrum antimycotic with some action against Gram positive bacteria. It is used topically in dermatomycoses also orally and parenterally. [PubChem]Econazole interacts with 14-alpha demethylase, a cytochrome P-450 enzyme necessary to convert lanosterol to ergosterol. As ergosterol is an essential component of the fungal cell membrane, inhibition of its synthesis results in increased cellular permeability causing leakage of cellular contents. Econazole may also inhibit endogenous respiration, interact with membrane phospholipids, inhibit the transformation of yeasts to mycelial forms, inhibit purine uptake, and impair triglyceride and/or phospholipid biosynthesis. CONFIDENCE standard compound; INTERNAL_ID 646; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8761; ORIGINAL_PRECURSOR_SCAN_NO 8759 CONFIDENCE standard compound; INTERNAL_ID 646; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8812; ORIGINAL_PRECURSOR_SCAN_NO 8810 CONFIDENCE standard compound; INTERNAL_ID 646; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8821; ORIGINAL_PRECURSOR_SCAN_NO 8819 CONFIDENCE standard compound; INTERNAL_ID 646; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8721; ORIGINAL_PRECURSOR_SCAN_NO 8717 CONFIDENCE standard compound; INTERNAL_ID 646; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8770; ORIGINAL_PRECURSOR_SCAN_NO 8769 CONFIDENCE standard compound; INTERNAL_ID 646; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8808; ORIGINAL_PRECURSOR_SCAN_NO 8805 G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids > G01AF - Imidazole derivatives D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use > D01AC - Imidazole and triazole derivatives D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D065088 - Steroid Synthesis Inhibitors D004791 - Enzyme Inhibitors > D065088 - Steroid Synthesis Inhibitors > D058888 - 14-alpha Demethylase Inhibitors D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent
Indolo[2,1-b]quinazoline-6,12-dione
Tryptanthrin is an indole quinazoline that could be an alkaloid from indigo-bearing plants. Tryptanthrin is a potent and orally active cellular Leukotriene (LT) biosynthesis inhibitor. Tryptanthrin has anticancer activity. Tryptanthrin suppresses the expression levels of NOS1, COX-2, and NF-κB and regulates the expression levels of IL-2, IL-10, and TNF-α[1][2]. Tryptanthrin is an indole quinazoline that could be an alkaloid from indigo-bearing plants. Tryptanthrin is a potent and orally active cellular Leukotriene (LT) biosynthesis inhibitor. Tryptanthrin has anticancer activity. Tryptanthrin suppresses the expression levels of NOS1, COX-2, and NF-κB and regulates the expression levels of IL-2, IL-10, and TNF-α[1][2].
MK 571
D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D020024 - Leukotriene Antagonists D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents
Calcimycin
D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D007476 - Ionophores > D061207 - Calcium Ionophores D049990 - Membrane Transport Modulators C254 - Anti-Infective Agent > C258 - Antibiotic Calcimycin (A-23187) is an antibiotic and a unique divalent cation ionophore (like calcium and magnesium). Calcimycin induces Ca2+-dependent cell death by increasing intracellular calcium concentration. Calcimycin inhibits the growth of Gram-positive bacteria and some fungi. Calcimycin also inhibits the activity of ATPase and uncouples oxidative phosphorylation (OXPHOS) of mammalian cells. Calcimycin induces apoptosis[1][2][3][4].
fMLP;N-Formyl-MLF
N-Formyl-Met-Leu-Phe (fMLP; N-Formyl-MLF) is a chemotactic peptide and a specific ligand of N-formyl peptide receptor (FPR). N-Formyl-Met-Leu-Ph is reported to inhibit TNF-alpha secretion.
1-((4-Methylsulfonyl)phenyl)-3-trifluoromethyl-5-(4-fluorophenyl)pyrazole
D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D004791 - Enzyme Inhibitors
1-Hydroxy-2-methyl-2-butenyl 4-diphosphate
Aluminium hydroxide
It is used in foods as a buffer, neutralising agent or firming agent. Aluminium hydroxide is an intermediate product in the Bayer process. In this process, bauxite is dissolved in hot sodium hydroxide solution, and insolubilities are filtered off. On cooling, aluminium hydroxide precipitates. The aluminium hydroxide is further calcined to give alumina, which may be smelted in the Hall-Héroult process in order to produce aluminium. C308 - Immunotherapeutic Agent > C210 - Immunoadjuvant > C2554 - Vaccine Adjuvant It is used in foods as a buffer, neutralising agent or firming agent C2140 - Adjuvant Same as: D02416
Benzofuran
Benzofuran, also known as coumaron or 1-oxaindene, belongs to the class of organic compounds known as benzofurans. These are organic compounds containing a benzene ring fused to a furan. Furan is a five-membered aromatic ring with four carbon atoms and one oxygen atom. Benzothiophene, an analog with a sulfur instead of the oxygen atom. Benzofuran is a drug. benzofuran has been detected, but not quantified, in several different foods, such as alcoholic beverages, coffee and coffee products, herbs and spices, root vegetables, and tea. This could make benzofuran a potential biomarker for the consumption of these foods. This colourless liquid is a component of coal tar. Benzofuran is the heterocyclic compound consisting of fused benzene and furan rings. Benzofuran is a potentially toxic compound. For example, psoralen is a benzofuran derivative that occurs in several plants. Isobenzofuran, the isomer with oxygen in the adjacent position. Benzofuran is a Maillard product. It is a heterocyclic compound consisting of fused benzene and furan rings. It is the parent of many related compounds with more complex structures. For example, psoralen is a benzofuran derivative that occurs in several plants. It is found in many foods, some of which are herbs and spices, tea, alcoholic beverages, and coffee and coffee products.
DHA ethyl ester
C26170 - Protective Agent > C275 - Antioxidant
manoalide
A sesterterpenoid isolated from the marine sponge Luffariella variabilis and which has been shown to exhibit inhibitory activity towards phospholipase A2. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D004791 - Enzyme Inhibitors > D010726 - Phosphodiesterase Inhibitors D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents
Leukotriene B4
Leukotriene B4 is the major metabolite in neutrophil polymorphonuclear leukocytes. Leukotrienes are metabolites of arachidonic acid derived from the action of 5-LO (5-lipoxygenase). The immediate product of 5-LO is LTA4 (leukotriene A4), which is enzymatically converted into either LTB4 (leukotriene B4) by LTA4 hydrolase or LTC4 (leukotriene C4) by LTC4 synthase. The regulation of leukotriene production occurs at various levels, including expression of 5-LO, translocation of 5-LO to the perinuclear region, and phosphorylation to either enhance or inhibit the activity of 5-LO. Biologically active LTB4 is metabolized by omega-oxidation carried out by specific cytochrome P450s (CYP4F) followed by beta-oxidation from the omega-carboxy position and after CoA ester formation. Other specific pathways of leukotriene metabolism include the 12-hydroxydehydrogenase/15-oxo-prostaglandin-13-reductase that form a series of conjugated diene metabolites that have been observed to be excreted in human urine. Metabolism of LTC4 occurs by sequential peptide cleavage reactions involving a gamma-glutamyl transpeptidase that forms LTD4 (leukotriene D4) and a membrane-bound dipeptidase that converts LTD4 into LTE4 (leukotriene E4) before omega-oxidation. These metabolic transformations of the primary leukotrienes are critical for termination of their biological activity, and defects in expression of participating enzymes may be involved in specific genetic disease. The term leukotriene was coined to indicate the presence of three conjugated double bonds within the 20-carbon structure of arachidonic acid as well as the fact that these compounds were derived from leucocytes such as PMNNs or transformed mast cells. Interestingly, most of the cells known to express 5-LO are of myeloid origin, which includes neutrophils, eosinophils, mast cells, macrophages, basophils, and monocytes. Leukotriene biosynthesis begins with the specific oxidation of arachidonic acid by a free radical mechanism as a consequence of interaction with 5-LO. The first enzymatic step involves the abstraction of a hydrogen atom from C-7 of arachidonate followed by the addition of molecular oxygen to form 5-HpETE (5-hydroperoxyeicosatetraenoic acid). A second enzymatic step is also catalyzed by 5-LO and involves removal of a hydrogen atom from C-10, resulting in the formation of the conjugated triene epoxide LTA4. LTA4 must then be released by 5-LO and encounter either LTA4-H (LTA4 hydrolase) or LTC4-S [LTC4 (leukotriene C4) synthase]. LTA4-H can stereospecifically add water to C-12 while retaining a specific double-bond geometry, leading to LTB4 [leukotriene B4, 5(S),12(R)-dihydroxy-6,8,10,14-(Z,E,E,Z)-eicosatetraenoic acid]. If LTA4 encounters LTC4-S, then the reactive epoxide is opened at C-6 by the thiol anion of glutathione to form the product LTC4 [5(S)-hydroxy-6(R)-S-glutathyionyl-7,9,11,14- (E,E,Z,Z)-eicosatetraenoic acid], essentially a glutathionyl adduct of oxidized arachidonic acid. Both of these terminal leukotrienes are biologically active in that specific GPCRs recognize these chemical structures and receptor recognition initiates complex intracellular signalling cascades. In order for these molecules to serve as lipid mediators, however, they must be released from the biosynthetic cell into the extracellular milieu so that they can encounter the corresponding GPCRs. Surprising features of this cascade include the recognition of the assembly of critical enzymes at the perinuclear region of the cell and even localization of 5-LO within the nucleus of some cells. Under some situations, the budding phagosome has been found to assemble these proteins. Non-enzymatic proteins such as FLAP are now known as critical partners of this protein-machine assembly. An unexpected pathway of leukotriene biosynthesis involves the transfer of the chemically reactive intermediate, LTA4, from the biosynthetic cell followed by conversion into LTB4 or LTC4 by other cells that do not express ...
20-Hydroxy-leukotriene B4
20-hydroxy- Leukotriene B4 (20-OH-LTB4) is an omega-hydroxylated metabolite of leukotriene B4 in human neutrophils. Elevated urinary concentrations of 20-OH-LTB4 and LTB4 are found in patients with Sjogren-Larsson syndrome (SLS, OMIM 270220), an autosomal recessively inherited neurocutaneous disorder caused by a deficiency of the microsomal enzyme fatty aldehyde dehydrogenase (FALDH), which as an essential role in LTB4 metabolism. Preterm birth seems to be one of the features of the syndrome. The reason for the preterm birth is unclear. It is hypothesized that it relates to the defective LTB4 degradation in SLS. The pathological urinary excretion of LTB4 and 20-OH-LTB4 is a biochemical marker for SLS. Surprisingly, 20-OH-LTB4 concentrations are normal in CSF. Leukotriene B4 is the major metabolite in neutrophil polymorphonuclear leukocytes. Leukotrienes are metabolites of arachidonic acid derived from the action of 5-LO (5-lipoxygenase). The immediate product of 5-LO is LTA4 (leukotriene A4), which is enzymatically converted into either LTB4 (leukotriene B4) by LTA4 hydrolase or LTC4 (leukotriene C4) by LTC4 synthase. The regulation of leukotriene production occurs at various levels, including expression of 5-LO, translocation of 5-LO to the perinuclear region and phosphorylation to either enhance or inhibit the activity of 5-LO. Biologically active LTB4 is metabolized by w-oxidation carried out by specific cytochrome P450s (CYP4F) followed by beta-oxidation from the w-carboxy position and after CoA ester formation. Other specific pathways of leukotriene metabolism include the 12-hydroxydehydrogenase/ 15-oxo-prostaglandin-13-reductase that form a series of conjugated diene metabolites that have been observed to be excreted into human urine. Metabolism of LTC4 occurs by sequential peptide cleavage reactions involving a gamma-glutamyl transpeptidase that forms LTD4 (leukotriene D4) and a membrane-bound dipeptidase that converts LTD4 into LTE4 (leukotriene E4) before w-oxidation. These metabolic transformations of the primary leukotrienes are critical for termination of their biological activity, and defects in expression of participating enzymes may be involved in specific genetic disease. (PMID: 12709426, 9799565, 11408337, 17623009). Leukotrienes are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. 20-hydroxy- Leukotriene B4 (20-OH-LTB4) is an omega-hydroxylated metabolite of leukotriene B4 in human neutrophils. Elevated urinary concentrations of 20-OH-LTB4 and LTB4 are found in patients with Sjogren-Larsson syndrome (SLS, OMIM 270220), an autosomal recessively inherited neurocutaneous disorder caused by a deficiency of the microsomal enzyme fatty aldehyde dehydrogenase (FALDH), which as an essential role in LTB4 metabolism. Preterm birth seems to be one of the features of the syndrome. The reason for the preterm birth is unclear. It is hypothesized that it relates to the defective LTB4 degradation in SLS. The pathological urinary excretion of LTB4 and 20-OH-LTB4 is a biochemical marker for SLS. Surprisingly, 20-OH-LTB4 concentrations are normal in CSF. Leukotriene B4 is the major metabolite in neutrophil polymorphonuclear leukocytes. Leukotrienes are metabolites of arachidonic acid derived from the action of 5-LO (5-lipoxygenase). The immediate product of 5-LO is LTA4 (leukotriene A4), which is enzymatically converted into either LTB4 (leukotriene B4) by LTA4 hydrolase or LTC4 (leukotriene C4) by LTC4 synthase. The regulation of leukotriene production occurs at various levels, including expression of 5-LO, translocation of 5-LO to the perinuclear region and phosphorylation to either enhance or inhibit the activity of 5-LO. Biologically active LTB4 is metabolized by w-oxidation carried out by specific cytochrome P450s (CYP4F) followed by beta-oxidation from the w-carboxy position and after CoA ester formation. Other specific pathways of leukotriene metabolism include the 12-hydroxydehydrogenase/ 15-oxo-prostaglandin-13-reductase that form a series of conjugated diene metabolites that have been observed to be excreted into human urine. Metabolism of LTC4 occurs by sequential peptide cleavage reactions involving a gamma-glutamyl transpeptidase that forms LTD4 (leukotriene D4) and a membrane-bound dipeptidase that converts LTD4 into LTE4 (leukotriene E4) before w-oxidation. These metabolic transformations of the primary leukotrienes are critical for termination of their biological activity, and defects in expression of participating enzymes may be involved in specific genetic disease. (PMID: 12709426, 9799565, 11408337, 17623009)
(S)-p-Menth-1-en-4-ol
(S)-p-Menth-1-en-4-ol occurs in many essential oils, e.g. lavende Occurs in many essential oils, e.g. lavender Terpinen-4-ol (4-Carvomenthenol), a naturally occurring monoterpene, is the main bioactive component of tea-tree oil. Terpinen-4-ol suppresses inflammatory mediator production by activated human monocytes. Terpinen-4-ol significantly enhances the effect of several chemotherapeutic and biological agents[1][2][3]. Terpinen-4-ol (4-Carvomenthenol), a naturally occurring monoterpene, is the main bioactive component of tea-tree oil. Terpinen-4-ol suppresses inflammatory mediator production by activated human monocytes. Terpinen-4-ol significantly enhances the effect of several chemotherapeutic and biological agents[1][2][3].
6-[2-Amino-3-(carboxymethylamino)-3-oxopropyl]sulfanyl-5-hydroxyicosa-7,9,11,14-tetraenoic acid
15-Hydroxy-5,8,11,13-eicosatetraenoic acid
7,8,17-trihydroxy-4,9,11,13,15,19-docosahexaenoic acid
Lonol
M - Musculo-skeletal system > M02 - Topical products for joint and muscular pain > M02A - Topical products for joint and muscular pain > M02AA - Antiinflammatory preparations, non-steroids for topical use G - Genito urinary system and sex hormones > G02 - Other gynecologicals > G02C - Other gynecologicals > G02CC - Antiinflammatory products for vaginal administration M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic R - Respiratory system > R02 - Throat preparations > R02A - Throat preparations D000893 - Anti-Inflammatory Agents
4-Chloro-2-nitrobenzylalcohol
Calcimycin (A-23187) is an antibiotic and a unique divalent cation ionophore (like calcium and magnesium). Calcimycin induces Ca2+-dependent cell death by increasing intracellular calcium concentration. Calcimycin inhibits the growth of Gram-positive bacteria and some fungi. Calcimycin also inhibits the activity of ATPase and uncouples oxidative phosphorylation (OXPHOS) of mammalian cells. Calcimycin induces apoptosis[1][2][3][4].
Verlukast
Rifapentina
FA 20:4
Chemical was purchased from CAY 90010 (Lot. 0447254-11); Diagnostic ions:303.1, 259.2, 205.2 Acquisition and generation of the data is financially supported in part by CREST/JST. relative retention time with respect to 9-anthracene Carboxylic Acid is 1.604 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.605 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.603 COVID info from WikiPathways Annotation level-2 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Arachidonic acid is an essential fatty acid and a major constituent of biomembranes. Arachidonic acid is an essential fatty acid and a major constituent of biomembranes.
S-Methylglutathione
S-Methylglutathione is an S-substitued?glutathione and a stronger nucleophile than GSH[1]. S-Methylglutathione has inhibitory effect on glyoxalase 1[2].
BENZYDAMINE
M - Musculo-skeletal system > M02 - Topical products for joint and muscular pain > M02A - Topical products for joint and muscular pain > M02AA - Antiinflammatory preparations, non-steroids for topical use G - Genito urinary system and sex hormones > G02 - Other gynecologicals > G02C - Other gynecologicals > G02CC - Antiinflammatory products for vaginal administration M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic R - Respiratory system > R02 - Throat preparations > R02A - Throat preparations D000893 - Anti-Inflammatory Agents
Dtxcid6021115
J - Antiinfectives for systemic use > J04 - Antimycobacterials > J04A - Drugs for treatment of tuberculosis > J04AB - Antibiotics D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D000995 - Antitubercular Agents D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007917 - Leprostatic Agents D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D012294 - Rifamycins C254 - Anti-Infective Agent > C52588 - Antibacterial Agent > C280 - Antitubercular Agent
Arachidonic acid
A long-chain fatty acid that is a C20, polyunsaturated fatty acid having four (Z)-double bonds at positions 5, 8, 11 and 14. COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Arachidonic acid is an essential fatty acid and a major constituent of biomembranes. Arachidonic acid is an essential fatty acid and a major constituent of biomembranes.
Agnuside
Agnuside is a benzoate ester resulting from the formal condensation of the carboxy group of 4-hydroxybenzoic acid with the primary hydroxy group of aucubin. It is an iridoid glycoside found in several Vitex plants including Vitex agnus-castus. It has a role as a plant metabolite, an anti-inflammatory agent, a pro-angiogenic agent and a cyclooxygenase 2 inhibitor. It is a terpene glycoside, an iridoid monoterpenoid, a benzoate ester, a member of phenols, a beta-D-glucoside, a cyclopentapyran and a monosaccharide derivative. It is functionally related to an aucubin. Agnuside is a natural product found in Crescentia cujete, Vitex peduncularis, and other organisms with data available. See also: Chaste tree fruit (part of); Vitex negundo leaf (part of). A benzoate ester resulting from the formal condensation of the carboxy group of 4-hydroxybenzoic acid with the primary hydroxy group of aucubin. It is an iridoid glycoside found in several Vitex plants including Vitex agnus-castus. Agnuside is a compound isolated from Vitex negundo, down-regulates pro-inflammatory mediators PGE2 and LTB4, and reduces the expression of cytokines, with anti-arthritic activity[1]. Agnuside is used in the study of asthma, inflammation, and angiogenic diseases. Agnuside is an orally active compound that can be extracted from Vitex negundo[1][2][3][4]. Agnuside is a compound isolated from Vitex negundo, down-regulates pro-inflammatory mediators PGE2 and LTB4, and reduces the expression of cytokines, with anti-arthritic activity[1].
Nordihydroguaiaretic_acid
Nordihydroguaiaretic acid is a tetrol that is butane which is substituted at positions 2 and 3 by 3,4-dihydroxybenzyl groups. Masoprocol, the meso-form found in the leaves of the creosote bush (Larrea divaricata), is a potent lipoxygenase inhibitor. It has a role as an antioxidant, a plant metabolite, a ferroptosis inhibitor and a geroprotector. It is a member of catechols, a tetrol and a lignan. Nordihydroguaiaretic acid is a natural product found in Arabidopsis thaliana, Schisandra chinensis, and other organisms with data available. A potent lipoxygenase inhibitor that interferes with arachidonic acid metabolism. The compound also inhibits formyltetrahydrofolate synthetase, carboxylesterase, and cyclooxygenase to a lesser extent. It also serves as an antioxidant in fats and oils. D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D004791 - Enzyme Inhibitors > D016859 - Lipoxygenase Inhibitors D002491 - Central Nervous System Agents > D000700 - Analgesics D020011 - Protective Agents > D000975 - Antioxidants D000893 - Anti-Inflammatory Agents Nordihydroguaiaretic acid is a 5-lipoxygenase (5LOX) (IC50=8 μM) and tyrosine kinase inhibitor. Nordihydroguaiaretic acid is a 5-lipoxygenase (5LOX) (IC50=8 μM) and tyrosine kinase inhibitor. Nordihydroguaiaretic acid is a 5-lipoxygenase (5LOX) (IC50=8 μM) and tyrosine kinase inhibitor.
Norathyriol
Norathyriol is a member of the class of xanthones that is 9H-xanthen-9-one substituted by hydroxy groups at positions 1, 3, 6 and 7. Isolated from Garcinia mangostana and Maclura pomifera, it exhibits inhibitory activity against protein kinase C. It has a role as an antineoplastic agent, an EC 2.7.11.13 (protein kinase C) inhibitor and a plant metabolite. It is a member of xanthones and a polyphenol. Norathyriol is a natural product found in Hypericum aucheri, Hypericum elegans, and other organisms with data available. A member of the class of xanthones that is 9H-xanthen-9-one substituted by hydroxy groups at positions 1, 3, 6 and 7. Isolated from Garcinia mangostana and Maclura pomifera, it exhibits inhibitory activity against protein kinase C.
4Y6E3F2U66
Tryptanthrine is an organonitrogen heterocyclic compound, an organic heterotetracyclic compound and an alkaloid antibiotic. Indolo[2,1-b]quinazoline-6,12-dione is a natural product found in Isatis tinctoria, Cissus discolor, and other organisms with data available. Tryptanthrin is an indole quinazoline that could be an alkaloid from indigo-bearing plants. Tryptanthrin is a potent and orally active cellular Leukotriene (LT) biosynthesis inhibitor. Tryptanthrin has anticancer activity. Tryptanthrin suppresses the expression levels of NOS1, COX-2, and NF-κB and regulates the expression levels of IL-2, IL-10, and TNF-α[1][2]. Tryptanthrin is an indole quinazoline that could be an alkaloid from indigo-bearing plants. Tryptanthrin is a potent and orally active cellular Leukotriene (LT) biosynthesis inhibitor. Tryptanthrin has anticancer activity. Tryptanthrin suppresses the expression levels of NOS1, COX-2, and NF-κB and regulates the expression levels of IL-2, IL-10, and TNF-α[1][2].
Lipoxin A4
A C20 hydroxy fatty acid having (5S)-, (6R)- and (15S)-hydroxy groups as well as (7E)- (9E)-, (11Z)- and (13E)-double bonds. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Chemical was purchased from CAY90410 (Lot D433602-40); Diagnostic ions: 351.2, 251.1, 235,1, 145.6, 114.9
Salmeterol
R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03A - Adrenergics, inhalants > R03AC - Selective beta-2-adrenoreceptor agonists D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents C78273 - Agent Affecting Respiratory System > C29712 - Anti-asthmatic Agent > C319 - Bronchodilator D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents Salmeterol (GR33343X) is a potent and selective human β2 adrenoceptor agonist. Salmeterol shows potent stimulation of cAMP accumulation in CHO cells expressing human β2, β1 and β3 adrenoceptors with pEC50s of 9.6, 6.1, and 5.9, respectively[1].
terfenadine
R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist Terfenadine ((±)-Terfenadine) is a potent open-channel blocker of hERG with an IC50 of 204 nM[1]. Terfenadine, an H1 histamine receptor antagonist, acts as a potent apoptosis inducer in melanoma cells through modulation of Ca2+ homeostasis. Terfenadine induces ROS-dependent apoptosis, simultaneously activates Caspase-4, -2, -9[2].
Nordihydroguaiaretic Acid
A tetrol that is butane which is substituted at positions 2 and 3 by 3,4-dihydroxybenzyl groups. Masoprocol, the meso-form found in the leaves of the creosote bush (Larrea divaricata), is a potent lipoxygenase inhibitor. D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors relative retention time with respect to 9-anthracene Carboxylic Acid is 1.073 D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D004791 - Enzyme Inhibitors > D016859 - Lipoxygenase Inhibitors D002491 - Central Nervous System Agents > D000700 - Analgesics D020011 - Protective Agents > D000975 - Antioxidants D000893 - Anti-Inflammatory Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 1.074 Nordihydroguaiaretic acid is a 5-lipoxygenase (5LOX) (IC50=8 μM) and tyrosine kinase inhibitor. Nordihydroguaiaretic acid is a 5-lipoxygenase (5LOX) (IC50=8 μM) and tyrosine kinase inhibitor. Nordihydroguaiaretic acid is a 5-lipoxygenase (5LOX) (IC50=8 μM) and tyrosine kinase inhibitor.
zafirlukast
R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03D - Other systemic drugs for obstructive airway diseases > R03DC - Leukotriene receptor antagonists D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D020024 - Leukotriene Antagonists D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists C78273 - Agent Affecting Respiratory System > C29712 - Anti-asthmatic Agent
Tryptophol
An indolyl alcohol that is ethanol substituted by a 1H-indol-3-yl group at position 2. Tryptophol (Indole-3-ethanol) is an endogenous metabolite. Tryptophol (Indole-3-ethanol) is an endogenous metabolite.
12-Hydroxydodecanoic acid
12-Hydroxydodecanoic acid is an endogenous metabolite.
azelastine
R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AC - Antiallergic agents, excl. corticosteroids R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists S - Sensory organs > S01 - Ophthalmologicals > S01G - Decongestants and antiallergics C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents D004791 - Enzyme Inhibitors > D016859 - Lipoxygenase Inhibitors D018926 - Anti-Allergic Agents
Beclometasone dipropionate
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D005938 - Glucocorticoids C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents D000893 - Anti-Inflammatory Agents
Montelukast
R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03D - Other systemic drugs for obstructive airway diseases > R03DC - Leukotriene receptor antagonists D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D020024 - Leukotriene Antagonists D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists D065693 - Cytochrome P-450 Enzyme Inducers > D065694 - Cytochrome P-450 CYP1A2 Inducers COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78273 - Agent Affecting Respiratory System > C29712 - Anti-asthmatic Agent Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 2745
8-HETE
An HETE having a 8-hydroxy group and (5Z)-, (9E)-, (11Z)- and (14Z)-double bonds. CONFIDENCE standard compound; NATIVE_RUN_ID STD_neg_MSMS_1min0122.mzML; PROCESSING averaging of repeated ion fragments at 30.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID STD_neg_MSMS_1min0122.mzML; PROCESSING averaging of repeated ion fragments at 20.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID STD_neg_MSMS_1min0122.mzML; PROCESSING averaging of repeated ion fragments at 10.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001287.mzML; PROCESSING averaging of repeated ion fragments at 30.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001287.mzML; PROCESSING averaging of repeated ion fragments at 20.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001287.mzML; PROCESSING averaging of repeated ion fragments at 10.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001287.mzML; PROCESSING averaging of repeated ion fragments at 40.0 NCE within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001287.mzML; PROCESSING averaging of repeated ion fragments at 30.0 NCE within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001287.mzML; PROCESSING averaging of repeated ion fragments at 20.0 NCE within 5 ppm window [MS, MS:1000575, mean of spectra, ]
Leukotriene C4
A leukotriene that is (5S,7E,9E,11Z,14Z)-5-hydroxyicosa-7,9,11,14-tetraenoic acid in which a glutathionyl group is attached at position 6 via a sulfide linkage.
12-Hete
A HETE that is icosa-5,8,10,14-tetraenoic acid substituted by a hydroxy group at position 12. It is a metabolite of arachidonic acid. A HETE having a (12S)-hydroxy group and (5Z)-, (8Z)-, (10E)- and (14Z)-double bonds.
Prostin E2
G - Genito urinary system and sex hormones > G02 - Other gynecologicals > G02A - Uterotonics > G02AD - Prostaglandins D012102 - Reproductive Control Agents > D010120 - Oxytocics C78568 - Prostaglandin Analogue Prostaglandin E2 (PGE2) is a hormone-like substance that participate in a wide range of body functions such as the contraction and relaxation of smooth muscle, the dilation and constriction of blood vessels, control of blood pressure, and modulation of inflammation.
Prostaglandin D2
A member of the class of prostaglandins D that is prosta-5,13-dien-1-oic acid substituted by hydroxy groups at positions 9 and 15 and an oxo group at position 11 (the 5Z,9alpha,13E,15S- stereoisomer).
Leukotriene E
A leukotriene that is (7E,9E,11Z,14Z)-icosa-7,9,11,14-tetraenoic acid substituted by a hydroxy group at position 5 (5S) and an L-cystein-S-yl group at position 6 (6R).
Leukotriene D4
A leukotriene that is (7E,9E,11Z,14Z)-icosa-7,9,11,14-tetraenoic acid substituted by a hydroxy group at position 5 (5S) and a L-cysteinylglycinyl group at position 6 (6R).
Leukotriene F4
A leukotriene composed of (7E,9E,11Z,14Z)-icosa-7,9,11,14-tetraenoic acid having (5S)-hydroxy and (6R)-(L-gamma-glutamyl-L-cystein-S-yl) substituents.
Leukotriene A4
A leukotriene that is the (5S,6S)-epoxy derivative of (7E,9E,11Z,14Z)-icosa-7,9,11,14-tetraenoic acid.
Thromboxane B2
A member of the class of thromboxanes B that is (5Z,13E)-thromboxa-5,13-dien-1-oic acid substituted by hydroxy groups at positions 9, 11 and 15.
AA-861
D004791 - Enzyme Inhibitors > D016859 - Lipoxygenase Inhibitors C471 - Enzyme Inhibitor > C1322 - Lipooxygenase Inhibitor Docebenone (AA 861) is a potent, selective and orally active 5-LO (5-lipoxygenase) inhibitor.
Presqualene diphosphate
A triterpenyl phosphate that is presqualene in which the hydroxy hydrogen has been replaced by a diphosphate group.
UNII:76LB1G2X6V
D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D020024 - Leukotriene Antagonists D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents
Masoprocol
D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents D004791 - Enzyme Inhibitors > D016859 - Lipoxygenase Inhibitors D002491 - Central Nervous System Agents > D000700 - Analgesics C471 - Enzyme Inhibitor > C1322 - Lipooxygenase Inhibitor D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant D000893 - Anti-Inflammatory Agents Masoprocol (meso-Nordihydroguaiaretic acid) is a potent and orally active lipoxygenase inhibitor. Masoprocol shows antihyperglycemic activity. Masoprocol decreases the glucose concentration and hepatic triglyceride in vivo. Masoprocol has the potential for the research of type II diabetes[1][2][3]. Masoprocol (meso-Nordihydroguaiaretic acid) is a potent and orally active lipoxygenase inhibitor. Masoprocol shows antihyperglycemic activity. Masoprocol decreases the glucose concentration and hepatic triglyceride in vivo. Masoprocol has the potential for the research of type II diabetes[1][2][3]. Masoprocol (meso-Nordihydroguaiaretic acid) is a potent and orally active lipoxygenase inhibitor. Masoprocol shows antihyperglycemic activity. Masoprocol decreases the glucose concentration and hepatic triglyceride in vivo. Masoprocol has the potential for the research of type II diabetes[1][2][3].
For-Met-Leu-Phe-OH
N-Formyl-Met-Leu-Phe (fMLP; N-Formyl-MLF) is a chemotactic peptide and a specific ligand of N-formyl peptide receptor (FPR). N-Formyl-Met-Leu-Ph is reported to inhibit TNF-alpha secretion.
3-Hydroxyflavanone
The simplest member of the class of dihydroflavonols that is flavanone with a hydroxy substituent at the 3-position. A monohydroxyflavanone in which the hydroxy group is located at position 3.
A3925_SIGMA
COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Arachidonic acid is an essential fatty acid and a major constituent of biomembranes. Arachidonic acid is an essential fatty acid and a major constituent of biomembranes.
Tryptanthrin
Tryptanthrin is an indole quinazoline that could be an alkaloid from indigo-bearing plants. Tryptanthrin is a potent and orally active cellular Leukotriene (LT) biosynthesis inhibitor. Tryptanthrin has anticancer activity. Tryptanthrin suppresses the expression levels of NOS1, COX-2, and NF-κB and regulates the expression levels of IL-2, IL-10, and TNF-α[1][2]. Tryptanthrin is an indole quinazoline that could be an alkaloid from indigo-bearing plants. Tryptanthrin is a potent and orally active cellular Leukotriene (LT) biosynthesis inhibitor. Tryptanthrin has anticancer activity. Tryptanthrin suppresses the expression levels of NOS1, COX-2, and NF-κB and regulates the expression levels of IL-2, IL-10, and TNF-α[1][2].
4-HPA
D009676 - Noxae > D002273 - Carcinogens 4-hydroxyphenylacetic acid, a major microbiota-derived metabolite of polyphenols, is involved in the antioxidative action. 4-hydroxyphenylacetic acid induces expression of Nrf2[1]. 4-hydroxyphenylacetic acid, a major microbiota-derived metabolite of polyphenols, is involved in the antioxidative action. 4-hydroxyphenylacetic acid induces expression of Nrf2[1].
13201-14-4
Dihydrocucurbitacin B, a triterpene isolated from Cayaponia tayuya roots, inhibits nuclear factor of activated T cells (NFAT), induces cell cycle arrested in the G0 phase, and inhibits delayed type hypersensitivity[1]. Dihydrocucurbitacin B, a triterpene isolated from Cayaponia tayuya roots, inhibits nuclear factor of activated T cells (NFAT), induces cell cycle arrested in the G0 phase, and inhibits delayed type hypersensitivity[1].
Actinex
D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents D004791 - Enzyme Inhibitors > D016859 - Lipoxygenase Inhibitors D002491 - Central Nervous System Agents > D000700 - Analgesics C471 - Enzyme Inhibitor > C1322 - Lipooxygenase Inhibitor D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant D000893 - Anti-Inflammatory Agents Masoprocol (meso-Nordihydroguaiaretic acid) is a potent and orally active lipoxygenase inhibitor. Masoprocol shows antihyperglycemic activity. Masoprocol decreases the glucose concentration and hepatic triglyceride in vivo. Masoprocol has the potential for the research of type II diabetes[1][2][3]. Masoprocol (meso-Nordihydroguaiaretic acid) is a potent and orally active lipoxygenase inhibitor. Masoprocol shows antihyperglycemic activity. Masoprocol decreases the glucose concentration and hepatic triglyceride in vivo. Masoprocol has the potential for the research of type II diabetes[1][2][3]. Masoprocol (meso-Nordihydroguaiaretic acid) is a potent and orally active lipoxygenase inhibitor. Masoprocol shows antihyperglycemic activity. Masoprocol decreases the glucose concentration and hepatic triglyceride in vivo. Masoprocol has the potential for the research of type II diabetes[1][2][3].
15-Hydroxy-5,8,11,13-eicosatetraenoic acid
15-Hydroxy-5,8,11,13-eicosatetraenoic acid, also known as 15-hete, is a member of the class of compounds known as hydroxyeicosatetraenoic acids. Hydroxyeicosatetraenoic acids are eicosanoic acids with an attached hydroxyl group and four CC double bonds. 15-Hydroxy-5,8,11,13-eicosatetraenoic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa).
oxymetazoline
R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AB - Sympathomimetics, combinations excl. corticosteroids R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AA - Sympathomimetics, plain S - Sensory organs > S01 - Ophthalmologicals > S01G - Decongestants and antiallergics > S01GA - Sympathomimetics used as decongestants D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D019141 - Respiratory System Agents > D014663 - Nasal Decongestants D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents D - Dermatologicals
Dinoprostone
G - Genito urinary system and sex hormones > G02 - Other gynecologicals > G02A - Uterotonics > G02AD - Prostaglandins D012102 - Reproductive Control Agents > D010120 - Oxytocics C78568 - Prostaglandin Analogue Prostaglandin E2 (PGE2) is a hormone-like substance that participate in a wide range of body functions such as the contraction and relaxation of smooth muscle, the dilation and constriction of blood vessels, control of blood pressure, and modulation of inflammation.
econazole
G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids > G01AF - Imidazole derivatives D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use > D01AC - Imidazole and triazole derivatives D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D065088 - Steroid Synthesis Inhibitors D004791 - Enzyme Inhibitors > D065088 - Steroid Synthesis Inhibitors > D058888 - 14-alpha Demethylase Inhibitors D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent
13(S)-HODE
An HODE (hydroxyoctadecadienoic acid) in which the double bonds are at positions 9 and 11 (E and Z geometry, respectively) and the hydroxy group is at position 13 (with S-configuration).
SC-58125
D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D004791 - Enzyme Inhibitors