Erucic acid (BioDeep_00000396901)
Main id: BioDeep_00000000996
PANOMIX_OTCML-2023 BioNovoGene_Lab2019 Volatile Flavor Compounds natural product
代谢物信息卡片
化学式: C22H42O2 (338.3184632)
中文名称: 芥酸
谱图信息:
最多检出来源 () 0%
分子结构信息
SMILES: CCCCCCCC/C=C\CCCCCCCCCCCC(=O)O
InChI: InChI=1S/C22H42O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21-22(23)24/h9-10H,2-8,11-21H2,1H3,(H,23,24)/b10-9-
描述信息
同义名列表
35 个代谢物同义名
cis-Delta(13)-docosenoic acid; delta13-cis-Docosenoic acid; 13-Docosenoic acid, (13Z)-; delta13:14-Docosenoic acid; (13Z)-docos-13-enoic acid; (13Z)-13-Docosenoic acid; (Z)-Docos-13-enoic acid; cis-13-Docosenoic acid; 13-cis-Docosenoic acid; (Z)-13-Docosenoic acid; (13Z)-Docosenoic acid; Z-13-Docosenoic acid; 13Z-docosenoic acid; EINECS 204-011-3; NCGC00166073-01; cis-erucic acid; Hystrene 2290; LMFA01030089; AIDS-017616; E3385_SIGMA; Erucic acid; 45629_FLUKA; Erucasaeure; CHEBI:28792; Prifac 2990; B8010_SIGMA; 45630_FLUKA; AIDS017616; AI3-18180; HSDB 5015; NSC 6814; 112-86-7; C08316; Erucic acid; Erucic acid
数据库引用编号
23 个数据库交叉引用编号
- ChEBI: CHEBI:28792
- KEGG: C08316
- PubChem: 5281116
- ChEMBL: CHEMBL1173380
- CAS: 63541-50-4
- CAS: 1072-39-5
- CAS: 112-86-7
- MoNA: EMBL-MCF_spec347848
- MoNA: MoNA016628
- MoNA: HMDB0002068_ms_ms_1979
- MoNA: HMDB0002068_ms_ms_1978
- MoNA: HMDB0002068_ms_ms_1980
- medchemexpress: HY-N7109
- PubChem: 10514
- LipidMAPS: LMFA01030089
- KNApSAcK: C00001217
- PDB-CCD: 08O
- 3DMET: B02160
- NIKKAJI: J10.102H
- RefMet: cis-Erucic acid
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-589
- KNApSAcK: 28792
- LOTUS: LTS0252257
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
0 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
111 个相关的物种来源信息
- 3815 - Abrus: LTS0252257
- 3816 - Abrus precatorius: 10.1002/JPS.2600570840
- 3816 - Abrus precatorius: LTS0252257
- 186623 - Actinopteri: LTS0252257
- 7898 - Actinopterygii: LTS0252257
- 145744 - Althaea: LTS0252257
- 446321 - Althaea armeniaca: 10.1007/BF01165189
- 145745 - Althaea officinalis: 10.1007/BF01165189
- 145745 - Althaea officinalis: LTS0252257
- 4890 - Ascomycota: LTS0252257
- 2 - Bacteria: LTS0252257
- 21571 - Boraginaceae: LTS0252257
- 13362 - Borago: LTS0252257
- 13363 - Borago officinalis: 10.1038/HDY.1990.93
- 13363 - Borago officinalis: LTS0252257
- 3705 - Brassica: LTS0252257
- 3708 - Brassica napus:
- 3708 - Brassica napus: 10.1007/BF02671339
- 3708 - Brassica napus: 10.1021/JF00011A007
- 3708 - Brassica napus: LTS0252257
- 3711 - Brassica rapa:
- 3711 - Brassica rapa: LTS0252257
- 145471 - Brassica rapa subsp. oleifera: 10.1007/BF02536641
- 145471 - Brassica rapa subsp. oleifera: LTS0252257
- 3700 - Brassicaceae: LTS0252257
- 703253 - Calophyllaceae: LTS0252257
- 73121 - Calophyllum: LTS0252257
- 883767 - Calophyllum calaba: 10.1016/J.PHYTOCHEM.2005.06.009
- 883767 - Calophyllum calaba: LTS0252257
- 158927 - Calophyllum inophyllum: 10.1016/J.PHYTOCHEM.2005.06.009
- 158927 - Calophyllum inophyllum: LTS0252257
- 7711 - Chordata: LTS0252257
- 3720 - Crambe: LTS0252257
- 70124 - Crambe hispanica: 10.1007/S11746-999-0069-4
- 70124 - Crambe hispanica: LTS0252257
- 3721 - Crambe hispanica subsp. abyssinica: 10.1007/S11746-999-0069-4
- 3721 - Crambe hispanica subsp. abyssinica: LTS0252257
- 4672 - Dioscorea: 10.19026/AJFST.11.2408
- 4672 - Dioscorea: LTS0252257
- 4671 - Dioscoreaceae: LTS0252257
- 53872 - Dipteryx: LTS0252257
- 1079072 - Dipteryx lacunifera: 10.1016/S0031-9422(00)86884-3
- 1079072 - Dipteryx lacunifera: LTS0252257
- 19151 - Eruca: LTS0252257
- 180536 - Eruca vesicaria: LTS0252257
- 29727 - Eruca vesicaria subsp. sativa: 10.1007/BF00563803
- 29727 - Eruca vesicaria subsp. sativa: LTS0252257
- 2759 - Eukaryota: LTS0252257
- 3990 - Euphorbia: LTS0252257
- 212310 - Euphorbia tithymaloides: 10.1016/J.FITOTE.2005.08.020
- 212310 - Euphorbia tithymaloides: LTS0252257
- 3977 - Euphorbiaceae: LTS0252257
- 3803 - Fabaceae: LTS0252257
- 4751 - Fungi: LTS0252257
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
- 629714 - Hypericaceae: LTS0252257
- 55962 - Hypericum: LTS0252257
- 65561 - Hypericum perforatum: 10.1016/S0305-1978(02)00076-5
- 65561 - Hypericum perforatum: LTS0252257
- 161755 - Isatis: LTS0252257
- 161756 - Isatis tinctoria: 10.1002/RECL.19410601209
- 161756 - Isatis tinctoria: LTS0252257
- 147547 - Lecanoromycetes: LTS0252257
- 19205 - Lepidium: LTS0252257
- 33125 - Lepidium sativum: 10.1007/BF00563803
- 33125 - Lepidium sativum: LTS0252257
- 4447 - Liliopsida: LTS0252257
- 3398 - Magnoliopsida: LTS0252257
- 96479 - Malva: LTS0252257
- 145754 - Malva sylvestris: 10.1007/BF00629959
- 145754 - Malva sylvestris: LTS0252257
- 3629 - Malvaceae: LTS0252257
- 33208 - Metazoa: LTS0252257
- 3615 - Polygonaceae: LTS0252257
- 56479 - Ramalina: 10.1002/CHIN.199517179
- 56479 - Ramalina: LTS0252257
- 56478 - Ramalinaceae: LTS0252257
- 3618 - Rumex: LTS0252257
- 174649 - Rumex crispus: 10.1021/JA01461A018
- 174649 - Rumex crispus: LTS0252257
- 13675 - Scomber: LTS0252257
- 13676 - Scomber japonicus: 10.1246/BCSJ.59.3709
- 13676 - Scomber japonicus: LTS0252257
- 8224 - Scombridae: LTS0252257
- 3727 - Sinapis: LTS0252257
- 3728 - Sinapis alba:
- 3728 - Sinapis alba: 10.1007/BF02671339
- 3728 - Sinapis alba: 10.1016/0926-6690(94)90095-7
- 3728 - Sinapis alba: LTS0252257
- 29728 - Sinapis arvensis: 10.21608/BFSA.2000.66323
- 29728 - Sinapis arvensis: LTS0252257
- 1883 - Streptomyces: LTS0252257
- 29305 - Streptomyces griseoincarnatus: 10.1016/J.MICPATH.2018.11.050
- 29305 - Streptomyces griseoincarnatus: LTS0252257
- 2062 - Streptomycetaceae: LTS0252257
- 35493 - Streptophyta: LTS0252257
- 32443 - Teleostei: LTS0252257
- 13287 - Thlaspi: LTS0252257
- 13288 - Thlaspi arvense: 10.1007/BF00563803
- 13288 - Thlaspi arvense: LTS0252257
- 58023 - Tracheophyta: LTS0252257
- 33090 - Viridiplantae: LTS0252257
- 33090 - 冬葵果: -
- 33090 - 巴豆: -
- 33090 - 无患子: -
- 33090 - 木蝴蝶: -
- 33090 - 板蓝根: -
- 33090 - 芥子: -
- 4047 - 芫荽: -
- 33090 - 莱菔子: -
- 33090 - 葶苈子: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Shiqi Xu, Shan Chen, Jialing Cai, Tao Yan, Mengxin Tu, Ruisen Wang, Shuijin Hua, Lixi Jiang. Genomic and transcriptome analyses reveal potential contributors to erucic acid biosynthesis in seeds of rapeseed (Brassica napus).
TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik.
2024 May; 137(6):129. doi:
10.1007/s00122-024-04642-9
. [PMID: 38740615] - Xueying Ai, Ali Mahmoud El-Badri, Maria Batool, Hongxiang Lou, Gengdong Gao, Chenyang Bai, Zongkai Wang, Chunji Jiang, Xinhua Zhao, Bo Wang, Jie Kuai, Zhenghua Xu, Jing Wang, Graham John King, Haiqiu Yu, Guangsheng Zhou, Tingdong Fu. Morpho-Physiochemical Indices and Transcriptome Analysis Reveal the Role of Glucosinolate and Erucic Acid in Response to Drought Stress during Seed Germination of Rapeseed.
International journal of molecular sciences.
2024 Mar; 25(6):. doi:
10.3390/ijms25063308
. [PMID: 38542283] - Hongbo Liu, Jinbo Zhu, Bingxin Zhang, Qingyang Li, Cui Liu, Qian Huang, Peng Cui. The functional divergence of homologous GPAT9 genes contributes to the erucic acid content of Brassica napus seeds.
BMC plant biology.
2024 Jan; 24(1):69. doi:
10.1186/s12870-024-04734-0
. [PMID: 38262947] - Qiang Liang, Wei Xiong, Qi Zhou, Cheng Cui, Xia Xu, Ling Zhao, Pu Xuan, Yingzheng Yao. Glucosinolates or erucic acid, which one contributes more to volatile flavor of fragrant rapeseed oil?.
Food chemistry.
2023 Jun; 412(?):135594. doi:
10.1016/j.foodchem.2023.135594
. [PMID: 36731240] - Adam Yasgar, Danielle Bougie, Richard T Eastman, Ruili Huang, Misha Itkin, Jennifer Kouznetsova, Caitlin Lynch, Crystal McKnight, Mitch Miller, Deborah K Ngan, Tyler Peryea, Pranav Shah, Paul Shinn, Menghang Xia, Xin Xu, Alexey V Zakharov, Anton Simeonov. Quantitative Bioactivity Signatures of Dietary Supplements and Natural Products.
ACS pharmacology & translational science.
2023 May; 6(5):683-701. doi:
10.1021/acsptsci.2c00194
. [PMID: 37200814] - G F Hartnell, S Lemke, D Moore, A Matthews, M A Nemeth, R Brister, S Liu, C Aulbach. Performance and health of broiler chickens fed low erucic acid, lower fiber pennycress (CoverCressTM) grain.
Poultry science.
2022 Dec; 102(3):102432. doi:
10.1016/j.psj.2022.102432
. [PMID: 36682128] - Meric A Altinoz. Could dietary erucic acid lower risk of brain tumors? An epidemiological look to Chinese population with implications for prevention and treatment.
Metabolic brain disease.
2022 12; 37(8):2643-2651. doi:
10.1007/s11011-022-01022-4
. [PMID: 35704146] - Asako Takahashi, Mayu Ishizaki, Yoshifumi Kimira, Yukari Egashira, Shizuka Hirai. Erucic Acid-Rich Yellow Mustard Oil Improves Insulin Resistance in KK-Ay Mice.
Molecules (Basel, Switzerland).
2021 Jan; 26(3):. doi:
10.3390/molecules26030546
. [PMID: 33494317] - Danuta Kurasiak-Popowska, Małgorzata Graczyk, Kinga Stuper-Szablewska. Winter camelina seeds as a raw material for the production of erucic acid-free oil.
Food chemistry.
2020 Nov; 330(?):127265. doi:
10.1016/j.foodchem.2020.127265
. [PMID: 32540525] - Ana Claver, Marina de la Vega, Raquel Rey-Giménez, María Á Luján, Rafael Picorel, M Victoria López, Miguel Alfonso. Functional analysis of β-ketoacyl-CoA synthase from biofuel feedstock Thlaspi arvense reveals differences in the triacylglycerol biosynthetic pathway among Brassicaceae.
Plant molecular biology.
2020 Oct; 104(3):283-296. doi:
10.1007/s11103-020-01042-7
. [PMID: 32740897] - Xiaocui Chen, Lin Shang, Senwen Deng, Ping Li, Kai Chen, Ting Gao, Xiao Zhang, Zhilan Chen, Jia Zeng. Peroxisomal oxidation of erucic acid suppresses mitochondrial fatty acid oxidation by stimulating malonyl-CoA formation in the rat liver.
The Journal of biological chemistry.
2020 07; 295(30):10168-10179. doi:
10.1074/jbc.ra120.013583
. [PMID: 32493774] - Asako Takahashi, Hirofumi Dohi, Yukari Egashira, Shizuka Hirai. Erucic acid derived from rosemary regulates differentiation of mesenchymal stem cells into osteoblasts/adipocytes via suppression of peroxisome proliferator-activated receptor γ transcriptional activity.
Phytotherapy research : PTR.
2020 Jun; 34(6):1358-1366. doi:
10.1002/ptr.6607
. [PMID: 31989712] - Peter Gajdoš, Jaroslav Hambalko, Ondrej Slaný, Milan Čertík. Conversion of waste materials into very long chain fatty acids by the recombinant yeast Yarrowia lipolytica.
FEMS microbiology letters.
2020 03; 367(6):. doi:
10.1093/femsle/fnaa042
. [PMID: 32129852] - Takahiko Mitsui, Satoru Kira, Tatsuya Ihara, Norifumi Sawada, Hiroshi Nakagomi, Tatsuya Miyamoto, Hiroshi Shimura, Sachiko Tsuchiya, Mie Kanda, Masayuki Takeda. Metabolism of fatty acids and bile acids in plasma is associated with overactive bladder in males: potential biomarkers and targets for novel treatments in a metabolomics analysis.
International urology and nephrology.
2020 Feb; 52(2):233-238. doi:
10.1007/s11255-019-02299-8
. [PMID: 31587188] - Kamil Demski, Simon Jeppson, Ida Lager, Agnieszka Misztak, Katarzyna Jasieniecka-Gazarkiewicz, Małgorzata Waleron, Sten Stymne, Antoni Banaś. Isoforms of Acyl-CoA:Diacylglycerol Acyltransferase2 Differ Substantially in Their Specificities toward Erucic Acid.
Plant physiology.
2019 12; 181(4):1468-1479. doi:
10.1104/pp.19.01129
. [PMID: 31619508] - Meric A Altinoz, Aysel Ozpinar. PPAR-δ and erucic acid in multiple sclerosis and Alzheimer's Disease. Likely benefits in terms of immunity and metabolism.
International immunopharmacology.
2019 Apr; 69(?):245-256. doi:
10.1016/j.intimp.2019.01.057
. [PMID: 30738994] - Michaela McGinn, Winthrop B Phippen, Ratan Chopra, Sunil Bansal, Brice A Jarvis, Mary E Phippen, Kevin M Dorn, Maliheh Esfahanian, Tara J Nazarenus, Edgar B Cahoon, Timothy P Durrett, M David Marks, John C Sedbrook. Molecular tools enabling pennycress (Thlaspi arvense) as a model plant and oilseed cash cover crop.
Plant biotechnology journal.
2019 04; 17(4):776-788. doi:
10.1111/pbi.13014
. [PMID: 30230695] - Paweł Paśko, Agnieszka Galanty, Paweł Żmudzki, Joanna Gdula-Argasińska, Paweł Zagrodzki. Influence of different light conditions and time of sprouting on harmful and beneficial aspects of rutabaga sprouts in comparison to their roots and seeds.
Journal of the science of food and agriculture.
2019 Jan; 99(1):302-308. doi:
10.1002/jsfa.9188
. [PMID: 29876936] - Nina Behnke, Edy Suprianto, Christian Möllers. A major QTL on chromosome C05 significantly reduces acid detergent lignin (ADL) content and increases seed oil and protein content in oilseed rape (Brassica napus L.).
TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik.
2018 Nov; 131(11):2477-2492. doi:
10.1007/s00122-018-3167-6
. [PMID: 30143828] - Bo Wang, Zhikun Wu, Zhaohong Li, Qinghua Zhang, Jianlin Hu, Yingjie Xiao, Dongfang Cai, Jiangsheng Wu, Graham J King, Haitao Li, Kede Liu. Dissection of the genetic architecture of three seed-quality traits and consequences for breeding in Brassica napus.
Plant biotechnology journal.
2018 07; 16(7):1336-1348. doi:
10.1111/pbi.12873
. [PMID: 29265559] - Lenka Havlickova, Zhesi He, Lihong Wang, Swen Langer, Andrea L Harper, Harjeevan Kaur, Martin R Broadley, Vasilis Gegas, Ian Bancroft. Validation of an updated Associative Transcriptomics platform for the polyploid crop species Brassica napus by dissection of the genetic architecture of erucic acid and tocopherol isoform variation in seeds.
The Plant journal : for cell and molecular biology.
2018 Jan; 93(1):181-192. doi:
10.1111/tpj.13767
. [PMID: 29124814] - Gulam Rabbani, Mohammad Hassan Baig, Arif Tasleem Jan, Eun Ju Lee, Mohsin Vahid Khan, Masihuz Zaman, Abd-ElAziem Farouk, Rizwan Hasan Khan, Inho Choi. Binding of erucic acid with human serum albumin using a spectroscopic and molecular docking study.
International journal of biological macromolecules.
2017 Dec; 105(Pt 3):1572-1580. doi:
10.1016/j.ijbiomac.2017.04.051
. [PMID: 28414112] - Jianghua Shi, Chunxiu Lang, Fulin Wang, Xuelong Wu, Renhu Liu, Tao Zheng, Dongqing Zhang, Jinqing Chen, Guanting Wu. Depressed expression of FAE1 and FAD2 genes modifies fatty acid profiles and storage compounds accumulation in Brassica napus seeds.
Plant science : an international journal of experimental plant biology.
2017 Oct; 263(?):177-182. doi:
10.1016/j.plantsci.2017.07.014
. [PMID: 28818373] - Sandy Fillet, Carmen Ronchel, Carla Callejo, María-José Fajardo, Helena Moralejo, José L Adrio. Engineering Rhodosporidium toruloides for the production of very long-chain monounsaturated fatty acid-rich oils.
Applied microbiology and biotechnology.
2017 Oct; 101(19):7271-7280. doi:
10.1007/s00253-017-8461-8
. [PMID: 28812146] - Dinghong Li, Zhao Lei, Jiayu Xue, Guangcan Zhou, Yueyu Hang, Xiaoqin Sun. Regulation of FATTY ACID ELONGATION1 expression and production in Brassica oleracea and Capsella rubella.
Planta.
2017 Oct; 246(4):763-778. doi:
10.1007/s00425-017-2731-7
. [PMID: 28674753] - Samia Hadj Ahmed, Nadia Kaoubaa, Wafa Kharroubi, Amira Zarrouk, Mohamed Fadhel Najjar, Fathi Batbout, Habib Gamra, Gerard Lizard, Mohamed Hammami. Association of plasma fatty acid alteration with the severity of coronary artery disease lesions in Tunisian patients.
Lipids in health and disease.
2017 Aug; 16(1):154. doi:
10.1186/s12944-017-0538-y
. [PMID: 28806974] - Zhen-Zhu Su, Ting Wang, Neeraj Shrivastava, You-Yuan Chen, Xiaoxi Liu, Chao Sun, Yufeng Yin, Qi-Kang Gao, Bing-Gan Lou. Piriformospora indica promotes growth, seed yield and quality of Brassica napus L.
Microbiological research.
2017 Jun; 199(?):29-39. doi:
10.1016/j.micres.2017.02.006
. [PMID: 28454707] - Serap Durakli Velioglu, Havva Tumay Temiz, Elif Ercioglu, Hasan Murat Velioglu, Ali Topcu, Ismail Hakki Boyaci. Use of Raman spectroscopy for determining erucic acid content in canola oil.
Food chemistry.
2017 Apr; 221(?):87-90. doi:
10.1016/j.foodchem.2016.10.044
. [PMID: 27979286] - Ana Claver, Raquel Rey, M Victoria López, Rafael Picorel, Miguel Alfonso. Identification of target genes and processes involved in erucic acid accumulation during seed development in the biodiesel feedstock Pennycress (Thlaspi arvense L.).
Journal of plant physiology.
2017 Jan; 208(?):7-16. doi:
10.1016/j.jplph.2016.10.011
. [PMID: 27889523] - Mariam A Ahmed, Reena V Kartha, Richard C Brundage, James Cloyd, Cynthia Basu, Bradley P Carlin, Richard O Jones, Ann B Moser, Ali Fatemi, Gerald V Raymond. A model-based approach to assess the exposure-response relationship of Lorenzo's oil in adrenoleukodystrophy.
British journal of clinical pharmacology.
2016 06; 81(6):1058-66. doi:
10.1111/bcp.12897
. [PMID: 26836218] - Asia Nosheen, Asghari Bano, Faizan Ullah. Bioinoculants: A sustainable approach to maximize the yield of Ethiopian mustard (Brassica carinata L.) under low input of chemical fertilizers.
Toxicology and industrial health.
2016 Feb; 32(2):270-7. doi:
10.1177/0748233713498453
. [PMID: 24097367] - Jun Zou, Yusheng Zhao, Peifa Liu, Lei Shi, Xiaohua Wang, Meng Wang, Jinling Meng, Jochen Christoph Reif. Seed Quality Traits Can Be Predicted with High Accuracy in Brassica napus Using Genomic Data.
PloS one.
2016; 11(11):e0166624. doi:
10.1371/journal.pone.0166624
. [PMID: 27880793] - Cynthia Basu, Mariam A Ahmed, Reena V Kartha, Richard C Brundage, Gerald V Raymond, James C Cloyd, Bradley P Carlin. A hierarchical Bayesian approach for combining pharmacokinetic/pharmacodynamic modeling and Phase IIa trial design in orphan drugs: Treating adrenoleukodystrophy with Lorenzo's oil.
Journal of biopharmaceutical statistics.
2016; 26(6):1025-1039. doi:
10.1080/10543406.2016.1226326
. [PMID: 27547896] - S Ahmad, H A Sadaqat, M H N Tahir, F S Awan. An insight in the genetic control and interrelationship of some quality traits in Brassica napus.
Genetics and molecular research : GMR.
2015 Dec; 14(4):17941-50. doi:
10.4238/2015.december.22.19
. [PMID: 26782440] - Jianghua Shi, Chunxiu Lang, Xuelong Wu, Renhu Liu, Tao Zheng, Dongqing Zhang, Jinqing Chen, Guanting Wu. RNAi knockdown of fatty acid elongase1 alters fatty acid composition in Brassica napus.
Biochemical and biophysical research communications.
2015 Oct; 466(3):518-22. doi:
10.1016/j.bbrc.2015.09.062
. [PMID: 26381181] - Yang Shu, Weiwei Xue, Xiaoying Xu, Zhimin Jia, Xiaojun Yao, Shuwen Liu, Lihong Liu. Interaction of erucic acid with bovine serum albumin using a multi-spectroscopic method and molecular docking technique.
Food chemistry.
2015 Apr; 173(?):31-7. doi:
10.1016/j.foodchem.2014.09.164
. [PMID: 25465991] - Rui Guan, Xueyuan Li, Per Hofvander, Xue-Rong Zhou, Danni Wang, Sten Stymne, Li-Hua Zhu. RNAi targeting putative genes in phosphatidylcholine turnover results in significant change in fatty acid composition in Crambe abyssinica seed oil.
Lipids.
2015 Apr; 50(4):407-16. doi:
10.1007/s11745-015-4004-1
. [PMID: 25753896] - Feng Li, Biyun Chen, Kun Xu, Jinfeng Wu, Weilin Song, Ian Bancroft, Andrea L Harper, Martin Trick, Shengyi Liu, Guizhen Gao, Nian Wang, Guixin Yan, Jiangwei Qiao, Jun Li, Hao Li, Xin Xiao, Tianyao Zhang, Xiaoming Wu. Genome-wide association study dissects the genetic architecture of seed weight and seed quality in rapeseed (Brassica napus L.).
DNA research : an international journal for rapid publication of reports on genes and genomes.
2014 Aug; 21(4):355-67. doi:
10.1093/dnares/dsu002
. [PMID: 24510440] - Christine Wendlinger, Simon Hammann, Walter Vetter. Various concentrations of erucic acid in mustard oil and mustard.
Food chemistry.
2014 Jun; 153(?):393-7. doi:
10.1016/j.foodchem.2013.12.073
. [PMID: 24491745] - Alexandra V Amosova, Lyudmila V Zemtsova, Zoya E Grushetskaya, Tatiana E Samatadze, Galina V Mozgova, Yadviga E Pilyuk, Valentina T Volovik, Natalia V Melnikova, Alexandr V Zelenin, Valentina A Lemesh, Olga V Muravenko. Intraspecific chromosomal and genetic polymorphism in Brassica napus L. detected by cytogenetic and molecular markers.
Journal of genetics.
2014 Apr; 93(1):133-43. doi:
10.1007/s12041-014-0351-6
. [PMID: 24840830] - Rui Guan, Ida Lager, Xueyuan Li, Sten Stymne, Li-Hua Zhu. Bottlenecks in erucic acid accumulation in genetically engineered ultrahigh erucic acid Crambe abyssinica.
Plant biotechnology journal.
2014 Feb; 12(2):193-203. doi:
10.1111/pbi.12128
. [PMID: 24119222] - S Khodadoust, A Mohammadzadeh, J Mohammadi, C Irajie, M Ramezani. Identification and determination of the fatty acid composition of Quercus brantii growing in southwestern Iran by GC-MS.
Natural product research.
2014; 28(8):573-6. doi:
10.1080/14786419.2014.880915
. [PMID: 24499169] - Farzad Javidfar, Bifang Cheng. Construction of a genetic linkage map and QTL analysis of erucic acid content and glucosinolate components in yellow mustard (Sinapis alba L.).
BMC plant biology.
2013 Sep; 13(?):142. doi:
10.1186/1471-2229-13-142
. [PMID: 24066707] - Xiaoqin Sun, Hui Pang, Mimi Li, Bin Peng, Haisong Guo, Qinqin Yan, Yueyu Hang. Evolutionary pattern of the FAE1 gene in brassicaceae and its correlation with the erucic acid trait.
PloS one.
2013; 8(12):e83535. doi:
10.1371/journal.pone.0083535
. [PMID: 24358289] - Marco Cappa, Carla Bizzarri, Anna Petroni, Gianfranca Carta, Lina Cordeddu, Massimiliano Valeriani, Catello Vollono, Loredana De Pasquale, Milena Blasevich, Sebastiano Banni. A mixture of oleic, erucic and conjugated linoleic acids modulates cerebrospinal fluid inflammatory markers and improve somatosensorial evoked potential in X-linked adrenoleukodystrophy female carriers.
Journal of inherited metabolic disease.
2012 Sep; 35(5):899-907. doi:
10.1007/s10545-011-9432-3
. [PMID: 22189598] - Qu-Huan Ma, Xiao-Feng Shi, Bin Fan, Dong-Yan Liu. [Study on the chemical constituents from Patrinia scabra].
Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials.
2012 Aug; 35(8):1257-9. doi:
"
. [PMID: 23320358] - Jingjing Liu, Shuang Liang, Xiaoxi Liu, J Andrew Brown, Kylie E Newman, Manjula Sunkara, Andrew J Morris, Saloni Bhatnagar, Xiangan Li, Aurora Pujol, Gregory A Graf. The absence of ABCD2 sensitizes mice to disruptions in lipid metabolism by dietary erucic acid.
Journal of lipid research.
2012 Jun; 53(6):1071-9. doi:
10.1194/jlr.m022160
. [PMID: 22493092] - Avery Sengupta, Mahua Ghosh. Hypolipidemic effect of mustard oil enriched with medium chain fatty acid and polyunsaturated fatty acid.
Nutrition (Burbank, Los Angeles County, Calif.).
2011 Nov; 27(11-12):1183-93. doi:
10.1016/j.nut.2011.01.010
. [PMID: 21621386] - Peter Rzehak, Sibylle Koletzko, Berthold Koletzko, Stefanie Sausenthaler, Dietrich Reinhardt, Armin Grübl, Carl Peter Bauer, Ursula Krämer, Christina Bollrath, Andrea von Berg, Dietrich Berdel, H-Erich Wichmann, Joachim Heinrich. Growth of infants fed formula rich in canola oil (low erucic acid rapeseed oil).
Clinical nutrition (Edinburgh, Scotland).
2011 Jun; 30(3):339-45. doi:
10.1016/j.clnu.2010.11.002
. [PMID: 21130544] - Arun Jagannath, Yashpal Singh Sodhi, Vibha Gupta, Arundhati Mukhopadhyay, Neelakantan Arumugam, Indira Singh, Soma Rohatgi, Pradeep Kumar Burma, Akshay Kumar Pradhan, Deepak Pental. Eliminating expression of erucic acid-encoding loci allows the identification of "hidden" QTL contributing to oil quality fractions and oil content in Brassica juncea (Indian mustard).
TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik.
2011 Apr; 122(6):1091-103. doi:
10.1007/s00122-010-1515-2
. [PMID: 21188349] - Giuseppe Impallomeni, Alberto Ballistreri, Giovanni Marco Carnemolla, Salvatore P P Guglielmino, Marco Sebastiano Nicolò, Maria Grazia Cambria. Synthesis and characterization of poly(3-hydroxyalkanoates) from Brassica carinata oil with high content of erucic acid and from very long chain fatty acids.
International journal of biological macromolecules.
2011 Jan; 48(1):137-45. doi:
10.1016/j.ijbiomac.2010.10.013
. [PMID: 21035502] - Yun-dong Shi, Lin Jia, Xiang Li, Jian-zhong Ma, Fei Liu, Tai-bo Shen. [Studies on the spectrum of tea seed oily properties].
Guang pu xue yu guang pu fen xi = Guang pu.
2010 Sep; 30(9):2504-7. doi:
"
. [PMID: 21105428] - Yunbao Liu, Muraleedharan G Nair. An efficient and economical MTT assay for determining the antioxidant activity of plant natural product extracts and pure compounds.
Journal of natural products.
2010 Jul; 73(7):1193-5. doi:
10.1021/np1000945
. [PMID: 20565070] - Nian Wang, Lei Shi, Fang Tian, Huicai Ning, Xiaoming Wu, Yan Long, Jinling Meng. Assessment of FAE1 polymorphisms in three Brassica species using EcoTILLING and their association with differences in seed erucic acid contents.
BMC plant biology.
2010 Jul; 10(?):137. doi:
10.1186/1471-2229-10-137
. [PMID: 20594317] - Qi Peng, Yan Hu, Ran Wei, Yuan Zhang, Chunyun Guan, Ying Ruan, Chunlin Liu. Simultaneous silencing of FAD2 and FAE1 genes affects both oleic acid and erucic acid contents in Brassica napus seeds.
Plant cell reports.
2010 Apr; 29(4):317-25. doi:
10.1007/s00299-010-0823-y
. [PMID: 20130882] - Bifang Cheng, Guohai Wu, Patricia Vrinten, Kevin Falk, Joerg Bauer, Xiao Qiu. Towards the production of high levels of eicosapentaenoic acid in transgenic plants: the effects of different host species, genes and promoters.
Transgenic research.
2010 Apr; 19(2):221-9. doi:
10.1007/s11248-009-9302-z
. [PMID: 19582587] - Jingjing Liu, Nadezhda S Sabeva, Saloni Bhatnagar, Xiang-An Li, Aurora Pujol, Gregory A Graf. ABCD2 is abundant in adipose tissue and opposes the accumulation of dietary erucic acid (C22:1) in fat.
Journal of lipid research.
2010 Jan; 51(1):162-8. doi:
10.1194/jlr.m900237-jlr200
. [PMID: 19556607] - Ujjal K Nath, Jeroen A Wilmer, Emma J Wallington, Heiko C Becker, Christian Möllers. Increasing erucic acid content through combination of endogenous low polyunsaturated fatty acids alleles with Ld-LPAAT + Bn-fae1 transgenes in rapeseed (Brassica napus L.).
TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik.
2009 Feb; 118(4):765-73. doi:
10.1007/s00122-008-0936-7
. [PMID: 19050848] - Mukhlesur Rahman, Zudong Sun, Peter B E McVetty, Genyi Li. High throughput genome-specific and gene-specific molecular markers for erucic acid genes in Brassica napus (L.) for marker-assisted selection in plant breeding.
TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik.
2008 Oct; 117(6):895-904. doi:
10.1007/s00122-008-0829-9
. [PMID: 18633592] - Cameron C Murphy, Eric J Murphy, Mikhail Y Golovko. Erucic acid is differentially taken up and metabolized in rat liver and heart.
Lipids.
2008 May; 43(5):391-400. doi:
10.1007/s11745-008-3168-3
. [PMID: 18350328] - Samija Amar, Wolfgang Ecke, Heiko C Becker, Christian Möllers. QTL for phytosterol and sinapate ester content in Brassica napus L. collocate with the two erucic acid genes.
TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik.
2008 May; 116(8):1051-61. doi:
10.1007/s00122-008-0734-2
. [PMID: 18335203] - Lori A Maggio-Hall, Paul Lyne, Jon A Wolff, Nancy P Keller. A single acyl-CoA dehydrogenase is required for catabolism of isoleucine, valine and short-chain fatty acids in Aspergillus nidulans.
Fungal genetics and biology : FG & B.
2008 Mar; 45(3):180-9. doi:
10.1016/j.fgb.2007.06.004
. [PMID: 17656140] - Gang Wu, Yuhua Wu, Ling Xiao, Xiaodan Li, Changming Lu. Zero erucic acid trait of rapeseed (Brassica napus L.) results from a deletion of four base pairs in the fatty acid elongase 1 gene.
TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik.
2008 Feb; 116(4):491-9. doi:
10.1007/s00122-007-0685-z
. [PMID: 18075728] - Nian Wang, Yajie Wang, Fang Tian, Graham J King, Chunyu Zhang, Yan Long, Lei Shi, Jinling Meng. A functional genomics resource for Brassica napus: development of an EMS mutagenized population and discovery of FAE1 point mutations by TILLING.
The New phytologist.
2008; 180(4):751-65. doi:
10.1111/j.1469-8137.2008.02619.x
. [PMID: 18811617] - Elzbieta Mietkiewska, Jennifer M Brost, E Michael Giblin, Dennis L Barton, David C Taylor. Cloning and functional characterization of the fatty acid elongase 1 (FAE1) gene from high erucic Crambe abyssinica cv. Prophet.
Plant biotechnology journal.
2007 Sep; 5(5):636-45. doi:
10.1111/j.1467-7652.2007.00268.x
. [PMID: 17565584] - Vanessa Devouge, Hélène Rogniaux, Nathalie Nési, Dominique Tessier, Jacques Guéguen, Colette Larré. Differential proteomic analysis of four near-isogenic Brassica napus varieties bred for their erucic acid and glucosinolate contents.
Journal of proteome research.
2007 Apr; 6(4):1342-53. doi:
10.1021/pr060450b
. [PMID: 17305382] - Sayantani Dasgupta, Dipak Kumar Bhattacharyya. Dietary effect of gamma-linolenic acid on the lipid profile of rat fed erucic acid rich oil.
Journal of oleo science.
2007; 56(11):569-77. doi:
10.5650/jos.56.569
. [PMID: 17938547] - D Qiu, C Morgan, J Shi, Y Long, J Liu, R Li, X Zhuang, Y Wang, X Tan, E Dietrich, T Weihmann, C Everett, S Vanstraelen, P Beckett, F Fraser, M Trick, S Barnes, J Wilmer, R Schmidt, J Li, D Li, J Meng, I Bancroft. A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content.
TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik.
2006 Dec; 114(1):67-80. doi:
10.1007/s00122-006-0411-2
. [PMID: 17033785] - Mikhail Y Golovko, Eric J Murphy. Uptake and metabolism of plasma-derived erucic acid by rat brain.
Journal of lipid research.
2006 Jun; 47(6):1289-97. doi:
10.1194/jlr.m600029-jlr200
. [PMID: 16525189] - S Kanrar, J Venkateswari, P Dureja, P B Kirti, V L Chopra. Modification of erucic acid content in Indian mustard (Brassica juncea) by up-regulation and down-regulation of the Brassica juncea FAT TY ACID ELONGATION1 (BjFAE1) gene.
Plant cell reports.
2006 Mar; 25(2):148-55. doi:
10.1007/s00299-005-0068-3
. [PMID: 16322995] - Ashok Jadhav, Vesna Katavic, Elizabeth-France Marillia, E Michael Giblin, Dennis L Barton, Arvind Kumar, Cory Sonntag, Vivijan Babic, Wilfred A Keller, David C Taylor. Increased levels of erucic acid in Brassica carinata by co-suppression and antisense repression of the endogenous FAD2 gene.
Metabolic engineering.
2005 May; 7(3):215-20. doi:
10.1016/j.ymben.2005.02.003
. [PMID: 15885619] - Juliette Puyaubert, Wilfrid Dieryck, Patricia Costaglioli, Sylvette Chevalier, Annick Breton, René Lessire. Temporal gene expression of 3-ketoacyl-CoA reductase is different in high and in low erucic acid Brassica napus cultivars during seed development.
Biochimica et biophysica acta.
2005 Feb; 1687(1-3):152-63. doi:
10.1016/j.bbalip.2004.11.014
. [PMID: 15708363] - Elzbieta Mietkiewska, E Michael Giblin, Song Wang, Dennis L Barton, Joan Dirpaul, Jennifer M Brost, Vesna Katavic, David C Taylor. Seed-specific heterologous expression of a nasturtium FAE gene in Arabidopsis results in a dramatic increase in the proportion of erucic acid.
Plant physiology.
2004 Sep; 136(1):2665-75. doi:
10.1104/pp.104.046839
. [PMID: 15333757] - Y P Wang, R J Snowdon, E Rudloff, P Wehling, W Friedt, K Sonntag. Cytogenetic characterization and fae1 gene variation in progenies from asymmetric somatic hybrids between Brassica napus and Crambe abyssinica.
Genome.
2004 Aug; 47(4):724-31. doi:
10.1139/g04-024
. [PMID: 15284877] - V Gupta, A Mukhopadhyay, N Arumugam, Y S Sodhi, D Pental, A K Pradhan. Molecular tagging of erucic acid trait in oilseed mustard (Brassica juncea) by QTL mapping and single nucleotide polymorphisms in FAE1 gene.
TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik.
2004 Feb; 108(4):743-9. doi:
10.1007/s00122-003-1481-z
. [PMID: 14564400] - Dale Walters, Lynda Raynor, Anne Mitchell, Robin Walker, Kerr Walker. Antifungal activities of four fatty acids against plant pathogenic fungi.
Mycopathologia.
2004 Jan; 157(1):87-90. doi:
10.1023/b:myco.0000012222.68156.2c
. [PMID: 15008350] - Pierre Lambelet, André Grandgirard, Stéphane Gregoire, Pierre Juaneda, Jean-Louis Sebedio, Constantin Bertoli. Formation of modified fatty acids and oxyphytosterols during refining of low erucic acid rapeseed oil.
Journal of agricultural and food chemistry.
2003 Jul; 51(15):4284-90. doi:
10.1021/jf030091u
. [PMID: 12848499] - T Mahmood, U Ekuere, F Yeh, A G Good, G R Stringam. RFLP linkage analysis and mapping genes controlling the fatty acid profile of Brassica juncea using reciprocal DH populations.
TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik.
2003 Jul; 107(2):283-90. doi:
10.1007/s00122-003-1244-x
. [PMID: 12669199] - Y P Wang, K Sonntag, E Rudloff. Development of rapeseed with high erucic acid content by asymmetric somatic hybridization between Brassica napus and Crambe abyssinica.
TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik.
2003 May; 106(7):1147-55. doi:
10.1007/s00122-002-1176-x
. [PMID: 12687349] - Joyce Beare-Rogers. Dietary fatty acids in an era of genetic modification.
Forum of nutrition.
2003; 56(?):63-4. doi:
"
. [PMID: 15806799] - Francisco J Hidalgo, Gemma Gómez, José L Navarro, Rosario Zamora. Oil stability prediction by high-resolution (13)C nuclear magnetic resonance spectroscopy.
Journal of agricultural and food chemistry.
2002 Oct; 50(21):5825-31. doi:
10.1021/jf0256539
. [PMID: 12358445] - C O Eromosele, I C Eromosele. Fatty acid compositions of seed oils of Haematostaphis barteri and Ximenia americana.
Bioresource technology.
2002 May; 82(3):303-4. doi:
10.1016/s0960-8524(01)00179-1
. [PMID: 11991081] - J Plat, R P Mensink. Effects of diets enriched with two different plant stanol ester mixtures on plasma ubiquinol-10 and fat-soluble antioxidant concentrations.
Metabolism: clinical and experimental.
2001 May; 50(5):520-9. doi:
10.1053/meta.2001.22509
. [PMID: 11319712] - M Ghanevati, J G Jaworski. Active-site residues of a plant membrane-bound fatty acid elongase beta-ketoacyl-CoA synthase, FAE1 KCS.
Biochimica et biophysica acta.
2001 Jan; 1530(1):77-85. doi:
10.1016/s1388-1981(00)00168-2
. [PMID: 11341960] - C K Qi, J Y Gai, Y M Zhang. [Major gene plus poly-gene inheritance of erucic acid content in Brassica napus L].
Yi chuan xue bao = Acta genetica Sinica.
2001; 28(2):182-7. doi:
"
. [PMID: 11233263] - V Katavic, W Friesen, D L Barton, K K Gossen, E M Giblin, T Luciw, J An, J Zou, S L MacKenzie, W A Keller, D Males, D C Taylor. Utility of the Arabidopsis FAE1 and yeast SLC1-1 genes for improvements in erucic acid and oil content in rapeseed.
Biochemical Society transactions.
2000 Dec; 28(6):935-7. doi:
. [PMID: 11171262]
- N Kaushik, A Agnihotri. GLC analysis of Indian rapeseed-mustard to study the variability of fatty acid composition.
Biochemical Society transactions.
2000 Dec; 28(6):581-3. doi:
10.1042/bst0280581
. [PMID: 11171132] - J A Wilmer, A P Brown, K Forsyth, S Carnaby, T Barsby, A R Slabas. Limnanthes douglasii erucic acid-specific lysophospatidic acid acyltransferase activity in oilseed rape: an analysis of biochemical effects.
Biochemical Society transactions.
2000 Dec; 28(6):964-6. doi:
10.1042/bst0280964
. [PMID: 11171273] - J G Metz, M R Pollard, L Anderson, T R Hayes, M W Lassner. Purification of a jojoba embryo fatty acyl-coenzyme A reductase and expression of its cDNA in high erucic acid rapeseed.
Plant physiology.
2000 Mar; 122(3):635-44. doi:
10.1104/pp.122.3.635
. [PMID: 10712526] - A S Truswell, N Choudhury. Monounsaturated oils do not all have the same effect on plasma cholesterol.
European journal of clinical nutrition.
1998 May; 52(5):312-5. doi:
10.1038/sj.ejcn.1600566
. [PMID: 9630379] - D De Craemer, C Van den Branden, M Fontaine, J Vamecq. Effects of Lorenzo's Oil on peroxisomes in healthy mice.
Prostaglandins & other lipid mediators.
1998 Mar; 55(4):237-44. doi:
10.1016/s0090-6980(98)00023-9
. [PMID: 9644114] - J K Kramer, F D Sauer, E R Farnworth, D Stevenson, G A Rock. Hematological and lipid changes in newborn piglets fed milk-replacer diets containing erucic acid.
Lipids.
1998 Jan; 33(1):1-10. doi:
10.1007/s11745-998-0174-1
. [PMID: 9470168] - J L Guil, I Rodríguez-García, E Torija. Nutritional and toxic factors in selected wild edible plants.
Plant foods for human nutrition (Dordrecht, Netherlands).
1997; 51(2):99-107. doi:
10.1023/a:1007988815888
. [PMID: 9527345] - R B Jørgensen, B Y Chen, B F Cheng, W K Heneen, V Simonsen. Random amplified polymorphic DNA markers of the Brassica alboglabra chromosome of a B. campestris-alboglabra addition line.
Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology.
1996 Feb; 4(2):111-4. doi:
10.1007/bf02259703
. [PMID: 8785604] - M W Lassner, C K Levering, H M Davies, D S Knutzon. Lysophosphatidic acid acyltransferase from meadowfoam mediates insertion of erucic acid at the sn-2 position of triacylglycerol in transgenic rapeseed oil.
Plant physiology.
1995 Dec; 109(4):1389-94. doi:
10.1104/pp.109.4.1389
. [PMID: 8539298] - H Reyes, J Ribalta, I Hernández, M Arrese, N Pak, M Wells, R E Kirsch. Is dietary erucic acid hepatotoxic in pregnancy? An experimental study in rats and hamsters.
Hepatology (Baltimore, Md.).
1995 May; 21(5):1373-9. doi:
. [PMID: 7737644]
- M Rasmussen, A B Moser, J Borel, S Khangoora, H W Moser. Brain, liver, and adipose tissue erucic and very long chain fatty acid levels in adrenoleukodystrophy patients treated with glyceryl trierucate and trioleate oils (Lorenzo's oil).
Neurochemical research.
1994 Aug; 19(8):1073-82. doi:
10.1007/bf00968719
. [PMID: 7800117] - E Zammarchi, M A Donati, F Tucci, C Fonda, F Fanelli, R Pazzaglia. Acute onset of X-linked adrenoleukodystrophy mimicking encephalitis.
Brain & development.
1994 May; 16(3):238-40. doi:
10.1016/0387-7604(94)90077-9
. [PMID: 7943611] - I H Badawy, B Atta, W M Ahmed. Biochemical and toxicological studies on the effect of high and low erucic acid rapeseed oil on rats.
Die Nahrung.
1994; 38(4):402-11. doi:
10.1002/food.19940380410
. [PMID: 7935743]