Hydroxypyruvic acid (BioDeep_00000004388)
Secondary id: BioDeep_00001868161
human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019
代谢物信息卡片
化学式: C3H4O4 (104.011)
中文名称: β-羟基丙酮酸, 羟基丙酮酸
谱图信息:
最多检出来源 Homo sapiens(blood) 20.14%
分子结构信息
SMILES: C(C(=O)C(=O)O)O
InChI: InChI=1S/C3H4O4/c4-1-2(5)3(6)7/h4H,1H2,(H,6,7)
描述信息
3-hydroxypyruvic acid, also known as beta-hydroxypyruvate or oh-pyr, belongs to beta hydroxy acids and derivatives class of compounds. Those are compounds containing a carboxylic acid substituted with a hydroxyl group on the C3 carbon atom. 3-hydroxypyruvic acid is soluble (in water) and a moderately acidic compound (based on its pKa). 3-hydroxypyruvic acid can be found in a number of food items such as fox grape, black mulberry, elliotts blueberry, and silver linden, which makes 3-hydroxypyruvic acid a potential biomarker for the consumption of these food products. 3-hydroxypyruvic acid can be found primarily in blood and urine. 3-hydroxypyruvic acid exists in all living organisms, ranging from bacteria to humans. In humans, 3-hydroxypyruvic acid is involved in the glycine and serine metabolism. 3-hydroxypyruvic acid is also involved in several metabolic disorders, some of which include dihydropyrimidine dehydrogenase deficiency (DHPD), 3-phosphoglycerate dehydrogenase deficiency, hyperglycinemia, non-ketotic, and non ketotic hyperglycinemia. Hydroxypyruvic acid is a pyruvic acid derivative with the formula C3H4O4 and a neutral charge with an atomic mass of 104.06146 .
Hydroxypyruvic acid is an intermediate in the metabolism of Glycine, serine and threonine. It is a substrate for Serine--pyruvate aminotransferase and Glyoxylate reductase/hydroxypyruvate reductase.
Hydroxypyruvic acid (β-Hydroxypyruvic acid) is an intermediate in the metabolism of glycine, serine and threonine. Hydroxypyruvic acid is a substrate for serine-pyruvate aminotransferase and glyoxylate reductase/hydroxypyruvate reductase. Hydroxypyruvic acid is involved in the metabolic disorder which is the dimethylglycine dehydrogenase deficiency pathway.
同义名列表
19 个代谢物同义名
2-oxo-3-hydroxy-propanoic acid; 3-Hydroxy-2-oxo-propanoic acid; 3-Hydroxy-2-oxopropanoic acid; 2-Oxo-3-hydroxypropanoic acid; 2-Oxo-3-hydroxypropionic acid; 3-Hydroxy-2-oxopropionic acid; β-Hydroxypyruvic acid; 3-Hydroxy-2-oxopropanoate; beta-Hydroxypyruvic acid; 3-Hydroxypyruvic acid; β-Hydroxypyruvic acid; beta-Hydroxypyruvate; hydroxypyruvic acid; 3-Hydroxypyruvate; Hydroxypyruvate; OH-Pyruvate; OH-Pyr; Hydroxypyruvic acid; Hydroxypyruvate
数据库引用编号
26 个数据库交叉引用编号
- ChEBI: CHEBI:30841
- KEGG: C00168
- PubChem: 964
- HMDB: HMDB0001352
- Metlin: METLIN482
- DrugBank: DB02951
- ChEMBL: CHEMBL1230192
- Wikipedia: Hydroxypyruvic_acid
- MetaCyc: OH-PYR
- KNApSAcK: C00007563
- foodb: FDB030913
- chemspider: 939
- CAS: 131000-16-3
- CAS: 1113-60-6
- PMhub: MS000016809
- ChEBI: CHEBI:17180
- PubChem: 3468
- PDB-CCD: 3PY
- 3DMET: B00049
- NIKKAJI: J515.825G
- RefMet: Hydroxypyruvic acid
- medchemexpress: HY-113013
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-274
- KNApSAcK: 17180
- LOTUS: LTS0022279
- wikidata: Q2823271
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
147 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(120)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
INOH(2)
- Glycine and Serine metabolism ( Glycine and Serine metabolism ):
Guanidino-acetic acid + S-Adenosyl-L-methionine ⟶ Creatine + S-Adenosyl-L-homocysteine
- L-Serine + Pyruvic acid = Hydroxy-pyruvic acid + L-Alanine ( Glycine and Serine metabolism ):
L-Serine + Pyruvic acid ⟶ Hydroxy-pyruvic acid + L-Alanine
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(25)
- Glycine and Serine Metabolism:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Dimethylglycine Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Dihydropyrimidine Dehydrogenase Deficiency (DHPD):
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Sarcosinemia:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Non-Ketotic Hyperglycinemia:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Dimethylglycine Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Hyperglycinemia, Non-Ketotic:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- 3-Phosphoglycerate Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Glycine and Serine Metabolism:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- 3-Phosphoglycerate Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Dihydropyrimidine Dehydrogenase Deficiency (DHPD):
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Dimethylglycine Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Sarcosinemia:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Non-Ketotic Hyperglycinemia:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Hyperglycinemia, Non-Ketotic:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- 3-Phosphoglycerate Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Glycine and Serine Metabolism:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Glycine and Serine Metabolism:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Glycine and Serine Metabolism:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Glycine and Serine Metabolism:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Dihydropyrimidine Dehydrogenase Deficiency (DHPD):
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Dimethylglycine Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Sarcosinemia:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Non-Ketotic Hyperglycinemia:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Hyperglycinemia, Non-Ketotic:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
PharmGKB(0)
4 个相关的物种来源信息
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
- 29303 - Streptomyces cattleya: 10.1016/J.CHEMBIOL.2006.02.014
- 5691 - Trypanosoma brucei:
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Anne Jahn, Maike Petersen. Hydroxy(phenyl)pyruvic acid reductase in Actaea racemosa L.: a putative enzyme in cimicifugic and fukinolic acid biosynthesis.
Planta.
2024 Mar; 259(5):102. doi:
10.1007/s00425-024-04382-6
. [PMID: 38549005] - Stéphanie Arrivault, Toshihiro Obata. Quantification of Photorespiratory Intermediates by Mass Spectrometry-Based Approaches.
Methods in molecular biology (Clifton, N.J.).
2017; 1653(?):97-104. doi:
10.1007/978-1-4939-7225-8_7
. [PMID: 28822128] - Sheng Zhang, Songyan Wang, Matthew D Puhl, Xuntian Jiang, Krzysztof L Hyrc, Erin Laciny, Michael J Wallendorf, Kirk L Pappan, Joseph T Coyle, Burton M Wice. Global biochemical profiling identifies β-hydroxypyruvate as a potential mediator of type 2 diabetes in mice and humans.
Diabetes.
2015 Apr; 64(4):1383-94. doi:
10.2337/db14-1188
. [PMID: 25368100] - Adam D Lietzan, Martin St Maurice. Insights into the carboxyltransferase reaction of pyruvate carboxylase from the structures of bound product and intermediate analogs.
Biochemical and biophysical research communications.
2013 Nov; 441(2):377-82. doi:
10.1016/j.bbrc.2013.10.066
. [PMID: 24157795] - Markus Niessen, Katrin Krause, Ina Horst, Norma Staebler, Stephanie Klaus, Stefanie Gaertner, Rashad Kebeish, Wagner L Araujo, Alisdair R Fernie, Christoph Peterhansel. Two alanine aminotranferases link mitochondrial glycolate oxidation to the major photorespiratory pathway in Arabidopsis and rice.
Journal of experimental botany.
2012 Apr; 63(7):2705-16. doi:
10.1093/jxb/err453
. [PMID: 22268146] - Ana P Ortega-Galisteo, María Rodríguez-Serrano, Diana M Pazmiño, Dharmendra K Gupta, Luisa M Sandalio, María C Romero-Puertas. S-Nitrosylated proteins in pea (Pisum sativum L.) leaf peroxisomes: changes under abiotic stress.
Journal of experimental botany.
2012 Mar; 63(5):2089-103. doi:
10.1093/jxb/err414
. [PMID: 22213812] - Inga Hebbelmann, Jennifer Selinski, Corinna Wehmeyer, Tatjana Goss, Ingo Voss, Paula Mulo, Saijaliisa Kangasjärvi, Eva-Mari Aro, Marie-Luise Oelze, Karl-Josef Dietz, Adriano Nunes-Nesi, Phuc T Do, Alisdair R Fernie, Sai K Talla, Agepati S Raghavendra, Vera Linke, Renate Scheibe. Multiple strategies to prevent oxidative stress in Arabidopsis plants lacking the malate valve enzyme NADP-malate dehydrogenase.
Journal of experimental botany.
2012 Feb; 63(3):1445-59. doi:
10.1093/jxb/err386
. [PMID: 22140244] - Alexandra Maier, Holger Fahnenstich, Susanne von Caemmerer, Martin K M Engqvist, Andreas P M Weber, Ulf-Ingo Flügge, Veronica G Maurino. Transgenic Introduction of a Glycolate Oxidative Cycle into A. thaliana Chloroplasts Leads to Growth Improvement.
Frontiers in plant science.
2012; 3(?):38. doi:
10.3389/fpls.2012.00038
. [PMID: 22639647] - Nicole Linka, Christian Esser. Transport proteins regulate the flux of metabolites and cofactors across the membrane of plant peroxisomes.
Frontiers in plant science.
2012; 3(?):3. doi:
10.3389/fpls.2012.00003
. [PMID: 22645564] - Marina Leterrier, Juan B Barroso, Raquel Valderrama, José M Palma, Francisco J Corpas. NADP-dependent isocitrate dehydrogenase from Arabidopsis roots contributes in the mechanism of defence against the nitro-oxidative stress induced by salinity.
TheScientificWorldJournal.
2012; 2012(?):694740. doi:
10.1100/2012/694740
. [PMID: 22649311] - Josirley de F C Carvalho, Pippa J Madgwick, Stephen J Powers, Alfred J Keys, Peter J Lea, Martin A J Parry. An engineered pathway for glyoxylate metabolism in tobacco plants aimed to avoid the release of ammonia in photorespiration.
BMC biotechnology.
2011 Nov; 11(?):111. doi:
10.1186/1472-6750-11-111
. [PMID: 22104170] - Osamu Ueno. Structural and biochemical characterization of the C₃-C₄ intermediate Brassica gravinae and relatives, with particular reference to cellular distribution of Rubisco.
Journal of experimental botany.
2011 Nov; 62(15):5347-55. doi:
10.1093/jxb/err187
. [PMID: 21825284] - Ramona Kern, Hermann Bauwe, Martin Hagemann. Evolution of enzymes involved in the photorespiratory 2-phosphoglycolate cycle from cyanobacteria via algae toward plants.
Photosynthesis research.
2011 Sep; 109(1-3):103-14. doi:
10.1007/s11120-010-9615-z
. [PMID: 21222161] - Asaph B Cousins, Berkley J Walker, Itsara Pracharoenwattana, Steven M Smith, Murray R Badger. Peroxisomal hydroxypyruvate reductase is not essential for photorespiration in Arabidopsis but its absence causes an increase in the stoichiometry of photorespiratory CO2 release.
Photosynthesis research.
2011 Sep; 108(2-3):91-100. doi:
10.1007/s11120-011-9651-3
. [PMID: 21567290] - Stefan Timm, Alexandra Florian, Kathrin Jahnke, Adriano Nunes-Nesi, Alisdair R Fernie, Hermann Bauwe. The hydroxypyruvate-reducing system in Arabidopsis: multiple enzymes for the same end.
Plant physiology.
2011 Feb; 155(2):694-705. doi:
10.1104/pp.110.166538
. [PMID: 21205613] - Shoji Mano, Tomoki Miwa, Shuh-ichi Nishikawa, Tetsuro Mimura, Mikio Nishimura. The Plant Organelles Database 2 (PODB2): an updated resource containing movie data of plant organelle dynamics.
Plant & cell physiology.
2011 Feb; 52(2):244-53. doi:
10.1093/pcp/pcq184
. [PMID: 21115470] - Navneet Kaur, Jianping Hu. Defining the plant peroxisomal proteome: from Arabidopsis to rice.
Frontiers in plant science.
2011; 2(?):103. doi:
10.3389/fpls.2011.00103
. [PMID: 22645559] - Jérôme Harambat, Sonia Fargue, Justine Bacchetta, Cécile Acquaviva, Pierre Cochat. Primary hyperoxaluria.
International journal of nephrology.
2011; 2011(?):864580. doi:
10.4061/2011/864580
. [PMID: 21748001] - Seong Pil Chung, Kimiko Sogabe, Hwan Ki Park, Ying Song, Koji Ono, Rabab M Abou El-Magd, Yuji Shishido, Kazuko Yorita, Takashi Sakai, Kiyoshi Fukui. Potential cytotoxic effect of hydroxypyruvate produced from D-serine by astroglial D-amino acid oxidase.
Journal of biochemistry.
2010 Dec; 148(6):743-53. doi:
10.1093/jb/mvq112
. [PMID: 20876609] - Tiago Tomaz, Matthieu Bagard, Itsara Pracharoenwattana, Pernilla Lindén, Chun Pong Lee, Adam J Carroll, Elke Ströher, Steven M Smith, Per Gardeström, A Harvey Millar. Mitochondrial malate dehydrogenase lowers leaf respiration and alters photorespiration and plant growth in Arabidopsis.
Plant physiology.
2010 Nov; 154(3):1143-57. doi:
10.1104/pp.110.161612
. [PMID: 20876337] - Chenping Xu, Bingru Huang. Differential proteomic response to heat stress in thermal Agrostis scabra and heat-sensitive Agrostis stolonifera.
Physiologia plantarum.
2010 Jun; 139(2):192-204. doi:
10.1111/j.1399-3054.2010.01357.x
. [PMID: 20113435] - Margaretha J van der Merwe, Sonia Osorio, Wagner L Araújo, Ilse Balbo, Adriano Nunes-Nesi, Eugenia Maximova, Fernando Carrari, Victoria I Bunik, Staffan Persson, Alisdair R Fernie. Tricarboxylic acid cycle activity regulates tomato root growth via effects on secondary cell wall production.
Plant physiology.
2010 Jun; 153(2):611-21. doi:
10.1104/pp.109.149047
. [PMID: 20118274] - Wagner L Araújo, Kimitsune Ishizaki, Adriano Nunes-Nesi, Tony R Larson, Takayuki Tohge, Ina Krahnert, Sandra Witt, Toshihiro Obata, Nicolas Schauer, Ian A Graham, Christopher J Leaver, Alisdair R Fernie. Identification of the 2-hydroxyglutarate and isovaleryl-CoA dehydrogenases as alternative electron donors linking lysine catabolism to the electron transport chain of Arabidopsis mitochondria.
The Plant cell.
2010 May; 22(5):1549-63. doi:
10.1105/tpc.110.075630
. [PMID: 20501910] - Verena Janiak, Maike Petersen, Matthias Zentgraf, Gerhard Klebe, Andreas Heine. Structure and substrate docking of a hydroxy(phenyl)pyruvate reductase from the higher plant Coleus blumei Benth.
Acta crystallographica. Section D, Biological crystallography.
2010 May; 66(Pt 5):593-603. doi:
10.1107/s0907444910006360
. [PMID: 20445235] - Ralph Kissen, Per Winge, Diem Hong Thi Tran, Tommy S Jørstad, Trond R Størseth, Tone Christensen, Atle M Bones. Transcriptional profiling of an Fd-GOGAT1/GLU1 mutant in Arabidopsis thaliana reveals a multiple stress response and extensive reprogramming of the transcriptome.
BMC genomics.
2010 Mar; 11(?):190. doi:
10.1186/1471-2164-11-190
. [PMID: 20307264] - Lena Burri, G Hege Thoresen, Rolf K Berge. The Role of PPARα Activation in Liver and Muscle.
PPAR research.
2010; 2010(?):. doi:
10.1155/2010/542359
. [PMID: 20847941] - Itsara Pracharoenwattana, Wenxu Zhou, Steven M Smith. Fatty acid beta-oxidation in germinating Arabidopsis seeds is supported by peroxisomal hydroxypyruvate reductase when malate dehydrogenase is absent.
Plant molecular biology.
2010 Jan; 72(1-2):101-9. doi:
10.1007/s11103-009-9554-2
. [PMID: 19812894] - Jianqiang Zhang, Ying Zhang, Ning Li, Zhihong Liu, Changming Xiong, Xinhai Ni, Yaoli Pu, Rutai Hui, Jianguo He, Jielin Pu. Potential diagnostic biomarkers in serum of idiopathic pulmonary arterial hypertension.
Respiratory medicine.
2009 Dec; 103(12):1801-6. doi:
10.1016/j.rmed.2009.07.017
. [PMID: 19703762] - Wendy L Allan, Shawn M Clark, Gordon J Hoover, Barry J Shelp. Role of plant glyoxylate reductases during stress: a hypothesis.
The Biochemical journal.
2009 Sep; 423(1):15-22. doi:
10.1042/bj20090826
. [PMID: 19740079] - Bhupendra Chaudhary, Ran Hovav, Lex Flagel, Ron Mittler, Jonathan F Wendel. Parallel expression evolution of oxidative stress-related genes in fiber from wild and domesticated diploid and polyploid cotton (Gossypium).
BMC genomics.
2009 Aug; 10(?):378. doi:
10.1186/1471-2164-10-378
. [PMID: 19686594] - Björn C Willige, Michael Kutzer, Felix Tebartz, Dorothea Bartels. Subcellular localization and enzymatic properties of differentially expressed transketolase genes isolated from the desiccation tolerant resurrection plant Craterostigma plantagineum.
Planta.
2009 Feb; 229(3):659-66. doi:
10.1007/s00425-008-0863-5
. [PMID: 19052774] - Yang Wang, Michelle Beaith, Maryse Chalifoux, Jifeng Ying, Tina Uchacz, Carlene Sarvas, Rebecca Griffiths, Monika Kuzma, Jiangxin Wan, Yafan Huang. Shoot-specific down-regulation of protein farnesyltransferase (alpha-subunit) for yield protection against drought in canola.
Molecular plant.
2009 Jan; 2(1):191-200. doi:
10.1093/mp/ssn088
. [PMID: 19529821] - Asaph B Cousins, Itsara Pracharoenwattana, Wenxu Zhou, Steven M Smith, Murray R Badger. Peroxisomal malate dehydrogenase is not essential for photorespiration in Arabidopsis but its absence causes an increase in the stoichiometry of photorespiratory CO2 release.
Plant physiology.
2008 Oct; 148(2):786-95. doi:
10.1104/pp.108.122622
. [PMID: 18685043] - Stefan Timm, Adriano Nunes-Nesi, Tiit Pärnik, Katja Morgenthal, Stefanie Wienkoop, Olav Keerberg, Wolfram Weckwerth, Leszek A Kleczkowski, Alisdair R Fernie, Hermann Bauwe. A cytosolic pathway for the conversion of hydroxypyruvate to glycerate during photorespiration in Arabidopsis.
The Plant cell.
2008 Oct; 20(10):2848-59. doi:
10.1105/tpc.108.062265
. [PMID: 18952776] - Ki-Hong Jung, Jinwon Lee, Chris Dardick, Young-Su Seo, Peijian Cao, Patrick Canlas, Jirapa Phetsom, Xia Xu, Shu Ouyang, Kyungsook An, Yun-Ja Cho, Geun-Cheol Lee, Yoosook Lee, Gynheung An, Pamela C Ronald. Identification and functional analysis of light-responsive unique genes and gene family members in rice.
PLoS genetics.
2008 Aug; 4(8):e1000164. doi:
10.1371/journal.pgen.1000164
. [PMID: 18725934] - Shigeru Sato, Masanori Arita, Tomoyoshi Soga, Takaaki Nishioka, Masaru Tomita. Time-resolved metabolomics reveals metabolic modulation in rice foliage.
BMC systems biology.
2008 Jun; 2(?):51. doi:
10.1186/1752-0509-2-51
. [PMID: 18564421] - Maria Kendziorek, Andrzej Paszkowski. Properties of serine:glyoxylate aminotransferase purified from Arabidopsis thaliana leaves.
Acta biochimica et biophysica Sinica.
2008 Feb; 40(2):102-10. doi:
10.1111/j.1745-7270.2008.00383.x
. [PMID: 18235971] - Jeffrey P Simpson, Rosa Di Leo, Preetinder K Dhanoa, Wendy L Allan, Amina Makhmoudova, Shawn M Clark, Gordon J Hoover, Robert T Mullen, Barry J Shelp. Identification and characterization of a plastid-localized Arabidopsis glyoxylate reductase isoform: comparison with a cytosolic isoform and implications for cellular redox homeostasis and aldehyde detoxification.
Journal of experimental botany.
2008; 59(9):2545-54. doi:
10.1093/jxb/ern123
. [PMID: 18495639] - Wendy L Allan, Jeffrey P Simpson, Shawn M Clark, Barry J Shelp. Gamma-hydroxybutyrate accumulation in Arabidopsis and tobacco plants is a general response to abiotic stress: putative regulation by redox balance and glyoxylate reductase isoforms.
Journal of experimental botany.
2008; 59(9):2555-64. doi:
10.1093/jxb/ern122
. [PMID: 18495640] - Xu Zhang, Jake K Byrnes, Thomas S Gal, Wen-Hsiung Li, Justin O Borevitz. Whole genome transcriptome polymorphisms in Arabidopsis thaliana.
Genome biology.
2008; 9(11):R165. doi:
10.1186/gb-2008-9-11-r165
. [PMID: 19025653] - Pei-Hong Shen, Bo Wu. Over-expression of a hydroxypyruvate reductase in Methylobacterium sp. MB200 enhances glyoxylate accumulation.
Journal of industrial microbiology & biotechnology.
2007 Oct; 34(10):657-63. doi:
10.1007/s10295-007-0238-0
. [PMID: 17653579] - Maarten Fauvart, Kristien Braeken, Ruth Daniels, Karen Vos, Maxime Ndayizeye, Jean-Paul Noben, Johan Robben, Jos Vanderleyden, Jan Michiels. Identification of a novel glyoxylate reductase supports phylogeny-based enzymatic substrate specificity prediction.
Biochimica et biophysica acta.
2007 Sep; 1774(9):1092-8. doi:
10.1016/j.bbapap.2007.06.009
. [PMID: 17693143] - Yaovalak Teerajetgul, Rayhan Zubair Hossain, Kenichi Yamakawa, Makoto Morozumi, Kimio Sugaya, Yoshihide Ogawa. Oxalate synthesis from hydroxypyruvate in vitamin-B6-deficient rats.
Urological research.
2007 Aug; 35(4):173-8. doi:
10.1007/s00240-007-0102-8
. [PMID: 17565492] - Hiroyuki Tanaka, Atsushi Yamamoto, Tetsuo Ishida, Kihachiro Horiike. Simultaneous measurement of D-serine dehydratase and d-amino acid oxidase activities by the detection of 2-oxo-acid formation with reverse-phase high-performance liquid chromatography.
Analytical biochemistry.
2007 Mar; 362(1):83-8. doi:
10.1016/j.ab.2006.12.025
. [PMID: 17254537] - Michael P S Booth, R Conners, Gill Rumsby, R Leo Brady. Structural basis of substrate specificity in human glyoxylate reductase/hydroxypyruvate reductase.
Journal of molecular biology.
2006 Jun; 360(1):178-89. doi:
10.1016/j.jmb.2006.05.018
. [PMID: 16756993] - Matthias R Schulze, Rolf Wachter, Alexander Schmeisser, Rainer Fischer, Ruth H Strasser. Restrictive cardiomyopathy in a patient with primary hyperoxaluria type II.
Clinical research in cardiology : official journal of the German Cardiac Society.
2006 Apr; 95(4):235-40. doi:
10.1007/s00392-006-0362-2
. [PMID: 16598594] - Yoshikazu Hasegawa, Motoaki Seki, Yoshiki Mochizuki, Naohiko Heida, Katsura Hirosawa, Naoki Okamoto, Tetsuya Sakurai, Masakazu Satou, Kenji Akiyama, Kei Iida, Kisik Lee, Shigehiko Kanaya, Taku Demura, Kazuo Shinozaki, Akihiko Konagaya, Tetsuro Toyoda. A flexible representation of omic knowledge for thorough analysis of microarray data.
Plant methods.
2006 Mar; 2(?):5. doi:
10.1186/1746-4811-2-5
. [PMID: 16509996] - Ryosuke Tatsunami, Tadao Yoshioka. Enzymatic and mechanistic studies on the formation of N-phenylglycolohydroxamic acid from nitrosobenzene and pyruvate in spinach leaf homogenate.
Journal of agricultural and food chemistry.
2006 Jan; 54(2):590-6. doi:
10.1021/jf051969f
. [PMID: 16417326] - Osamu Ueno, Yasuyuki Yoshimura, Naoki Sentoku. Variation in the activity of some enzymes of photorespiratory metabolism in C4 grasses.
Annals of botany.
2005 Oct; 96(5):863-9. doi:
10.1093/aob/mci238
. [PMID: 16100226] - Raphael Genolet, Sander Kersten, Olivier Braissant, Stéphane Mandard, Nguan Soon Tan, Philipp Bucher, Béatrice Desvergne, Liliane Michalik, Walter Wahli. Promoter rearrangements cause species-specific hepatic regulation of the glyoxylate reductase/hydroxypyruvate reductase gene by the peroxisome proliferator-activated receptor alpha.
The Journal of biological chemistry.
2005 Jun; 280(25):24143-52. doi:
10.1074/jbc.m502649200
. [PMID: 15840574] - Brian J Haas, Jennifer R Wortman, Catherine M Ronning, Linda I Hannick, Roger K Smith, Rama Maiti, Agnes P Chan, Chunhui Yu, Maryam Farzad, Dongying Wu, Owen White, Christopher D Town. Complete reannotation of the Arabidopsis genome: methods, tools, protocols and the final release.
BMC biology.
2005 Mar; 3(?):7. doi:
10.1186/1741-7007-3-7
. [PMID: 15784138] - R E Williams, H Major, E A Lock, E M Lenz, I D Wilson. D-Serine-induced nephrotoxicity: a HPLC-TOF/MS-based metabonomics approach.
Toxicology.
2005 Feb; 207(2):179-90. doi:
10.1016/j.tox.2004.08.023
. [PMID: 15596249] - Dietmar J Stahl, Dorothee U Kloos, Reinhard Hehl. A sugar beet chlorophyll a/b binding protein promoter void of G-box like elements confers strong and leaf specific reporter gene expression in transgenic sugar beet.
BMC biotechnology.
2004 Dec; 4(?):31. doi:
10.1186/1472-6750-4-31
. [PMID: 15579211] - Christopher J Danpure, Gill Rumsby. Molecular aetiology of primary hyperoxaluria and its implications for clinical management.
Expert reviews in molecular medicine.
2004 Jan; 6(1):1-16. doi:
10.1017/s1462399404007203
. [PMID: 14987413] - Yurong Bi, Jinkui Guo, Lixin Zhang, Yumshing Wong. Changes in some enzymes of microbodies and plastid development in excised radish cotyledons: effect of narciclasine.
Journal of plant physiology.
2003 Sep; 160(9):1041-9. doi:
10.1078/0176-1617-00911
. [PMID: 14593805] - Yasushi Okinaka, Ching-Hong Yang, Eliot Herman, Anthony Kinney, Noel T Keen. The P34 syringolide elicitor receptor interacts with a soybean photorespiration enzyme, NADH-dependent hydroxypyruvate reductase.
Molecular plant-microbe interactions : MPMI.
2002 Dec; 15(12):1213-8. doi:
10.1094/mpmi.2002.15.12.1213
. [PMID: 12481993] - Youichiro Fukao, Makoto Hayashi, Mikio Nishimura. Proteomic analysis of leaf peroxisomal proteins in greening cotyledons of Arabidopsis thaliana.
Plant & cell physiology.
2002 Jul; 43(7):689-96. doi:
10.1093/pcp/pcf101
. [PMID: 12154131] - C W Lam, Y P Yuen, C K Lai, S F Tong, L K Lau, K L Tong, Y W Chan. Novel mutation in the GRHPR gene in a Chinese patient with primary hyperoxaluria type 2 requiring renal transplantation from a living related donor.
American journal of kidney diseases : the official journal of the National Kidney Foundation.
2001 Dec; 38(6):1307-10. doi:
10.1053/ajkd.2001.29229
. [PMID: 11728965] - D Pastore, D Trono, M N Laus, N Di Fonzo, S Passarella. Alternative oxidase in durum wheat mitochondria. Activation by pyruvate, hydroxypyruvate and glyoxylate and physiological role.
Plant & cell physiology.
2001 Dec; 42(12):1373-82. doi:
10.1093/pcp/pce174
. [PMID: 11773530] - G Rumsby, A Sharma, D P Cregeen, L R Solomon. Primary hyperoxaluria type 2 without L-glycericaciduria: is the disease under-diagnosed?.
Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.
2001 Aug; 16(8):1697-9. doi:
10.1093/ndt/16.8.1697
. [PMID: 11477177] - M Petrarulo, M Marangella, D Cosseddu, F Linari. High-performance liquid chromatographic assay for L-glyceric acid in body fluids. Application in primary hyperoxaluria type 2.
Clinica chimica acta; international journal of clinical chemistry.
1992 Oct; 211(3):143-53. doi:
10.1016/0009-8981(92)90190-2
. [PMID: 1458609] - J Vamecq, J P Draye, J H Poupaert. Studies on the metabolism of glycolyl-CoA.
Biochemistry and cell biology = Biochimie et biologie cellulaire.
1990 May; 68(5):846-51. doi:
10.1139/o90-125
. [PMID: 1976013] - K G Raghavan, K E Richardson. Hyperoxaluria in L-glyceric aciduria: possible nonenzymic mechanism.
Biochemical medicine.
1983 Feb; 29(1):114-21. doi:
10.1016/0006-2944(83)90060-1
. [PMID: 6838496] - K G Raghavan, K E Richardson. Hydroxypyruvate-mediated regulation of oxalate synthesis by lactate dehydrogenase and its relevance to primary hyperoxaluria type II.
Biochemical medicine.
1983 Feb; 29(1):101-13. doi:
10.1016/0006-2944(83)90059-5
. [PMID: 6838495] - T Noguchi, S Hayashi. Peroxisomal localization and properties of tryptophan aminotransferase in plant leaves.
The Journal of biological chemistry.
1980 Mar; 255(6):2267-9. doi:
. [PMID: 7358669]
- . .
.
. doi:
. [PMID: 20194922]