Pimelic acid (BioDeep_00000001634)

 

Secondary id: BioDeep_00000405382

natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019


代谢物信息卡片


1,5-Pentanedicarboxylic acid

化学式: C7H12O4 (160.0736)
中文名称: 庚二酸, 蒲桃酸
谱图信息: 最多检出来源 Homo sapiens(feces) 40.66%

分子结构信息

SMILES: C(C(=O)O)CCCCC(=O)O
InChI: InChI=1S/C7H12O4/c8-6(9)4-2-1-3-5-7(10)11/h1-5H2,(H,8,9)(H,10,11)

描述信息

Pimelic acid, also known as heptanedioic acid is a dicarboxylic acid. Derivatives of pimelic acid are involved in the biosynthesis of the amino acid called lysine. Pimelic acid is one methylene longer than a related dicarboxylic acid, adipic acid, a precursor to many polyesters and polyamides. Pimelic acid is essential for the synthesis of biotin (also called vitamin B7). Biotin is a heterocyclic, S-containing monocarboxylic acid that is made from two precursors, alanine and pimeloyl-CoA. Biotin is important in fatty acid synthesis, branched-chain amino acid catabolism, and gluconeogenesis. Biotin is found in a wide range of foods. Likewise, intestinal bacteria synthesize biotin, which is then absorbed by the host animal. Pimelic acid (which is the precursor for pimeloyl-CoA) is synthesized in many bacteria via a head-to-tail incorporation of acetate units through a modified fatty acid synthetic pathway using O-methyl esters disguised to resemble the canonical intermediates of the fatty acid synthetic pathway (PMID:21435937). Some bacteria and yeast synthesize pimelic acid not by biosynthesis, but via cleavage of longer chain fatty acids (such as linolenic acid) via a cytochrome P450-like enzyme (PMID:28196402, 21435937, 3236079). Pimelic acid is excreted in elevated amounts in the urine of individuals with mitochondrial beta-oxidation disorders and peroxisomal beta oxidation disorders (PMID:1527989)
A group of compounds that are derivatives of heptanedioic acid with the general formula R-C7H11O4.
KEIO_ID P063
Pimelic acid is the organic compound and its derivatives are involved in the biosynthesis of the amino acid called lysine.
Pimelic acid is the organic compound and its derivatives are involved in the biosynthesis of the amino acid called lysine.

同义名列表

21 个代谢物同义名

1,5-Pentanedicarboxylic acid; 1,5-Pentanedicarboxylate; Heptane-1,7-dioic acid; 6-Carboxyhexanoic acid; 1,7-Heptanedioic acid; Heptane-1,7-dioate; 6-Carboxyhexanoate; 1,7-Heptanedioate; Heptanedioic acid; Heptandioic acid; Acids, pimelic; Heptanedioate; Pimelic acids; Acid, pimelic; pimelic acid; Heptandioate; Pileric acid; Pilerate; Pimelate; Pimelate; Pimelic acid



数据库引用编号

32 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

26 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 8 AXIN2, CAT, EGFR, FASN, G6PD, MYH8, PIM2, TYR
Peripheral membrane protein 2 CYP1B1, G6PD
Endosome membrane 1 EGFR
Endoplasmic reticulum membrane 2 CYP1B1, EGFR
Nucleus 3 AXIN2, EGFR, PPARA
cytosol 6 AXIN2, CAT, FASN, G6PD, MYH8, SLC22A7
centrosome 1 AXIN2
nucleoplasm 2 CD2, PPARA
Cell membrane 7 ALPI, CD2, EGFR, GRID1, SLC13A3, SLC22A7, SLC3A1
ruffle membrane 1 EGFR
Early endosome membrane 1 EGFR
Multi-pass membrane protein 5 GRID1, SLC13A3, SLC22A6, SLC22A7, SLC22A8
cell junction 1 EGFR
cell surface 2 CD2, EGFR
glutamatergic synapse 2 EGFR, GRID1
Golgi apparatus 2 CD2, FASN
Golgi membrane 2 EGFR, INS
Cytoplasm, cytosol 1 G6PD
Lysosome 1 TYR
endosome 1 EGFR
plasma membrane 11 ALPI, AXIN2, CD2, EGFR, FASN, GRID1, SLC13A3, SLC22A6, SLC22A7, SLC22A8, SLC3A1
Membrane 9 CAT, CYP1B1, EGFR, FASN, G6PD, SLC13A3, SLC22A6, SLC22A7, SLC3A1
apical plasma membrane 4 EGFR, SLC22A7, SLC22A8, SLC3A1
basolateral plasma membrane 5 EGFR, SLC13A3, SLC22A6, SLC22A7, SLC22A8
caveola 1 SLC22A6
extracellular exosome 8 CAT, FASN, G6PD, GRID1, SLC13A3, SLC22A6, SLC22A8, SLC3A1
extracellular space 2 EGFR, INS
perinuclear region of cytoplasm 2 EGFR, TYR
mitochondrion 3 CAT, CYP1B1, GCDH
protein-containing complex 4 CAT, CD2, EGFR, SLC22A6
intracellular membrane-bounded organelle 4 CAT, CYP1B1, G6PD, TYR
Microsome membrane 1 CYP1B1
Single-pass type I membrane protein 3 CD2, EGFR, TYR
Secreted 1 INS
extracellular region 4 ALPI, CAT, CD2, INS
cytoplasmic side of plasma membrane 2 CD2, G6PD
Mitochondrion matrix 1 GCDH
mitochondrial matrix 2 CAT, GCDH
centriolar satellite 1 G6PD
nuclear membrane 1 EGFR
external side of plasma membrane 1 CD2
beta-catenin destruction complex 1 AXIN2
Melanosome membrane 1 TYR
cell-cell junction 1 CD2
Golgi-associated vesicle 1 TYR
Single-pass type II membrane protein 1 SLC3A1
postsynaptic membrane 1 GRID1
Apical cell membrane 2 SLC22A7, SLC3A1
Membrane raft 1 EGFR
focal adhesion 2 CAT, EGFR
GABA-ergic synapse 1 GRID1
Peroxisome 1 CAT
intracellular vesicle 1 EGFR
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
lateral plasma membrane 1 SLC22A8
Postsynaptic cell membrane 1 GRID1
sarcomere 1 MYH8
receptor complex 1 EGFR
chromatin 1 PPARA
brush border membrane 1 SLC3A1
Basolateral cell membrane 3 SLC22A6, SLC22A7, SLC22A8
Lipid-anchor, GPI-anchor 1 ALPI
myosin filament 1 MYH8
myosin II complex 1 MYH8
endosome lumen 1 INS
Melanosome 2 FASN, TYR
side of membrane 1 ALPI
basal plasma membrane 3 EGFR, SLC22A6, SLC22A7
synaptic membrane 1 EGFR
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 2 CAT, INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 1 INS
transport vesicle 1 INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
postsynaptic density membrane 1 GRID1
clathrin-coated endocytic vesicle membrane 1 EGFR
Basal cell membrane 1 SLC22A6
[Isoform 1]: Cytoplasm, cytosol 1 SLC22A7
multivesicular body, internal vesicle lumen 1 EGFR
Shc-EGFR complex 1 EGFR
catalase complex 1 CAT
muscle myosin complex 1 MYH8
vacuolar membrane 1 SLC3A1
glycogen granule 1 FASN
[Isoform 2]: Basolateral cell membrane 1 SLC22A7


文献列表

  • Pei-Pei Wei, Fu-Cheng Zhu, Cun-Wu Chen, Guo-Si Li. Engineering a heterologous synthetic pathway in Escherichia coli for efficient production of biotin. Biotechnology letters. 2021 Jun; 43(6):1221-1228. doi: 10.1007/s10529-021-03108-y. [PMID: 33666816]
  • Yuanyuan Hu, John E Cronan. α-proteobacteria synthesize biotin precursor pimeloyl-ACP using BioZ 3-ketoacyl-ACP synthase and lysine catabolism. Nature communications. 2020 11; 11(1):5598. doi: 10.1038/s41467-020-19251-5. [PMID: 33154364]
  • Gabriele Netzel, Eddie T T Tan, Mukan Yin, Cindy Giles, Ken W L Yong, Rafat Al Jassim, Mary T Fletcher. Bioaccumulation and Distribution of Indospicine and Its Foregut Metabolites in Camels Fed Indigofera spicata. Toxins. 2019 03; 11(3):. doi: 10.3390/toxins11030169. [PMID: 30893830]
  • Saira Sultan, Simone A Osborne, Rama Addepalli, Gabi Netzel, Michael E Netzel, Mary T Fletcher. Indospicine cytotoxicity and transport in human cell lines. Food chemistry. 2018 Nov; 267(?):119-123. doi: 10.1016/j.foodchem.2017.08.029. [PMID: 29934145]
  • Xiaoyun Zhang, Jian-Hua Wang, Dan Tan, Qiang Li, Maodong Li, Zhou Gong, Chun Tang, Zhirong Liu, Meng-Qiu Dong, Xiaoguang Lei. Carboxylate-Selective Chemical Cross-Linkers for Mass Spectrometric Analysis of Protein Structures. Analytical chemistry. 2018 01; 90(2):1195-1201. doi: 10.1021/acs.analchem.7b03789. [PMID: 29251911]
  • Jun-sheng Tian, Cai-chun Liu, Huan Xiang, Xiao-fen Zheng, Guo-jiang Peng, Xiang Zhang, Guan-hua Du, Xue-mei Qin. Investigation on the antidepressant effect of sea buckthorn seed oil through the GC-MS-based metabolomics approach coupled with multivariate analysis. Food & function. 2015 Nov; 6(11):3585-92. doi: 10.1039/c5fo00695c. [PMID: 26328874]
  • Palash Sanphui, Srinu Tothadi, Somnath Ganguly, Gautam R Desiraju. Salt and cocrystals of sildenafil with dicarboxylic acids: solubility and pharmacokinetic advantage of the glutarate salt. Molecular pharmaceutics. 2013 Dec; 10(12):4687-97. doi: 10.1021/mp400516b. [PMID: 24168322]
  • Maria Zoeller, Nadja Stingl, Markus Krischke, Agnes Fekete, Frank Waller, Susanne Berger, Martin J Mueller. Lipid profiling of the Arabidopsis hypersensitive response reveals specific lipid peroxidation and fragmentation processes: biogenesis of pimelic and azelaic acid. Plant physiology. 2012 Sep; 160(1):365-78. doi: 10.1104/pp.112.202846. [PMID: 22822212]
  • Maria Beconi, Omar Aziz, Kim Matthews, Lara Moumné, Catherine O'Connell, Dawn Yates, Steven Clifton, Hannah Pett, Julie Vann, Lynsey Crowley, Alan F Haughan, Donna L Smith, Ben Woodman, Gillian P Bates, Fred Brookfield, Roland W Bürli, George McAllister, Celia Dominguez, Ignacio Munoz-Sanjuan, Vahri Beaumont. Oral administration of the pimelic diphenylamide HDAC inhibitor HDACi 4b is unsuitable for chronic inhibition of HDAC activity in the CNS in vivo. PloS one. 2012; 7(9):e44498. doi: 10.1371/journal.pone.0044498. [PMID: 22973455]
  • Huihui Zhao, Jianxin Chen, Qi Shi, Xueling Ma, Yi Yang, Liangtao Luo, Shuzhen Guo, Yong Wang, Jing Han, Wei Wang. Metabolomics-based study of clinical and animal plasma samples in coronary heart disease with blood stasis syndrome. Evidence-based complementary and alternative medicine : eCAM. 2012; 2012(?):638723. doi: 10.1155/2012/638723. [PMID: 22675387]
  • Pasqualina Magliano, Michel Flipphi, Bulak A Arpat, Syndie Delessert, Yves Poirier. Contributions of the peroxisome and β-oxidation cycle to biotin synthesis in fungi. The Journal of biological chemistry. 2011 Dec; 286(49):42133-42140. doi: 10.1074/jbc.m111.279687. [PMID: 21998305]
  • Soumen K Manna, Andrew D Patterson, Qian Yang, Kristopher W Krausz, Jeffrey R Idle, Albert J Fornace, Frank J Gonzalez. UPLC-MS-based urine metabolomics reveals indole-3-lactic acid and phenyllactic acid as conserved biomarkers for alcohol-induced liver disease in the Ppara-null mouse model. Journal of proteome research. 2011 Sep; 10(9):4120-33. doi: 10.1021/pr200310s. [PMID: 21749142]
  • Jia Liu, Lawrence Litt, Mark R Segal, Mark J S Kelly, Jeffrey G Pelton, Myungwon Kim. Metabolomics of oxidative stress in recent studies of endogenous and exogenously administered intermediate metabolites. International journal of molecular sciences. 2011; 12(10):6469-501. doi: 10.3390/ijms12106469. [PMID: 22072900]
  • Soumen K Manna, Andrew D Patterson, Qian Yang, Kristopher W Krausz, Henghong Li, Jeffrey R Idle, Albert J Fornace, Frank J Gonzalez. Identification of noninvasive biomarkers for alcohol-induced liver disease using urinary metabolomics and the Ppara-null mouse. Journal of proteome research. 2010 Aug; 9(8):4176-88. doi: 10.1021/pr100452b. [PMID: 20540569]
  • Masashi Niimi, Lian Tao, Shi-Hua Lin, Jun Yin, Xiaoyun Wu, Hiroyuki Fukui, Junichi Kambayashi, Jianping Ye, Bing Sun. Involvement of an alternatively spliced mitochondrial oxodicarboxylate carrier in adipogenesis in 3T3-L1 cells. Journal of biomedical science. 2009 Oct; 16(?):92. doi: 10.1186/1423-0127-16-92. [PMID: 19825180]
  • Christian Lanz, Andrew D Patterson, Josef Slavík, Kristopher W Krausz, Monika Ledermann, Frank J Gonzalez, Jeffrey R Idle. Radiation metabolomics. 3. Biomarker discovery in the urine of gamma-irradiated rats using a simplified metabolomics protocol of gas chromatography-mass spectrometry combined with random forests machine learning algorithm. Radiation research. 2009 Aug; 172(2):198-212. doi: 10.1667/rr1796.1. [PMID: 19630524]
  • Xiaoyan Wang, Tie Zhao, Yunping Qiu, Mingming Su, Tao Jiang, Mingmei Zhou, Aihua Zhao, Wei Jia. Metabonomics approach to understanding acute and chronic stress in rat models. Journal of proteome research. 2009 May; 8(5):2511-8. doi: 10.1021/pr801086k. [PMID: 19292500]
  • Michael Devereux, Malachy McCann, Denis O'shea, Mark O'connor, Eileen Kiely, Vickie McKee, Declan Naughton, Anna Fisher, Andrew Kellett, Maureen Walsh, Denise Egan, Carol Deegan. Synthesis, Superoxide Dismutase Mimetic and Anticancer Activities of Metal Complexes of 2,2-Dimethylpentanedioic Acid(2dmepdaH(2)) and 3,3-Dimethylpentanedioic acid(3dmepdaH(2)): X-Ray Crystal Structures of [Cu(3dmepda)(bipy)](2). 6H(2)O and [Cu(2dmepda)(bipy)(EtOH)](2). 4EtOH (bipy = 2,2'Bipyridine). Bioinorganic chemistry and applications. 2006; ?(?):80283. doi: 10.1155/bca/2006/80283. [PMID: 17497019]
  • A Uehara, Y Sugawara, S Kurata, Y Fujimoto, K Fukase, S Kusumoto, Y Satta, T Sasano, S Sugawara, H Takada. Chemically synthesized pathogen-associated molecular patterns increase the expression of peptidoglycan recognition proteins via toll-like receptors, NOD1 and NOD2 in human oral epithelial cells. Cellular microbiology. 2005 May; 7(5):675-86. doi: 10.1111/j.1462-5822.2004.00500.x. [PMID: 15839897]
  • Neil Dixon, Tibor Páli, Terence P Kee, Derek Marsh. Spin-labelled vacuolar-ATPase inhibitors in lipid membranes. Biochimica et biophysica acta. 2004 Oct; 1665(1-2):177-83. doi: 10.1016/j.bbamem.2004.08.001. [PMID: 15471583]
  • Tahar Mechichi, Erko Stackebrandt, Georg Fuchs. Alicycliphilus denitrificans gen. nov., sp. nov., a cyclohexanol-degrading, nitrate-reducing beta-proteobacterium. International journal of systematic and evolutionary microbiology. 2003 Jan; 53(Pt 1):147-152. doi: 10.1099/ijs.0.02276-0. [PMID: 12661531]
  • F Lévai, C M Liu, M M Tse, E T Lin. Pre-column fluorescence derivatization using leucine-coumarnylamide for HPLC determination of mono- and dicarboxylic acids in plasma. Acta physiologica Hungarica. 1995; 83(1):39-46. doi: NULL. [PMID: 7660835]
  • P Baldet, H Gerbling, S Axiotis, R Douce. Biotin biosynthesis in higher plant cells. Identification of intermediates. European journal of biochemistry. 1993 Oct; 217(1):479-85. doi: 10.1111/j.1432-1033.1993.tb18267.x. [PMID: 8223585]
  • M J Bennett, M C Ragni, I Hood, D E Hale. Azelaic and pimelic acids: metabolic intermediates or artefacts?. Journal of inherited metabolic disease. 1992; 15(2):220-3. doi: 10.1007/bf01799635. [PMID: 1527989]
  • H Shimauchi. [Studies on the induction of the humoral immune responses to Bacteroides gingivalis fimbrial antigen in mice]. [Osaka Daigaku shigaku zasshi] The journal of Osaka University Dental Society. 1990 Jun; 35(1):60-77. doi: NULL. [PMID: 1983739]
  • J P Jorand, M Bounias, R Chauvin. The 'survival hormones': azelaic and pimelic acids, suppress the stress elicited by isolation conditions on the steroids and phospholipids of adult worker honeybees. Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme. 1989 Oct; 21(10):553-7. doi: 10.1055/s-2007-1009286. [PMID: 2807145]
  • D Migliore-Samour, M Delaforge, M Jaouen, D Mansuy, P Jollès. In vivo effects of immunostimulating lipopeptides on mouse liver microsomal cytochromes P-450 and on paracetamol-induced toxicity. Experientia. 1989 Sep; 45(9):882-6. doi: 10.1007/bf01954064. [PMID: 2776860]
  • G Mingrone, R M Tacchino, A V Greco, E Arcieri-Mastromattei, F Marino, E Finotti, E Castagneto. Preliminary studies of a dicarboxylic acid as an energy substrate in man. JPEN. Journal of parenteral and enteral nutrition. 1989 May; 13(3):299-305. doi: 10.1177/0148607189013003299. [PMID: 2503641]
  • B R Pettit. The analysis of thiodiglycollic acid by selected ion monitoring. Clinica chimica acta; international journal of clinical chemistry. 1986 Apr; 156(1):85-90. doi: 10.1016/0009-8981(86)90182-8. [PMID: 3698320]
  • J E De Larco, D A Pigott. Ectopic peptides released by a human melanoma cell line that modulate the transformed phenotype. Ciba Foundation symposium. 1985; 116(?):224-40. doi: 10.1002/9780470720974.ch14. [PMID: 3000706]
  • C Jakobs, L Dorland, L Sweetman, M Duran, W L Nyhan, S K Wadman. Identification of methyl-branched chain dicarboxylic acids in amniotic fluid and urine in propionic and methylmalonic acidemia. Pediatric research. 1984 Nov; 18(11):1185-91. doi: 10.1203/00006450-198411000-00027. [PMID: 6514446]
  • V C Mason, S Bech-Andersen. The estimation of 2,6-diaminopimelic acid in digesta and faeces using acid ninhydrin reagent. Zeitschrift fur Tierphysiologie, Tierernahrung und Futtermittelkunde. 1976 Feb; 36(4):221-9. doi: 10.1111/j.1439-0396.1975.tb01137.x. [PMID: 952096]
  • D R Morris, R H Fillingame. Regulation of amino acid decarboxylation. Annual review of biochemistry. 1974; 43(0):303-25. doi: 10.1146/annurev.bi.43.070174.001511. [PMID: 4605027]
  • K J Thorne, M J Thornley, A M Glauert. Chemical analysis of the outer membrane and other layers of the cell envelope of Acinetobacter sp. Journal of bacteriology. 1973 Oct; 116(1):410-7. doi: 10.1128/jb.116.1.410-417.1973. [PMID: 4745422]
  • V C Mason, R M Palmer. The influence of dietary carbohydrates and proteins on faecal nitrogen excretion in rats. The Proceedings of the Nutrition Society. 1973 Sep; 32(2):82A-83A. doi: NULL. [PMID: 4791079]
  • P Elsbach, P Pettis, S Beckerdite, R Franson. Effects of phagocytosis by rabbit granulocytes on macromolecular synthesis and degradation in different species of bacteria. Journal of bacteriology. 1973 Aug; 115(2):490-7. doi: 10.1128/jb.115.2.490-497.1973. [PMID: 4199135]
  • H N Christensen, A M Cullen. Synthesis of metabolism-resistant substrates for the transport system for cationic amino acids; their stimulation of the release of insulin and glucagon, and of the urinary loss of amino acids related to cystinuria. Biochimica et biophysica acta. 1973 Apr; 298(4):932-50. doi: 10.1016/0005-2736(73)90397-0. [PMID: 4729820]
  • D W Brock, L K Georg, J M Brown, M D Hicklin. Actinomycosis caused by Arachnia propionica: report of 11 cases. American journal of clinical pathology. 1973 Jan; 59(1):66-77. doi: 10.1093/ajcp/59.1.66. [PMID: 4120179]
  • O A Mamer, S S Tjoa. Trimethylsilylation of malonate ester enols. Clinical chemistry. 1973 Jan; 19(1):58-61. doi: 10.1093/clinchem/19.1.58. [PMID: 4683367]
  • J N Umbreit, J L Strominger. Isolation of the lipid intermediate in peptidoglycan biosynthesis from Escherichia coli. Journal of bacteriology. 1972 Dec; 112(3):1306-9. doi: 10.1128/jb.112.3.1306-1309.1972. [PMID: 4565540]
  • P Jensen, C Parkes, D Berkowitz. Mannitol sensitivity. Journal of bacteriology. 1972 Aug; 111(2):351-5. doi: 10.1128/jb.111.2.351-355.1972. [PMID: 4559727]
  • E R Orskov, C Fraser, I McDonald. Digestion of concentrates in sheep. 4. The effects of urea on digestion, nitrogen retention and growth in young lambs. The British journal of nutrition. 1972 May; 27(3):491-501. doi: 10.1079/bjn19720118. [PMID: 5031175]
  • R Scharff, R W Hendler, N Nanninga, A H Burgess. Respiration and protein synthesis in Escherichia coli membrane-envelope fragments. IV. Chemical and cytological characterization and biosynthetic capabilities of fragments obtained by mild procedures. The Journal of cell biology. 1972 Apr; 53(1):1-23. doi: 10.1083/jcb.53.1.1. [PMID: 4335249]
  • S Silbernagl, P Deetjen. The tubular reabsorption of L-cystine and L-cysteine. A common transport system with L-arginine or not?. Pflugers Archiv : European journal of physiology. 1972; 337(4):277-84. doi: 10.1007/bf00586645. [PMID: 4674878]
  • H Mordarska, J Wieczorek, B Jaworska, M Mordarski. Starch hydrolysis in Nocardia and allied taxa. Acta microbiologica Polonica. Series A: Microbiologia generalis. 1972; 4(1):27-32. doi: ". [PMID: 4602369]
  • J R Walker, N A Shafiq, R G Allen. Bacterial cell division regulation: physiological effects of crystal violet on Escherichia coli lon + and lon - strains. Journal of bacteriology. 1971 Dec; 108(3):1296-303. doi: 10.1128/jb.108.3.1296-1303.1971. [PMID: 4945195]
  • E R Orskov, C Fraser, I McDonald. Digestion of concentrates in sheep. 3. Effects of rumen fermentation of barley and maize diets on protein digestion. The British journal of nutrition. 1971 Nov; 26(3):477-86. doi: 10.1079/bjn19710053. [PMID: 5157951]
  • P V Acharya, D S Goldman. Chemical composition of the cell wall of the H37Ra strain of Mycobacterium tuberculosis. Journal of bacteriology. 1970 Jun; 102(3):733-9. doi: 10.1128/jb.102.3.733-739.1970. [PMID: 4988039]
  • M A Schlossberg, R J Bloom, D A Richert, W W Westerfeld. Carboligase activity of alpha-ketoglutarate dehydrogenase. Biochemistry. 1970 Mar; 9(5):1148-53. doi: 10.1021/bi00807a015. [PMID: 5418712]
  • V I Somin, A P Ekimovskiĭ. [The amino acid composition of sunflower seeds and sunflower seed meal]. Voprosy pitaniia. 1969 May; 28(3):61-5. doi: ". [PMID: 5367265]
  • T L Whiteside, W A Corpe. Effect of enzymes on the composition and structure of Chromobacterium violaceum cell envelopes. Journal of bacteriology. 1969 Mar; 97(3):1449-59. doi: 10.1128/jb.97.3.1449-1459.1969. [PMID: 5776532]
  • H Mordarska, M Mordarski. Comparative studies on the occurrence of lipid A, diaminopimelic acid and arabinose in Nocardia cells. Archivum immunologiae et therapiae experimentalis. 1969; 17(6):739-43. doi: ". [PMID: 5370185]
  • D S Feingold, J N Goldman, H M Kuritz. Locus of the action of serum and the role of lysozyme in the serum bactericidal reaction. Journal of bacteriology. 1968 Dec; 96(6):2118-26. doi: 10.1128/jb.96.6.2118-2126.1968. [PMID: 4972918]
  • E Work, H Griffiths. Morphology and chemistry of cell walls of Micrococcus radiodurans. Journal of bacteriology. 1968 Feb; 95(2):641-57. doi: 10.1128/jb.95.2.641-657.1968. [PMID: 5640386]
  • D G Bishop, E Work. An extracellular glycolipid produced by Escherichia coli grown under lysine-limiting conditions. The Biochemical journal. 1965 Aug; 96(2):567-76. doi: 10.1042/bj0960567. [PMID: 4953781]
  • I J SUD, M SCHAECHTER. DEPENDENCE OF THE CONTENT OF CELL ENVELOPES ON THE GROWTH RATE OF BACILLUS MEGATERIUM. Journal of bacteriology. 1964 Dec; 88(?):1612-7. doi: 10.1128/jb.88.6.1612-1617.1964. [PMID: 14240947]
  • L JANOTA-BASSALIK, L D WRIGHT. PIMELIC ACID AS A BY-PRODUCT OF AZELAIC ACID DEGRADATION BY PSEUDOMONAS SP. Nature. 1964 Oct; 204(?):501-2. doi: 10.1038/204501a0. [PMID: 14232556]