5(S)-Hydroperoxyeicosatetraenoic acid (BioDeep_00000004019)
Secondary id: BioDeep_00000014606, BioDeep_00000409876
human metabolite Endogenous
代谢物信息卡片
化学式: C20H32O4 (336.2300472)
中文名称:
谱图信息:
最多检出来源 Macaca mulatta(otcml) 5.69%
分子结构信息
SMILES: C(/C=C\C=C\[C@@H](OO)CCCC(=O)O)/C=C\C/C=C\CCCCC
InChI: InChI=1S/C20H32O4/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-16-19(24-23)17-15-18-20(21)22/h6-7,9-10,12-14,16,19,23H,2-5,8,11,15,17-18H2,1H3,(H,21,22)/b7-6-,10-9-,13-12-,16-14+/t19-/m1/s1
描述信息
5(S)-Hydroperoxyeicosatetraenoic acid is a lipid hydroperoxide precursor of leukotrienes. The first step of biosynthesis of leukotrienes is conversion of arachidonic acid into 5(S)-hydroperoxy-6,8,11,14-(E,Z,Z,Z)-eicosatetraenoic acid [5(S)-HpETE] by 5- lipoxygenases (5-LOX). Lipid hydroperoxides undergo homolytic decomposition into bifunctional electrophiles, which react with DNA bases to form DNA adducts. These DNA modifications are proposed to be involved in the etiology of cancer, cardiovascular disease, and neurodegeneration. 5-LOX, the enzyme responsible for the formation of 5(S)-HpETE in vivo, is expressed primarily in leukocytes, including monocytes and macrophages. Studies have implicated the 5-LOX pathway as an important mediator in the pathology of atherosclerosis. (PMID: 15777099). Endogenously generated 5-hydroperoxyeicosatetraenoic acid is the preferred substrate for human leukocyte leukotriene A4 synthase activity. Thus, the arachidonic acid moiety is preferentially converted to LTA4 in a concerted reaction without dissociation of a 5-HPETE intermediate. (PMID: 3036580).
5(S)-Hydroperoxyeicosatetraenoic acid is a lipid hydroperoxide precursor of leukotrienes. The first step of biosynthesis of leukotrienes is conversion of arachidonic acid into 5(S)-hydroperoxy-6,8,11,14-(E,Z,Z,Z)-eicosatetraenoic acid [5(S)-HpETE] by 5- lipoxygenases (5-LOX). Lipid hydroperoxides undergo homolytic decomposition into bifunctional electrophiles, which react with DNA bases to form DNA adducts. These DNA modifications are proposed to be involved in the etiology of cancer, cardiovascular disease, and neurodegeneration.
同义名列表
30 个代谢物同义名
(6E,8Z,11Z,14Z)-(5S)-5-Hydroperoxyeicosa-6,8,11,14-tetraenoic acid; (5S,6E,8Z,11Z,14Z)-5-Hydroperoxyeicosa-6,8,11,14-tetraenoic acid; (5S,6E,8Z,11Z,14Z)-5-Hydroperoxyicosa-6,8,11,14-tetraenoic acid; (6E,8Z,11Z,14Z)-(5S)-5-Hydroperoxyeicosa-6,8,11,14-tetraenoate; 5-Hydroperoxy-6-trans-8,11,14-cis-eicosatetraenoate (5-HPETE); (5S,6E,8Z,11Z,14Z)-5-Hydroperoxyeicosa-6,8,11,14-tetraenoate; 5(S)-Hydroperoxy-6(e),8(Z),11(Z),14(Z)-eicosatetraenoic acid; (5S,6E,8Z,11Z,14Z)-5-Hydroperoxyicosa-6,8,11,14-tetraenoate; 5(S)-Hydroperoxy-6-trans-8,11,14-cis-eicosatetraenoic acid; 5(S)-Hydroperoxy-6(e),8(Z),11(Z),14(Z)-eicosatetraenoate; 5-Hydroperoxy-6-trans-8,11,14-cis-eicosatetraenoic acid; cis,trans-5-Hydroperoxy-6,8,11,14-eicosatetraenoic acid; 5(S)-Hydroxyperoxy-6E,8Z,11Z,14Z-eicosatetraenoic acid; 5(S)-Hydroperoxy-6-trans-8,11,14-cis-eicosatetraenoate; 5(S)-Hydroxyperoxy-6E,8Z,11Z,14Z-icosatetraenoic acid; 5-Hydroperoxy-6-trans-8,11,14-cis-eicosatetraenoate; 5(S)-Hydroxyperoxy-6E,8Z,11Z,14Z-eicosatetraenoate; 5S-hydroperoxy-6E,8Z,11Z,14Z-eicosatetraenoic acid; 5(S)-Hydroxyperoxy-6E,8Z,11Z,14Z-icosatetraenoate; 6,8,11,14-Eicosatetraenoic acid 5-hydroperoxide; 5-Hydroperoxy-6,8,11,14-eicosatetraenoic acid; 5-hydroperoxyicosa-6,8,11,14-tetraenoic acid; 5(S)-Hydroperoxyeicosatetraenoic acid; 5(S)-Hydroperoxyeicosatetraenoate; Arachidonic acid 5-hydroperoxide; (S)-5-HPETE; 5(S)-HPETE; FA 20:4;O2; 5S-HpETE; 5-HpETE
数据库引用编号
18 个数据库交叉引用编号
- ChEBI: CHEBI:15632
- KEGG: C05356
- PubChem: 5280778
- PubChem: 1772
- HMDB: HMDB0001193
- Metlin: METLIN36281
- Metlin: METLIN3472
- ChEMBL: CHEMBL1743204
- LipidMAPS: LMFA03060012
- foodb: FDB022480
- chemspider: 4444340
- CAS: 70968-82-0
- CAS: 71774-08-8
- PMhub: MS000014703
- PubChem: 7733
- 3DMET: B01847
- NIKKAJI: J360.970G
- RefMet: 5S-HpETE
分类词条
相关代谢途径
Reactome(5)
BioCyc(0)
PlantCyc(0)
代谢反应
86 个相关的代谢反应过程信息。
Reactome(80)
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Arachidonic acid metabolism:
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Synthesis of Leukotrienes (LT) and Eoxins (EX):
GSH + leukotriene A4 ⟶ leukotriene C4
- Synthesis of 5-eicosatetraenoic acids:
5-HETEL + H2O ⟶ 5-HETE
- Synthesis of 5-eicosatetraenoic acids:
5-HETEL + H2O ⟶ 5-HETE
- Biosynthesis of specialized proresolving mediators (SPMs):
DHA + Oxygen ⟶ 17-HDHA
- Synthesis of Lipoxins (LX):
NAD + lipoxin A4 ⟶ 15k-LXA4 + H+ + NADH
- Synthesis of 5-eicosatetraenoic acids:
AA + Oxygen ⟶ 5S-HpETE
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Arachidonic acid metabolism:
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Synthesis of Leukotrienes (LT) and Eoxins (EX):
H2O + leukotriene C4 ⟶ L-Glu + leukotriene D4
- Synthesis of 5-eicosatetraenoic acids:
5-HETEL + H2O ⟶ 5-HETE
- Biosynthesis of specialized proresolving mediators (SPMs):
DHA + Oxygen ⟶ 17-HDHA
- Synthesis of Lipoxins (LX):
NAD + lipoxin A4 ⟶ 15k-LXA4 + H+ + NADH
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Arachidonic acid metabolism:
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Synthesis of Leukotrienes (LT) and Eoxins (EX):
H2O + leukotriene A4 ⟶ leukotriene B4
- Synthesis of 5-eicosatetraenoic acids:
5-HETEL + H2O ⟶ 5-HETE
- Biosynthesis of specialized proresolving mediators (SPMs):
DHA + Oxygen ⟶ 17-HDHA
- Synthesis of Lipoxins (LX):
NAD + lipoxin A4 ⟶ 15k-LXA4 + H+ + NADH
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of lipids:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Fatty acid metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Arachidonic acid metabolism:
H2O + leukotriene A4 ⟶ leukotriene B4
- Synthesis of Leukotrienes (LT) and Eoxins (EX):
H2O + leukotriene A4 ⟶ leukotriene B4
- Biosynthesis of specialized proresolving mediators (SPMs):
18(R)-HEPE + Oxygen ⟶ 18(R)-RvE3
- Synthesis of Lipoxins (LX):
5S-HpETE ⟶ H2O + leukotriene A4
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Arachidonic acid metabolism:
prostaglandin H2 ⟶ prostaglandin E2
- Synthesis of Leukotrienes (LT) and Eoxins (EX):
H2O + leukotriene A4 ⟶ leukotriene B4
- Synthesis of 5-eicosatetraenoic acids:
5-HETEL + H2O ⟶ 5-HETE
- Biosynthesis of specialized proresolving mediators (SPMs):
18(R)-HpEPE + GSH ⟶ 18(R)-HEPE + GSSG + H2O
- Synthesis of Lipoxins (LX):
NAD + lipoxin A4 ⟶ 15k-LXA4 + H+ + NADH
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Arachidonic acid metabolism:
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Synthesis of Leukotrienes (LT) and Eoxins (EX):
H2O + leukotriene A4 ⟶ leukotriene B4
- Synthesis of 5-eicosatetraenoic acids:
5S-HpETE + GSH ⟶ 5S-HETE + GSSG + H2O
- Biosynthesis of specialized proresolving mediators (SPMs):
DHA + Oxygen ⟶ 17-HDHA
- Synthesis of Lipoxins (LX):
NAD + lipoxin A4 ⟶ 15k-LXA4 + H+ + NADH
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Arachidonic acid metabolism:
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Synthesis of Leukotrienes (LT) and Eoxins (EX):
H2O + leukotriene A4 ⟶ leukotriene B4
- Synthesis of 5-eicosatetraenoic acids:
5-HETEL + H2O ⟶ 5-HETE
- Biosynthesis of specialized proresolving mediators (SPMs):
DHA + Oxygen ⟶ 17-HDHA
- Synthesis of Lipoxins (LX):
NAD + lipoxin A4 ⟶ 15k-LXA4 + H+ + NADH
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Arachidonic acid metabolism:
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Synthesis of Leukotrienes (LT) and Eoxins (EX):
H2O + leukotriene A4 ⟶ leukotriene B4
- Synthesis of 5-eicosatetraenoic acids:
5-HETEL + H2O ⟶ 5-HETE
- Biosynthesis of specialized proresolving mediators (SPMs):
DHA + Oxygen ⟶ 17-HDHA
- Synthesis of Lipoxins (LX):
NAD + lipoxin A4 ⟶ 15k-LXA4 + H+ + NADH
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of lipids:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Fatty acid metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Arachidonic acid metabolism:
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Synthesis of Leukotrienes (LT) and Eoxins (EX):
H2O + leukotriene A4 ⟶ leukotriene B4
- Synthesis of 5-eicosatetraenoic acids:
5-HETEL + H2O ⟶ 5-HETE
- Biosynthesis of specialized proresolving mediators (SPMs):
DHA + Oxygen ⟶ 17-HDHA
- Synthesis of Lipoxins (LX):
NAD + lipoxin A4 ⟶ 15k-LXA4 + H+ + NADH
- Biosynthesis of specialized proresolving mediators (SPMs):
13(S),14(S)-epoxy-DHA + GSH ⟶ (13R)-S-glutathionyl-(14S)-hydroxy-(4Z,7Z,9E,11E,16Z,19Z)-docosahexaenoic acid
- Synthesis of Lipoxins (LX):
NAD + lipoxin A4 ⟶ 15k-LXA4 + H+ + NADH
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Arachidonic acid metabolism:
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Synthesis of Leukotrienes (LT) and Eoxins (EX):
H2O + leukotriene A4 ⟶ leukotriene B4
BioCyc(0)
WikiPathways(5)
- Eicosanoid metabolism via lipoxygenases (LOX):
Arachidonic acid ⟶ 12-HETE
- Eicosanoid synthesis:
PGD2 ⟶ PGJ2
- Leukotriene metabolic pathway:
16-COOH-tetranor-LTE3 ⟶ 14-COOH-hexanor-LTE4
- Selenium micronutrient network:
Ascorbic acid ⟶ Dehydroascorbic acid
- Selenium micronutrient network:
Ascorbic acid ⟶ Dehydroascorbic acid
Plant Reactome(0)
INOH(1)
- Prostaglandin and Leukotriene metabolism ( Prostaglandin and Leukotriene metabolism ):
Glutathione + Leucotriene A4 ⟶ Leucotriene C4
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
2 个相关的物种来源信息
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Gail E Grant, Joshua Rokach, William S Powell. 5-Oxo-ETE and the OXE receptor.
Prostaglandins & other lipid mediators.
2009 Sep; 89(3-4):98-104. doi:
10.1016/j.prostaglandins.2009.05.002
. [PMID: 19450703] - Barbara Cavalieri, Maria-Giulia Perrelli, Manuela Aragno, Pierluigi Ramadori, Giuseppe Poli, Juan C Cutrìn. Ischaemic preconditioning modulates the activity of Kupffer cells during in vivo reperfusion injury of rat liver.
Cell biochemistry and function.
2003 Dec; 21(4):299-305. doi:
10.1002/cbf.1028
. [PMID: 14624466] - Simona Zarini, Robert C Murphy. Biosynthesis of 5-oxo-6,8,11,14-eicosatetraenoic acid from 5-hydroperoxyeicosatetraenoic acid in the murine macrophage.
The Journal of biological chemistry.
2003 Mar; 278(13):11190-6. doi:
10.1074/jbc.m208496200
. [PMID: 12547823] - Takeshi Hosoi, Yutaka Koguchi, Emiko Sugikawa, Aiko Chikada, Koji Ogawa, Naoki Tsuda, Naoki Suto, Shiho Tsunoda, Tomoyasu Taniguchi, Tetsuo Ohnuki. Identification of a novel human eicosanoid receptor coupled to G(i/o).
The Journal of biological chemistry.
2002 Aug; 277(35):31459-65. doi:
10.1074/jbc.m203194200
. [PMID: 12065583] - Tankred Schewe, Hartmut Kühn, Helmut Sies. Flavonoids of cocoa inhibit recombinant human 5-lipoxygenase.
The Journal of nutrition.
2002 Jul; 132(7):1825-9. doi:
10.1093/jn/132.7.1825
. [PMID: 12097654] - Margarita H Guajardo, Ana M Terrasa, Angel Catalá. Retinal fatty acid binding protein reduce lipid peroxidation stimulated by long-chain fatty acid hydroperoxides on rod outer segments.
Biochimica et biophysica acta.
2002 Apr; 1581(3):65-74. doi:
10.1016/s1388-1981(02)00121-x
. [PMID: 12020634] - Maike D Glitsch, Daniel Bakowski, Anant B Parekh. Effects of inhibitors of the lipo-oxygenase family of enzymes on the store-operated calcium current I(CRAC) in rat basophilic leukaemia cells.
The Journal of physiology.
2002 Feb; 539(Pt 1):93-106. doi:
10.1113/jphysiol.2001.012826
. [PMID: 11850504] - A Miller, C Stanton, R Devery. Modulation of arachidonic acid distribution by conjugated linoleic acid isomers and linoleic acid in MCF-7 and SW480 cancer cells.
Lipids.
2001 Oct; 36(10):1161-8. doi:
10.1007/s11745-001-0827-0
. [PMID: 11768161] - K B Shumaev, V Z Lankin, E K Ruuge, A F Vanin, Y N Belenkov. The mechanism of inhibition of free-radical oxidation of beta-carotene by S-nitrosoglutathione and iron dinitrosyl complexes.
Doklady. Biochemistry and biophysics.
2001 Jul; 379(?):273-5. doi:
10.1023/a:1011654803227
. [PMID: 11665680] - S W Hwang, H Cho, J Kwak, S Y Lee, C J Kang, J Jung, S Cho, K H Min, Y G Suh, D Kim, U Oh. Direct activation of capsaicin receptors by products of lipoxygenases: endogenous capsaicin-like substances.
Proceedings of the National Academy of Sciences of the United States of America.
2000 May; 97(11):6155-60. doi:
10.1073/pnas.97.11.6155
. [PMID: 10823958] - M Liminga, E Oliw. Qualitative and quantitative analysis of lipoxygenase products in bovine corneal epithelium by liquid chromatography-mass spectrometry with an ion trap.
Lipids.
2000 Feb; 35(2):225-32. doi:
10.1007/bf02664773
. [PMID: 10757554] - M Maccarrone, M L Salucci, G Melino, N Rosato, A Finazzi-Agro. The early phase of apoptosis in human neuroblastoma CHP100 cells is characterized by lipoxygenase-dependent ultraweak light emission.
Biochemical and biophysical research communications.
1999 Nov; 265(3):758-62. doi:
10.1006/bbrc.1999.1744
. [PMID: 10600493] - T Zhao, S S Singhal, J T Piper, J Cheng, U Pandya, J Clark-Wronski, S Awasthi, Y C Awasthi. The role of human glutathione S-transferases hGSTA1-1 and hGSTA2-2 in protection against oxidative stress.
Archives of biochemistry and biophysics.
1999 Jul; 367(2):216-24. doi:
10.1006/abbi.1999.1277
. [PMID: 10395737] - M M Whalen, R N Doshi, B W Bader, A D Bankhurst. Lysophosphatidylcholine and arachidonic acid are required in the cytotoxic response of human natural killer cells to tumor target cells.
Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology.
1999; 9(6):297-309. doi:
10.1159/000016324
. [PMID: 10749996] - J T O'Flaherty, J S Taylor, M J Thomas. Receptors for the 5-oxo class of eicosanoids in neutrophils.
The Journal of biological chemistry.
1998 Dec; 273(49):32535-41. doi:
10.1074/jbc.273.49.32535
. [PMID: 9829988] - G van Zadelhoff, G A Veldink, J F Vliegenthart. With anandamide as substrate plant 5-lipoxygenases behave like 11-lipoxygenases.
Biochemical and biophysical research communications.
1998 Jul; 248(1):33-8. doi:
10.1006/bbrc.1998.8910
. [PMID: 9675081] - S Battu, S Moalic, M Rigaud, J L Beneytout. Linoleic acid peroxidation by Solanum tuberosum lipoxygenase was activated in the presence of human 5-lipoxygenase-activating protein.
Biochimica et biophysica acta.
1998 Jun; 1392(2-3):340-50. doi:
10.1016/s0005-2760(98)00054-x
. [PMID: 9630716] - L M Hall, R C Murphy. Electrospray mass spectrometric analysis of 5-hydroperoxy and 5-hydroxyeicosatetraenoic acids generated by lipid peroxidation of red blood cell ghost phospholipids.
Journal of the American Society for Mass Spectrometry.
1998 May; 9(5):527-32. doi:
10.1016/s1044-0305(98)00013-0
. [PMID: 9879367] - H Imai, K Narashima, M Arai, H Sakamoto, N Chiba, Y Nakagawa. Suppression of leukotriene formation in RBL-2H3 cells that overexpressed phospholipid hydroperoxide glutathione peroxidase.
The Journal of biological chemistry.
1998 Jan; 273(4):1990-7. doi:
10.1074/jbc.273.4.1990
. [PMID: 9442035] - T D Foley. 5-HPETE is a potent inhibitor of neuronal Na+, K(+)-ATPase activity.
Biochemical and biophysical research communications.
1997 Jun; 235(2):374-6. doi:
10.1006/bbrc.1997.6790
. [PMID: 9199200] - P J Vickers, C Deluca, E Wong, M Abramovitz. The effect of 5-lipoxygenase-activating protein (FLAP) on substrate utilization by 5-lipoxygenase.
Advances in experimental medicine and biology.
1997; 400A(?):145-51. doi:
10.1007/978-1-4615-5325-0_21
. [PMID: 9547550] - T Yamazaki, K Higuchi, S Kominami, S Takemori. 15-lipoxygenase metabolite(s) of arachidonic acid mediates adrenocorticotropin action in bovine adrenal steroidogenesis.
Endocrinology.
1996 Jul; 137(7):2670-5. doi:
10.1210/endo.137.7.8770885
. [PMID: 8770885] - H Imai, D Sumi, H Sakamoto, A Hanamoto, M Arai, N Chiba, Y Nakagawa. Overexpression of phospholipid hydroperoxide glutathione peroxidase suppressed cell death due to oxidative damage in rat basophile leukemia cells (RBL-2H3).
Biochemical and biophysical research communications.
1996 May; 222(2):432-8. doi:
10.1006/bbrc.1996.0762
. [PMID: 8670223] - Y Fukui, M Morita, K Osakada, T Nakayama, M Matsuoka, R Hirota, H Iizumi, T Ueda. Visible light-sensitized oxidation of arachidonic acid in the presence of inperatorin.
Journal of nutritional science and vitaminology.
1995 Jun; 41(3):387-93. doi:
10.3177/jnsv.41.387
. [PMID: 7472682] - A E Proudfoot, R Gatto, T N Wells, K B Bacon. Isolation of a lipid-soluble histamine release factor from human platelets.
Biochemical and biophysical research communications.
1994 May; 201(1):443-8. doi:
10.1006/bbrc.1994.1721
. [PMID: 7515234] - J A Mancini, C Li, P J Vickers. 5-Lipoxygenase activity in the human pancreas.
Journal of lipid mediators.
1993 Nov; 8(3):145-50. doi:
"
. [PMID: 8268460] - J D Winkler, C M Sung, W C Hubbard, F H Chilton. Influence of arachidonic acid on indices of phospholipase A2 activity in the human neutrophil.
The Biochemical journal.
1993 May; 291 ( Pt 3)(?):825-31. doi:
10.1042/bj2910825
. [PMID: 8387780] - D Riendeau, J P Falgueyret, D Meisner, M M Sherman, F Laliberté, I P Street. Interfacial catalysis and production of a high ratio of leukotriene A4 to 5-HPETE by 5-lipoxygenase in a coupled assay with phospholipase A2.
Journal of lipid mediators.
1993 Mar; 6(1-3):23-30. doi:
. [PMID: 8395245]
- J P Falgueyret, J H Hutchinson, D Riendeau. Criteria for the identification of non-redox inhibitors of 5-lipoxygenase.
Biochemical pharmacology.
1993 Feb; 45(4):978-81. doi:
10.1016/0006-2952(93)90185-y
. [PMID: 8452572] - P G van Aarle, M M de Barse, G A Veldink, J F Vliegenthart. Purification of a lipoxygenase from ungerminated barley. Characterization and product formation.
FEBS letters.
1991 Mar; 280(1):159-62. doi:
10.1016/0014-5793(91)80227-t
. [PMID: 1901276] - H F Cantiello, C R Patenaude, J Codina, L Birnbaumer, D A Ausiello. G alpha i-3 regulates epithelial Na+ channels by activation of phospholipase A2 and lipoxygenase pathways.
The Journal of biological chemistry.
1990 Dec; 265(35):21624-8. doi:
10.1016/s0021-9258(18)45786-9
. [PMID: 2174882] - N A Porter, P Dussault, R A Breyer, J Kaplan, J Morelli. The resolution of racemic hydroperoxides: a chromatography-based separation of perketals derived from arachidonic, linoleic, and oleic acid hydroperoxides.
Chemical research in toxicology.
1990 May; 3(3):236-43. doi:
10.1021/tx00015a008
. [PMID: 2131835] - Y Nishizawa, K Nishii, S Kishimoto, K Matsumoto, B Sato. Regulatory role of arachidonic acid-derived metabolites for proliferation of transformed murine Leydig cell in serum-free culture condition.
Anticancer research.
1990 Mar; 10(2A):317-22. doi:
NULL
. [PMID: 2111975] - A B Weitberg. Hydroxy- and hydroperoxy-6,8,11,14-eicosatetraenoic acids induce sister chromatid exchanges in cultured mammalian cells.
The American journal of the medical sciences.
1990 Jan; 299(1):50-3. doi:
10.1097/00000441-199001000-00011
. [PMID: 2105055] - D Riendeau, D Denis, L Y Choo, D J Nathaniel. Stimulation of 5-lipoxygenase activity under conditions which promote lipid peroxidation.
The Biochemical journal.
1989 Oct; 263(2):565-72. doi:
10.1042/bj2630565
. [PMID: 2512907] - A B Weitberg, D Corvese. Hydroxy- and hydroperoxy-6,8,11,14-eicosatetraenoic acids induce DNA strand breaks in human lymphocytes.
Carcinogenesis.
1989 Jun; 10(6):1029-31. doi:
10.1093/carcin/10.6.1029
. [PMID: 2497998] - J Wang, B H Yuen, P C Leung. Stimulation of progesterone and prostaglandin E2 production by lipoxygenase metabolites of arachidonic acid.
FEBS letters.
1989 Feb; 244(1):154-8. doi:
10.1016/0014-5793(89)81182-2
. [PMID: 2494061] - S Nigam, S Müller. 5-Hydroperoxyeicosatetraenoic acid (5-HPETE) enhances the synthesis of 1-O-alkyl-2-sn-acetyl-glycero-3-phosphocholine (PAF) in fMet-Leu-Phe-stimulated HL-60 cells: key role of diacylglycerol (DAG) in activation of protein kinase C (PKC).
Free radical research communications.
1989; 7(3-6):171-8. doi:
10.3109/10715768909087939
. [PMID: 2583546] - P Reddanna, J Whelan, P S Reddy, C C Reddy. Isolation and characterization of 5-lipoxygenase from tulip bulbs.
Biochemical and biophysical research communications.
1988 Dec; 157(3):1348-51. doi:
10.1016/s0006-291x(88)81023-4
. [PMID: 3144972] - J Gut, D W Goldman, J R Trudell. Conversion of 5-hydroperoxyeicosatetraenoic acid into leukotriene B4 by rat hepatocytes: a novel cellular source for leukotriene B4.
Molecular pharmacology.
1988 Sep; 34(3):256-64. doi:
"
. [PMID: 2843745] - J Gut, J R Trudell, G C Jamieson. Leukotriene biosynthesis: direct chemical ionization mass spectrometry of underivatized arachidonic acid metabolites.
Biomedical & environmental mass spectrometry.
1988 May; 15(9):509-16. doi:
10.1002/bms.1200150908
. [PMID: 2838114] - N Ueda, S Yamamoto. The 6R-oxygenase activity of arachidonate 5-lipoxygenase purified from porcine leukocytes.
The Journal of biological chemistry.
1988 Feb; 263(4):1937-41. doi:
10.1016/s0021-9258(19)77968-x
. [PMID: 3338999] - C Maslen, T R Stevens, N D Hall. The generation of lipid peroxides by stimulated human neutrophils. Detection using phenol red oxidation.
Journal of immunological methods.
1987 Apr; 98(1):71-6. doi:
10.1016/0022-1759(87)90437-6
. [PMID: 3104477] - P J Marshall, W E Lands. In vitro formation of activators for prostaglandin synthesis by neutrophils and macrophages from humans and guinea pigs.
The Journal of laboratory and clinical medicine.
1986 Dec; 108(6):525-34. doi:
"
. [PMID: 3097222] - C A Rouzer, B Samuelsson. The importance of hydroperoxide activation for the detection and assay of mammalian 5-lipoxygenase.
FEBS letters.
1986 Aug; 204(2):293-6. doi:
10.1016/0014-5793(86)80831-6
. [PMID: 3089841] - M Stüning, M Raulf, W König. Localization of 5-lipoxygenase within human polymorphonuclear leukocytes.
Biochemical pharmacology.
1985 Nov; 34(22):3943-50. doi:
10.1016/0006-2952(85)90370-3
. [PMID: 3933516] - R L Maas, C D Ingram, A T Porter, J A Oates, D F Taber, A R Brash. Investigation of the chemical conversion of hydroperoxyeicosatetraenoate to leukotriene epoxide using stereospecifically labeled arachidonic acid. Comparison with the enzymatic reaction.
The Journal of biological chemistry.
1985 Apr; 260(7):4217-28. doi:
"
. [PMID: 2984197] - A R Brash, A T Porter, R L Maas. Investigation of the selectivity of hydrogen abstraction in the nonenzymatic formation of hydroxyeicosatetraenoic acids and leukotrienes by autoxidation.
The Journal of biological chemistry.
1985 Apr; 260(7):4210-6. doi:
. [PMID: 2984196]
- O Rådmark, T Shimizu, F Fitzpatrick, B Samuelsson. Hemoprotein catalysis of leukotriene formation.
Biochimica et biophysica acta.
1984 Mar; 792(3):324-9. doi:
10.1016/0005-2760(84)90200-5
. [PMID: 6696937] - B Bösterling, J R Trudell. Production of 5- and 15-hydroperoxyeicosatetraenoic acid from arachidonic acid by halothane-free radicals generated by UV-irradiation.
Anesthesiology.
1984 Mar; 60(3):209-13. doi:
10.1097/00000542-198403000-00007
. [PMID: 6696254] - Iu E Vel'tishchev, O B Sviatkina. [New mediators of allergy and inflammation of a lipid nature].
Voprosy meditsinskoi khimii.
1984; 30(6):2-9. doi:
"
. [PMID: 6098991] - R Moqbel, S P Sass-Kuhn, E J Goetzl, A B Kay. Enhancement of neutrophil- and eosinophil-mediated complement-dependent killing of schistosomula of Schistosoma mansoni in vitro by leukotriene B4.
Clinical and experimental immunology.
1983 Jun; 52(3):519-27. doi:
. [PMID: 6307558]
- J Turk, R L Maas, L J Roberts, A R Brash, J A Oates. Conjugated triene metabolites of arachidonic acid derived from dioxygenation at carbon-15: origin from eosinophil and mechanisms of biosynthesis.
Advances in prostaglandin, thromboxane, and leukotriene research.
1983; 11(?):123-32. doi:
"
. [PMID: 6221514] - S P Peters, A Kagey-Sobotka, D W MacGlashan, M I Siegel, L M Lichtenstein. The modulation of human basophil histamine release by products of the 5-lipoxygenase pathway.
Journal of immunology (Baltimore, Md. : 1950).
1982 Aug; 129(2):797-803. doi:
"
. [PMID: 6177784] - D E Sok, C O Han, W R Shieh, B N Zhou, C J Sih. Enzymatic formation of 14,15-leukotriene A and C(14)-sulfur-linked peptides.
Biochemical and biophysical research communications.
1982 Feb; 104(4):1363-70. doi:
10.1016/0006-291x(82)91400-0
. [PMID: 6280711]