bas 320i (BioDeep_00000002130)

   

natural product


代谢物信息卡片


Pesticide4_Metaflumizone_C24H16F6N4O2_(2E)-2-{2-(4-Cyanophenyl)-1-[3-(trifluoromethyl)phenyl]ethylidene}-N-[4-(trifluoromethoxy)phenyl]hydrazinecarboxamide

化学式: C24H16F6N4O2 (506.1177)
中文名称: 氰氟虫腙
谱图信息: 最多检出来源 Escherichia coli(natural_products) 50%

分子结构信息

SMILES: C1=CC(=CC(=C1)C(F)(F)F)C(=NNC(=O)NC2=CC=C(C=C2)OC(F)(F)F)CC3=CC=C(C=C3)C#N
InChI: InChI=1S/C24H16F6N4O2/c25-23(26,27)18-3-1-2-17(13-18)21(12-15-4-6-16(14-31)7-5-15)33-34-22(35)32-19-8-10-20(11-9-19)36-24(28,29)30/h1-11,13H,12H2,(H2,32,34,35)/b33-21+



数据库引用编号

19 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 6 DSG1, HPGDS, IPP, PRDX5, PRX, TXN
Peripheral membrane protein 2 ACHE, PRX
Endosome membrane 1 CLCN5
Nucleus 7 ACHE, ARID3B, DSG1, PRDX5, PRX, TXN, ZNF382
cytosol 5 CLCN5, DSG1, HPGDS, PRDX5, TXN
nucleoplasm 4 ARID3B, HPGDS, SCNN1G, TXN
Cell membrane 4 ACHE, CLCN5, DSG1, PRX
Cytoplasmic side 1 PRX
Multi-pass membrane protein 3 CACNA1I, CLCN5, SCNN1G
Golgi apparatus membrane 2 B3GAT2, CLCN5
Synapse 1 ACHE
cell junction 1 PRX
cell surface 1 ACHE
Golgi apparatus 2 ACHE, CLCN5
Golgi membrane 3 B3GAT2, CLCN5, INS
lysosomal membrane 1 CLCN5
neuromuscular junction 1 ACHE
synaptic vesicle 1 CLCN5
plasma membrane 6 ACHE, CACNA1I, CLCN5, DSG1, PRX, SCNN1G
Membrane 4 ACHE, B3GAT2, CACNA1I, CLCN5
apical plasma membrane 2 DSG1, SCNN1G
extracellular exosome 3 PRDX5, SCNN1G, TXN
extracellular space 3 ACHE, INS, PRDX5
perinuclear region of cytoplasm 2 ACHE, PRDX5
mitochondrion 1 PRDX5
intracellular membrane-bounded organelle 2 HPGDS, PRDX5
Single-pass type I membrane protein 1 DSG1
Secreted 3 ACHE, INS, TXN
extracellular region 3 ACHE, INS, TXN
cytoplasmic side of plasma membrane 1 DSG1
mitochondrial matrix 1 PRDX5
Extracellular side 1 ACHE
anchoring junction 1 PRX
external side of plasma membrane 1 SCNN1G
actin cytoskeleton 1 IPP
cytoplasmic vesicle 1 PRDX5
Early endosome 1 CLCN5
apical part of cell 1 CLCN5
Single-pass type II membrane protein 1 B3GAT2
Apical cell membrane 1 SCNN1G
Peroxisome 1 PRDX5
basement membrane 1 ACHE
Peroxisome matrix 1 PRDX5
peroxisomal matrix 1 PRDX5
lateral plasma membrane 1 DSG1
Lipid-anchor, GPI-anchor 1 ACHE
endosome lumen 1 INS
Cornified envelope 1 DSG1
sodium channel complex 1 SCNN1G
side of membrane 1 ACHE
secretory granule lumen 1 INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 1 INS
voltage-gated calcium channel complex 1 CACNA1I
transport vesicle 1 INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
[Isoform 2]: Cytoplasm 1 PRX
synaptic cleft 1 ACHE
ficolin-1-rich granule membrane 1 DSG1
[Isoform 1]: Cell membrane 1 PRX
Cell junction, desmosome 1 DSG1
desmosome 1 DSG1
[Isoform Mitochondrial]: Mitochondrion 1 PRDX5
[Isoform H]: Cell membrane 1 ACHE
[Isoform Cytoplasmic+peroxisomal]: Cytoplasm 1 PRDX5


文献列表

  • Yu-Jie Wu, Bing-Jie Wang, Meng-Ru Wang, Ying-Chuan Peng, Hai-Qun Cao, Cheng-Wang Sheng. Control efficacy and joint toxicity of metaflumizone mixed with chlorantraniliprole or indoxacarb against the fall armyworm, Spodoptera frugiperda. Pest management science. 2023 Mar; 79(3):1094-1101. doi: 10.1002/ps.7278. [PMID: 36334007]
  • Xingliang Wang, Jianheng Zhang, Yihua Yang, Yidong Wu. Equivalent intensity but differential dominance of sodium channel blocker insecticide resistance conferred by F1845Y and V1848I mutations of the voltage-gated sodium channel in Plutella xylostella. Insect science. 2023 Feb; 30(1):125-134. doi: 10.1111/1744-7917.13042. [PMID: 35366363]
  • Xing-Xing Sun, Hong-Yang Li, Ying-Jie Jiang, Jun-Xi Zhang, Hui-Ling Gu, Bo Gao, Jing-Jing Ma, Fan Wang, Jia-Chun Zhou, Xiang-Rui Tian, Jianya Su, Kai Wang. Resistance Risk Evaluated by Metaflumizone Selection and the Effects on Toxicities Over Other Insecticides in Spodoptera exigua (Lepidoptera: Noctuidae). Journal of economic entomology. 2019 09; 112(5):2354-2361. doi: 10.1093/jee/toz171. [PMID: 31219572]
  • Guang-Wei Li, Xiu-Lin Chen, Xiang-Li Xu, Jun-Xiang Wu. Degradation of sex pheromone and plant volatile components by an antennal glutathione S-transferase in the oriental fruit moth,Grapholita molesta Busck (Lepidoptera: Tortricidae). Archives of insect biochemistry and physiology. 2018 Dec; 99(4):e21512. doi: 10.1002/arch.21512. [PMID: 30387866]
  • Jun Shen, Dongyang Li, Shuzhen Zhang, Xun Zhu, Hu Wan, Jianhong Li. Fitness and inheritance of metaflumizone resistance in Plutella xylostella. Pesticide biochemistry and physiology. 2017 Jun; 139(?):53-59. doi: 10.1016/j.pestbp.2017.04.010. [PMID: 28595922]
  • Yongqiang Zhang, Yuzhe Du, Dingxin Jiang, Caitlyn Behnke, Yoshiko Nomura, Boris S Zhorov, Ke Dong. The Receptor Site and Mechanism of Action of Sodium Channel Blocker Insecticides. The Journal of biological chemistry. 2016 09; 291(38):20113-24. doi: 10.1074/jbc.m116.742056. [PMID: 27489108]
  • Xing-Liang Wang, Wen Su, Jian-Heng Zhang, Yi-Hua Yang, Ke Dong, Yi-Dong Wu. Two novel sodium channel mutations associated with resistance to indoxacarb and metaflumizone in the diamondback moth, Plutella xylostella. Insect science. 2016 Feb; 23(1):50-8. doi: 10.1111/1744-7917.12226. [PMID: 25850422]
  • Dingxin Jiang, Yuzhe Du, Yoshiko Nomura, Xingliang Wang, Yidong Wu, Boris S Zhorov, Ke Dong. Mutations in the transmembrane helix S6 of domain IV confer cockroach sodium channel resistance to sodium channel blocker insecticides and local anesthetics. Insect biochemistry and molecular biology. 2015 Nov; 66(?):88-95. doi: 10.1016/j.ibmb.2015.09.011. [PMID: 26407935]
  • Xiangrui Tian, Xingxing Sun, Jianya Su. Biochemical mechanisms for metaflumizone resistance in beet armyworm, Spodoptera exigua. Pesticide biochemistry and physiology. 2014 Jul; 113(?):8-14. doi: 10.1016/j.pestbp.2014.06.010. [PMID: 25052521]
  • Shem K Khakame, Xingliang Wang, Yidong Wu. Baseline toxicity of metaflumizone and lack of cross resistance between indoxacarb and metaflumizone in diamondback moth (Lepidoptera: Plutellidae). Journal of economic entomology. 2013 Jun; 106(3):1423-9. doi: 10.1603/ec12494. [PMID: 23865210]
  • R L DeLay, E Lacoste, T Mezzasalma, F Blond-Riou. Pharmacokinetics of metaflumizone and amitraz in the plasma and hair of dogs following topical application. Veterinary parasitology. 2007 Dec; 150(3):251-7. doi: 10.1016/j.vetpar.2007.08.045. [PMID: 17942231]
  • R L DeLay, E Lacoste, S Delprat, F Blond-Riou. Pharmacokinetics of metaflumizone in the plasma and hair of cats following topical application. Veterinary parasitology. 2007 Dec; 150(3):258-62. doi: 10.1016/j.vetpar.2007.08.042. [PMID: 17913364]
  • K Heaney, R G Lindahl. Safety of a topically applied spot-on formulation of metaflumizone plus amitraz for flea and tick control in dogs. Veterinary parasitology. 2007 Dec; 150(3):225-32. doi: 10.1016/j.vetpar.2007.08.038. [PMID: 17928149]