Subcellular Location: Early endosome
Found 500 associated metabolites.
314 associated genes.
ACKR1, ACKR2, ACKR3, ACKR4, ADRB1, ADRB2, AKT2, ALS2, ANGPTL3, ANK2, ANKFY1, ANKRD13B, ANKRD27, ANXA1, ANXA2, AOC3, AP1AR, AP1B1, AP1G1, AP1M1, AP1S1, AP1S2, AP1S3, AP3B1, AP3B2, AP3D1, AP3M1, AP3M2, AP3S1, AP3S2, AP4M1, APBB2, APC2, APH1A, APOA1, APOA2, APOA4, APOA5, APOB, APOC2, APOC3, APOE, APP, APPL1, ARRDC3, ARRDC4, ASTN2, ATP11A, ATP11B, ATP6V0D1, ATP6V0D2, ATP9A, BACE1, BLOC1S1, BLTP3B, C1orf210, CACFD1, CACNG7, CCDC154, CCDC93, CCR10, CD1E, CD22, CD4, CERT1, CFTR, CHMP1A, CHMP3, CLCN3, CLCN4, CLCN5, CLN3, CLN6, CNTNAP2, COMMD1, CORO1A, CRYZL1, CXCR4, CYTIP, DBNL, DERL1, DERL2, DIAPH2, DNAJC13, DNER, DYSF, ECE1, ECPAS, EEA1, EHD1, EHD2, EHD3, EHD4, ENTR1, EPHA3, EPHA4, ERBB2, F2R, F2RL1, F8A3, FERRY3, FGD2, FGD5, FKBP15, FLOT1, GATD1, GGA1, GGA2, GPER1, GPR107, HAP1, HAS3, HAVCR2, HFE, HGS, HLA-G, HPS3, HPS5, HPS6, HSPD1, HTT, HYAL3, IGF2R, INPP5F, KCNQ1, KDR, KIAA0319, KIF16B, KIFC1, LAMP3, LAPTM4B, LDLR, LDLRAP1, LIPG, LMTK2, LRP1, LTF, MAGEL2, MAP2K1, MAP2K2, MAPK1, MAPK3, MELTF, MGRN1, MIB2, MLC1, MME, MMGT1, MVB12B, MYO1B, MYO1D, NAPEPLD, NCSTN, NEURL1B, NEURL3, NF2, NIPA1, NIPA2, NISCH, NME1, NOX1, NRP1, NSG2, NTRK1, NTRK2, NUMB, OCRL, PACSIN2, PARM1, PCSK9, PHB1, PHETA1, PHETA2, PICALM, PLD4, PLEKHA3, PLEKHF1, PLEKHF2, PLEKHJ1, PLPP2, PPP1R21, PRDX3, PSEN1, PSEN2, PTP4A1, PTP4A2, PTP4A3, PTPN1, PTPN23, PXK, RAB11FIP5, RAB14, RAB17, RAB1A, RAB21, RAB22A, RAB29, RAB31, RAB32, RAB38, RAB5A, RAB5B, RAB5C, RABEP1, RABEP2, RABGAP1L, RABGEF1, RAP1A, RAP1GAP, RAPGEF1, RASGEF1B, RCSD1, RET, RFTN1, RHOB, RHOD, RIN3, RND2, RNF11, RPS6KC1, RUBCN, RUSC1, SAMD9L, SERPINB1, SGK3, SH3GL1, SH3GL2, SIAH2, SIGLEC1, SLC11A2, SLC30A10, SLC5A1, SLC9A3, SLC9A6, SLC9A9, SNX12, SNX13, SNX16, SNX17, SNX27, SNX3, SNX30, SNX31, SNX4, SNX5, SNX6, SNX7, SORL1, SORT1, ST8SIA2, STAMBP, STEAP2, STX6, STX7, STX8, TBC1D16, TBC1D2B, TBCK, TF, TFRC, TGFBRAP1, TICAM1, TICAM2, TLR3, TLR4, TM9SF4, TMEM108, TMEM127, TMEM230, TOLLIP, TOM1, TRAK1, TRAK2, TRIM27, TRIM3, TSG101, USP10, USP8, UVRAG, VAMP8, VCAM1, VIPAS39, VPS11, VPS16, VPS18, VPS26A, VPS26B, VPS28, VPS29, VPS33A, VPS33B, VPS35, VPS4A, VPS8, WASF2, WASH2P, WASH3P, WASH4P, WASH6P, WASHC1, WASHC2A, WASHC2C, WASHC3, WASHC4, WASHC5, WDFY1, WDFY2, WDFY4, WDR91, WIPF3, WLS, ZFYVE16, ZFYVE26, ZFYVE9
Mukurozidiol
Constituent of Japanese drug byakusi obtained from Angelica subspecies Also from lemon oil and other Citrus subspecies [DFC]. (R)-Byakangelicin is found in lemon, citrus, and herbs and spices. Byakangelicin is a member of psoralens. Byakangelicin is a natural product found in Murraya koenigii, Triphasia trifolia, and other organisms with data available. (S)-Byakangelicin is found in herbs and spices. (S)-Byakangelicin is a constituent of common rue (Ruta graveolens). D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins (Rac)-Byakangelicin is a racemate of Byakangelicin mainly isolated from the genus Angelica. Byakangelicin is an aldose-reductase inhibitor with an IC50 value of 6.2 μM[1]. (Rac)-Byakangelicin is a racemate of Byakangelicin mainly isolated from the genus Angelica. Byakangelicin is an aldose-reductase inhibitor with an IC50 value of 6.2 μM[1]. Byakangelicin, one of the active compounds found in the roots of Angelica gigas, can serve as a modulator to improve brain accumulation of diverse active compounds (Umb, Cur, and Dox) and enhance therapeutic effects[1]. Byakangelicin is likely to increase the expression of all PXR target genes (such as MDR1) and induce a wide range of agent-agent interactions. Byakangelicin can inhibit the effects of sex hormones, it may increase the catabolism of endogenous hormones[2]. Byakangelicin, one of the active compounds found in the roots of Angelica gigas, can serve as a modulator to improve brain accumulation of diverse active compounds (Umb, Cur, and Dox) and enhance therapeutic effects[1]. Byakangelicin is likely to increase the expression of all PXR target genes (such as MDR1) and induce a wide range of agent-agent interactions. Byakangelicin can inhibit the effects of sex hormones, it may increase the catabolism of endogenous hormones[2].
Byakangelicol
Byakangelicol is a member of the class of compounds known as 5-methoxypsoralens. 5-methoxypsoralens are psoralens containing a methoxy group attached at the C5 position of the psoralen group. Byakangelicol is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Byakangelicol can be found in lemon, which makes byakangelicol a potential biomarker for the consumption of this food product. Byakangelicol is a member of psoralens. Byakangelicol is a natural product found in Murraya koenigii, Ostericum grosseserratum, and other organisms with data available. Byakangelicol, isolated from Angelica dahurica, inhibits interleukin-1beta (IL-1beta) -induced prostaglandin E2 (PGE2) release in A549 cells mediated by suppression of cyclooxygenase-2 (COX-2) expression and the activity of COX-2 enzyme. Byakangelicol has therapeutic potential as an anti-inflammatory agent on airway inflammation[1]. Byakangelicol, isolated from Angelica dahurica, inhibits interleukin-1beta (IL-1beta) -induced prostaglandin E2 (PGE2) release in A549 cells mediated by suppression of cyclooxygenase-2 (COX-2) expression and the activity of COX-2 enzyme. Byakangelicol has therapeutic potential as an anti-inflammatory agent on airway inflammation[1].
Guaiazulene
Guaiazulene is a sesquiterpene. It derives from a hydride of a guaiane. Guaiazulene is a natural product found in Mikania cordifolia, Santolina corsica, and other organisms with data available. obtained from essential oils, e.g. chamomile oil. 7-Isopropyl-1,4-dimethylazulene is found in many foods, some of which are fats and oils, fig, german camomile, and tea. 7-Isopropyl-1,4-dimethylazulene is found in fats and oils. 7-Isopropyl-1,4-dimethylazulene is obtained from essential oils, e.g. chamomile oil. S - Sensory organs > S01 - Ophthalmologicals Guaiazulene is present in several essential oils of medicinal and aromatic plants, with antioxidant activity. Guaiazulene has in vitro cytotoxic activity against neuron and N2a neuroblastom (N2a-NB) cells[1][2]. Guaiazulene. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=489-84-9 (retrieved 2024-11-06) (CAS RN: 489-84-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Atractylon
Atractylone is a sesquiterpenoid. Atractylon is a natural product found in Eugenia uniflora, Prumnopitys andina, and other organisms with data available.
Dihydrodaidzein
Dihydrodaidzein is one of the most prominent dietary phytoestrogens. Dietary phytoestrogens have been implicated in the prevention of chronic diseases (PMID:12270199). Dihydrodaidzein is a biomarker for the consumption of soy beans and other soy products. Dihydrodaidzein is a hydroxyisoflavanone that is isoflavanone carrying two hydroxy substituents located at positions 4 and 7. It has a role as a metabolite. A hydroxyisoflavanone that is isoflavanone carrying two hydroxy substituents located at positions 4 and 7. Dihydrodaidzein is one of the most prominent dietary phytoestrogens. S-Dihydrodaidzein is the (S)-enantiomer of dihydrodaidzein which is one of the most prominent dietary phytoestrogens[1][2].
Nordihydrocapsaicin
Nordihydrocapsaicin is a member of methoxybenzenes and a member of phenols. Nordihydrocapsaicin is a natural product found in Capsicum pubescens and Capsicum annuum with data available. See also: Capsicum (part of); Paprika (part of); Habanero (part of) ... View More ... Isolated from the pungent principle of red pepper (Capsicum annuum). Nordihydrocapsaicin is found in many foods, some of which are herbs and spices, pepper (c. annuum), italian sweet red pepper, and green bell pepper. Nordihydrocapsaicin is found in herbs and spices. Nordihydrocapsaicin is isolated from the pungent principle of red pepper (Capsicum annuum Nordihydrocapsaicin is a capsaicinoid analog and congener of capsaicin in chili peppers[1]. Nordihydrocapsaicin is a capsaicinoid analog and congener of capsaicin in chili peppers[1].
Hernandezine
Hernandezine is a member of isoquinolines and a bisbenzylisoquinoline alkaloid. Hernandezine is a natural product found in Thalictrum delavayi, Thalictrum fendleri, and other organisms with data available. Origin: Plant; SubCategory_DNP: Isoquinoline alkaloids, Benzylisoquinoline alkaloids
ParishinB
Parishin B is a glycoside. Parishin B is a natural product found in Artemisia absinthium with data available. Parishin B, a parishin derivative isolated from Gastrodia elata, may have antioxidant property[1]. Parishin B, a parishin derivative isolated from Gastrodia elata, may have antioxidant property[1].
Picrotin
Picrotin is an organic heteropentacyclic compound that is picrotoxinin in which the olefinic double bond has undergone addition of water to give the corresponding tertiary alcohol. It is the less toxic component of picrotoxin, lacking GABA activity. It has a role as a plant metabolite. It is an organic heteropentacyclic compound, an epoxide, a tertiary alcohol, a gamma-lactone, a diol and a picrotoxane sesquiterpenoid. It is functionally related to a picrotoxinin. Picrotin is a natural product found in Dendrobium moniliforme and Anamirta cocculus with data available. Picrotin belongs to the class of organic compounds known as furopyrans. These are organic polycyclic compounds containing a furan ring fused to a pyran ring. Furan is a five-membered aromatic ring with four carbon atoms and one oxygen atom. Pyran a six-membered heterocyclic, non-aromatic ring, made up of five carbon atoms and one oxygen atom and containing two double bonds. Picrotin is soluble (in water) and a very weakly acidic compound (based on its pKa). C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant Picrotin is an active compound, also is one of the composition of picrotoxin (an antagonist of GABAA receptors (GABAARs) and glycine receptors (GlyRs)). Picrotin has sensitivity for GlyRs/b> with IC50 values range from 5.2 μM to 106 μM. Picrotin can be used for the research of neurotransmission[1][2]. Picrotin is an active compound, also is one of the composition of picrotoxin (an antagonist of GABAA receptors (GABAARs) and glycine receptors (GlyRs)). Picrotin has sensitivity for GlyRs/b> with IC50 values range from 5.2 μM to 106 μM. Picrotin can be used for the research of neurotransmission[1][2]. Picrotin is an active compound, also is one of the composition of picrotoxin (an antagonist of GABAA receptors (GABAARs) and glycine receptors (GlyRs)). Picrotin has sensitivity for GlyRs/b> with IC50 values range from 5.2 μM to 106 μM. Picrotin can be used for the research of neurotransmission[1][2].
(R)-Citronellal
(R)-(+)-citronellal is the (3R)-stereoisomer of 3,7-dimethyloct-6-enal (citronellal). It is an enantiomer of a (S)-(-)-citronellal. (R)-(+)-Citronellal is a natural product found in Litsea cubeba, Backhousia citriodora, and other organisms with data available. (R)-Citronellal is found in citrus. (R)-Citronellal is a constituent of citronella oil. Also in citrus, lavender, eucalyptus oils and others. (R)-Citronellal is a flavouring agent Constituent of citronella oiland is) also in citrus, lavender, eucalyptus oils and others. Flavouring agent. (R)-Citronellal is found in lemon balm, citrus, and herbs and spices. The (3R)-stereoisomer of 3,7-dimethyloct-6-enal (citronellal). (R)-(+)-Citronellal, isolated from citrus, lavender and eucalyptus oils, is a monoterpenoid and main component of citronellal oil with a distinct lemon scent. A flavouring agent. Used for insect repellent and antifungal properties[1][2]. (R)-(+)-Citronellal, isolated from citrus, lavender and eucalyptus oils, is a monoterpenoid and main component of citronellal oil with a distinct lemon scent. A flavouring agent. Used for insect repellent and antifungal properties[1][2].
Tolvin
A tetracyclic compound with antidepressant effects. It may cause drowsiness and hematological problems. Its mechanism of therapeutic action is not well understood, although it apparently blocks alpha-adrenergic, histamine H1, and some types of serotonin receptors. D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C78272 - Agent Affecting Nervous System > C66885 - Serotonin Antagonist C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent Mianserin hydrochloride (Org GB 94) is a H1 receptor inverse agonist and is a psychoactive agent of the tetracyclic antidepressant. Mianserin hydrochloride (Org GB 94) is a H1 receptor inverse agonist and is a psychoactive agent of the tetracyclic antidepressant.
25d20E
Ponasterone A is a 2beta-hydroxy steroid, a 3beta-hydroxy steroid, a 14alpha-hydroxy steroid, a 20-hydroxy steroid, a 22-hydroxy steroid, a 6-oxo steroid and a phytoecdysteroid. Ponasterone A is a natural product found in Zoanthus, Lomaridium contiguum, and other organisms with data available. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones Ponasterone A (25-Deoxyecdysterone), an ecdysteroid, has strong affinity for the ecdysone receptor. Ponasterone A is a potent regulator of gene expression in cells and transgenic animals, enabling reporter genes to be turned on and off rapidly[1][2].
Combretum caffrum
3,4,3-Tri-O-methylellagic acid is a tannin. 2,3,8-Tri-O-methylellagic acid is a natural product found in Lagerstroemia speciosa, Cercidiphyllum japonicum, and other organisms with data available.
Sophoramine
Sophoramine is a naphthyridine derivative. Sophoramine is a natural product found in Sophora viciifolia, Sophora pachycarpa, and other organisms with data available.
beta-Carotinal
8-apo-beta,psi-caroten-8-al is an apo carotenoid triterpenoid compound arising from oxidative degradation of the beta,beta-carotene skeleton at the 8-position. It is an enal and an apo carotenoid triterpenoid. Apocarotenal is a natural product found in Dracaena draco, Palisota barteri, and other organisms with data available. Constituent of orange peel, spinach, marigolds and egg yolks. Colour additive. beta-Carotinal is found in many foods, some of which are eggs, green vegetables, sweet orange, and citrus. beta-Carotinal is found in citrus. beta-Carotinal is a constituent of orange peel, spinach, marigolds and egg yolks. Colour additive. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids β-Apo-8'-carotenal (Apocarotenal), a provitamin A carotenoid, is an inducer of CYPlA1 and CYPlA2 in rat. β-Apo-8'-carotenal is present in many fruits and vegetables[1]. β-Apo-8'-carotenal (Apocarotenal), a provitamin A carotenoid, is an inducer of CYPlA1 and CYPlA2 in rat. β-Apo-8'-carotenal is present in many fruits and vegetables[1].
Octacosanoic acid
Octacosanoic acid is a very-long-chain fatty acid found in human brain and visceral organs (PMID:2474624). Octacosanoic acid is a higher aliphatic primary acids purified from sugar-cane (Saccharum officinarum L.) wax that has been shown to inhibit platelet aggregation induced ex vivo by addition of agonists to platelet-rich plasma (PRP) of rats, guinea pigs, and healthy human volunteers. (PMID:5099499). Octacosanoic acid is formed from octacosanol via beta-oxidation. (PMID:15847942). Octacosanoic acid is a straight-chain saturated fatty acid that is octacosane in which one of the terminal methyl groups has been oxidised to the corresponding carboxy group. It has a role as a plant metabolite. It is a straight-chain saturated fatty acid and an ultra-long-chain fatty acid. It is a conjugate acid of an octacosanoate. Octacosanoic acid is a natural product found in Lysimachia patungensis, Rhizophora apiculata, and other organisms with data available. A straight-chain saturated fatty acid that is octacosane in which one of the terminal methyl groups has been oxidised to the corresponding carboxy group. Octacosanoic acid is a very-long-chain fatty acid found in human brain and visceral organs (PMID: 2474624)
1-Hydroxyanthraquinone
CONFIDENCE standard compound; INTERNAL_ID 8284 CONFIDENCE standard compound; INTERNAL_ID 25 D009676 - Noxae > D002273 - Carcinogens 1-Hydroxyanthraquinone, a naturally occurring compound with oral activity from some plants like Tabebuia avellanedae, exhibits carcinogenic effect[1]. 1-Hydroxyanthraquinone, a naturally occurring compound with oral activity from some plants like Tabebuia avellanedae, exhibits carcinogenic effect[1].
p-Menth-1-en-4-ol
p-Menth-1-en-4-ol, also known as terpinen-4-ol, 1-para-menthen-4-ol or p-Menth-1-en-4-ol or 4-carvomenthenol, is an isomer of terpineol. It belongs to the class of organic compounds known as menthane monoterpenoids. These are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. ±-Terpinene-4-ol is a hydrophobic, largely neutral molecule that is essentially insoluble in water. It has a peppery, spicy, musty, citrus odor and a cooling woody or spicy taste. ±-Terpinene-4-ol is widely used as a flavoring agent and as a masking agent in cosmetics. ±-Terpinene-4-ol is a natural product that can be found in a number of plants, such as allspice, anise, apple, basil, cardamom, cinnamon and Melaleuca alternifolia (also called tea tree) and is the main bioactive component of tea tree oil (PMID 22083482 ). ±-Terpinene-4-ol is also one of the monoterpenes found in cannabis plants (PMID:6991645 ). Terpinen-4-ol is a potent bactericidal agent that also possess antifungal properties. In particular, it has shown in vitro activity against Staphylococcus aureus and C. albicans (PMID:27275783 ). It has also been shown that combining this natural substance and conventional drugs may help treat resistant yeast and bacterial infections. Several studies have suggested that terpinen-4-ol induces antitumor effects by selectively causing necrotic cell death and cell-cycle arrest in melanoma cell lines, or by triggering caspase-dependent apoptosis in human melanoma cells (PMID:27275783 ). 4-terpineol is a terpineol that is 1-menthene carrying a hydroxy substituent at position 4. It has a role as a plant metabolite, an antibacterial agent, an antioxidant, an anti-inflammatory agent, an antiparasitic agent, an antineoplastic agent, an apoptosis inducer and a volatile oil component. It is a terpineol and a tertiary alcohol. Terpinen-4-ol is under investigation in clinical trial NCT01647217 (Demodex Blepharitis Treatment Study). 4-Carvomenthenol is a natural product found in Nepeta nepetella, Teucrium montanum, and other organisms with data available. Terpinen-4-ol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Lavender Oil (part of); Juniper Berry Oil (part of); Peumus boldus leaf (part of). Flavouring ingredient. p-Menth-1-en-4-ol is found in many foods, some of which are star anise, spearmint, sweet basil, and black elderberry. A terpineol that is 1-menthene carrying a hydroxy substituent at position 4. Terpinen-4-ol (4-Carvomenthenol), a naturally occurring monoterpene, is the main bioactive component of tea-tree oil. Terpinen-4-ol suppresses inflammatory mediator production by activated human monocytes. Terpinen-4-ol significantly enhances the effect of several chemotherapeutic and biological agents[1][2][3]. Terpinen-4-ol (4-Carvomenthenol), a naturally occurring monoterpene, is the main bioactive component of tea-tree oil. Terpinen-4-ol suppresses inflammatory mediator production by activated human monocytes. Terpinen-4-ol significantly enhances the effect of several chemotherapeutic and biological agents[1][2][3].
serin
Serine is an alpha-amino acid that is alanine substituted at position 3 by a hydroxy group. It has a role as a fundamental metabolite. It is an alpha-amino acid and a polar amino acid. It contains a hydroxymethyl group. It is a conjugate base of a serinium. It is a conjugate acid of a serinate. It is a tautomer of a serine zwitterion. DL-Serine, a fundamental metabolite, is a mixture of D-Serine and L-Serine. DL-Serine has antiviral activity against the multiplication of tobacco mosaic virus (TMV)[1]. DL-Serine, a fundamental metabolite, is a mixture of D-Serine and L-Serine. DL-Serine has antiviral activity against the multiplication of tobacco mosaic virus (TMV)[1]. D-Serine ((R)-Serine), an endogenous amino acid involved in glia-synapse interactions that has unique neurotransmitter characteristics, is a potent co-agonist at the NMDA glutamate receptor. D-Serinee has a cardinal modulatory role in major NMDAR-dependent processes including NMDAR-mediated neurotransmission, neurotoxicity, synaptic plasticity, and cell migration[1][2]. D-Serine ((R)-Serine), an endogenous amino acid involved in glia-synapse interactions that has unique neurotransmitter characteristics, is a potent co-agonist at the NMDA glutamate receptor. D-Serinee has a cardinal modulatory role in major NMDAR-dependent processes including NMDAR-mediated neurotransmission, neurotoxicity, synaptic plasticity, and cell migration[1][2]. L-Serine ((-)-Serine; (S)-Serine), one of the so-called non-essential amino acids, plays a central role in cellular proliferation. L-Serine ((-)-Serine; (S)-Serine), one of the so-called non-essential amino acids, plays a central role in cellular proliferation.
Isoferulic acid
Isoferulic acid (CAS: 537-73-5) is a chlorogenic acid (CGA). CGAs are formed by the esterification of hydroxycinnamic acids (e.g. caffeic acid, ferulic acid, and p-coumaric acid) with quinic acid. CGAs are abundant phenolic compounds in coffee, with caffeoylquinic (CQA), feruloylquinic (FQA), and dicaffeoylquinic (diCQA) acids being the major subclasses, and coffee is the most consumed food product in the world. Isoferulic acid is present in normal human urine in concentrations of 0.05-2.07 umol/mmol creatinine at baseline, and reaches 0.2-9.6 umol/mmol creatinine in four hours after a cup of coffee, with a large inter-individual variation (PMID:17884997). It is used as a food additive; listed in the EAFUS Food Additive Database (Jan 2001) KEIO_ID I024 Isoferulic acid (3-Hydroxy-4-methoxycinnamic acid) is a cinnamic acid derivative that has antidiabetic activity. Isoferulic acid binds to and activates α1-adrenergic receptors (IC50=1.4 μM) to enhance secretion of β-endorphin (EC50=52.2 nM) and increase glucose use. Isoferulic acid also has anti-influenza virus activities. Isoferulic acid (3-Hydroxy-4-methoxycinnamic acid) is a cinnamic acid derivative that has antidiabetic activity. Isoferulic acid binds to and activates α1-adrenergic receptors (IC50=1.4 μM) to enhance secretion of β-endorphin (EC50=52.2 nM) and increase glucose use. Isoferulic acid also has anti-influenza virus activities. Isoferulic acid (3-Hydroxy-4-methoxycinnamic acid) is a cinnamic acid derivative that has antidiabetic activity. Isoferulic acid binds to and activates α1-adrenergic receptors (IC50=1.4 μM) to enhance secretion of β-endorphin (EC50=52.2 nM) and increase glucose use. Isoferulic acid also has anti-influenza virus activities. trans-Isoferulic acid (trans-3-Hydroxy-4-methoxycinnamic acid) is an aromatic acid isolated from the roots of Clematis florida var. plena. trans-Isoferulic acid exhibits anti-inflammatory activity[1].trans-isoferulic acid suppresses NO and PGE2 production through the induction of Nrf2-dependent heme oxygenase-1 (HO-1)[2]. trans-Isoferulic acid (trans-3-Hydroxy-4-methoxycinnamic acid) is an aromatic acid isolated from the roots of Clematis florida var. plena. trans-Isoferulic acid exhibits anti-inflammatory activity[1].trans-isoferulic acid suppresses NO and PGE2 production through the induction of Nrf2-dependent heme oxygenase-1 (HO-1)[2].
2,3-Diaminopropionic acid
2,3-Diaminopropionic acid, also known as L-2,3-diaminopropanoate or Dpr, belongs to the class of organic compounds known as l-alpha-amino acids. These are alpha amino acids which have the L-configuration of the alpha-carbon atom. 2,3-Diaminopropionic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. 2,3-Diaminopropionic acid (2,3-diaminopropionate) is a non-proteinogenic amino acid found in certain secondary metabolites, including zwittermicin A and tuberactinomycin.2,3-Diaminopropionate is formed by the pyridoxal phosphate (PLP) mediated amination of serine. 2,3-Diaminopropionic acid exists in all living organisms, ranging from bacteria to humans. 2,3-Diaminopropionic acid is a metabolite of b-oxalyl-L-a,b-diaminopropionic acid a neurotoxic amino acid (ODAP). (PMID 5774501) COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Tryptophol
Tryptophol, also known as indole-3-ethanol, is an indolyl alcohol that is ethanol substituted by a 1H-indol-3-yl group at position 2. It has a role as a Saccharomyces cerevisiae metabolite, an auxin and a plant metabolite. Tryptophol is a catabolite of tryptophan converted by the gut microbiota. After absorption through the intestinal epithelium, tryptophan catabolites enter the bloodstream and are later excreted in the urine (PMID:30120222). Tryptophol production was negatively associated with interferon-gamma production (IFNγ) which suggests that tryptophol has anti-inflammatory properties (PMID:27814509). Tryptophol has also been identified as the hypnotic agent in trypanosomal sleeping sickness, and because it is formed in vivo after ethanol or disulfiram treatment, it is also associated with the study of alcoholism (PMID:7241135). Indole-3-ethanol is a dietary indole present in cruciferous vegetables that has been shown to influence estradiol metabolism in humans and may provide a new chemopreventive approach to estrogen-dependent diseases. (PMID 2342128) Tryptophol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=526-55-6 (retrieved 2024-06-29) (CAS RN: 526-55-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Tryptophol (Indole-3-ethanol) is an endogenous metabolite. Tryptophol (Indole-3-ethanol) is an endogenous metabolite.
3-Hydroxybenzoic acid
3-Hydroxybenzoic acid, also known as 3-hydroxybenzoate or 3-carboxyphenol, belongs to the class of organic compounds known as hydroxybenzoic acid derivatives. Hydroxybenzoic acid derivatives are compounds containing a hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxyl and a hydroxyl groups. 3-Hydroxybenzoic acid exists in all living organisms, ranging from bacteria to humans. Outside of the human body, 3-hydroxybenzoic acid is found, on average, in the highest concentration in american cranberries and beers. 3-hydroxybenzoic acid has also been detected, but not quantified in a few different foods, such as bilberries, citrus, and corns. As well, 3-Hydroxybenzoic Acid can be found in the pineapple fruit. It can also be formed by a Pseudomonas species from 3-Chlorobenzoic acid. 3-Hydroxybenzoic acid is a monohydroxybenzoic acid. 3-Hydroxybenzoic acid can be obtained by the alkali fusion of 3-sulfobenzoic acid between 210-220 °C. 3-Hydroxybenzoic acid is a component of castoreum, the exudate from the castor sacs of the mature North American beaver (Castor canadensis) and the European beaver (Castor fiber), used in perfumery. Present in fruits. Isolated from Citrus paradisi (grapefruit) CONFIDENCE standard compound; ML_ID 13 KEIO_ID H019 3-Hydroxybenzoic acid is an endogenous metabolite. 3-Hydroxybenzoic acid is an endogenous metabolite.
6-HYDROXYMELATONIN
A member of the class of tryptamines that is melatonin with a hydroxy group substituent at position 6. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones D020011 - Protective Agents > D002316 - Cardiotonic Agents D002317 - Cardiovascular Agents 6-Hydroxymelatonin is a primary metabolic of Melatonin, which is metabolized by cytochrome P450 (CYP) 1A2.
Guanidinoacetate
Guanidoacetic acid (GAA), also known as guanidinoacetate or glycocyamine, belongs to the class of organic compounds known as alpha amino acids and derivatives. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon), or a derivative thereof. Guanidinoacetic acid was first prepared in 1861 by Adolph Strecker by reaction of cyanamide with glycine in aqueous solution. Manufactured guanidinoacetic acid is primarily used a feed additive approved by EFSA in poultry farming (for fattening), and pigs for fattening. Guanidoacetic acid exists naturally in all vertebrates. It is formed primarily in the kidneys by transferring the guanidine group of L-arginine to the amino acid glycine via the enzyme known as L-Arg:Gly-amidinotransferase (AGAT). In a further step, guanidinoacetate is methylated to generate creatine using S-adenosyl methionine (as the methyl donor) via the enzyme known as guanidinoacetate N-methyltransferase (GAMT). The resulting creatine is released into the bloodstream. Elevated levels of guanidoacetic acid are a characteristic of an inborn metabolic disorder known as Guanidinoacetate Methyltransferase (GAMT) Deficiency. GAMT converts guanidinoacetate to creatine and deficiency of this enzyme results in creatine depletion and accumulation of guanidinoacetate The disorder is transmitted in an autosomal recessive fashion and is localized to mutations on chromosome 19p13.3. GAMT deficiency is characterized by developmental arrest, medication-resistant epilepsy (myoclonic, generalized tonic-clonic, partial complex, atonic), severe speech impairment, progressive dystonia, dyskinesias, hypotonia, ataxia, and autistic-like behavior. Guanidino acetic acid, also known as guanidinoacetate or glycocyamine, belongs to alpha amino acids and derivatives class of compounds. Those are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon), or a derivative thereof. Guanidino acetic acid is slightly soluble (in water) and a weakly acidic compound (based on its pKa). Guanidino acetic acid can be found in apple and loquat, which makes guanidino acetic acid a potential biomarker for the consumption of these food products. Guanidino acetic acid can be found primarily in most biofluids, including cellular cytoplasm, feces, urine, and cerebrospinal fluid (CSF), as well as in human brain, kidney and liver tissues. In humans, guanidino acetic acid is involved in a couple of metabolic pathways, which include arginine and proline metabolism and glycine and serine metabolism. Guanidino acetic acid is also involved in several metabolic disorders, some of which include dihydropyrimidine dehydrogenase deficiency (DHPD), hyperprolinemia type II, prolinemia type II, and hyperornithinemia-hyperammonemia-homocitrullinuria [hhh-syndrome]. Moreover, guanidino acetic acid is found to be associated with chronic renal failure and schizophrenia. Guanidino acetic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Chronic Exposure: Kidney dialysis is usually needed to relieve the symptoms of uremic syndrome until normal kidney function can be restored. D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D000345 - Affinity Labels Acquisition and generation of the data is financially supported in part by CREST/JST.
DL-Homocystine
Homocystine is the oxidized form of homocysteine. Homocystine is a dipeptide consisting of two homocysteine molecules joined by a disulfide bond. Homocysteine is a sulfur-containing amino acid that arises during methionine metabolism. Homocystine occurs only transiently before being reduced to homocysteine and converted to the harmless cystathionine via a vitamin B6-dependent enzyme. Homocystine and homocysteine-cysteine mixed disulfides account for >98\\\\\% of total homocysteine in plasma from healthy individuals (PMID 11592966). Homocystine has been shown to stereospecifically induce endothelial nitric oxide synthase-dependent lipid peroxidation in endothelial cells, thereby inducing a vascular cell type-specific oxidative stress. This vascular stress is associated with atherothrombotic cardiovascular disease (PMID: 14980706). High levels of homocysteine (and homocysteine) can be found in individuals suffering from homocystinura due to cystathionine synthase deficiency (PMID: 4685596) Homocystine is the double-bonded form of homocysteine, but it occurs only transiently before being converted to the harmless cystathionine via a vitamin B6-dependent enzyme. Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID H041 4,4'-Disulfanediylbis(2-aminobutanoic acid) is an endogenous metabolite. DL-Homocystine is the double-bonded form of homocysteine and homocysteine is recognized as an important substance in the pathogenesis and pathophysiology of schizophrenia. L-Homocystine is the oxidized member of the L-homocysteine. Homocysteine is a pro-thrombotic factor, vasodilation impairing agent, pro-inflammatory factor and endoplasmatic reticulum-stress inducer used to study cardiovascular disease mechanisms.
Nα-Acetyl-L-lysine
N-epsilon-Acetyl-L-lysine also known as Nepsilon-Acetyllysine or N6-Acetyllysine, belongs to the class of organic compounds known as N-acyl-alpha amino acids. N-acyl-alpha amino acids are compounds containing an alpha amino acid which bears an acyl group at one of its nitrogen atoms. N-epsilon-Acetyl-L-lysine can also be classified as an alpha amino acid or a derivatized alpha amino acid. Technically, N-epsilon-Acetyl-L-lysine is a biologically available sidechain, N-capped form of the proteinogenic alpha amino acid L-lysine. Unlike L-lysine, acetylated lysine derivatives such as N-epsilon-Acetyl-L-lysine are zwitterionic compounds. These are molecules that contains an equal number of positively- and negatively-charged functional groups. N-epsilon-Acetyl-L-lysine is found naturally in eukaryotes ranging from yeast to plants to humans. N-acetyl amino acids can be produced either via direct synthesis of specific N-acetyltransferases or via the proteolytic degradation of N-acetylated proteins (often histones) by specific hydrolases. N-epsilon-Acetyl-L-lysine can be biosynthesized from L-lysine and acetyl-CoA via the enzyme known as Lysine N-acetyltransferase. Post-translational lysine-acetylation is one of two major modifications of lysine residues in various proteins – either N-terminal or N-alpha acetylation or N6 (sidechain) acetylation. Side-chain acetylation of specific lysine residues in the N-terminal domains of core histones is a biochemical marker of active genes. Acetylation is now known to play a major role in eukaryotic transcription. Specifically, acetyltransferase enzymes that act on particular lysine side chains of histones and other proteins are intimately involved in transcriptional activation. By modifying chromatin proteins and transcription-related factors, these acetylases are believed to regulate the transcription of many genes. The best-characterized mechanism is acetylation, catalyzed by histone acetyltransferase (HAT) enzymes. HATs function enzymatically by transferring an acetyl group from acetyl-coenzyme A (acetyl-CoA) to the amino group of certain lysine side chains within a histones basic N-terminal tail region. Within a histone octamer, these regions extend out from the associated globular domains, and in the context of a nucleosome, they are believed to bind the DNA through charge interactions (positively charged histone tails associated with negatively charged DNA) or mediate interactions between nucleosomes. Lysine acetylation, which neutralizes part of a tail regions positive charge, is postulated to weaken histone-DNA or nucleosome-nucleosome interactions and/or signal a conformational change, thereby destabilizing nucleosome structure or arrangement and giving other nuclear factors, such as the transcription complex, more access to a genetic locus. In agreement with this is the fact that acetylated chromatin has long been associated with states of transcriptional activation. Specific recognition of N6-acetyl-L-lysine is a conserved function of all bromodomains found in different proteins, recognized as an emerging intracellular signalling mechanism that plays critical roles in regulating gene transcription, cell-cycle progression, apoptosis, DNA repair, and cytoskeletal organization (PMID: 9169194 , 10827952 , 17340003 , 16247734 , 9478947 , 10839822 ). N-acetylated amino acids, such as N-epsilon-Acetyl-L-lysine can be released by an N-acylpeptide hydrolase from histones going through proteolytic degradation (PMID: 16465618). Many N-acetylamino acids are classified as uremic toxins if present in high abundance in the serum or plasma (PMID: 26317986; PMID: 20613759). Uremic toxins are a diverse group of endogenously produced molecules that, if not properly cleared or eliminated by the kidneys, can cause kidney damage, cardiovascular disease and neurological deficits (PMID: 18287557). Isolated from sugarbeet (Beta vulgaris) KEIO_ID A174 Nepsilon-Acetyl-L-lysine is a derivative of the amino acid lysine.
N-Acetylarylamine
N-Acetylarylamine is an odourless solid chemical of leaf or flake-like appearance. It is also known as acetanilide, N-phenylacetamide, acetanil, or acetanilid, and was formerly known by the trade name Antifebrin. N-Acetylarylamine has analgesic and fever-reducing properties; it is in the same class of drugs as acetaminophen (paracetamol). Under the name acetanilid it formerly figured in the formula of a number of patent medicines and over the counter drugs. In 1948, Julius Axelrod and Bernard Brodie discovered that acetanilide is much more toxic in these applications than other drugs, causing methemoglobinemia and ultimately doing damage to the liver and kidneys. As such, acetanilide has largely been replaced by less toxic drugs, in particular acetaminophen, which is a metabolite of acetanilide and whose use Axelrod and Brodie suggested in the same study. Acetanilide has analgesic and fever-reducing properties; it is in the same class of drugs as acetaminophen (paracetamol). Under the name acetanilid it formerly figured in the formula of a number of patent medicines and over the counter drugs. In 1948, Julius Axelrod and Bernard Brodie discovered that acetanilide is much more toxic in these applications than other drugs, causing methemoglobinemia and ultimately doing damage to the liver and kidneys. As such, acetanilide has largely been replaced by less toxic drugs, in particular acetaminophen, which is a metabolite of acetanilide and whose use Axelrod and Brodie suggested in the same study. KEIO_ID A130
2-Ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine
2-Ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine, also known as EDDP, is a major inactive metabolite of the opioid methadone. Methadone is an opioid drug that is often used to treat addiction to other opioids, such as heroin, oxycodone or fentanyl. Methadone is metabolised in the liver and small intestine where it is converted to EDDP through N-demethylation and cyclization by CYP3A4 (PMID: 15501692, 27320437). EDDP and methadone are eliminated through the kidneys. As such it is common to monitor the urine of patients in a clinical and forensic settings. EDDP is formed through N-desmethylmethadone reacting with itself and cyclizing through condensation of the secondary amine with the carbonyl group (PMID: 27320437). EDDP belongs to the family of compounds known as Diphenylmethanes. These are compounds containing a diphenylmethane moiety, which consists of a methane wherein two hydrogen atoms are replaced by two phenyl groups. EDDP is only found in individuals who have taken or been given methadone. CONFIDENCE standard compound; EAWAG_UCHEM_ID 2825
Sulfathiazole
Sulfathiazole is only found in individuals that have used or taken this drug.It is a short-acting sulfa drug. It used to be a common oral and topical antimicrobial until less toxic alternatives were discovered. It is still occasionally used, sometimes in combination with sulfabenzamide and sulfacetamide. CONFIDENCE standard compound; INTERNAL_ID 1024; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2323; ORIGINAL_PRECURSOR_SCAN_NO 2321 CONFIDENCE standard compound; INTERNAL_ID 1024; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2327; ORIGINAL_PRECURSOR_SCAN_NO 2325 CONFIDENCE standard compound; INTERNAL_ID 1024; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7417; ORIGINAL_PRECURSOR_SCAN_NO 7415 CONFIDENCE standard compound; INTERNAL_ID 1024; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2326; ORIGINAL_PRECURSOR_SCAN_NO 2324 CONFIDENCE standard compound; INTERNAL_ID 1024; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2315; ORIGINAL_PRECURSOR_SCAN_NO 2312 CONFIDENCE standard compound; INTERNAL_ID 1024; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7355; ORIGINAL_PRECURSOR_SCAN_NO 7354 CONFIDENCE standard compound; INTERNAL_ID 1024; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7401; ORIGINAL_PRECURSOR_SCAN_NO 7397 CONFIDENCE standard compound; INTERNAL_ID 1024; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7346; ORIGINAL_PRECURSOR_SCAN_NO 7344 CONFIDENCE standard compound; INTERNAL_ID 1024; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2323; ORIGINAL_PRECURSOR_SCAN_NO 2320 CONFIDENCE standard compound; INTERNAL_ID 1024; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2314; ORIGINAL_PRECURSOR_SCAN_NO 2312 CONFIDENCE standard compound; INTERNAL_ID 1024; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7406; ORIGINAL_PRECURSOR_SCAN_NO 7404 CONFIDENCE standard compound; INTERNAL_ID 1024; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7390; ORIGINAL_PRECURSOR_SCAN_NO 7388 D - Dermatologicals > D06 - Antibiotics and chemotherapeutics for dermatological use > D06B - Chemotherapeutics for topical use > D06BA - Sulfonamides J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01E - Sulfonamides and trimethoprim > J01EB - Short-acting sulfonamides C254 - Anti-Infective Agent > C29739 - Sulfonamide Anti-Infective Agent D000890 - Anti-Infective Agents > D013432 - Sulfathiazoles D000890 - Anti-Infective Agents > D013424 - Sulfanilamides CONFIDENCE standard compound; EAWAG_UCHEM_ID 185 CONFIDENCE standard compound; INTERNAL_ID 2360 CONFIDENCE standard compound; INTERNAL_ID 1023 KEIO_ID S079; [MS2] KO009251 KEIO_ID S079
1-Methyladenine
1-Methyladenine is the product of reaction between 1-methyladenosine and water which is catalyzed by 1-methyladenosine nucleosidase (EC:3.2.2.13). 1-Methyladenine is a product of alkylation damage in DNA which can be repaired by damage reversal by oxidative demethylation, a reaction requiring ferrous iron and 2-oxoglutarate as cofactor and co-substrate, respectively (PMID:15576352). 1-Methyladenine is found to be associated with adenosine deaminase (ADA) deficiency, which is an inborn error of metabolism. 1-Methyladenine is the product of reaction between 1-methyladenosine and water which is catalyzed by 1-methyladenosine nucleosidase. (EC:3.2.2.13) KEIO_ID M074
6-Hydroxyhexanoic acid
6-Hydroxyhexanoate was identified as the immediate product of hexanoate w-hydroxylation by whole cells and was further oxidized into adipic acid and an unexpected metabolite identified as 2-tetrahydrofuranacetic acid. This same metabolite, together with adipic acid, was also detected when similarly induced cells were incubated with hexanoate or 1,6-hexanediol, but not with 6-oxohexanoate (adipic semialdehyde).Cells grown on hexanoate and incubated with 6-hydroxyhexanoate were also found to accumulate 2-tetrahydrofuranacetic acid, which was not further degraded. Utilization of 6-hydroxyhexanoate for growth was restricted to those organisms also able to utilize adipate. Similar observations were made with 1,6-hexanediol serving as the carbon source and cells obtained from one organism,Pseudomonas aeruginosa PAO, grown either on 1,6-hexanediol or 6-hydroxyhexanoate,were found to be well induced for both 6-oxohexanoate and adipate oxidation. The results indicate that 6-hydroxyhexanoate and 1,6-hexanediol are susceptible to both 1B- and w-oxidative attack; however, the former pathway appears to be of no physiological significance since it generates 2-tetrahydrofuranacetic acid as a nonmetabolizable intermediate, making w-oxidation via adipate the exclusive pathway for degradation. [HMDB] 6-Hydroxyhexanoate was identified as the immediate product of hexanoate w-hydroxylation by whole cells and was further oxidized into adipic acid and an unexpected metabolite identified as 2-tetrahydrofuranacetic acid. This same metabolite, together with adipic acid, was also detected when similarly induced cells were incubated with hexanoate or 1,6-hexanediol, but not with 6-oxohexanoate (adipic semialdehyde).Cells grown on hexanoate and incubated with 6-hydroxyhexanoate were also found to accumulate 2-tetrahydrofuranacetic acid, which was not further degraded. Utilization of 6-hydroxyhexanoate for growth was restricted to those organisms also able to utilize adipate. Similar observations were made with 1,6-hexanediol serving as the carbon source and cells obtained from one organism,Pseudomonas aeruginosa PAO, grown either on 1,6-hexanediol or 6-hydroxyhexanoate,were found to be well induced for both 6-oxohexanoate and adipate oxidation. The results indicate that 6-hydroxyhexanoate and 1,6-hexanediol are susceptible to both 1B- and w-oxidative attack; however, the former pathway appears to be of no physiological significance since it generates 2-tetrahydrofuranacetic acid as a nonmetabolizable intermediate, making w-oxidation via adipate the exclusive pathway for degradation. KEIO_ID H061
Clofenvinfos
D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D010575 - Pesticides > D007306 - Insecticides D010575 - Pesticides > D056810 - Acaricides D004791 - Enzyme Inhibitors D016573 - Agrochemicals
Pimelic acid
Pimelic acid, also known as heptanedioic acid is a dicarboxylic acid. Derivatives of pimelic acid are involved in the biosynthesis of the amino acid called lysine. Pimelic acid is one methylene longer than a related dicarboxylic acid, adipic acid, a precursor to many polyesters and polyamides. Pimelic acid is essential for the synthesis of biotin (also called vitamin B7). Biotin is a heterocyclic, S-containing monocarboxylic acid that is made from two precursors, alanine and pimeloyl-CoA. Biotin is important in fatty acid synthesis, branched-chain amino acid catabolism, and gluconeogenesis. Biotin is found in a wide range of foods. Likewise, intestinal bacteria synthesize biotin, which is then absorbed by the host animal. Pimelic acid (which is the precursor for pimeloyl-CoA) is synthesized in many bacteria via a head-to-tail incorporation of acetate units through a modified fatty acid synthetic pathway using O-methyl esters disguised to resemble the canonical intermediates of the fatty acid synthetic pathway (PMID:21435937). Some bacteria and yeast synthesize pimelic acid not by biosynthesis, but via cleavage of longer chain fatty acids (such as linolenic acid) via a cytochrome P450-like enzyme (PMID:28196402, 21435937, 3236079). Pimelic acid is excreted in elevated amounts in the urine of individuals with mitochondrial beta-oxidation disorders and peroxisomal beta oxidation disorders (PMID:1527989) A group of compounds that are derivatives of heptanedioic acid with the general formula R-C7H11O4. KEIO_ID P063 Pimelic acid is the organic compound and its derivatives are involved in the biosynthesis of the amino acid called lysine. Pimelic acid is the organic compound and its derivatives are involved in the biosynthesis of the amino acid called lysine.
Hydrocinnamic acid
Hydrocinnamic acid, also known as 3-phenylpropanoic acid or dihydrocinnamic acid, belongs to the class of organic compounds known as phenylpropanoic acids. Phenylpropanoic acids are compounds with a structure containing a benzene ring conjugated to a propanoic acid (C6-C3). Phenylpropanoic acid can be prepared from cinnamic acid by hydrogenation. Hydrocinnamic acid is a sweet, balsamic, and cinnamon tasting compound. This compound is used frequently in cosmetic products such as perfumes, bath gels, detergent powders, liquid detergents, fabric softeners, and soaps as it gives off a floral scent. A characteristic reaction of phenylpropanoic acid is its cyclization to indanones. Phenylpropanoic acid is used in the food industry to preserve and maintain the original aroma quality of frozen foods. Phenylpropanoic acid is also added to food for technological purposes in a wide variety including manufacturing, processing, preparation, treatment, packaging, transportation or storage, and food additives. This compound is used as a sweetener as well to sweeten food and can be found in tabletop sweeteners. Hydrocinnamic acid is an analogue of phenylalanine. It is a substrate of the enzyme oxidoreductases [EC 1.14.12.-] in the pathway phenylalanine metabolism (KEGG). 3-Phenylpropanoic acid is found in many foods, some of which are purple laver, quinoa, custard apple, and conch. KEIO_ID P109 Hydrocinnamic acid is the major rhizospheric compound with known growth regulatory activities. Hydrocinnamic acid is the major rhizospheric compound with known growth regulatory activities.
Phenylglyoxylic acid
Phenylglyoxylic acid is one of the major urinary metabolites of toluene, o-, m- and p-xylenes, styrene and ethylbenzene. (PMID 3782394). For the biological monitoring of workers exposure to solvent used in industry, its concentration is measured in human urine samples. (PMID 2739101). Phenylglyoxylic acid is one of the major urinary metabolites of toluene, o-, m- and p-xylenes, styrene and ethylbenzene. (PMID 3782394) D000890 - Anti-Infective Agents > D000892 - Anti-Infective Agents, Urinary > D008333 - Mandelic Acids KEIO_ID B041 Phenylglyoxylic acid (Benzoylformic acid) is a metabolite of ethylbenzene and styrene (EB/S) and can be used as a biomarker of exposure to EB/S in human[1]. Phenylglyoxylic acid (Benzoylformic acid) is a metabolite of ethylbenzene and styrene (EB/S) and can be used as a biomarker of exposure to EB/S in human[1].
Adenosine phosphosulfate
Adenosine phosphosulfate, also known as adenylylsulfate or adenosine sulfatophosphate, belongs to the class of organic compounds known as purine ribonucleoside monophosphates. These are nucleotides consisting of a purine base linked to a ribose to which one monophosphate group is attached. Adenosine phosphosulfate exists in all living species, ranging from bacteria to humans. Within humans, adenosine phosphosulfate participates in a number of enzymatic reactions. In particular, adenosine phosphosulfate can be biosynthesized from sulfate through the action of the enzyme bifunctional 3-phosphoadenosine 5-phosphosulfate synthase 2. In addition, adenosine phosphosulfate can be converted into phosphoadenosine phosphosulfate; which is catalyzed by the enzyme bifunctional 3-phosphoadenosine 5-phosphosulfate synthase 2. In humans, adenosine phosphosulfate is involved in sulfate/sulfite metabolism. Outside of the human body, Adenosine phosphosulfate has been detected, but not quantified in several different foods, such as chia, yardlong beans, swiss chards, sapodilla, and chicory leaves. This could make adenosine phosphosulfate a potential biomarker for the consumption of these foods. An adenosine 5-phosphate having a sulfo group attached to one the phosphate OH groups. Adenosine phosphosulfate (also known as APS) is the initial compound formed by the action of ATP sulfurylase (or PAPS synthetase) on sulfate ions after sulfate uptake. PAPS synthetase 1 is a bifunctional enzyme with both ATP sulfurylase and APS kinase activity, which mediates two steps in the sulfate activation pathway. The first step is the transfer of a sulfate group to ATP to yield adenosine 5-phosphosulfate (APS), and the second step is the transfer of a phosphate group from ATP to APS yielding 3-phosphoadenylylsulfate (PAPS). In mammals, PAPS is the sole source of sulfate; APS appears to be only an intermediate in the sulfate-activation pathway. [HMDB]. Adenosine phosphosulfate is found in many foods, some of which are muskmelon, garlic, caraway, and peach (variety).
Dicloxacillin
Dicloxacillin is only found in individuals that have used or taken this drug. It is one of the penicillins which is resistant to penicillinase. [PubChem]Dicloxacillin exerts a bactericidal action against penicillin-susceptible microorganisms during the state of active multiplication. All penicillins inhibit the biosynthesis of the bacterial cell wall. By binding to specific penicillin-binding proteins (PBPs) located inside the bacterial cell wall, dicloxacillin inhibits the third and last stage of bacterial cell wall synthesis. Cell lysis is then mediated by bacterial cell wall autolytic enzymes such as autolysins; it is possible that dicloxacillin interferes with an autolysin inhibitor. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01C - Beta-lactam antibacterials, penicillins > J01CF - Beta-lactamase resistant penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic
Dihydrodiethylstilbestrol
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens D000970 - Antineoplastic Agents
17-beta-Estradiol glucuronide
17-beta-Estradiol glucuronide is a natural human metabolite of 17beta-Estradiol generated in the liver by UDP glucuonyltransferase. Glucuronidation is used to assist in the excretion of toxic substances, drugs or other substances that cannot be used as an energy source. Glucuronic acid is attached via a glycosidic bond to the substance, and the resulting glucuronide, which has a much higher water solubility than the original substance, is eventually excreted by the kidneys. [HMDB] 17-beta-estradiol glucuronide is a natural human metabolite of 17beta-Estradiol generated in the liver by UDP glucuonyltransferase. Glucuronidation is used to assist in the excretion of toxic substances, drugs or other substances that cannot be used as an energy source. Glucuronic acid is attached via a glycosidic bond to the substance, and the resulting glucuronide, which has a much higher water solubility than the original substance, is eventually excreted by the kidneys. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
(S)-2-Propylpiperidine
(S)-2-Propylpiperidine is found in black elderberry. (S)-2-Propylpiperidine is an alkaloid of Amorphophalus rivieri (devils tongue Alkaloid of Amorphophalus rivieri (devils tongue). (S)-2-Propylpiperidine is found in pomegranate and black elderberry.
Mepivacaine
A local anesthetic that is chemically related to bupivacaine but pharmacologically related to lidocaine. It is indicated for infiltration, nerve block, and epidural anesthesia. Mepivacaine is effective topically only in large doses and therefore should not be used by this route. (From AMA Drug Evaluations, 1994, p168) D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics N - Nervous system > N01 - Anesthetics > N01B - Anesthetics, local > N01BB - Amides D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent CONFIDENCE standard compound; EAWAG_UCHEM_ID 3126
Prilocaine
Prilocaine is only found in individuals that have used or taken this drug. It is a local anesthetic that is similar pharmacologically to lidocaine. Currently, it is used most often for infiltration anesthesia in dentistry. (From AMA Drug Evaluations Annual, 1992, p165)Prilocaine acts on sodium channels on the neuronal cell membrane, limiting the spread of seizure activity and reducing seizure propagation. The antiarrhythmic actions are mediated through effects on sodium channels in Purkinje fibers. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics N - Nervous system > N01 - Anesthetics > N01B - Anesthetics, local > N01BB - Amides D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent CONFIDENCE standard compound; EAWAG_UCHEM_ID 3141
Nilutamide
Nilutamide is an antineoplastic hormonal agent primarily used in the treatment of prostate cancer. Nilutamide is a pure, nonsteroidal anti-androgen with affinity for androgen receptors (but not for progestogen, estrogen, or glucocorticoid receptors). Consequently, Nilutamide blocks the action of androgens of adrenal and testicular origin that stimulate the growth of normal and malignant prostatic tissue. Prostate cancer is mostly androgen-dependent and can be treated with surgical or chemical castration. To date, antiandrogen monotherapy has not consistently been shown to be equivalent to castration. CONFIDENCE standard compound; INTERNAL_ID 279; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4399; ORIGINAL_PRECURSOR_SCAN_NO 4395 CONFIDENCE standard compound; INTERNAL_ID 279; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4426; ORIGINAL_PRECURSOR_SCAN_NO 4421 CONFIDENCE standard compound; INTERNAL_ID 279; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4395; ORIGINAL_PRECURSOR_SCAN_NO 4393 CONFIDENCE standard compound; INTERNAL_ID 279; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4406; ORIGINAL_PRECURSOR_SCAN_NO 4401 CONFIDENCE standard compound; INTERNAL_ID 279; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4403; ORIGINAL_PRECURSOR_SCAN_NO 4401 CONFIDENCE standard compound; INTERNAL_ID 279; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4490; ORIGINAL_PRECURSOR_SCAN_NO 4487 L - Antineoplastic and immunomodulating agents > L02 - Endocrine therapy > L02B - Hormone antagonists and related agents > L02BB - Anti-androgens D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D000726 - Androgen Antagonists C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C146993 - Androgen Receptor Inhibitor C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist > C242 - Anti-Androgen D000970 - Antineoplastic Agents
Cyclohexanecarboxylic acid
Cyclohexanecarboxylic acid is a flavouring ingredien Flavouring ingredient KEIO_ID C180 Cyclohexanecarboxylic acid is a Valproate structural analogue with anticonvulsant action[1].
Propazine
CONFIDENCE standard compound; INTERNAL_ID 842; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8960; ORIGINAL_PRECURSOR_SCAN_NO 8958 INTERNAL_ID 842; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8960; ORIGINAL_PRECURSOR_SCAN_NO 8958 CONFIDENCE standard compound; INTERNAL_ID 842; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9098; ORIGINAL_PRECURSOR_SCAN_NO 9096 CONFIDENCE standard compound; INTERNAL_ID 842; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8923; ORIGINAL_PRECURSOR_SCAN_NO 8922 CONFIDENCE standard compound; INTERNAL_ID 842; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8943; ORIGINAL_PRECURSOR_SCAN_NO 8941 CONFIDENCE standard compound; INTERNAL_ID 842; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9124; ORIGINAL_PRECURSOR_SCAN_NO 9123 CONFIDENCE standard compound; INTERNAL_ID 842; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8882; ORIGINAL_PRECURSOR_SCAN_NO 8880 CONFIDENCE standard compound; EAWAG_UCHEM_ID 2741 D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals
trifluralin
D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 123 D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals
Benzatropine
Benzotropine is a centrally-acting, antimuscarinic agent used as an adjunct in the treatment of Parkinsons disease. It may also be used to treat extrapyramidal reactions, such as dystonia and Parkinsonism, caused by antipsychotics (e.g. phenothiazines). Symptoms of Parkinsons disease and extrapyramidal reactions arise from decreases in dopaminergic activity which creates an imbalance between dopaminergic and cholinergic activity. Anticholinergic therapy is thought to aid in restoring this balance leading to relief of symptoms. In addition to its anticholinergic effects, benztropine also inhibits the reuptake of dopamine at nerve terminals via the dopamine transporter. Benzotropine also produces antagonistic effects at the histamine H1 receptor. N - Nervous system > N04 - Anti-parkinson drugs > N04A - Anticholinergic agents > N04AC - Ethers of tropine or tropine derivatives D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018765 - Dopamine Uptake Inhibitors D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents D049990 - Membrane Transport Modulators
Dipropylphthalate
CONFIDENCE standard compound; INTERNAL_ID 1293; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9488; ORIGINAL_PRECURSOR_SCAN_NO 9483 CONFIDENCE standard compound; INTERNAL_ID 1293; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4235; ORIGINAL_PRECURSOR_SCAN_NO 4230 CONFIDENCE standard compound; INTERNAL_ID 1293; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4278; ORIGINAL_PRECURSOR_SCAN_NO 4277 CONFIDENCE standard compound; INTERNAL_ID 1293; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4579; ORIGINAL_PRECURSOR_SCAN_NO 4575 CONFIDENCE standard compound; INTERNAL_ID 1293; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9470; ORIGINAL_PRECURSOR_SCAN_NO 9468 CONFIDENCE standard compound; INTERNAL_ID 1293; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4253; ORIGINAL_PRECURSOR_SCAN_NO 4251 CONFIDENCE standard compound; INTERNAL_ID 1293; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4271; ORIGINAL_PRECURSOR_SCAN_NO 4270 CONFIDENCE standard compound; INTERNAL_ID 1293; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9411; ORIGINAL_PRECURSOR_SCAN_NO 9407 CONFIDENCE standard compound; INTERNAL_ID 1293; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4287; ORIGINAL_PRECURSOR_SCAN_NO 4286 CONFIDENCE standard compound; INTERNAL_ID 1293; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9460; ORIGINAL_PRECURSOR_SCAN_NO 9457 CONFIDENCE standard compound; INTERNAL_ID 1293; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9433; ORIGINAL_PRECURSOR_SCAN_NO 9428 CONFIDENCE standard compound; INTERNAL_ID 197
Aniline Yellow
D004396 - Coloring Agents CONFIDENCE standard compound; INTERNAL_ID 1313; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8954; ORIGINAL_PRECURSOR_SCAN_NO 8952 CONFIDENCE standard compound; INTERNAL_ID 1313; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8961; ORIGINAL_PRECURSOR_SCAN_NO 8959 CONFIDENCE standard compound; INTERNAL_ID 1313; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8978; ORIGINAL_PRECURSOR_SCAN_NO 8977 CONFIDENCE standard compound; INTERNAL_ID 1313; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8974; ORIGINAL_PRECURSOR_SCAN_NO 8972 CONFIDENCE standard compound; INTERNAL_ID 1313; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8989; ORIGINAL_PRECURSOR_SCAN_NO 8988 CONFIDENCE standard compound; INTERNAL_ID 1313; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8997; ORIGINAL_PRECURSOR_SCAN_NO 8995 CONFIDENCE standard compound; INTERNAL_ID 2428 CONFIDENCE standard compound; INTERNAL_ID 8113 CONFIDENCE standard compound; INTERNAL_ID 4141
Fonofos
D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals CONFIDENCE standard compound; EAWAG_UCHEM_ID 3112
Safrole
Safrole, also known as shikimol, is a colorless or slightly yellow oily liquid. It is typically extracted from the root-bark or the fruit of sassafras plants in the form of sassafras oil, or synthesized from other related methylenedioxy compounds. It is the principal component of brown camphor oil, and is found in small amounts in a wide variety of plants, where it functions as a natural pesticide. Safrole is found in anise and nutmeg. Banned by FDA for use in food. Safrole is formerly used as a food flavour It is a precursor in the synthesis of the insecticide synergist piperonyl butoxide and the recreational drug MDMA ("Ecstacy"). Safrole is a natural plant constituent, found in oil of sassafras and certain other essential oils. It is a member of the methylenedioxybenzene group of compounds, many of which (e.g. piperonyl butoxide) are extensively used as insecticide synergists. Safrole is a major source of human exposure to safrole is through consumption of spices, such as nutmeg, cinnamon and black pepper, in which safrole is a constituent. Safrole is also present in root beer, and has been used as an additive in chewing gum, toothpaste, soaps and certain pharmaceutical preparations. Safrole is a weak hepatocarcinogen and it is a matter of considerable interest whether the ally1 moiety or the methylenedioxy group, or both, are involved in the mechanism of its carcinogenesis. Safrole is extensively metabolized, giving rise to a large number of metabolites. Metabolism involves essentially two major routes, oxidation of the ally1 side chain, and oxidation of the methylenedioxy group with subsequent cleavage to form the catechol. Safrole undergoes oxidation of the allylic group to yield the 2, 3-epoxide (safrole epoxide). The dihydrodiol is one of the metabolites of safrole, and presumably arises from the hydration of the 2, 3-epoxide. The principal route of metabolism of safrole is through cleavage of the methylenedioxy group, the major metabolites being allylcatechol and its isomer, propenylcatechol. Eugenol and its isomer I-methoxy- 2-hydroxy-4-allylbenzene have been detected as minor metabolites in rat, mouse and human (PMID:6719936). The Ocotea cymbarum oil made of the Ocotea pretiosa, a plant growing in Brazil, and sassafras oil made of Sassafras albidum, a tree growing in eastern North America, are the main natural sources for safrole. It has a characteristic "candy-shop" aroma Occurs in nutmeg. Banned by FDA for use in food. Formerly used as a food flavour
Roseoflavin
A benzopteridine that is riboflavin in which the methyl group at position 8 is substituted by a dimethylamino group.
Tetrahydrocorticosterone
Tetrahydrocorticosterone belongs to the class of organic compounds known as 21-hydroxysteroids. These are steroids carrying a hydroxyl group at the 21-position of the steroid backbone. Thus, tetrahydrocorticosterone is considered to be a steroid lipid molecule. Tetrahydrocorticosterone is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Tetrahydrocorticosterone is one of the major urinary metabolites from corticosterone. Premenopausal patients with early breast cancer excrete subnormal amounts of tetrahydrocorticosterone as compared with the normal subjects of corresponding ages (PMID: 1133844). D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
Docosatrienoate (22:3n3)
Docosatrienoic acid, also known as docosatrienoate, belongs to the class of organic compounds known as very long-chain fatty acids. These are fatty acids with an aliphatic tail that contains at least 22 carbon atoms. Docosatrienoic acid is a very hydrophobic molecule, is practically insoluble (in water), and is relatively neutral. Application of docosatrienoic acid was shown to dose-dependently decrease the peak K+ current amplitude and accelerate the potassium activation and inactivation kinetics at all membrane potentials.
(-)-Thebaine
D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants > D003292 - Convulsants D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist > C1657 - Opiate D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics (-)-Thebaine is a minor constituent of opiu
Pemoline
N - Nervous system > N06 - Psychoanaleptics > N06B - Psychostimulants, agents used for adhd and nootropics > N06BA - Centrally acting sympathomimetics D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant
3-O-Methylkaempferol
3-o-methylkaempferol, also known as 5,7,4-trihydroxy-3-methoxyflavone or isokaempferide, is a member of the class of compounds known as 3-o-methylated flavonoids. 3-o-methylated flavonoids are flavonoids with methoxy groups attached to the C3 atom of the flavonoid backbone. Thus, 3-o-methylkaempferol is considered to be a flavonoid lipid molecule. 3-o-methylkaempferol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 3-o-methylkaempferol can be found in common bean and coriander, which makes 3-o-methylkaempferol a potential biomarker for the consumption of these food products.
Confertin
A natural product found in Inula hupehensis. A pseudoguaianolide that is decahydroazuleno[6,5-b]furan-2(3H)-one substituted by an oxo group at position 5, methyl groups at positions 4a and 8 and a methylidene group at position 3. It has been isolated from the aerial parts of Inula hupehensis.
6-Hydroxyflavone
6-Hydroxyflavone is a naturally occurring flavone, with anti-inflammatory activity. 6-Hydroxyflavone exhibits inhibitory effect towards bovine hemoglobin (BHb) glycation. 6-Hydroxyflavone can activate AKT, ERK 1/2, and JNK signaling pathways to effectively promote osteoblastic differentiation. 6-Hydroxyflavone inhibits the LPS-induced NO production[1] [2]. 6-Hydroxyflavone is a naturally occurring flavone, with anti-inflammatory activity. 6-Hydroxyflavone exhibits inhibitory effect towards bovine hemoglobin (BHb) glycation. 6-Hydroxyflavone can activate AKT, ERK 1/2, and JNK signaling pathways to effectively promote osteoblastic differentiation. 6-Hydroxyflavone inhibits the LPS-induced NO production[1] [2].
Dihomolinoleate (20:2n6)
Eicosadienoic acid is an omega-6 fatty acid found in human milk (PMID: 15256803). Omega-6 fatty acids are a family of unsaturated fatty acids which have in common a carbon-carbon double bond in the n−6 position; that is, the sixth bond from the end of the fatty acid. The biological effects of the omega−6 fatty acids are largely mediated by their conversion to n-6 eicosanoids that bind to diverse receptors found in every tissue of the body. Eicosadienoic acid has been identified in the human placenta (PMID: 32033212). Isolated from lipids of Ginkgo biloba (ginkgo) Eicosadienoic acid is a rare, naturally occurring n-6 polyunsaturated fatty acid found mainly in animal tissues[1][2]. Eicosadienoic acid is a rare, naturally occurring n-6 polyunsaturated fatty acid found mainly in animal tissues[1][2].
4-Chloro-3-methylphenol
C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D016573 - Agrochemicals D010575 - Pesticides Same as: D03468
Cysteic acid
Cysteic acid is a crystalline amino acid formed in the oxidation of cysteine; it is a precursor of taurine. A crystalline amino acid formed in the oxidation of cysteine; it is a precursor of taurine. [HMDB]
Nizatidine
Nizatidine is only found in individuals that have used or taken this drug. It is a histamine H2 receptor antagonist with low toxicity that inhibits gastric acid secretion. The drug is used for the treatment of duodenal ulcers. [PubChem]Nizatidine competes with histamine for binding at the H2-receptors on the gastric basolateral membrane of parietal cells. Competitive inhibition results in reduction of basal and nocturnal gastric acid secretions. The drug also decreases the gastric acid response to stimuli such as food, caffeine, insulin, betazole, or pentagastrin. A - Alimentary tract and metabolism > A02 - Drugs for acid related disorders > A02B - Drugs for peptic ulcer and gastro-oesophageal reflux disease (gord) > A02BA - H2-receptor antagonists C78276 - Agent Affecting Digestive System or Metabolism > C29701 - Anti-ulcer Agent > C29702 - Histamine-2 Receptor Antagonist D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents Nizatidine is a potent and orally active histamine H2 receptor antagonist, can be used for the research of stomach?and?intestines ulcers. Nizatidine works by decreasing the secretion of gastric?acid the stomach makes and prevent ulcers from coming back after they have healed in animal models[1].
D-Glucurono-6,3-lactone
D-Glucurono-6,3-lactone belongs to the class of organic compounds known as isosorbides. These are organic polycyclic compounds containing an isosorbide(1,4-Dianhydrosorbitol) moiety, which consists of two -oxolan-3-ol rings. D-Glucurono-6,3-lactone is a very mild and mentholic tasting compound. Glucuronolactone is a naturally occurring substance that is an important structural component of nearly all connective tissues. It is frequently used in energy drinks to increase energy levels and improve alertness, and can also be used to reduce "brain fog" caused by various medical conditions. Glucuronolactone is also found in many plant gums. Glucuronolactone is a white solid odorless compound, soluble in hot and cold water. Its melting point ranges from 176 to 178 °C. The compound can exist in a monocyclic aldehyde form or in a bicyclic hemiacetal (lactol) form. Glucuronolactone is a popular ingredient in energy drinks because it has been shown to be effective at increasing energy levels and improving alertness. Glucuronolactone supplementation also significantly reduces "brain fog" cause by various medical conditions. Although levels of glucuronolactone in energy drinks can far exceed those found in the rest of the diet, glucuronolactone is extremely safe and well tolerated. The European Food Safety Authority (EFSA) has concluded that exposure to glucuronolactone from regular consumption of energy drinks is not a safety concern.[2] The no-observed-adverse-effect level of glucuronolactone is 1000 mg/kg/day. Additionally, according to The Merck Index, glucuronolactone is used as a detoxicant. The liver uses glucose to create glucuronolactone, which inhibits the enzyme B-glucuronidase (metabolizes glucuronides), which should cause blood-glucuronide levels to rise. Glucuronides combines with toxic substances, such as morphine and depot medroxyprogesterone acetate, by converting them to water-soluble glucuronide-conjugates which are excreted in the urine. Higher blood-glucuronides help remove toxins from the body, leading to the claim that energy drinks are detoxifying. Free glucuronic acid (or its self-ester glucuronolactone) has less effect on detoxification than glucose, because the body synthesizes UDP-glucuronic acid from glucose. Therefore, sufficient carbohydrate intake provides enough UDP-glucuronic acid for detoxication, and foods rich in glucose are usually abundant in developed nations. Glucuronolactone is also metabolized to glucaric acid, xylitol, and L-xylulose, and humans may also be able to use glucuronolactone as a precursor for ascorbic acid synthesis. D-glucurono-6,3-lactone participates in ascorbate and aldarate metabolism. D-glucurono-6,3-lactone is produced by the reaction between D-glucaric acid and the enzyme, aldehyde dehydrogenase (NAD+) [EC: 1.2.1.3]. [HMDB] D-Glucuronic acid lactone is an endogenous metabolite.
Epsilon-caprolactam
Caprolactam, also known as aminocaproic lactam or hexahydro-2h-azepin-2-one, is a member of the class of compounds known as caprolactams. Caprolactams are cyclic amides of caproic acid. Caproic acid is the carboxylic acid derived from hexane with the general formula C5H11COOH. Caprolactam is soluble (in water) and a very weakly acidic compound (based on its pKa). Caprolactam is an amine, bitter, and spicy tasting compound found in sunflower, which makes caprolactam a potential biomarker for the consumption of this food product. Caprolactam (CPL) is an organic compound with the formula (CH2)5C(O)NH. This colourless solid is a lactam (a cyclic amide) of caproic acid. Global demand for this compound is approximately 5 million tons per year, and the vast majority is used to make Nylon 6 filament, fiber, and plastics . Epsilon-caprolactam, also known as Caprolactam or Aminocaproic lactam, is classified as a member of the Caprolactams. Caprolactams are cyclic amides of caproic acid. Caproic acid is the carboxylic acid derived from hexane with the general formula C5H11COOH. Epsilon-caprolactam is considered to be soluble (in water) and relatively neutral. Epsilon-caprolactam is an amine, bitter, and spicy tasting compound found in Sunflowers D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams
N-Nitrosodipropylamine
CONFIDENCE standard compound; EAWAG_UCHEM_ID 3456 D009676 - Noxae > D002273 - Carcinogens
N-NITROSOMETHYLETHYLAMINE
CONFIDENCE standard compound; EAWAG_UCHEM_ID 3449
N-Acetyl-glucosamine 1-phosphate
N-Acetyl-glucosamine 1-phosphate is an intermediate in aminosugar metabolism. It is a substrate for the enzymes phosphoglucomutase 3 [EC:5.4.2.2 and EC:5.4.2.3] and UDP-N-acteylglucosamine pyrophosphorylase 1 [EC:2.7.7.23] (KEGG). It is involved in UDP-N-acetyl-D-glucosamine biosynthesis and UDP-N-acetylgalactosamine biosynthesis (BioCyc). N-Acetyl-glucosamine 1-phosphate is an intermeiate in the Aminosugars metabolism, a substrate for the enzymes phosphoglucomutase 3 [EC:5.4.2.2 5.4.2.3] and UDP-N-acteylglucosamine pyrophosphorylase 1 [EC:2.7.7.23] (KEGG), in UDP-N-acetyl-D-glucosamine biosynthesis and UDP-N-acetylgalactosamine biosynthesis (BioCyc) [HMDB] COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Meta-Tyrosine
Meta-Tyrosine, or M-Tyrosine for short, is a natural weed suppressant found in certain Fine fescue grass. M-tyrosine exudes out of the grass plants roots and is then absorbed by neighbouring weed seedlings. The weed plants will either die or be stunted from the toxic acid. DL-m-Tyrosine shows effects on Arabidopsis root growth. Carbidopa combination with DL-m-tyrosine shows a potent hypotensive effect[1][2].
bestatin
KEIO_ID B018; [MS2] KO009090 KEIO_ID B018 Bestatin is a natural, broad-spectrum, and competitive CD13 (Aminopeptidase N)/APN and leukotriene A4 hydrolase inhibitor. Bestatin has anticancer effects[1][2].
2-(Methylamino)benzoic acid
2-(Methylamino)benzoic acid is found in citrus. 2-(Methylamino)benzoic acid is isolated from grapefruit peel oi KEIO_ID M127 2-(Methylamino)benzoic acid is the main metabolite of methyl-N-methylanthranilates (MMA) (HY-76705) and is the compound in which the ester group is converted. MMA can be isolated from citrus fruits and has potential analgesic activity. 2-(Methylamino)benzoic acid was used to detect the metabolic levels of MMA in rat liver[1].
3-Methylcatechol
3-methylcatechol, also known as 2,3-dihydroxytoluene or 2,3-toluenediol, is a member of the class of compounds known as catechols. Catechols are compounds containing a 1,2-benzenediol moiety. 3-methylcatechol is soluble (in water) and a very weakly acidic compound (based on its pKa). 3-methylcatechol can be found in arabica coffee, beer, cocoa powder, and coffee, which makes 3-methylcatechol a potential biomarker for the consumption of these food products. 3-methylcatechol is a chemical compound . 3-Methylcatechol is a building block in the chemical synthesis produced by Pseudomonas putida MC2[1]. 3-Methylcatechol is a building block in the chemical synthesis produced by Pseudomonas putida MC2[1].
p-Toluenesulfonic acid
p-Toluenesulfonic acid, also known as tosylate or para-toluene sulfonate, is a member of the class of compounds known as p-methylbenzenesulfonates. p-Methylbenzenesulfonates are benzenesulfonic acids (or derivative thereof) carrying a methyl group at the para- position. p-Toluenesulfonic acid is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). p-Toluenesulfonic acid (PTSA or pTsOH) or tosylic acid (TsOH) is an organic compound with the formula CH3C6H4SO3H. It is a white solid that is soluble in water, alcohols, and other polar organic solvents. The CH3C6H4SO2– group is known as the tosyl group and is often abbreviated as Ts or Tos. Most often, TsOH refers to the monohydrate, TsOH•H2O. It is a white solid that is soluble in water, alcohols, and other polar organic solvents (Wikipedia). CONFIDENCE standard compound; INTERNAL_ID 337; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2502; ORIGINAL_PRECURSOR_SCAN_NO 2501 CONFIDENCE standard compound; INTERNAL_ID 337; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2509; ORIGINAL_PRECURSOR_SCAN_NO 2508 CONFIDENCE standard compound; INTERNAL_ID 337; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2534; ORIGINAL_PRECURSOR_SCAN_NO 2533 CONFIDENCE standard compound; INTERNAL_ID 337; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2493; ORIGINAL_PRECURSOR_SCAN_NO 2492 CONFIDENCE standard compound; INTERNAL_ID 337; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2571; ORIGINAL_PRECURSOR_SCAN_NO 2570 CONFIDENCE standard compound; INTERNAL_ID 337; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2508; ORIGINAL_PRECURSOR_SCAN_NO 2507
Benzo[b]fluoranthene
Benzo[k]fluoranthene
13-HOTE
13-HOTE is a biologically active lipid molecule produced due to altered intestinal lipid metabolism indicative of Alox15 activity. (PMID: 18258795) [HMDB] 13-HOTE is a biologically active lipid molecule produced due to altered intestinal lipid metabolism indicative of Alox15 activity. (PMID: 18258795).
Oxamniquine
An anthelmintic with schistosomicidal activity against Schistosoma mansoni, but not against other Schistosoma spp. Oxamniquine causes worms to shift from the mesenteric veins to the liver where the male worms are retained; the female worms return to the mesentery, but can no longer release eggs. (From Martidale, The Extra Pharmacopoeia, 31st ed, p121) P - Antiparasitic products, insecticides and repellents > P02 - Anthelmintics > P02B - Antitrematodals > P02BA - Quinoline derivatives and related substances D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C250 - Antihelminthic Agent
Methionine sulfoximine
Methionine sulfoximine is found in flours treated with NCl3 as a produced of NCl3 action on wheat protein
Phenoxyacetic acid
Phenoxyacetic acid is found in cocoa and cocoa products. Phenoxyacetic acid is a flavouring ingredient. Phenoxyacetic acid is present in cocoa bean Phenoxyacetic acid is a flavouring ingredient. It is found in cocoa and cocoa products. COVID info from PDB, Protein Data Bank KEIO_ID P129 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Phenoxyacetic acid is an endogenous metabolite.
Murocholic acid
Murocholic acid is a bile acid. Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, depending only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). A bile acid. Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12. D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids CONFIDENCE standard compound; INTERNAL_ID 300
Nicotinic acid mononucleotide
Nicotinic acid mononucleotide, also known as nicotinate ribonucleotide, belongs to the class of organic compounds known as nicotinic acid nucleotides. These are pyridine nucleotides in which the pyridine base is nicotinic acid or a derivative thereof. Nicotinic acid mononucleotide is an extremely weak basic (essentially neutral) compound (based on its pKa). Nicotinic acid mononucleotide an intermediate in the cofactor biosynthesis and the nicotinate and nicotinamide metabolism pathways. It is a substrate for nicotinamide riboside kinase, ectonucleotide pyrophosphatase/phosphodiesterase, nicotinamide mononucleotide adenylyltransferase, 5-nucleotidase, nicotinate-nucleotide pyrophosphorylase, and 5(3)-deoxyribonucleotidase. Nicotinic acid mononucleotide is an intermediate in the metabolism of Nicotinate and nicotinamide. It is a substrate for Ectonucleotide pyrophosphatase/phosphodiesterase 2, Ectonucleotide pyrophosphatase/phosphodiesterase 1, Nicotinamide mononucleotide adenylyltransferase 3, Cytosolic 5-nucleotidase IA, Cytosolic 5-nucleotidase IB, Nicotinate-nucleotide pyrophosphorylase, 5(3)-deoxyribonucleotidase (cytosolic type), Cytosolic purine 5-nucleotidase, Nicotinamide mononucleotide adenylyltransferase 2, Ectonucleotide pyrophosphatase/phosphodiesterase 3, 5-nucleotidase, 5(3)-deoxyribonucleotidase (mitochondrial) and Nicotinamide mononucleotide adenylyltransferase 1. [HMDB] NaMN is the most common mononucleotide intermediate (a hub) in NAD biogenesis. For example, in E. coli all three pyridine precursors are converted into NaMN (Table 1 and Figure 3(a)). Qa produced by the de novo Asp–DHAP pathway (genes nadB and nadA) is converted into NaMN by QAPRT (gene nadC). Salvage of both forms of niacin proceeds via NAPRT (gene pncB) either directly upon or after deamidation by NMDSE (gene pncA). Overall, more than 90\% of approximately 680 analyzed bacterial genomes contain at least one of the pathways leading to the formation of NaMN. Most of them (∼480 genomes) have the entire set of nadBAC genes for NaMN de novo synthesis from Asp that are often clustered on the chromosome and/or are co-regulated by the same transcription factors (see Section 7.08.3.1.2). Among the examples provided in Table 1, F. tularensis (Figure 4(c)) has all three genes of this de novo pathway forming a single operon-like cluster and supporting the growth of this organism in the absence of any pyridine precursors in the medium. More than half the genomes with the Asp–DHAP pathway also contain a deamidating niacin salvage pathway (genes pncAB) as do many representatives of the α-, β-, and γ-Proteobacteria, Actinobacteria, and Bacillus/Clostridium group. As already emphasized, the genomic reconstruction approach provides an assessment of the metabolic potential of an organism, which may or may not be realized under given conditions. For example, E. coli and B. subtilis can utilize both de novo and PncAB Nm salvage pathways under the same growth conditions, whereas in M. tuberculosis (having the same gene pattern) the latter pathway was considered nonfunctional, so that the entire NAD pool is generated by the de novo NadABC route. However, a recent study demonstrated the functional activity of the Nm salvage pathway in vivo, under hypoxic conditions in infected macrophages.221 This study also implicated the two downstream enzymes of NAD synthesis (NAMNAT and NADSYN) as attractive chemotherapeutic targets to treat acute and latent forms of tuberculosis. In approximately 100 species, including many Cyanobacteria (e.g., Synechococcus spp.), Bacteroidetes (e.g., Chlorobium spp.) and Proteobacteria (e.g., Caulobacter crescentus, Zymomonas mobilis, Desulfovibrio spp., and Shewanella spp. representing α-, β-, δ-, and γ-groups, respectively) the Asp–DHAP pathway is the only route to NAD biogenesis. Among them, nearly all Helicobacter spp. (except H. hepaticus), contain only the two genes nadA and nadC but lack the first gene of the pathway (nadB), which is a likely subject of nonorthologous gene replacement. One case of NadB (ASPOX) replacement by the ASPDH enzyme in T. maritima (and methanogenic archaea) was discussed in Section 7.08.2.1. However, no orthologues of the established ASPDH could be identified in Helicobacter spp. as well as in approximately 15 other diverse bacterial species that have the nadAC but lack the nadB gene (e.g., all analyzed Corynebacterium spp. except for C. diphtheriae). Therefore, the identity of the ASPOX or ASPDH enzyme in these species is still unknown, representing one of the few remaining cases of ‘locally missing genes’220 in the NAD subsystem. All other bacterial species contain either both the nadA and nadB genes (plus nadC) or none. In a limited number of bacteria (∼20 species), mostly in the two distant groups of Xanthomonadales (within γ-Proteobacteria) and Flavobacteriales (within Bacteroidetes), the Asp–DHAP pathway of Qa synthesis is replaced by the Kyn pathway. As described in Section 7.08.2.1.2, four out of five enzymes (TRDOX, KYNOX, KYNSE, and HADOX) in the bacterial version of this pathway are close homologues of the respective eukaryotic enzymes, whereas the KYNFA gene is a subject of multiple nonorthologous replacements. Although the identity of one alternative form of KYNFA (gene kynB) was established in a group of bacteria that have a partial Kyn pathway for Trp degradation to anthranilate (e.g., in P. aeruginosa or B. cereus57), none of the known KYNFA homologues are present in Xanthomonadales or Flavobacteriales. In a few species (e.g., Salinispora spp.) a complete gene set of the Kyn pathway genes co-occurs with a complete Asp–DHAP pathway. Further experiments would be required to establish to what extent and under what conditions these two pathways contribute to Qa formation. As discussed, the QAPRT enzyme is shared by both de novo pathways, and a respective gene, nadC is always found in the genomes containing one or the other pathway. Similarly, gene nadC always co-occurs with Qa de novo biosynthetic genes with one notable exception of two groups of Streptococci, S. pneumonaie and S. pyogenes. Although all other members of the Lactobacillales group also lack the Qa de novo biosynthetic machinery and rely entirely on niacin salvage, only these two human pathogens contain a nadC gene. The functional significance of this ‘out of context’ gene is unknown, but it is tempting to speculate that it may be involved in a yet-unknown pathway of Qa salvage from the human host. Among approximately 150 bacterial species that lack de novo biosynthesis genes and rely on deamidating salvage of niacin (via NAPRT), the majority (∼100) are from the group of Firmicutes. Such a functional variant (illustrated for Staphylococcus aureus in Figure 4(b)) is characteristic of many bacterial pathogens, both Gram-positive and Gram-negative (e.g., Brucella, Bordetella, and Campylobacter spp. from α-, β-, and δ-Proteobacteria, Borrelia, and Treponema spp. from Spirochaetes). Most of the genomes in this group contain both pncA and pncB genes that are often clustered on the chromosome and/or are co-regulated (see Section 7.08.3.1.2). In some cases (e.g., within Mollicutes and Spirochaetales), only the pncB, but not the pncA gene, can be reliably identified, suggesting that either of these species can utilize only the deamidated form of niacin (Na) or that some of them contain an alternative (yet-unknown) NMASE. Although the nondeamidating conversion of Nm into NMN (via NMPRT) appears to be present in approximately 50 bacterial species (mostly in β- and γ-Proteobacteria), it is hardly ever the only route of NAD biogenesis in these organisms. The only possible exception is observed in Mycoplasma genitalium and M. pneumoniae that contain the nadV gene as the only component of pyridine mononucleotide biosynthetic machinery. In some species (e.g., in Synechocystes spp.), the NMPRT–NMNAT route is committed primarily to the recycling of endogenous Nm. On the other hand, in F. tularensis (Figure 4(c)), NMPRT (gene nadV) together with NMNAT (of the nadM family) constitute the functional nondeamidating Nm salvage pathway as it supports the growth of the nadE′-mutant on Nm but not on Na (L. Sorci et al., unpublished). A similar nondeamidating Nm salvage pathway implemented by NMPRT and NMNAT (of the nadR family) is present in some (but not all) species of Pasteurellaceae in addition to (but never instead of) the RNm salvage pathway (see below), as initially demonstrated for H. ducreyi.128 A two-step conversion of NaMN into NAD via a NaAD intermediate (Route I in Figure 2) is present in the overwhelming majority of bacteria. The signature enzyme of Route I, NAMNAT of the NadD family is present in nearly all approximately 650 bacterial species that are expected to generate NaMN via de novo or salvage pathways (as illustrated by Figures 3(a) and 3(b)). All these species, without a single exception, also contain NADSYN (encoded by either a short or a long form of the nadE gene), which is required for this route. The species that lack the NadD/NadE signature represent several relatively rare functional variants, including: 1. Route I of NAD synthesis (NaMN → NaAD → NAD) variant via a bifunctional NAMNAT/NMNAT enzyme of the NadM family is common for archaea (see Section 7.08.3.2), but it appears to be present in only a handful of bacteria, such as Acinetobacter, Deinococcus, and Thermus groups. Another unusual feature of the latter two groups is the absence of the classical NADKIN, a likely subject of a nonorthologous replacement that remains to be elucidated. 2. Route II of NAD synthesis (NaMN → NMN → NAD). This route is implemented by a combination of the NMNAT of either the NadM family (as in F. tularensis) or the NadR family (as in M. succinoproducens and A. succinogenes) with NMNSYN of the NadE′ family. The case of F. tularensis described in Section 7.08.2.4 is illustrated in Figure 3(b). The rest of the NAD biosynthetic machinery in both species from the Pasteurellaceae group, beyond the shared Route II, is remarkably different from that in F. tularensis. Instead of de novo biosynthesis, they harbor a Na salvage pathway via NAPRT encoded by a pncB gene that is present in a chromosomal cluster with nadE′. Neither of these two genes are present in other Pasteurellaceae that lack the pyridine carboxylate amidation machinery (see below). 3. Salvage of RNm (RNm → NMN → NAD). A genomic signature of this pathway, a combination of the PnuC-like transporter and a bifunctional NMNAT/RNMKIN of the NadR family, is present in many Enterobacteriaceae and in several other diverse species (e.g., in M. tuberculosis). However, in H. influenzae (Figure 3(d)) and related members of Pasteurellaceae, it is the only route of NAD biogenesis. As shown in Table 1, H. influenzae as well as many other members of this group have lost nearly all components of the rich NAD biosynthetic machinery that are present in their close phylogenetic neighbors (such as E. coli and many other Enterobacteriaceae). This pathway is an ultimate route for utilization of the so called V-factors (NADP, NAD, NMN, or RNm) that are required to support growth of H. influenzae. It was established that all other V-factors are degraded to RNm by a combination of periplasmic- and membrane-associated hydrolytic enzymes.222 Although PnuC was initially considered an NMN transporter,223 its recent detailed analysis in both H. influenzae and Salmonella confirmed that its actual physiological function is in the uptake of RNm coupled with the phosphorylation of RNM to NMN by RNMKIN.17,148,224 As already mentioned, H. ducreyi and several other V-factor-independent members of the Pasteurellaceae group (H. somnus, Actinobacillus pleuropneumoniae, and Actinomycetemcomitans) harbor the NMNAT enzyme (NadV) that allows them to grow in the presence of Nm (but not Na) in the medium (Section 7.08.2.2). 4. Uptake of the intact NAD. Several groups of phylogenetically distant intracellular endosymbionts with extremely truncated genomes contain only a single enzyme, NADKIN, from the entire subsystem. Among them are all analyzed species of the Wolbachia, Rickettsia, and Blochmannia groups. These species are expected to uptake and utilize the intact NAD from their host while retaining the ability to convert it into NADP. Among all analyzed bacteria, only the group of Chlamydia does not have NADKIN and depends on the salvage of both NAD and NADP via a unique uptake system.157 A comprehensive genomic reconstruction of the metabolic potential (gene annotations and asserted pathways) across approximately 680 diverse bacterial genomes sets the stage for the accurate cross-genome projection and prediction of regulatory mechanisms that control the realization of this potential in a variety of species and growth conditions. In the next section, we summarize the recent accomplishments in the genomic reconstruction of NAD-related regulons in bacteria. Nicotinic acid mononucleotide. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=321-02-8 (retrieved 2024-06-29) (CAS RN: 321-02-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Dihydroergotamine
Dihydroergotamine is only found in individuals that have used or taken this drug. It is a 9,10alpha-dihydro derivative of ergotamine. It is used as a vasoconstrictor, specifically for the therapy of migraine disorders. [PubChem]Two theories have been proposed to explain the efficacy of 5-HT1D receptor agonists in migraine: 1) activation of 5-HT1D receptors located on intracranial blood vessels, including those on arterio-venous anastomoses, leads to vasoconstriction, which correlates with the relief of migraine headache and 2) activation of 5-HT1D receptors on sensory nerve endings of the trigeminal system results in the inhibition of pro-inflammatory neuropeptide release. N - Nervous system > N02 - Analgesics > N02C - Antimigraine preparations > N02CA - Ergot alkaloids C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018491 - Dopamine Agonists D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C66884 - Dopamine Agonist D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents D002491 - Central Nervous System Agents > D000700 - Analgesics
Humulone
An optically active cyclic ketone consisting of 3,5,6-trihydroxycyclohexa-2,4-dien-1-one bearing two 3-methylbut-2-en-1-yl substituents at positions 4 and 6 as well as a 3-methylbutanoyl group at the 2-position. Humulone is a natural product found in Humulus lupulus with data available. Humulone (α-Lupulic acid), a prenylated phloroglucinol derivative, is a potent cyclooxygenase-2 (COX-2) inhibitor. Humulone acts as a positive modulator of GABAA receptor at low micromolar concentrations. Humulone is an inhibitor of bone resorption. Humulone possesses antioxidant, anti-angiogenic and apoptosis-inducing properties[1][2][3]. Humulone (α-Lupulic acid), a prenylated phloroglucinol derivative, is a potent cyclooxygenase-2 (COX-2) inhibitor. Humulone acts as a positive modulator of GABAA receptor at low micromolar concentrations. Humulone is an inhibitor of bone resorption. Humulone possesses antioxidant, anti-angiogenic and apoptosis-inducing properties[1][2][3].
6-Hydroxyflavanone
A monohydroxyflavanone that is flavanone substituted by a hydroxy group at position 6. Annotation level-1
Lecanoricacid
D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates Lecanoric acid is a histidine-decarboxylase inhibitor isolated from fungus. The inhibition by lecanoric acid is competitive with histidineand noncompetitive with pyridoxal phosphate. Lecanoric acid did not inhibit aromatic amino acid decarboxylase[1].
2,6-Dimethoxy-1,4-benzoquinone
2,6-Dimethoxy-1,4-benzoquinone is a natural product found in Diospyros eriantha, Iris milesii, and other organisms with data available. 2,6-Dimethoxyquinone is a methoxy-substituted benzoquinone and bioactive compound found in fermented wheat germ extracts, with potential antineoplastic and immune-enhancing activity. 2,6-Dimethoxyquinone (2,6-DMBQ) inhibits anaerobic glycolysis thereby preventing cellular metabolism and inducing apoptosis. As cancer cells use the anaerobic glycolysis pathway to metabolize glucose and cancer cells proliferate at an increased rate as compared to normal, healthy cells, this agent is specifically cytotoxic towards cancer cells. In addition, 2,6-DMBQ exerts immune-enhancing effects by increasing natural killer (NK) cell and T-cell activity against cancer cells. See also: Acai fruit pulp (part of). 2,6-Dimethoxy-1,4-benzoquinone is found in common wheat. 2,6-Dimethoxy-1,4-benzoquinone is a constituent of bark of Phyllostachys heterocycla var. pubescens (moso bamboo) Constituent of bark of Phyllostachys heterocycla variety pubescens (moso bamboo). 2,6-Dimethoxy-1,4-benzoquinone is found in green vegetables and common wheat. 2,6-Dimethoxy-1,4-benzoquinone, a natural phytochemical, is a known haustorial inducing factor. 2,6-Dimethoxy-1,4-benzoquinone exerts anti-cancer, anti-inflammatory, anti-adipogenic, antibacterial, and antimalaria effects[1]. 2,6-Dimethoxy-1,4-benzoquinone, a natural phytochemical, is a known haustorial inducing factor. 2,6-Dimethoxy-1,4-benzoquinone exerts anti-cancer, anti-inflammatory, anti-adipogenic, antibacterial, and antimalaria effects[1].
11beta-OHA4
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones CONFIDENCE standard compound; INTERNAL_ID 2829 11-Beta-hydroxyandrostenedione (4-Androsten-11β-ol-3,17-dione) is a steroid mainly found in the the adrenal origin (11β-hydroxylase is present in adrenal tissue, but absent in ovarian tissue). 11-Beta-hydroxyandrostenedione is a 11β-hydroxysteroid dehydrogenase (11βHSD) isozymes inhibitor. As 4-androstenedione increases, measuring plasma 11-Beta-hydroxyandrostenedione can distinguish the adrenal or ovarian origin of hyperandrogenism[1][2].
Wighteone
A natural product found in Ficus mucuso. Wighteone is a member of the class of 7-hydroxyisoflavones that is isoflavone substituted by hydroxy groups at positions 5, 7 and 4 and a prenyl group at position 6. It has been isolated from Ficus mucuso. It has a role as a plant metabolite and an antifungal agent. It is functionally related to an isoflavone. Wighteone is a natural product found in Genista ephedroides, Erythrina suberosa, and other organisms with data available. A member of the class of 7-hydroxyisoflavones that is isoflavone substituted by hydroxy groups at positions 5, 7 and 4 and a prenyl group at position 6. It has been isolated from Ficus mucuso. Wighteone is a compound isolated from the aerial parts of Genista ephedroides[1]. Wighteone is a compound isolated from the aerial parts of Genista ephedroides[1].
Dicyclohexylamine
INTERNAL_ID 2356; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2356 D004791 - Enzyme Inhibitors
beta-tocotrienol
3-Methyl-2-butenal
3-Methyl-2-butenal, also known as senecialdehyde or 3,3-dimethylacrolein, belongs to the class of organic compounds known as enals. These are alpha,beta-unsaturated aldehydes of the general formula RC=C-CH=O in which the aldehydic C=O function is conjugated to a C=C triple bond at the alpha,beta position. 3-methyl-2-butenal has been detected, but not quantified, in several different foods, such as common oregano, beechnuts, oval-leaf huckleberries, tea leaf willows, and red rice. This could make 3-methyl-2-butenal a potential biomarker for the consumption of these foods. 3-Methyl-2-butenal is a derivative of acrolein that is an alpha, beta-unsaturated carbonyl metabolite. It can be formed endogenously during lipid peroxidation or after oxidative stress, and is considered to play an important role in human carcinogenesis. The endogenously formed acroleins are a constant source of DNA damage, can lead to mutation, and can also induce tumours in humans (PMID:8319634). 3-Methyl-2-butenal, which is an unsaturated aldehyde bearing substitution at the alkene terminus, is a poor inactivator of the enzymes protein tyrosine phosphatases (PTPs). The inactivation of PTPs can yield profound biological consequences arising from the disruption of cellular signalling pathways (PMID:17655273). Present in blackberry, grape brandy, cocoa, currants, baked potato, tea, costmary and white bread. Flavouring ingredient
Heptadecane
Heptadecane, also known as CH3-[CH2]15-CH3, belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Heptadecane is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Thus, heptadecane is considered to be a hydrocarbon lipid molecule. Heptadecane is an organic compound, an alkane hydrocarbon with the chemical formula C17H36. The most compact and branched isomer would be tetra-tert-butylmethane, but its existence is believed to be impossible due to steric hindrance. The name may refer to any of 24894 theoretically possible structural isomers, or to a mixture thereof. Heptadecane is an alkane tasting compound. heptadecane has been detected, but not quantified, in several different foods, such as lemon balms, coconuts, orange bell peppers, allspices, and pepper (c. annuum). This could make heptadecane a potential biomarker for the consumption of these foods. In the IUPAC nomenclature, the name of this compound is simply heptadecane, since the other isomers are viewed and named as alkyl-substituted versions of smaller alkanes. The unbranched isomer is normal or n-heptadecane, CH3(CH2)15CH3. Indeed, it is believed to be the smallest "impossible" alkane. Heptadecane, also known as ch3-[ch2]15-ch3, is a member of the class of compounds known as alkanes. Alkanes are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, heptadecane is considered to be a hydrocarbon lipid molecule. Heptadecane is an alkane tasting compound and can be found in a number of food items such as papaya, orange bell pepper, pepper (spice), and red bell pepper, which makes heptadecane a potential biomarker for the consumption of these food products. Heptadecane can be found primarily in saliva. The unbranched isomer is normal or n-heptadecane, CH3(CH2)15CH3. In the IUPAC nomenclature, the name of this compound is simply heptadecane, since the other isomers are viewed and named as alkyl-substituted versions of smaller alkanes .
(-)-trans-Carveol
Carveol is a natural terpenoid alcohol that is a constituent of spearmint oil. It has an odor and flavor that resemble those of spearmint and caraway. Consequently, it is used as a fragrance in cosmetics and as a flavor additive in the food industry. Constituent of Valencia orange essence oil. Flavouring ingredient Carveol is an endogenous metabolite. Carveol is an endogenous metabolite.
(E,E)-2,4-Hexadienal
(E,E)-2,4-Hexadienal is found in fishes. (E,E)-2,4-Hexadienal is a flavouring ingredient. (E,E)-2,4-Hexadienal is present in olives, roasted peanuts, tomato, caviar, fish, and te (E,E)-2,4-Hexadienal is a flavouring ingredient. It is found in olives, roasted peanuts, tomato, caviar, fish, and tea.
3-Hydroxy-2-oxoindole
3-Hydroxy-2-oxoindole is an oxidized indole derivative. Indoles are compounds containing an indole moiety, which consists of pyrrole ring fused to benzene to form 2,3-benzopyrrole. 3-hydroxy-2-oxoindole is a naturally occurring indole metabolite found in human urine (PMID: 11722560). It is a reduced form of the more abundant naturally occurring indole metabolite known as isatin (which is derived from the gut microbial metabolism of tryptophan). 3-hydroxy-2-oxoindole is generated via the activity of the enzyme known as isatin reductase, which is found in the liver and kidney (PMID: 11722560). It exhibits modest monoamine oxidase A and B inhibitory activity. D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D004791 - Enzyme Inhibitors > D008996 - Monoamine Oxidase Inhibitors
Longifolene
Longifolene is a member of the class of compounds known as sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units. Longifolene is a sweet, fir needle, and medical tasting compound found in corn, mandarin orange (clementine, tangerine), rosemary, and star anise, which makes longifolene a potential biomarker for the consumption of these food products. Longifolene is the common (or trivial) chemical name of a naturally occurring, oily Liquid hydrocarbon found primarily in the high-boiling fraction of certain pine resins. The name is derived from that of a pine species from which the compound was isolated, Pinus longifolia (obsolete name for Pinus roxburghii Sarg.) Chemically, longifolene is a tricyclic sesquiterpene. This molecule is chiral, and the enantiomer commonly found in pines and other higher plants exhibits a positive optical rotation of +42.73¬∞. The other enantiomer (optical rotation ‚àí42.73¬∞) is found in small amounts in certain fungi and liverworts . Longifolene is a member of the class of compounds known as sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units. Longifolene is a sweet, fir needle, and medical tasting compound found in corn, mandarin orange (clementine, tangerine), rosemary, and star anise, which makes longifolene a potential biomarker for the consumption of these food products. Longifolene is the common (or trivial) chemical name of a naturally occurring, oily liquid hydrocarbon found primarily in the high-boiling fraction of certain pine resins. The name is derived from that of a pine species from which the compound was isolated, Pinus longifolia (obsolete name for Pinus roxburghii Sarg.) Chemically, longifolene is a tricyclic sesquiterpene. This molecule is chiral, and the enantiomer commonly found in pines and other higher plants exhibits a positive optical rotation of +42.73°. The other enantiomer (optical rotation −42.73°) is found in small amounts in certain fungi and liverworts . (+)-Longifolene is a sesquiterpenoid and a metabolite in rabbits. (+)-Longifolen is converted to primary, secondary or tertiary alcohols in rabbits, among which the primary alcohol is predominant[1]. (+)-Longifolene is a sesquiterpenoid and a metabolite in rabbits. (+)-Longifolen is converted to primary, secondary or tertiary alcohols in rabbits, among which the primary alcohol is predominant[1]. (+)-Longifolene is a sesquiterpenoid and a metabolite in rabbits. (+)-Longifolen is converted to primary, secondary or tertiary alcohols in rabbits, among which the primary alcohol is predominant[1].
Palmitaldehyde
Palmitaldehyde, also known as 1-hexadecanal, is a member of the class of compounds known as fatty aldehydes. Fatty aldehydes are long chain aldehydes with a chain of at least 12 carbon atoms. Thus, palmitaldehyde is considered to be a fatty aldehyde lipid molecule. Palmitaldehyde is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Palmitaldehyde can be found in a number of food items such as rose hip, lambsquarters, pak choy, and swede, which makes palmitaldehyde a potential biomarker for the consumption of these food products. Palmitaldehyde exists in all eukaryotes, ranging from yeast to humans. In humans, palmitaldehyde is involved in few metabolic pathways, which include globoid cell leukodystrophy, metachromatic leukodystrophy (MLD), and sphingolipid metabolism. Palmitaldehyde is also involved in few metabolic disorders, which include fabry disease, gaucher disease, and krabbe disease. Palmitaldehyde is an intermediate in the metabolism of Glycosphingolipid. It is a substrate for Sphingosine-1-phosphate lyase 1. Hexadecanal (Palmitaldehyde) is a free fatty aldehyde present in animals[1]. Hexadecanal (Palmitaldehyde) is a free fatty aldehyde present in animals[1].
Undecaprenyl phosphate
Cyclopentanone
Cyclopentanone belongs to the class of organic compounds known as ketones. These are organic compounds in which a carbonyl group is bonded to two carbon atoms R2C=O (neither R may be a hydrogen atom). Ketones that have one or more alpha-hydrogen atoms undergo keto-enol tautomerization, the tautomer being an enol. Cyclopentanone is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Thus, cyclopentanone is considered to be an oxygenated hydrocarbon lipid molecule. Cyclopentanone is a cyclic ketone, structurally similar to cyclopentane, consisting of a five-membered ring containing a ketone functional group. Cyclopentanone is a colorless liquid organic compound with a peppermint-like odor. Cyclopentanone is found in various foods, including potato and tomato, and cooked foods, e.g. butter, meats, coffee, roasted peanut. Cyclopentanone is also used as a flavouring ingredient. Found in various foods, including potato and tomato, and cooked foods, e.g. butter, meats, coffee, roasted peanut. Flavouring ingredient
Mandelonitrile
Mandelonitrile is a chemical compound of the cyanohydrin class. Small amounts of mandelonitrile occur in the pits of some fruits. (Wikipedia)
CDP-ethanolamine
CDP-ethanolamine, also known as cytidine 5’-diphosphoethanolamine, belongs to the class of organic compounds known as CDP-ethanolamines. These are phosphoethanolamines that consist of an ethanolamine having a cytidine 5-diphosphate moiety attached to the oxygen. CDP-ethanolamine is a very strong basic compound (based on its pKa). In humans, CDP-ethanolamine is involved in phosphatidylethanolamine biosynthesis. Outside of the human body, CDP-ethanolamine has been detected, but not quantified in, several different foods, such as Chinese water chestnuts, buffalo currants, red huckleberries, eggplants, and brazil nuts. This could make CDP-ethanolamine a potential biomarker for the consumption of these foods. Cytidine is a molecule (known as a nucleoside) that is formed when cytosine is attached to a ribose ring (also known as a ribofuranose) via a beta-N1-glycosidic bond. [HMDB]. CDP-Ethanolamine is found in many foods, some of which are allspice, hedge mustard, wasabi, and green vegetables.
CYCLOHEXANOL
Cyclohexanol, also known as hexahydrophenol or hexalin, is a member of the class of compounds known as cyclohexanols. Cyclohexanols are compounds containing an alcohol group attached to a cyclohexane ring. Cyclohexanol is soluble (in water) and an extremely weak acidic compound (based on its pKa). Cyclohexanol is a camphor, menthol, and phenol tasting compound found in garden tomato (variety), okra, and sweet basil, which makes cyclohexanol a potential biomarker for the consumption of these food products. Cyclohexanol is a non-carcinogenic (not listed by IARC) potentially toxic compound. Cyclohexanol is the organic compound with the formula (CH2)5CHOH. The molecule is related to cyclohexane ring by replacement of one hydrogen atom by a hydroxyl group. This compound exists as a deliquescent colorless solid with a camphor-like odor, which, when very pure, melts near room temperature. Billions of kilograms are produced annually, mainly as a precursor to nylon .
Dihydroxyfumaric acid
Dihydroxyfumaric acid is a known generator of superoxide anions and by hydroxyl free radicals. Dihydroxyfumarate exposure can cause insulin inhibitory effects. It can spontaneously convert to hydroxypyruvate or to oxaloglycolate. [HMDB] Dihydroxyfumaric acid is a known generator of superoxide anions and by hydroxyl free radicals. Dihydroxyfumarate exposure can cause insulin inhibitory effects. It can spontaneously convert to hydroxypyruvate or to oxaloglycolate.
Phosphoglycolic acid
Phosphoglycolic acid, also known as 2-phosphoglycolate or (phosphonooxy)-acetate, is a member of the class of compounds known as monoalkyl phosphates. Monoalkyl phosphates are organic compounds containing a phosphate group that is linked to exactly one alkyl chain. Phosphoglycolic acid is soluble (in water) and a moderately acidic compound (based on its pKa). Phosphoglycolic acid can be found in a number of food items such as arrowhead, rocket salad (sspecies), roselle, and natal plum, which makes phosphoglycolic acid a potential biomarker for the consumption of these food products. Phosphoglycolic acid can be found primarily throughout most human tissues. Phosphoglycolic acid exists in all living species, ranging from bacteria to humans. Phosphoglycolic acid is a substrate for triose-phosphate isomerase. This compound belongs to the family of Organophosphate Esters. These are organic compounds containing phosphoric acid ester functional group.
Uroporphyrinogen III
Uroporphyrinogens are porphyrinogen variants in which each pyrrole ring has one acetate side chain and one propionate side chain; it is formed by condensation 4 four molecules of porphobilinogen. 4 isomers are possible but only 2 commoly are found, types I and III. Uroporphyrinogen III is a functional intermediate in heme biosynthesis while Uroporphyrinogen I is produced in an abortive side reaction. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Protoporphyrinogen IX
Protoporphyrinogen IX is an intermediate in heme biosynthesis. It is a porphyrinogen in which two pyrrole rings each have one methyl and one propionate side chain, and the other two pyrrole rings each have one methyl and one vinyl side chain. Fifteen isomers are possible but only one, type IX, occurs naturally. Protoporphyrinogen is produced by oxidative decarboxylation of coproporphyrinogen. Under certain conditions, protoporphyrinogen IX can act as a phototoxin, a neurotoxin, and a metabotoxin. A phototoxin leads to cell damage upon exposure to light. A neurotoxin causes damage to nerve cells and nerve tissues. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of porphyrins are associated with porphyrias such as porphyria variegate, acute intermittent porphyria, and hereditary coproporphyria (HCP). In particular, protoporphyrinogen IX is accumulated and excreted excessively in the feces in acute intermittent porphyria, protoporphyria, and variegate porphyria. There are several types of porphyrias (most are inherited). Hepatic porphyrias are characterized by acute neurological attacks (seizures, psychosis, extreme back and abdominal pain, and an acute polyneuropathy), while the erythropoietic forms present with skin problems (usually a light-sensitive blistering rash and increased hair growth). The neurotoxicity of porphyrins may be due to their selective interactions with tubulin, which disrupt microtubule formation and cause neural malformations (PMID: 3441503). Protoporphyrinogen IX is an intermediate in heme biosynthesis. It is a porphyrinogen in which 2 pyrrole rings each have one methyl and one propionate side chain and the other two pyrrole rings each have one methyl and one vinyl side chain. 15 isomers are possible but only one, type IX, occurs naturally. Protoporphyrinogen is produced by oxidative decarboxylation of coproporphyrinogen. [HMDB]. Protoporphyrinogen IX is found in many foods, some of which are elderberry, grapefruit, green vegetables, and pepper (c. annuum). COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Mevalonic acid-5P
Mevalonic acid-5p, also known as (R)-5-phosphomevalonate or mevalonate-5p, is a member of the class of compounds known as monoalkyl phosphates. Monoalkyl phosphates are organic compounds containing a phosphate group that is linked to exactly one alkyl chain. Thus, mevalonic acid-5p is considered to be a fatty acid lipid molecule. Mevalonic acid-5p is soluble (in water) and a moderately acidic compound (based on its pKa). Mevalonic acid-5p can be found in a number of food items such as rowanberry, common oregano, caraway, and cherry tomato, which makes mevalonic acid-5p a potential biomarker for the consumption of these food products. Mevalonic acid-5p can be found primarily throughout most human tissues. Mevalonic acid-5p exists in all eukaryotes, ranging from yeast to humans. In humans, mevalonic acid-5p is involved in several metabolic pathways, some of which include pamidronate action pathway, rosuvastatin action pathway, pravastatin action pathway, and lovastatin action pathway. Mevalonic acid-5p is also involved in several metabolic disorders, some of which include hypercholesterolemia, lysosomal acid lipase deficiency (wolman disease), hyper-igd syndrome, and mevalonic aciduria. Mevalonic acid-5P (CAS: 1189-94-2), also known as 5-phosphomevalonic acid, belongs to the class of organic compounds known as monoalkyl phosphates. These are organic compounds containing a phosphate group that is linked to exactly one alkyl chain. Within humans, mevalonic acid-5P participates in many enzymatic reactions. In particular, mevalonic acid-5P can be biosynthesized from mevalonate; which is mediated by the enzyme mevalonate kinase. In addition, mevalonic acid-5P can be converted into mevalonic acid-5-pyrophosphate through its interaction with the enzyme phosphomevalonate kinase. In humans, mevalonic acid-5P is involved in the mevalonate pathway. Outside of the human body, mevalonic acid-5P has been detected, but not quantified in, several different foods, such as oriental wheat, devilfish, pepper (spice), redcurrants, and star fruits. This could make mevalonic acid-5P a potential biomarker for the consumption of these foods.
18-Hydroxycorticosterone
18-Hydroxycorticosterone is a corticosteroid and a derivative of corticosterone. If it is present in sufficiently high concentrations, it can lead to serious electrolyte imbalances (an electrolyte toxin). 18-Hydroxycorticosterone serves as an intermediate in the synthesis of aldosterone by the enzyme aldosterone synthase in the zona glomerulosa. Chronically high levels of 18-hydroxycorticosterone are associated with at least three inborn errors of metabolism including adrenal hyperplasia type V, corticosterone methyl oxidase I deficiency, and corticosterone methyl oxidase II deficiency. Each of these conditions is characterized by excessive amounts of sodium being released in the urine (salt wasting), along with insufficient release of potassium in the urine, usually beginning in the first few weeks of life. This imbalance leads to low levels of sodium and high levels of potassium in the blood (hyponatremia and hyperkalemia, respectively). Individuals with corticosterone methyloxidase deficiency can also have high levels of acid in the blood (metabolic acidosis). Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). The hyponatremia, hyperkalemia, and metabolic acidosis associated with corticosterone methyloxidase deficiency can cause nausea, vomiting, dehydration, low blood pressure, extreme tiredness (fatigue), and muscle weakness. 11 beta,18,21-Trihydroxypregn-4-ene-3,20-dione. 18-Hydroxycorticosterone is a derivative of corticosterone. It serves as an intermediate in the synthesis of aldosterone by the enzyme aldosterone synthase in the zona glomerulosa. [HMDB] D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
Dimethylaniline-N-oxide
Dimethylaniline-N-oxide is a substrate for Dimethylaniline monooxygenase 4, Dimethylaniline monooxygenase 3, Dimethylaniline monooxygenase 1, Dimethylaniline monooxygenase 5, Putative dimethylaniline monooxygenase 6 and Dimethylaniline monooxygenase 2. [HMDB]. Dimethylaniline-N-oxide is found in many foods, some of which are lemon thyme, star anise, chinese mustard, and gooseberry. Dimethylaniline-N-oxide is a substrate for Dimethylaniline monooxygenase 4, Dimethylaniline monooxygenase 3, Dimethylaniline monooxygenase 1, Dimethylaniline monooxygenase 5, Putative dimethylaniline monooxygenase 6 and Dimethylaniline monooxygenase 2.
Inositol 1,3,4-trisphosphate
Inositol 1,3,4-trisphosphate (CAS: 98102-63-7), also known as Ins(1,3,4)P3 or I3S, belongs to the class of organic compounds known as inositol phosphates. Inositol phosphates are compounds containing a phosphate group attached to an inositol (or cyclohexanehexol) moiety. Within humans, inositol 1,3,4-trisphosphate participates in several enzymatic reactions. In particular, inositol 1,3,4-trisphosphate can be converted into 1D-myo-inositol 1,3,4,6-tetrakisphosphate through the action of the enzyme inositol-tetrakisphosphate 1-kinase. In addition, inositol 1,3,4-trisphosphate can be converted into inositol 1,3,4,5-tetraphosphate through its interaction with the enzyme inositol-tetrakisphosphate 1-kinase. In humans, inositol 1,3,4-trisphosphate is involved in inositol metabolism. Inositol 1,3,4-trisphosphate is a specific regulator of cellular signalling. A specific regulator of cellular signaling [HMDB]
Hydrogen selenide
Hydrogen selenide is a metabolite of selenium which could have potential antiangiogenic effect in the chemoprevention of cancer. The hydrogen selenide is a key intermediate in the selenium methylation metabolism of inorganic and organic selenium compounds. Accumulation of the hydrogen selenide resulting from inhibition of the selenium methylation metabolism, detoxification metabolic pathway of selenium, is found in animals following repeated administration of a toxic dose of selenocystine. The excess of the hydrogen selenide produced by inhibition of the selenium methylation metabolism contributes to the hepatotoxicity caused by selenocystine. (PMID: 9414580, 11799926) [HMDB] Hydrogen selenide is a metabolite of selenium which could have potential antiangiogenic effect in the chemoprevention of cancer. The hydrogen selenide is a key intermediate in the selenium methylation metabolism of inorganic and organic selenium compounds. Accumulation of the hydrogen selenide resulting from inhibition of the selenium methylation metabolism, detoxification metabolic pathway of selenium, is found in animals following repeated administration of a toxic dose of selenocystine. The excess of the hydrogen selenide produced by inhibition of the selenium methylation metabolism contributes to the hepatotoxicity caused by selenocystine. (PMID: 9414580, 11799926).
o-Cresol
o-Cresol is a minor urinary metabolite of toluene, O-cresol is a cresol that is phenol substituted by a methyl group at position 2. It is a minor urinary metabolite of toluene. It has a role as a human xenobiotic metabolite. It is widely used chemical with neurotoxicological properties (PMID:15687000). o-Cresol is used commercially as a disinfectant. Exposure may occur by inhalation, by cutaneous adsorption or by oral ingestion. o-Cresol denature and precipitate cellular proteins and thus may rapidly cause poisoning. o-Cresol is metabolized by conjugation and oxidation. Ingestion of o-Cresol cause intense burning of mouth and throat, followed by marked abdominal pain and distress. The minimum lethal dose of cresol by mouth is about 2 g (PMID 15040915). o-Cresol is a microbial metabolite that can be found in Pseudomonas. Besides, o-Cresol is one of the chemical compounds found in castoreum. This compound is gathered from the beavers castor glands and found in the white cedar consumed by the beavers. Together with many other compounds, o-cresol is traditionally extracted from coal tar, the volatile materials obtained in the production of coke from coal. A similar source material is petroleum residues. These residue contains a few percent by weight of phenol and isomeric cresols. In addition to the materials derived from these natural sources, about two thirds of the Western worlds supply is produced by methylation of phenol using methanol. Flavouring ingredient. 2-Methylphenol is found in many foods, some of which are yellow bell pepper, pepper (c. annuum), arabica coffee, and asparagus.
Coformycin
An N-glycosyl in which (8R)-3,6,7,8-tetrahydroimidazo[4,5-d][1,3]diazepin-8-ol is attached to ribofuranose via a beta-N(3)-glycosidic bond. compound The parent of the class of coformycins. D000970 - Antineoplastic Agents > D000903 - Antibiotics, Antineoplastic > D005573 - Formycins D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D004791 - Enzyme Inhibitors
Lauroyl-CoA
Lauroyl-CoA is a substrate for Protein FAM34A. [HMDB]. Lauroyl-CoA is found in many foods, some of which are apricot, hazelnut, other soy product, and thistle. Lauroyl-CoA is a substrate for Protein FAM34A.
(+)-Sabinone
(+)-sabinone is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. Thus, (+)-sabinone is considered to be an isoprenoid lipid molecule (+)-sabinone is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). (+)-sabinone can be found in common sage, which makes (+)-sabinone a potential biomarker for the consumption of this food product.
Piperitenone
Piperitenone is a flavouring agent. It is found in grapefruit juice lemon juice, orange juice, spearmint oil and peppermint oil. It is also found in rosemary, mentha (mint), cornmint, and other herbs and spices. Piperitenone is found in citrus. Piperitenone is a flavouring agent. Piperitenone is present in grapefruit juice lemon juice, orange juice, spearmint oil and peppermint oi
Prostanoic acid
A carbocyclic fatty acid composed of heptanoic acid having a (1S,2S)-2-octylcyclopentyl substituent at position 7.
cis-Sabinol
(+)-cis-Sabinol belongs to the class of organic compounds known as bicyclic monoterpenoids. These are monoterpenoids containing exactly 2 rings, which are fused to each other. Thus, (+)-cis-sabinol is an isoprenoid lipid molecule. Monoterpenoids are terpenes that contain 10 carbon atoms and are comprised of two isoprene units. The biosynthesis of monoterpenes is known to occur mainly through the methyl-eritritol-phosphate (MEP) pathway in the plastids (PMID: 23746261). Geranyl diphosphate (GPP) is a key intermediate in the biosynthesis of cyclic monoterpenes. GPP undergoes several cyclization reactions to yield a diverse number of cyclic arrangements. (+)-cis-Sabinol is very hydrophobic, practically insoluble in water, and relatively neutral. Artemisia annuaand (https://doi.org/10.1007/s11418-006-0112-9) and in herbal plant Dendranthema indicum (PMID: 29510531). (+)-cis-sabinol, also known as sabinol or sabinol, (1alpha,3alpha,5alpha)-isomer, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. Thus, (+)-cis-sabinol is considered to be an isoprenoid lipid molecule (+)-cis-sabinol is slightly soluble (in water) and an extremely weak acidic compound (based on its pKa). (+)-cis-sabinol can be found in peppermint, which makes (+)-cis-sabinol a potential biomarker for the consumption of this food product.
Glutaconyl-CoA
Glutaconyl-CoA (CAS: 6712-05-6), also known as 4-carboxybut-2-enoyl-CoA, belongs to the class of organic compounds known as 2-enoyl CoAs. These are organic compounds containing a coenzyme A substructure linked to a 2-enoyl chain. Thus, glutaconyl-CoA is considered to be a fatty ester lipid molecule. Glutaconyl-CoA is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Glutaconyl-CoA is a substrate for glutaryl-CoA dehydrogenase. Glutaconyl-CoA is a substrate for Glutaryl-CoA dehydrogenase (mitochondrial). [HMDB]
2-Keto-6-aminocaproate
2-Keto-6-aminocaproate is an intermediate in lysine degradation and can be formed from L-lysine. L-Lysine is an essential amino-acid that is a necessary building block for all protein in the body. L-Lysine plays a major role in calcium absorption; building muscle protein; recovering from surgery or sports injuries; and the bodys production of hormones, enzymes, and antibodies. L-Lysine can be converted to 2-keto-6-aminocaproate via the enzyme L-lysine alpha-oxidase. 2-Keto-6-aminocaproate can spontaneously decarboxylate to 5-aminovalerate in the presence of the reaction product, hydrogen peroxide. It can also be spontaneously converted in solution to its cyclic form delta-piperideine-2-carboxylate. This has been demonstrated in vitro in the presence of catalase, which splits hydrogen peroxide. [HMDB] 2-Keto-6-aminocaproate is an intermediate in lysine degradation and can be formed from L-lysine. L-Lysine is an essential amino-acid that is a necessary building block for all protein in the body. L-Lysine plays a major role in calcium absorption; building muscle protein; recovering from surgery or sports injuries; and the bodys production of hormones, enzymes, and antibodies. L-Lysine can be converted to 2-keto-6-aminocaproate via the enzyme L-lysine alpha-oxidase. 2-Keto-6-aminocaproate can spontaneously decarboxylate to 5-aminovalerate in the presence of the reaction product, hydrogen peroxide. It can also be spontaneously converted in solution to its cyclic form delta-piperideine-2-carboxylate. This has been demonstrated in vitro in the presence of catalase, which splits hydrogen peroxide.
5-Aminoimidazole ribonucleotide
5-aminoimidazole ribonucleotide (AIR), is an intermediate of purine nucleotide biosynthesis. It is also the precursor to 4-amino-2-methyl-5-hydroxymethylpyrimidine (HMP), the first product of pyrimidine biosynthesis. This reaction is mediated by the enzyme HMP-P kinase (ThiD). HMP is a precursor of thiamine phosphate (TMP), and subsequently to thiamine pyrophosphate (TPP). TPP is an essential cofactor in all living systems that plays a central role in metabolism. (PMID: 15326535). 5-Aminoimidazole ribonucleotide is a substrate for a number of proteins including: Scaffold attachment factor B2, Multifunctional protein ADE2, Pulmonary surfactant-associated protein B, Tumor necrosis factor receptor superfamily member 25, Pulmonary surfactant-associated protein C, Serine/threonine-protein kinase Chk1, Vinexin, Trifunctional purine biosynthetic protein adenosine-3, Antileukoproteinase 1 and Scaffold attachment factor B. 5-aminoimidazole ribonucleotide (AIR), is an intermediate of purine nucleotide biosynthesis. It is also the precursor to 4-amino-2-methyl-5-hydroxymethylpyrimidine (HMP), the first product of pyrimidine biosynthesis. This reaction is mediated by the enzyme HMP-P kinase (ThiD). HMP is a precursor of thiamine phosphate (TMP), and subsequently to thiamine pyrophosphate (TPP). TPP is an essential cofactor in all living systems that plays a central role in metabolism. (PMID: 15326535) COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Glycineamideribotide
Glycinamidoribotide conversion to N-formylglycinamide ribonucleotide is the third reaction of the de novo purine biosynthesis, a reaction catalyzed by the enzyme Glycinamide ribonucleotide transformylase (EC 2.1.2.2), with concomitant conversion of 10-formyltetrahydrofolate to tetrahydrofolate. (PMID: 9143358). Glycineamideribotide formation is stimulated by Luteinizing hormone (LH) and Chorionic gonadotropin (HCG) via activation of Glc-6-P-dehydrogenase (EC 1.1.1.49). (PMID: 4366083) [HMDB] Glycinamidoribotide conversion to N-formylglycinamide ribonucleotide is the third reaction of the de novo purine biosynthesis, a reaction catalyzed by the enzyme Glycinamide ribonucleotide transformylase (EC 2.1.2.2), with concomitant conversion of 10-formyltetrahydrofolate to tetrahydrofolate. (PMID: 9143358). Glycineamideribotide formation is stimulated by Luteinizing hormone (LH) and Chorionic gonadotropin (HCG) via activation of Glc-6-P-dehydrogenase (EC 1.1.1.49). (PMID: 4366083).
5-Methylthioribose 1-phosphate
5-Methylthioribose 1-phosphate belongs to the class of organic compounds known as pentoses. These are monosaccharides in which the carbohydrate moiety contains five carbon atoms. 5-Methylthioribose 1-phosphate is an intermediate in methionine biosynthesis. It is converted from 5-deoxy-5-methylthioadenosine by 5-deoxy-5-methylthioadenosine phosphorylase. Then it is converted to methionine (PMID: 2153115). In the methionine salvage pathway, 5-methylthioribose 1-phosphate isomerase (M1Pi) catalyzes the conversion of 5-methylthioribose 1-phosphate (MTR-1-P) into 5-methylthioribulose 1-phosphate (MTRu-1-P). 5-Methylthioribose 1-phosphate is an intermediate in methionine biosynthesis. It is converted from 5-Deoxy-5-methylthioadenosine by 5-Deoxy-5-methylthioadenosine phosphorylase. Then it is converted to methionine (PMID 2153115). In the methionine salvage pathway 5-methylthioribose 1-phosphate isomerase (M1Pi) catalyzes the conversion of 5-methylthioribose 1-phosphate (MTR-1-P) to 5-methylthioribulose 1-phosphate (MTRu-1-P) [HMDB]
BENZOYLARGININE NITROANILIDE
D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D002863 - Chromogenic Compounds D004396 - Coloring Agents
Histidylleucine
Histidylleucine is a dipeptide composed of histidine and leucine. It is an incomplete breakdown product of protein digestion or protein catabolism. Dipeptides are organic compounds containing a sequence of exactly two alpha-amino acids joined by a peptide bond. Some dipeptides are known to have physiological or cell-signalling effects although most are simply short-lived intermediates on their way to specific amino acid degradation pathways following further proteolysis.
17a-Hydroxypregnenolone
17a-Hydroxypregnenolone is a 21-carbon steroid that is converted from pregnenolone by cytochrome P450 17alpha hydroxylase/C17,20 lyase (CYP17, EC 1.14.99.9). 17a-Hydroxypregnenolone is an intermediate in the delta-5 pathway of biosynthesis of gonadal steroid hormones and the adrenal corticosteroids. The first, rate-limiting and hormonally regulated step in the biosynthesis of all steroid hormones is the conversion of cholesterol to pregnenolone. The conversion of cholesterol to pregnenolone is accomplished by the cleavage of the cholesterol side chain, catalyzed by a mitochondrial cytochrome P450 enzyme termed P450scc where scc designates Side Chain Cleavage. All steroid hormones are made from the pregnenolone produced by P450scc; thus, the presence or absence of each of the activities of CYP17 directs this pregnenolone towards its final metabolic pathway. While all cytochrome P450 enzymes can catalyze multiple reactions on a single active site, CYP17 is the only one described to date in which these multiple activities are differentially regulated by a physiologic process. 17a-Hydroxypregnenolone is converted to dehydroepiandrosterone by the 17,20 lyase activity of CYP17. The ratio of the 17,20 lyase to 17 alpha-hydroxylase activity of CYP17 determines the ratio of C21 to C19 steroids produced. This ratio is regulated post-translationally by at least three factors: the abundance of the electron-donating protein P450 oxidoreductase, the presence of cytochrome b5, and the serine phosphorylation of CYP17. (PMID: 12573809). C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones 17a-Hydroxypregnenolone is a pregnane steroid. 17a-Hydroxypregnenolone is a prohormone in the formation of dehydroepiandrosterone (DHEA).
12-Keto-leukotriene B4
12-Keto-leukotriene B4 is formed when leukotriene B4 (LTB4) is metabolized by beta-oxidation. LTB4 is the major metabolite in neutrophil polymorphonuclear leukocytes. Leukotrienes are metabolites of arachidonic acid derived from the action of 5-LO (5-lipoxygenase). The immediate product of 5-LO is LTA4 (leukotriene A4), which is enzymatically converted into either LTB4 (leukotriene B4) by LTA4 hydrolase or LTC4 (leukotriene C4) by LTC4 synthase. The regulation of leukotriene production occurs at various levels, including expression of 5-LO, translocation of 5-LO to the perinuclear region and phosphorylation to either enhance or inhibit the activity of 5-LO. Biologically active LTB4 is metabolized by w-oxidation carried out by specific cytochrome P450s (CYP4F) followed by beta-oxidation from the w-carboxy position and after CoA ester formation. (PMID: 8632343, 9667737)Leukotrienes are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. 12-Keto-leukotriene B4 is formed when leukotriene B4 (LTB4) is metabolized by beta-oxidation. LTB4 is the major metabolite in neutrophil polymorphonuclear leukocytes. Leukotrienes are metabolites of arachidonic acid derived from the action of 5-LO (5-lipoxygenase). The immediate product of 5-LO is LTA4 (leukotriene A4), which is enzymatically converted into either LTB4 (leukotriene B4) by LTA4 hydrolase or LTC4 (leukotriene C4) by LTC4 synthase. The regulation of leukotriene production occurs at various levels, including expression of 5-LO, translocation of 5-LO to the perinuclear region and phosphorylation to either enhance or inhibit the activity of 5-LO. Biologically active LTB4 is metabolized by w-oxidation carried out by specific cytochrome P450s (CYP4F) followed by beta-oxidation from the w-carboxy position and after CoA ester formation. (PMID: 8632343, 9667737)
15-Keto-prostaglandin F2a
15-Keto-prostaglandin F2a is the oxidized product of prostaglandin F2a by 15-hydroxyprostaglandin dehydrogenase, which is present in lung, kidney, placenta and other tissues and catalyzes the NAD- or NADP-dependent dehydrogenation of 15-dydroxyl group. 15-Keto-prostaglandin F2a is further metabolized by its delta13-reduction, beta-oxidation and omega oxidation. The ultimate metabolite is 5a,7a-dihydroxy-11-keto-tetranorprosta-1,16-dioic acid, and excreted in urine. Prostaglandin F2a (PGF2) is one of the earliest discovered and most common prostaglandins is actively biosynthesized in various organs of mammals and exhibits a variety of biological activities, including contraction of pulmonary arteries. PGF2 is mainly synthesized directly from PGH2 by PGH2 9,11-endoperoxide reductase. A small amount of PGF2 is also produced from PGE2 by PGE2 9-ketoreductase. A PGF2 epimer has been reported to exhibit various biological activities, and its levels are increased in bronchoalveolar lavage fluid, plasma, and urine in patients with mastocytosis and bronchial asthma. PGF2 is synthesized from PGD2 by PGD2 11-ketoreductase. (PMID: 16475787, 184496, 5951401, 12432938)Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. 15-Keto-prostaglandin F2a is the oxidized product of prostaglandin F2a by 15-hydroxyprostaglandin dehydrogenase, which is present in lung, kidney, placenta and other tissues and catalyzes the NAD- or NADP-dependent dehydrogenation of 15-dydroxyl group. 15-Keto-prostaglandin F2a is further metabolized by its delta13-reduction, beta-oxidation and omega oxidation. The ultimate metabolite is 5a,7a-dihydroxy-11-keto-tetranorprosta-1,16-dioic acid, and excreted in urine. Prostaglandin F2a (PGF2) is one of the earliest discovered and most common prostaglandins is actively biosynthesized in various organs of mammals and exhibits a variety of biological activities, including contraction of pulmonary arteries. PGF2 is mainly synthesized directly from PGH2 by PGH2 9,11-endoperoxide reductase. A small amount of PGF2 is also produced from PGE2 by PGE2 9-ketoreductase. A PGF2 epimer has been reported to exhibit various biological activities, and its levels are increased in bronchoalveolar lavage fluid, plasma, and urine in patients with mastocytosis and bronchial asthma. PGF2 is synthesized from PGD2 by PGD2 11-ketoreductase. (PMID: 16475787, 184496, 5951401, 12432938)
3-Butyn-1-al
3-Butyn-1-al is an intermediate in Butanoate metabolism (KEGG ID C06145). It is the third to last step in the synthesis and degradation of ketone bodies and is converted from 3-Butyn-1-ol via the enzyme alcohol dehydrogenase (acceptor) [EC:1.1.99.8]. It is then converted to 3-Butynoate via the enzyme aldehyde dehydrogenase (NAD+) [EC:1.2.1.3]. 3-Butyn-1-al is an intermediate in Butanoate metabolism (KEGG ID
trans-3-Chloroacrylic acid
This compound belongs to the family of Enones. These are compounds containing the enone functional group, with the structure RC(=O)CR
Azlocillin
Azlocillin is only found in individuals that have used or taken this drug. It is a semisynthetic ampicillin-derived acylureido penicillin.By binding to specific penicillin-binding proteins (PBPs) located inside the bacterial cell wall, azlocillin inhibits the third and last stage of bacterial cell wall synthesis. Cell lysis is then mediated by bacterial cell wall autolytic enzymes such as autolysins; it is possible that azlocillin interferes with an autolysin inhibitor. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01C - Beta-lactam antibacterials, penicillins > J01CA - Penicillins with extended spectrum D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic
Cefotetan
Cefotetan is only found in individuals that have used or taken this drug. It is a semisynthetic cephamycin antibiotic that is administered intravenously or intramuscularly. The drug is highly resistant to a broad spectrum of beta-lactamases and is active against a wide range of both aerobic and anaerobic gram-positive and gram-negative microorganisms. [PubChem]The bactericidal action of cefotetan results from inhibition of cell wall synthesis by binding and inhibiting the bacterial penicillin binding proteins which help in the cell wall biosynthesis. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DC - Second-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002513 - Cephamycins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic
Echothiophate
Echothiophate is only found in individuals that have used or taken this drug. It is a potent, long-acting irreversible cholinesterase inhibitor used as an ocular hypertensive in the treatment of glaucoma. Occasionally used for accomodative esotropia.Echothiophate Iodide is a long-acting cholinesterase inhibitor for topical use which enhances the effect of endogenously liberated acetylcholine in iris, ciliary muscle, and other parasympathetically innervated structures of the eye. Echothiophate iodide binds irreversibly to cholinesterase, and is long acting due to the slow rate of hydrolysis by cholinesterase. It causes miosis, increase in facility of outflow of aqueous humor, fall in intraocular pressure, and potentiation of accommodation. S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01EB - Parasympathomimetics D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010277 - Parasympathomimetics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D008916 - Miotics C78272 - Agent Affecting Nervous System > C47796 - Cholinergic Agonist D004791 - Enzyme Inhibitors
triclofos
N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic
Trimethaphan
Trimethaphan is only found in individuals that have used or taken this drug. It is a nicotinic antagonist that has been used as a ganglionic blocker in hypertension, as an adjunct to anesthesia, and to induce hypotension during surgery. [PubChem]Trimethaphan is a ganglionic blocking agent prevents stimulation of postsynaptic receptors by competing with acetylcholine for these receptor sites. Additional effects may include direct peripheral vasodilation and release of histamine. Trimethaphans hypotensive effect is due to reduction in sympathetic tone and vasodilation, and is primarily postural. C - Cardiovascular system > C02 - Antihypertensives > C02B - Antiadrenergic agents, ganglion-blocking > C02BA - Sulfonium derivatives C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C66886 - Nicotinic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D005730 - Ganglionic Blockers D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002491 - Central Nervous System Agents
Mezlocillin
Mezlocillin is only found in individuals that have used or taken this drug. It is a semisynthetic ampicillin-derived acylureido penicillin. It has been proposed for infections with certain anaerobes and may be useful in inner ear, bile, and CNS infections. [PubChem]By binding to specific penicillin-binding proteins (PBPs) located inside the bacterial cell wall, mezlocillin inhibits the third and last stage of bacterial cell wall synthesis. Cell lysis is then mediated by bacterial cell wall autolytic enzymes such as autolysins; it is possible that mezlocillin interferes with an autolysin inhibitor. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01C - Beta-lactam antibacterials, penicillins > J01CA - Penicillins with extended spectrum D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic
Latamoxef
Broad- spectrum beta-lactam antibiotic similar in structure to the cephalosporins except for the substitution of an oxaazabicyclo moiety for the thiaazabicyclo moiety of certain cephalosporins. It has been proposed especially for the meningitides because it passes the blood-brain barrier and for anaerobic infections. [PubChem] J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DD - Third-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic
OCTAMETHYLTRISILOXANE
P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03A - Ectoparasiticides, incl. scabicides D001697 - Biomedical and Dental Materials
Quazepam
Quazepam is only found in individuals that have used or taken this drug. It is a drug which is a benzodiazepine derivative. It induces impairment of motor function and has hypnotic properties. Quazepam is used to treat insomnia.Benzodiazepines bind nonspecifically to benzodiazepine receptors, which affects muscle relaxation, anticonvulsant activity, motor coordination, and memory. As benzodiazepine receptors are thought to be coupled to gamma-aminobutyric acid-A (GABAA) receptors, this enhances the effects of GABA by increasing GABA affinity for the GABA receptor. Binding of the inhibitory neurotransmitter GABA to the site opens the chloride channel, resulting in a hyperpolarized cell membrane that prevents further excitation of the cell. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CD - Benzodiazepine derivatives C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C1012 - Benzodiazepine C78272 - Agent Affecting Nervous System > C28197 - Antianxiety Agent
Cinoxacin
Cinoxacin is only found in individuals that have used or taken this drug. It is a synthetic antimicrobial related to oxolinic acid and nalidixic acid and used in urinary tract infections. [PubChem]Evidence exists that cinoxacin binds strongly, but reversibly, to DNA, interfering with synthesis of RNA and, consequently, with protein synthesis. It appears to also inhibit DNA gyrase. This enzyme is necessary for proper replicated DNA separation. By inhibiting this enzyme, DNA replication and cell division is inhibited. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic D000890 - Anti-Infective Agents D004791 - Enzyme Inhibitors
Butoconazole
Butoconazole is only found in individuals that have used or taken this drug. It is an imidazole antifungal used in gynecology.The exact mechanism of the antifungal action of butoconazole is unknown, however, it is presumed to function as other imidazole derivatives via inhibition of steroid synthesis. Imidazoles generally inhibit the conversion of lanosterol to ergosterol via the inhibition of the enzyme cytochrome P450 14α-demethylase, resulting in a change in fungal cell membrane lipid composition. This structural change alters cell permeability and, ultimately, results in the osmotic disruption or growth inhibition of the fungal cell. G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids > G01AF - Imidazole derivatives D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent
fosfestrol
L - Antineoplastic and immunomodulating agents > L02 - Endocrine therapy > L02A - Hormones and related agents > L02AA - Estrogens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D000970 - Antineoplastic Agents
Hentriacontane
Hentriacontane is found in black elderberry. Hentriacontane, also called untriacontane, is a solid, long-chain alkane hydrocarbon with the structural formula CH3(CH2)29CH3. It is found in a variety of plants, including peas (pisum sativum), gum arabic (acacia senegal) and others, and also comprises about 8-9\\% of beeswax. It has 10,660,307,791 constitutional isomers Hentriacontane, also called untriacontane, is a solid, long-chain alkane hydrocarbon with the structural formula CH3(CH2)29CH3. It is found in a variety of plants, including peas (pisum sativum), gum arabic (acacia senegal) and others, and also comprises about 8-9\\% of beeswax. It has 10,660,307,791 constitutional isomers.
Albafuran A
Albafuran A is found in fruits. Albafuran A is a constituent of white mulberry (Morus alba) Constituent of white mulberry (Morus alba). Albafuran A is found in fruits.
SCILLIROSIDE
D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002018 - Bufanolides
Parillin
Parillin is found in herbs and spices. Parillin is a constituent of Mexican sarsaparilla root (Smilax aristolochiaefolia). Constituent of Mexican sarsaparilla root (Smilax aristolochiaefolia). Parillin is found in herbs and spices.
Precocene II
D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals Precocene II is the insect antijuvenile hormone[1].
Marckine
Arbusculin A
A sesquiterpene lactone isolated from Saussureae Radix and has been shown to exhibit inhibitory activity against melanogenesis.
beta-cyclocostunolide
beta-Cubebene
Beta-cubebene, also known as (-)-B-cubebene, is a member of the class of compounds known as sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units. Beta-cubebene is a citrus and fruity tasting compound and can be found in a number of food items such as sweet basil, roman camomile, pot marjoram, and sweet bay, which makes beta-cubebene a potential biomarker for the consumption of these food products. Beta-cubebene can be found primarily in saliva. Piper cubeba, cubeb or tailed pepper is a plant in genus Piper, cultivated for its fruit and essential oil. It is mostly grown in Java and Sumatra, hence sometimes called Java pepper. The fruits are gathered before they are ripe, and carefully dried. Commercial cubebs consist of the dried berries, similar in appearance to black pepper, but with stalks attached – the "tails" in "tailed pepper". The dried pericarp is wrinkled, and its color ranges from grayish brown to black. The seed is hard, white and oily. The odor of cubebs is described as agreeable and aromatic and the taste as pungent, acrid, slightly bitter and persistent. It has been described as tasting like allspice, or like a cross between allspice and black pepper . beta-Cubebene belongs to the class of organic compounds known as sesquiterpenoids. These are terpenes with three consecutive isoprene units.
Juvenile hormone III
Juvenile hormone III is a member of the juvenile hormone family of compounds that is the methyl ester of (2E,6E)-9-[(2R)-3,3-dimethyloxiran-2-yl]-3,7-dimethylnona-2,6-dienoic acid. Juvenile hormone III is found in most insect species. It is an epoxide, an enoate ester, a fatty acid methyl ester and a juvenile hormone.
Pollinastanol
Pollinastanol is found in dandelion. Pollinastanol is isolated from Smilax medica (Sarsaparilla
Hypolaetin
A pentahydroxyflavone that consists of luteolin substituted by an additional hydroxy group at position 8.
Robustaflavone
A biflavonoid that is obtained by oxidative coupling of two molecules of apigenin resulting in a bond between positions C-3 of the hydroxyphenyl ring and C-6 of the chromene ring. Isolated from Thuja orientalis and Rhus succedanea it exhibits antioxidant, cytotoxic and anti-hepatitis B activity.
Sciadopitysin
Sciadopitysin is a biflavonoid that is a 7, 4, 4-trimethyl ether derivative of amentoflavone. It has a role as a bone density conservation agent and a platelet aggregation inhibitor. It is a biflavonoid, a hydroxyflavone, a methoxyflavone and a ring assembly. It is functionally related to an amentoflavone. Sciadopitysin is a natural product found in Podocarpus elongatus, Podocarpus urbanii, and other organisms with data available. A biflavonoid that is a 7, 4, 4-trimethyl ether derivative of amentoflavone. Sciadopitysin is a type of biflavonoids in leaves from ginkgo biloba[1]. Sciadopitysi inhibits RANKL-induced osteoclastogenesis and bone loss by inhibiting NF-κB activation and reducing the expression of c-Fos and NFATc1[2]. Sciadopitysin is a type of biflavonoids in leaves from ginkgo biloba[1]. Sciadopitysi inhibits RANKL-induced osteoclastogenesis and bone loss by inhibiting NF-κB activation and reducing the expression of c-Fos and NFATc1[2].
Ethyl trans-p-methoxycinnamate
Ethyl trans-p-methoxycinnamate is found in fats and oils. Ethyl trans-p-methoxycinnamate is a major constituent of oil of Kaempferia galanga (galangal (E)-Ethyl p-methoxycinnamate is a natural product found in Kaempferia galangal with anti-inflammatory, anti-neoplastic and anti-microbial effects. (E)-Ethyl p-methoxycinnamate inhibits COX-1 and COX-2 in vitro with IC50s of 1.12 and 0.83 μM, respectively[1]. (E)-Ethyl p-methoxycinnamate is a natural product found in Kaempferia galangal with anti-inflammatory, anti-neoplastic and anti-microbial effects. (E)-Ethyl p-methoxycinnamate inhibits COX-1 and COX-2 in vitro with IC50s of 1.12 and 0.83 μM, respectively[1].
Caulophylline
N-Methylcytisine (Caulophylline), a tricyclic quinolizidine alkaloid, exerts hypoglycaemic, analgesic and anti-inflammatory activities. N-methylcytisine is a selective ligand of nicotinic receptors of acetylcholine in the central nervous system and has a high affinity (Kd = 50 nM) to nicotinic acetylcholine receptors (nAChR) from squid optical ganglia[1][2]. N-Methylcytisine (Caulophylline), a tricyclic quinolizidine alkaloid, exerts hypoglycaemic, analgesic and anti-inflammatory activities. N-methylcytisine is a selective ligand of nicotinic receptors of acetylcholine in the central nervous system and has a high affinity (Kd = 50 nM) to nicotinic acetylcholine receptors (nAChR) from squid optical ganglia[1][2]. N-Methylcytisine (Caulophylline), a tricyclic quinolizidine alkaloid, exerts hypoglycaemic, analgesic and anti-inflammatory activities. N-methylcytisine is a selective ligand of nicotinic receptors of acetylcholine in the central nervous system and has a high affinity (Kd = 50 nM) to nicotinic acetylcholine receptors (nAChR) from squid optical ganglia[1][2].
Cefozopran
J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DE - Fourth-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic Same as: D01052
N-Tetradecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate
Mikamycin A
C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C259 - Antineoplastic Antibiotic D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D025361 - Streptogramins Virginiamycin M1 (Pristinamycin IIA; Ostreogrycin A), produced by?Streptomyces virginiae, is an polyunsaturated macrocyclic lactone antibiotic and acts as a component of Virginiamycin (HY-112665)[1]. Virginiamycin M1 alone is against Staphylococcus aureus with a MIC of 0.25 μg/mL. The combination of Virginiamycin M1 and Virginiamycin S1 (HY-N6680) is 0.125 μg/mL (MIC Value), which can improve the bactericidal effect 1-30 times[2].
Sulfobromophthalein
V - Various > V04 - Diagnostic agents > V04C - Other diagnostic agents > V04CE - Tests for liver functional capacity D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D010635 - Phenolphthaleins D004396 - Coloring Agents Same as: D08548
Grepafloxacin
Grepafloxacin hydrochloride (Raxar®, Glaxo Wellcome) is an oral broad-spectrum quinoline antibacterial agent used to treat bacterial infections. Grepafloxacin was withdrawn in the United States due to its side effect of lengthening the QT interval on the electrocardiogram, leading to cardiac events and sudden death. [Wikipedia] J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials > J01MA - Fluoroquinolones D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic D004791 - Enzyme Inhibitors ATC code: J01MA11
1,3,5-Trichloro-2-methoxybenzene
1,3,5-Trichloro-2-methoxybenzene is found in alcoholic beverages. Off-odour component found in foods etc. Responsible for cork taint in wine
Methymycin
A twelve-membered macrolide antibiotic that is biosynthesised by Streptomyces venezuelae.
2-Pentyl-3-phenyl-2-propenal
2-Pentyl-3-phenyl-2-propenal, also known as alpha-amylcinnamaldehyde or pentylcinnamaldehyde, is a member of the class of compounds known as cinnamaldehydes. Cinnamaldehydes are organic aromatic compounds containing a cinnamaldehyde moiety, consisting of a benzene and an aldehyde group to form 3-phenylprop-2-enal. 2-Pentyl-3-phenyl-2-propenal is practically insoluble in water. 2-Pentyl-3-phenyl-2-propenal is a flavouring agent and has a sweet, floral, and fruity taste. It is a non-carcinogenic (not listed by IARC) potentially toxic compound.
Myebrol
L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01A - Alkylating agents C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D009676 - Noxae > D000477 - Alkylating Agents D000970 - Antineoplastic Agents Same as: D02020
NS-102
NS-102 is a selective kainate (GluK2) receptor antagonist. NS-102 is a potent GluR6/7 receptor antagonist[1][2][3].
D-NONOate
D002317 - Cardiovascular Agents > D020030 - Nitric Oxide Donors
Adrenoyl ethanolamide
Adrenoyl ethanolamide is a N-acylethanolamine. N-acylethanolamines (NAEs) constitute a class of lipid compounds naturally present in both animal and plant membranes as constituents of the membrane-bound phospholipid, N-acylphosphatidylethanolamine (NAPE). NAPE is composed of a third fatty acid moiety linked to the amino head group of the commonly occurring membrane phospholipid, phosphatidylethanolamine. NAEs are released from NAPE by phospholipase D-type hydrolases in response to a variety of stimuli. Transient NAE release and accumulation has been attributed a variety of biological activities, including neurotransmission, membrane protection, and immunomodulation in animals. N-oleoylethanolamine is an inhibitor of the sphingolipid signaling pathway, via specific ceramidase inhibition (ceramidase converts ceramide to sphingosine). N-oleoylethanolamine blocks the effects of TNF- and arachidonic acid on intracellular Ca concentration. (PMID: 12692337, 12056855, 12560208, 11997249) [HMDB] Adrenoyl ethanolamide is a N-acylethanolamine. N-acylethanolamines (NAEs) constitute a class of lipid compounds naturally present in both animal and plant membranes as constituents of the membrane-bound phospholipid, N-acylphosphatidylethanolamine (NAPE). NAPE is composed of a third fatty acid moiety linked to the amino head group of the commonly occurring membrane phospholipid, phosphatidylethanolamine. NAEs are released from NAPE by phospholipase D-type hydrolases in response to a variety of stimuli. Transient NAE release and accumulation has been attributed a variety of biological activities, including neurotransmission, membrane protection, and immunomodulation in animals. N-oleoylethanolamine is an inhibitor of the sphingolipid signaling pathway, via specific ceramidase inhibition (ceramidase converts ceramide to sphingosine). N-oleoylethanolamine blocks the effects of TNF- and arachidonic acid on intracellular Ca concentration. (PMID: 12692337, 12056855, 12560208, 11997249).
2,2',4,4'-Tetrachlorobiphenyl
2,2',4,4'-tetrachlorobiphenyl is a tetrachlorobiphenyl that is biphenyl in which each of the phenyl groups is substituted at positions 2 and 4 by chlorines. It is a tetrachlorobiphenyl and a dichlorobenzene. D004785 - Environmental Pollutants > D011078 - Polychlorinated Biphenyls
Dibenz[a,h]anthracene
D009676 - Noxae > D002273 - Carcinogens Dibenz[a,h]anthracene (DBA) is a polycyclic aromatic hydrocarbon (PAH) of considerable tumorigenicity. Dibenz[a,h]anthracene results in DNA adduct formation leading to the activation of a DNA damage response. Dibenz[a,h]anthracene induces cell cycle arrest and apoptosis via both Tp53-dependent and Tp53-independent mechanisms[1][2].
1,2-DIBROMO-3-CHLOROPROPANE
D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals
2-Ethylphenol
2-ethylphenol, also known as phlorol or 1-ethyl-2-hydroxybenzene, is a member of the class of compounds known as 1-hydroxy-4-unsubstituted benzenoids. 1-hydroxy-4-unsubstituted benzenoids are phenols that are unsubstituted at the 4-position. 2-ethylphenol is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). 2-ethylphenol can be found in arabica coffee, which makes 2-ethylphenol a potential biomarker for the consumption of this food product. Ethylphenol may refer to: 2-Ethylphenol 3-Ethylphenol 4-Ethylphenol .
alpha-Methylstyrene
alpha-Methylstyrene belongs to the family of Phenylpropenes. These are compounds containing a phenylpropene moeity, which consists of a propene substituent bound to a phenyl group.
O-Ethyl O-(4-nitrophenyl) phenylphosphonothioate
D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals
Bolasterone
Bolasterone is an anabolic androgenic steroid. Analysis of steroids in urine has been used to detect different hormonal actions in human beings such as testicular function in men, hyperandrogenic disorders in women and puberty problems in children, by the measurement of anabolic steroids, and some hormonal disorders such as adrenocortical adenoma and Cushing syndrome by the control of corticoids. This steroid have been included in the International Olympic Committee (IOC) doping list due to their illegal use in some sports and in the list of schedules drugs in several countries because of its use by young people. In addition, the examination of endogenous steroids profile provides information about the health and the use of exogenous steroids. Bolasterone is excreted as the original compound in human urine. Androgenic anabolic steroids (AAS) are defined as natural, synthetic or semi-synthetic drugs chemicals derived from testosterone, used with the aim to improve physical performance by increasing both muscle strength and mass. Despite their reported toxicological effects on the cardiovascular, hepatic and neuro-endocrine systems, the AAS have been extensively used in sports activities. The use of anabolic steroids was banned by the International Olympic Committee for the first time at the Olympic Games in Montreal in 1976. Since that time the misuse of anabolic steroids by athletes has been controlled by analysis of urine of the excreted steroids or their metabolites, or both. (PMID: 10892583, 10932808, 14976846, 15042372, 15231229, 3308301, 8456050, 8674183, 16040239) [HMDB] Bolasterone is an anabolic androgenic steroid. Analysis of steroids in urine has been used to detect different hormonal actions in human beings such as testicular function in men, hyperandrogenic disorders in women and puberty problems in children, by the measurement of anabolic steroids, and some hormonal disorders such as adrenocortical adenoma and Cushing syndrome by the control of corticoids. This steroid have been included in the International Olympic Committee (IOC) doping list due to their illegal use in some sports and in the list of schedules drugs in several countries because of its use by young people. In addition, the examination of endogenous steroids profile provides information about the health and the use of exogenous steroids. Bolasterone is excreted as the original compound in human urine. Androgenic anabolic steroids (AAS) are defined as natural, synthetic or semi-synthetic drugs chemicals derived from testosterone, used with the aim to improve physical performance by increasing both muscle strength and mass. Despite their reported toxicological effects on the cardiovascular, hepatic and neuro-endocrine systems, the AAS have been extensively used in sports activities. The use of anabolic steroids was banned by the International Olympic Committee for the first time at the Olympic Games in Montreal in 1976. Since that time the misuse of anabolic steroids by athletes has been controlled by analysis of urine of the excreted steroids or their metabolites, or both. (PMID: 10892583, 10932808, 14976846, 15042372, 15231229, 3308301, 8456050, 8674183, 16040239). D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D045930 - Anabolic Agents C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C2360 - Anabolic Steroid Same as: D03144
19-Norprogesterone
C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone
Protandren
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D045930 - Anabolic Agents C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C2360 - Anabolic Steroid Same as: D08196
2,4-Diphenyl-1-butene
2,4-Diphenyl-1-butene is a styrene dimer. Present as an impurity in polystyrene food containers and other products - liberated on heatin
Oxymesterone
Oxymesterone is an anabolic steroid abused by some athletes and is tested for in regular preventive doping control analysis. Androgenic anabolic steroids (AAS) are defined as natural, synthetic or semi-synthetic drugs chemicals derived from testosterone, used with the aim to improve physical performance by increasing both muscle strength and mass. Despite their reported toxicological effects on the cardiovascular, hepatic and neuro-endocrine systems, the AAS have been extensively used in sports activities. Oxymesterone and other steroids can be detected in human urine using liquid chromatography/electrospray ionization orthogonal acceleration time-of-flight mass spectrometry (LCoaTOFMS) and gas chromatography/electron ionization orthogonal acceleration time-of-flight mass spectrometry (GCoaTOFMS), using methods that have been developed in order to acquire accurate full scan MS data to be used to detect designer steroids. (PMID: 17610244, 17667636, 17723876, 17723877, 2079979, 3308301, 8456050, 8674183, 8725393, 9216475) [HMDB] Oxymesterone is an anabolic steroid abused by some athletes and is tested for in regular preventive doping control analysis. Androgenic anabolic steroids (AAS) are defined as natural, synthetic or semi-synthetic drugs chemicals derived from testosterone, used with the aim to improve physical performance by increasing both muscle strength and mass. Despite their reported toxicological effects on the cardiovascular, hepatic and neuro-endocrine systems, the AAS have been extensively used in sports activities. Oxymesterone and other steroids can be detected in human urine using liquid chromatography/electrospray ionization orthogonal acceleration time-of-flight mass spectrometry (LCoaTOFMS) and gas chromatography/electron ionization orthogonal acceleration time-of-flight mass spectrometry (GCoaTOFMS), using methods that have been developed in order to acquire accurate full scan MS data to be used to detect designer steroids. (PMID: 17610244, 17667636, 17723876, 17723877, 2079979, 3308301, 8456050, 8674183, 8725393, 9216475). C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C2360 - Anabolic Steroid
2-chloro-4-biphenylol
CONFIDENCE standard compound; INTERNAL_ID 1048; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5119; ORIGINAL_PRECURSOR_SCAN_NO 5116 CONFIDENCE standard compound; INTERNAL_ID 1048; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5104; ORIGINAL_PRECURSOR_SCAN_NO 5103 CONFIDENCE standard compound; INTERNAL_ID 1048; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5184; ORIGINAL_PRECURSOR_SCAN_NO 5183 CONFIDENCE standard compound; INTERNAL_ID 1048; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5105; ORIGINAL_PRECURSOR_SCAN_NO 5101 CONFIDENCE standard compound; INTERNAL_ID 1048; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5089; ORIGINAL_PRECURSOR_SCAN_NO 5088 CONFIDENCE standard compound; INTERNAL_ID 1048; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5081; ORIGINAL_PRECURSOR_SCAN_NO 5079
Moxestrol
G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03C - Estrogens > G03CB - Synthetic estrogens, plain D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D004965 - Estrogen Antagonists C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones ATC code: G03CB04
2-Bromoacetaldehyde
This compound belongs to the family of Enolates. These are salts of enols (or of the tautomeric aldehydes or ketones), in which the anionic charge is delocalized over oxygen and carbon, or similar covalent metal derivatives in which the metal is bound to oxygen.
1-Pyrroline
Pyrrolines, also known under the name dihydropyrroles, are three different heterocyclic organic chemical compounds which differ in the position of the double bond. Pyrrolines are formally derived from the aromate pyrrole by hydrogenation. 1-Pyrroline is a cyclic imine while 2-pyrroline and 3-pyrroline are cyclic amines. Present in clam and squid. Flavouring agent for fish products and other foods. 3,4-Dihydro-2H-pyrrole is found in many foods, some of which are garden onion (variety), breadnut tree seed, chinese bayberry, and kiwi.
(5Z,8Z,11Z,14Z,17Z)-Icosapentaenoyl-CoA
This compound belongs to the family of Acyl CoAs. These are organic compounds contaning a coenzyme A substructure linked to another moeity through an ester bond.
DHA ethyl ester
C26170 - Protective Agent > C275 - Antioxidant
Traumatin
obtained from ripe miracle berry fruits (Thaumatococcus daniellii). Sweetener (5,000 times sweeter than sucrose), flavour enhancer for coffee, peppermint flavours etc. Permitted in EU at 50-400 ppm in chewing gum, vitamin preparations and some other sugar-free products. Use limited by slow contact and persistence of sensation Traumatin is found in tea. Traumatin is found in Thea sinensis chloroplasts Traumatin is a plant hormone produced in response to wound. Traumatin is a precursor to the related hormone traumatic acid.
Dimethylurea
Dimethylurea (DMU) (IUPAC systematic name: 1,3-Dimethylurea ) is a urea derivative and used as an intermediate in organic synthesis. It is a colorless crystalline powder with little toxicity.
5-Acetylamino-6-amino-3-methyluracil
5-Acetylamino-6-amino-3-methyluracil (AAMU) is one of caffeine major metabolites. Analysis of caffeine and its metabolites is of interest with respect to caffeine exposure, for kinetic and metabolism studies and for opportunistic in vivo estimation of drug metabolizing enzyme activity in humans and animals. Urinary caffeine metabolite ratios are used in humans to assess the activity of cytochrome P450 1A2 (CYP1A2), xanthine oxidase and N-acetyltransferase 2 (NAT2), which are involved in the activation or detoxification of various xenobiotic compounds, including carcinogens. Investigating the activity of these enzymes is of clinical relevance for assessing intra- and inter-individual differences in NAT2- and CYP1A2-mediated drug metabolism, and for evaluating the risk of developing specific exposure-related diseases. (PMID: 3506820, 15685651, 12534641) [HMDB] 5-Acetylamino-6-amino-3-methyluracil (AAMU) is one of caffeine major metabolites. Analysis of caffeine and its metabolites is of interest with respect to caffeine exposure, for kinetic and metabolism studies and for opportunistic in vivo estimation of drug metabolizing enzyme activity in humans and animals. Urinary caffeine metabolite ratios are used in humans to assess the activity of cytochrome P450 1A2 (CYP1A2), xanthine oxidase and N-acetyltransferase 2 (NAT2), which are involved in the activation or detoxification of various xenobiotic compounds, including carcinogens. Investigating the activity of these enzymes is of clinical relevance for assessing intra- and inter-individual differences in NAT2- and CYP1A2-mediated drug metabolism, and for evaluating the risk of developing specific exposure-related diseases. (PMID: 3506820, 15685651, 12534641).
alpha-Hydroxytamoxifen
alpha-Hydroxytamoxifen is a metabolite of tamoxifen. Tamoxifen is an antagonist of the estrogen receptor in breast tissue via its active metabolite, hydroxytamoxifen. In other tissues such as the endometrium, it behaves as an agonist, and thus may be characterized as a mixed agonist/antagonist. Tamoxifen is the usual endocrine therapy for hormone receptor-positive breast cancer in pre-menopausal women, and is also a standard in post-menopausal women although aromatase inhibitors are also frequently used in that setting. (Wikipedia)
4-Hydroxyretinoic acid
4-Hydroxyretinoic acid is an NADPH-dependent hydroxylation metabolite of retinoic acid in the microsomes, via the cytochrome P-450 system. Retinoic acid is an activated metabolite of retinol that supports the systemic functions of vitamin A in vivo. (PMID: 1538719, 1932598, 2851384) [HMDB] 4-Hydroxyretinoic acid is an NADPH-dependent hydroxylation metabolite of retinoic acid in the microsomes, via the cytochrome P-450 system. Retinoic acid is an activated metabolite of retinol that supports the systemic functions of vitamin A in vivo. (PMID: 1538719, 1932598, 2851384). D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids
beta-Bisabolene
S-beta-Bisabolene is found in anise. S-beta-Bisabolene is a constituent of the essential oils of bergamot, lemon and wild carrot
Flavouring ingredient used singly or as mixed isomers. Component of FEMA 3331. See also 2,7,10-Bisabolatriene
Kuraridinol
A member of the class of chalcones that is trans-chalcone substituted by hydroxy groups at positions 2, 4, 2 and 4, a methoxy group at position 6 and a 5-hydroxy-5-methyl-2-(prop-1-en-2-yl)hexyl group at position 3 respectively.
alpha-Cyperene
Isolated from Cyperus rotundus (nutgrass) and other plants. alpha-Cyperene is found in burdock and root vegetables. alpha-Cyperene is found in burdock. alpha-Cyperene is isolated from Cyperus rotundus (nutgrass) and other plant
beta-Terpineol
beta-Terpineol is found in cardamom. beta-Terpineol is a flavouring ingredient.Terpineol is a naturally occurring monoterpene alcohol that has been isolated from a variety of sources such as cajuput oil, pine oil, and petitgrain oil. There are three isomers, alpha-, beta-, and gamma-terpineol, the last two differing only by the location of the double bond. Terpineol is usually a mixture of these isomers with alpha-terpineol as the major constituent. (Wikipedia). Terpineol is a naturally occurring monoterpene alcohol that has been isolated from a variety of sources such as cajuput oil, pine oil, and petitgrain oil. There are three isomers, alpha-, beta-, and gamma-terpineol, the last two differing only by the location of the double bond. Terpineol is usually a mixture of these isomers with alpha-terpineol as the major constituent. cis-beta-Terpineol is found in caraway, rosemary, and common sage.
2-(2-Aminoethyl)thiazole
D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D017442 - Histamine Agonists
hexestrol
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens D000970 - Antineoplastic Agents CONFIDENCE standard compound; INTERNAL_ID 826; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4806; ORIGINAL_PRECURSOR_SCAN_NO 4804 C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen CONFIDENCE standard compound; INTERNAL_ID 826; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4817; ORIGINAL_PRECURSOR_SCAN_NO 4815 CONFIDENCE standard compound; INTERNAL_ID 826; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4774; ORIGINAL_PRECURSOR_SCAN_NO 4772 CONFIDENCE standard compound; INTERNAL_ID 826; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4796; ORIGINAL_PRECURSOR_SCAN_NO 4794 CONFIDENCE standard compound; INTERNAL_ID 826; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4834; ORIGINAL_PRECURSOR_SCAN_NO 4832 CONFIDENCE standard compound; INTERNAL_ID 826; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4799; ORIGINAL_PRECURSOR_SCAN_NO 4795 CONFIDENCE standard compound; INTERNAL_ID 826; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8887; ORIGINAL_PRECURSOR_SCAN_NO 8882 CONFIDENCE standard compound; INTERNAL_ID 826; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8903; ORIGINAL_PRECURSOR_SCAN_NO 8901 CONFIDENCE standard compound; INTERNAL_ID 826; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8923; ORIGINAL_PRECURSOR_SCAN_NO 8921 CONFIDENCE standard compound; INTERNAL_ID 826; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8953; ORIGINAL_PRECURSOR_SCAN_NO 8951 CONFIDENCE standard compound; INTERNAL_ID 826; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8970; ORIGINAL_PRECURSOR_SCAN_NO 8969 CONFIDENCE standard compound; INTERNAL_ID 826; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8944; ORIGINAL_PRECURSOR_SCAN_NO 8942
Corynanthin
Methyl 17-hydroxy-20xi-yohimban-16-carboxylate is a yohimban alkaloid, a methyl ester and an organic heteropentacyclic compound. Methyl 17-hydroxy-20xi-yohimban-16-carboxylate is a natural product found in Aspidosperma oblongum, Aspidosperma ramiflorum, and other organisms with data available. D001697 - Biomedical and Dental Materials > D003764 - Dental Materials
Hydroxyanthraquinone
1-hydroxyanthraquinone is a monohydroxyanthraquinone. 1-Hydroxyanthraquinone is a natural product found in Rheum palmatum, Handroanthus impetiginosus, and Morinda citrifolia with data available. D009676 - Noxae > D002273 - Carcinogens 1-Hydroxyanthraquinone, a naturally occurring compound with oral activity from some plants like Tabebuia avellanedae, exhibits carcinogenic effect[1]. 1-Hydroxyanthraquinone, a naturally occurring compound with oral activity from some plants like Tabebuia avellanedae, exhibits carcinogenic effect[1].
6-Hydroxymelatonin
6-Hydroxymelatonin, also known as lopac-H-0627, belongs to the class of organic compounds known as hydroxyindoles. These are organic compounds containing an indole moiety that carries a hydroxyl group. 6-Hydroxymelatonin is considered to be a practically insoluble (in water) and relatively neutral molecule. 6-Hydroxymelatonin has been found in human liver and kidney tissues, and has also been detected in multiple biofluids, such as urine and blood. Within the cell, 6-hydroxymelatonin is primarily located in the cytoplasm. 6-Hydroxymelatonin is the main primary metabolite that can be biosynthesized from melatonin through its interaction with the enzyme cytochrome P450 (CYP) 1A2 (PMID: 11452239). In humans, 6-hydroxymelatonin is involved in the tryptophan metabolism pathway. Melatonin is a hormone that is metabolized by cytochrome P450 (CYP) 1A2 to its main primary metabolite 6-hydroxymelatonin. (PMID 11452239) [HMDB]. 6-Hydroxymelatonin is found in many foods, some of which are garden onion, millet, peppermint, and apricot. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones D020011 - Protective Agents > D002316 - Cardiotonic Agents D002317 - Cardiovascular Agents 6-Hydroxymelatonin is a primary metabolic of Melatonin, which is metabolized by cytochrome P450 (CYP) 1A2.
2,4-Diaminobutyric acid
2,4-Diaminobutyric acid, also known as 2,4-diaminobutanoate or Dbu, belongs to the class of organic compounds known as alpha amino acids. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). 2,4-Diaminobutyric acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. 2,4-Diaminobutyric acid exists in all living organisms, ranging from bacteria to humans. Outside of the human body, 2,4-Diaminobutyric acid has been detected, but not quantified in cow milk. This could make 2,4-diaminobutyric acid a potential biomarker for the consumption of these foods. 2,4-Diaminobutyric acid is a non-physiological, cationic amino acid analogue that is transported into cells by System A with potent antitumoral activity in vitro against human glioma cells, the result of the pronounced concentrated uptake of DAB in glioma cells to the extent that a cellular lysis could occur due to osmotic reasons. 2,4-Diaminobutyric acid is a non-physiological, cationic amino acid analogue that is transported into cells by System A with potent antitumoral activity in vitro against human glioma cells, the result of the pronounced concentrated uptake of DAB in glioma cells to the extent that a cellular lysis could occur due to osmotic reasons. (PMID: 1561943) [HMDB] L-DABA (L-2,4-Diaminobutyric acid) is a week GABA transaminase inhibitor with an IC50 of larger than 500 μM; exhibits antitumor activity in vivo and in vitro. L-DABA (L-2,4-Diaminobutyric acid) is a week GABA transaminase inhibitor with an IC50 of larger than 500 μM; exhibits antitumor activity in vivo and in vitro.
Isohyodeoxycholic acid
Isohyodeoxycholic acid is a bile acid. Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, depending only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). A bile acid. Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12. D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids
epsilon-Tocopherol
Isolated from wheat bran oil. epsilon-Tocopherol is found in many foods, some of which are rye, coconut, rosemary, and fennel. epsilon-Tocopherol is found in american cranberry. epsilon-Tocopherol is isolated from wheat bran oi
(±)-2-Hydroxy-2-phenylacetonitrile
(±)-2-Hydroxy-2-phenylacetonitrile, also known as mandelonitrile, alpha-hydroxybenzeneacetonitrile or benzal dehyde cyanohydrin, belongs to the class of organic compounds known as benzene and substituted derivatives. These are aromatic compounds containing one monocyclic ring system consisting of benzene. Mandelonitrile is a chemical compound of the cyanohydrin class. Hydroxy-2-phenylacetonitrile is a potentially toxic compound. The primary mechanism of toxicity for organic nitriles is their production of toxic cyanide ions or hydrogen cyanide. Cyanide is also known produce some of its toxic effects by binding to catalase, glutathione peroxidase, methemoglobin, hydroxocobalamin, phosphatase, tyrosinase, ascorbic acid oxidase, xanthine oxidase, succinic dehydrogenase, and Cu/Zn superoxide dismutase. (±)-2-Hydroxy-2-phenylacetonitrile has been detected, but not quantified, in fruits. This could make (±)-2-hydroxy-2-phenylacetonitrile a potential biomarker for the consumption of these foods. (±)-2- Oxygen therapy can also be administered. Isolated from peach kernels (Prunus persica). (±)-2-Hydroxy-2-phenylacetonitrile is found in fruits.
Calusterone
Calusterone is an androgenic steroid. Calusterone induce given orally induce a marked decrease (between 30 and 70\\% depending on the dose) in the binding capacity of oestradiol-17beta to specific uterine receptors in vivo. As an androgen, calusterone has been used as a therapeutic agent in postmenopausal women with metastatic breast cancer; the addition of a potent hormonal agent to effective cytotoxic chemotherapy improves the results of treatment of women with metastatic breast cancer. Calusterone is tested in sport screening; fast and sensitive method for the comprehensive screening of anabolic agents and other banned doping substances using gas chromatography/tandem mass spectrometry (GC/MS/MS) with an external ionization ion trap mass spectrometer have been developed for the parent substances and their metabolites. (PMID: 17610244, 12375280, 153787, 2325376, 12375280) [HMDB] Calusterone is an androgenic steroid. Calusterone induce given orally induce a marked decrease (between 30 and 70\\% depending on the dose) in the binding capacity of oestradiol-17beta to specific uterine receptors in vivo. As an androgen, calusterone has been used as a therapeutic agent in postmenopausal women with metastatic breast cancer; the addition of a potent hormonal agent to effective cytotoxic chemotherapy improves the results of treatment of women with metastatic breast cancer. Calusterone is tested in sport screening; fast and sensitive method for the comprehensive screening of anabolic agents and other banned doping substances using gas chromatography/tandem mass spectrometry (GC/MS/MS) with an external ionization ion trap mass spectrometer have been developed for the parent substances and their metabolites. (PMID: 17610244, 12375280, 153787, 2325376, 12375280). D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D045930 - Anabolic Agents C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C2360 - Anabolic Steroid Same as: D03144
Timnodonyl CoA
Timnodonyl coenzyme A is an intermediate in the biosynthesis of fatty acids. Timnodonyl CoA is produced from linolenyl- CoA.
(S)-p-Menth-1-en-4-ol
(S)-p-Menth-1-en-4-ol occurs in many essential oils, e.g. lavende Occurs in many essential oils, e.g. lavender Terpinen-4-ol (4-Carvomenthenol), a naturally occurring monoterpene, is the main bioactive component of tea-tree oil. Terpinen-4-ol suppresses inflammatory mediator production by activated human monocytes. Terpinen-4-ol significantly enhances the effect of several chemotherapeutic and biological agents[1][2][3]. Terpinen-4-ol (4-Carvomenthenol), a naturally occurring monoterpene, is the main bioactive component of tea-tree oil. Terpinen-4-ol suppresses inflammatory mediator production by activated human monocytes. Terpinen-4-ol significantly enhances the effect of several chemotherapeutic and biological agents[1][2][3].
L-Homocystine
Homocystine is the oxidized form of homocysteine. Homocystine is a dipeptide consisting of two homocysteine molecules joined by a disulfide bond. Homocysteine is a sulfur-containing amino acid that arises during methionine metabolism. Homocystine occurs only transiently before being reduced to homocysteine and converted to the harmless cystathionine via a vitamin B6-dependent enzyme. Homocystine and homocysteine-cysteine mixed disulfides account for >98\\\% of total homocysteine in plasma from healthy individuals (PMID 11592966). Homocystine has been shown to stereospecifically induce endothelial nitric oxide synthase-dependent lipid peroxidation in endothelial cells, thereby inducing a vascular cell type-specific oxidative stress. This vascular stress is associated with atherothrombotic cardiovascular disease (PMID: 14980706). High levels of homocysteine (and homocysteine) can be found in individuals suffering from homocystinura due to cystathionine synthase deficiency (PMID: 4685596) Homocystine is the double-bonded form of homocysteine, but it occurs only transiently before being converted to the harmless cystathionine via a vitamin B6-dependent enzyme. L-Homocystine is the oxidized member of the L-homocysteine. Homocysteine is a pro-thrombotic factor, vasodilation impairing agent, pro-inflammatory factor and endoplasmatic reticulum-stress inducer used to study cardiovascular disease mechanisms.
Linolenelaidic acid
Linolenelaidic acid is found in fats and oils. Linolenelaidic acid is isolated from seed oil of safflower (Carthamus tinctorius Isolated from seed oil of safflower (Carthamus tinctorius). Linolenelaidic acid is found in fats and oils.
Octadec-9-enoic Acid
Octadec-9-enoic Acid, also known as 18:1, N-9 or Delta(9)-Octadecenoic acid, is classified as a member of the Long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Octadec-9-enoic Acid is considered to be practically insoluble (in water) and acidic. Octadec-9-enoic Acid can be synthesized from octadec-9-ene. It is also a parent compound for other transformation products, including but not limited to, 1-octadec-9-enoylglycero-3-phosphate, N-(2-hydroxy-1-methylethyl)-9-octadecenamide, and sterculic acid
(R)-5-Hydroxy-2-(4-hydroxyphenyl)-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)chroman-4-one
Prunin, also known as pru du 6.01 protein, prunus, is a member of the class of compounds known as flavonoid-7-o-glycosides. Flavonoid-7-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C7-position. Prunin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Prunin is a bitter tasting compound found in almond, garden tomato (variety), peach, and pine nut, which makes prunin a potential biomarker for the consumption of these food products. Prunin is a flavanone glycoside found in immature citrus fruits and in tomatoes. Its aglycone form is called naringenin . Prunin is a potent inhibitor of human enterovirus A71 (HEVA71). Prunin shows strong inhibitory activity against protein tyrosine phosphatase 1B (PTP1B), with an IC50 of 5.5 μM[1][2]. Prunin is a potent inhibitor of human enterovirus A71 (HEVA71). Prunin shows strong inhibitory activity against protein tyrosine phosphatase 1B (PTP1B), with an IC50 of 5.5 μM[1][2].
Cefozopran
Epicholesterol
L-Cysteic acid
Cysteinesulfonic acid, also known as (2r)-2-amino-3-sulfopropanoic acid or 3-sulfoalanine, is a member of the class of compounds known as L-alpha-amino acids. L-alpha-amino acids are alpha amino acids which have the L-configuration of the alpha-carbon atom. Cysteinesulfonic acid is soluble (in water) and an extremely strong acidic compound (based on its pKa). Cysteinesulfonic acid can be found in a number of food items such as roman camomile, pili nut, chicory, and garden tomato, which makes cysteinesulfonic acid a potential biomarker for the consumption of these food products.
3-phenylpropanoic acid
Hydrocinnamic acid is the major rhizospheric compound with known growth regulatory activities. Hydrocinnamic acid is the major rhizospheric compound with known growth regulatory activities.
Isoferulic acid
Isoferulic acid (CAS: 537-73-5) is a chlorogenic acid (CGA). CGAs are formed by the esterification of hydroxycinnamic acids (e.g. caffeic acid, ferulic acid, and p-coumaric acid) with quinic acid. CGAs are abundant phenolic compounds in coffee, with caffeoylquinic (CQA), feruloylquinic (FQA), and dicaffeoylquinic (diCQA) acids being the major subclasses, and coffee is the most consumed food product in the world. Isoferulic acid is present in normal human urine in concentrations of 0.05-2.07 umol/mmol creatinine at baseline, and reaches 0.2-9.6 umol/mmol creatinine in four hours after a cup of coffee, with a large inter-individual variation (PMID:17884997). Isoferulic acid is a ferulic acid consisting of trans-cinnamic acid bearing methoxy and hydroxy substituents at positions 4 and 3 respectively on the phenyl ring. It has a role as a metabolite, a biomarker and an antioxidant. Isoferulic acid is a natural product found in Sibiraea angustata, Astragalus onobrychis, and other organisms with data available. See also: Black Cohosh (part of); Ipomoea aquatica leaf (part of). It is used as a food additive; listed in the EAFUS Food Additive Database (Jan 2001) Isoferulic acid (3-Hydroxy-4-methoxycinnamic acid) is a cinnamic acid derivative that has antidiabetic activity. Isoferulic acid binds to and activates α1-adrenergic receptors (IC50=1.4 μM) to enhance secretion of β-endorphin (EC50=52.2 nM) and increase glucose use. Isoferulic acid also has anti-influenza virus activities. Isoferulic acid (3-Hydroxy-4-methoxycinnamic acid) is a cinnamic acid derivative that has antidiabetic activity. Isoferulic acid binds to and activates α1-adrenergic receptors (IC50=1.4 μM) to enhance secretion of β-endorphin (EC50=52.2 nM) and increase glucose use. Isoferulic acid also has anti-influenza virus activities. Isoferulic acid (3-Hydroxy-4-methoxycinnamic acid) is a cinnamic acid derivative that has antidiabetic activity. Isoferulic acid binds to and activates α1-adrenergic receptors (IC50=1.4 μM) to enhance secretion of β-endorphin (EC50=52.2 nM) and increase glucose use. Isoferulic acid also has anti-influenza virus activities. trans-Isoferulic acid (trans-3-Hydroxy-4-methoxycinnamic acid) is an aromatic acid isolated from the roots of Clematis florida var. plena. trans-Isoferulic acid exhibits anti-inflammatory activity[1].trans-isoferulic acid suppresses NO and PGE2 production through the induction of Nrf2-dependent heme oxygenase-1 (HO-1)[2]. trans-Isoferulic acid (trans-3-Hydroxy-4-methoxycinnamic acid) is an aromatic acid isolated from the roots of Clematis florida var. plena. trans-Isoferulic acid exhibits anti-inflammatory activity[1].trans-isoferulic acid suppresses NO and PGE2 production through the induction of Nrf2-dependent heme oxygenase-1 (HO-1)[2].
Ethyl trans-p-methoxycinnamate
Ethyl trans-p-methoxycinnamate is found in fats and oils. Ethyl trans-p-methoxycinnamate is a major constituent of oil of Kaempferia galanga (galangal Ethyl p-methoxycinnamate is a natural product found in Hedychium spicatum and Kaempferia galanga with data available. (E)-Ethyl p-methoxycinnamate is a natural product found in Kaempferia galangal with anti-inflammatory, anti-neoplastic and anti-microbial effects. (E)-Ethyl p-methoxycinnamate inhibits COX-1 and COX-2 in vitro with IC50s of 1.12 and 0.83 μM, respectively[1]. (E)-Ethyl p-methoxycinnamate is a natural product found in Kaempferia galangal with anti-inflammatory, anti-neoplastic and anti-microbial effects. (E)-Ethyl p-methoxycinnamate inhibits COX-1 and COX-2 in vitro with IC50s of 1.12 and 0.83 μM, respectively[1].
Kaurenoic_acid
Ent-kaur-16-en-19-oic acid is an ent-kaurane diterpenoid that is ent-kauran-19-oic acid in which a double bond is present at position 16(17); exhibits anticancer and anti-HIV 1 activity. It has a role as an anti-HIV-1 agent, an antineoplastic agent and a plant metabolite. It is a conjugate acid of an ent-kaur-16-en-19-oate. Kaurenoic acid is a natural product found in Xylopia aromatica, Xylopia emarginata, and other organisms with data available. An ent-kaurane diterpenoid that is ent-kauran-19-oic acid in which a double bond is present at position 16(17); exhibits anticancer and anti-HIV 1 activity. Kaurenoic acid is a diterpene from Sphagneticola trilobata, inhibits Inflammatory Pain by the inhibition of cytokine production and activation of the NO–cyclic GMP–PKG–ATP-sensitive potassium channel signaling pathway[1]. Kaurenoic acid is a diterpene from Sphagneticola trilobata, inhibits Inflammatory Pain by the inhibition of cytokine production and activation of the NO–cyclic GMP–PKG–ATP-sensitive potassium channel signaling pathway[1].
Isoferulic acid
Isoferulic acid (CAS: 537-73-5) is a chlorogenic acid (CGA). CGAs are formed by the esterification of hydroxycinnamic acids (e.g. caffeic acid, ferulic acid, and p-coumaric acid) with quinic acid. CGAs are abundant phenolic compounds in coffee, with caffeoylquinic (CQA), feruloylquinic (FQA), and dicaffeoylquinic (diCQA) acids being the major subclasses, and coffee is the most consumed food product in the world. Isoferulic acid is present in normal human urine in concentrations of 0.05-2.07 umol/mmol creatinine at baseline, and reaches 0.2-9.6 umol/mmol creatinine in four hours after a cup of coffee, with a large inter-individual variation (PMID:17884997). Isoferulic acid is a ferulic acid consisting of trans-cinnamic acid bearing methoxy and hydroxy substituents at positions 4 and 3 respectively on the phenyl ring. It has a role as a metabolite, a biomarker and an antioxidant. Isoferulic acid is a natural product found in Sibiraea angustata, Astragalus onobrychis, and other organisms with data available. See also: Black Cohosh (part of); Ipomoea aquatica leaf (part of). A ferulic acid consisting of trans-cinnamic acid bearing methoxy and hydroxy substituents at positions 4 and 3 respectively on the phenyl ring. It is used as a food additive; listed in the EAFUS Food Additive Database (Jan 2001) Isoferulic acid (3-Hydroxy-4-methoxycinnamic acid) is a cinnamic acid derivative that has antidiabetic activity. Isoferulic acid binds to and activates α1-adrenergic receptors (IC50=1.4 μM) to enhance secretion of β-endorphin (EC50=52.2 nM) and increase glucose use. Isoferulic acid also has anti-influenza virus activities. Isoferulic acid (3-Hydroxy-4-methoxycinnamic acid) is a cinnamic acid derivative that has antidiabetic activity. Isoferulic acid binds to and activates α1-adrenergic receptors (IC50=1.4 μM) to enhance secretion of β-endorphin (EC50=52.2 nM) and increase glucose use. Isoferulic acid also has anti-influenza virus activities. Isoferulic acid (3-Hydroxy-4-methoxycinnamic acid) is a cinnamic acid derivative that has antidiabetic activity. Isoferulic acid binds to and activates α1-adrenergic receptors (IC50=1.4 μM) to enhance secretion of β-endorphin (EC50=52.2 nM) and increase glucose use. Isoferulic acid also has anti-influenza virus activities. trans-Isoferulic acid (trans-3-Hydroxy-4-methoxycinnamic acid) is an aromatic acid isolated from the roots of Clematis florida var. plena. trans-Isoferulic acid exhibits anti-inflammatory activity[1].trans-isoferulic acid suppresses NO and PGE2 production through the induction of Nrf2-dependent heme oxygenase-1 (HO-1)[2]. trans-Isoferulic acid (trans-3-Hydroxy-4-methoxycinnamic acid) is an aromatic acid isolated from the roots of Clematis florida var. plena. trans-Isoferulic acid exhibits anti-inflammatory activity[1].trans-isoferulic acid suppresses NO and PGE2 production through the induction of Nrf2-dependent heme oxygenase-1 (HO-1)[2].
Ethyl trans-p-methoxycinnamate
Ethyl trans-p-methoxycinnamate is found in fats and oils. Ethyl trans-p-methoxycinnamate is a major constituent of oil of Kaempferia galanga (galangal Ethyl p-methoxycinnamate is a natural product found in Hedychium spicatum and Kaempferia galanga with data available. (E)-Ethyl p-methoxycinnamate is a natural product found in Kaempferia galangal with anti-inflammatory, anti-neoplastic and anti-microbial effects. (E)-Ethyl p-methoxycinnamate inhibits COX-1 and COX-2 in vitro with IC50s of 1.12 and 0.83 μM, respectively[1]. (E)-Ethyl p-methoxycinnamate is a natural product found in Kaempferia galangal with anti-inflammatory, anti-neoplastic and anti-microbial effects. (E)-Ethyl p-methoxycinnamate inhibits COX-1 and COX-2 in vitro with IC50s of 1.12 and 0.83 μM, respectively[1].
3-Hydroxybenzoicacid
A monohydroxybenzoic acid that is benzoic acid substituted by a hydroxy group at position 3. It has been isolated from Taxus baccata. It is used as an intermediate in the synthesis of plasticisers, resins, pharmaceuticals, etc. 3-Hydroxybenzoic acid is an endogenous metabolite. 3-Hydroxybenzoic acid is an endogenous metabolite.
Lupulone
Lupulone is a beta-bitter acid in which the acyl group is specified as 3-methylbutanoyl. It has a role as an antimicrobial agent, an apoptosis inducer, an angiogenesis inhibitor and an antineoplastic agent. It is a conjugate acid of a lupulone(1-). Lupulone is a natural product found in Humulus lupulus with data available. A beta-bitter acid in which the acyl group is specified as 3-methylbutanoyl.
(+)-Longifolene
(+)-Longifolene is a sesquiterpenoid and a metabolite in rabbits. (+)-Longifolen is converted to primary, secondary or tertiary alcohols in rabbits, among which the primary alcohol is predominant[1]. (+)-Longifolene is a sesquiterpenoid and a metabolite in rabbits. (+)-Longifolen is converted to primary, secondary or tertiary alcohols in rabbits, among which the primary alcohol is predominant[1]. (+)-Longifolene is a sesquiterpenoid and a metabolite in rabbits. (+)-Longifolen is converted to primary, secondary or tertiary alcohols in rabbits, among which the primary alcohol is predominant[1].
Dihydrodaidzein
Dihydrodaidzein is one of the most prominent dietary phytoestrogens. Dietary phytoestrogens have been implicated in the prevention of chronic diseases (PMID:12270199). Dihydrodaidzein is a biomarker for the consumption of soy beans and other soy products. Dihydrodaidzein is one of the most prominent dietary phytoestrogens.
(S)-2-Propylpiperidine
Coniine is a natural product found in Conium, Sarracenia flava, and other organisms with data available. (S)-2-Propylpiperidine is found in black elderberry. (S)-2-Propylpiperidine is an alkaloid of Amorphophalus rivieri (devils tongue). (S)-2-Propylpiperidine belongs to the family of Alkaloids and Derivatives. These are naturally occurring chemical compounds that contain mostly basic nitrogen atoms. This group also includes some related compounds with neutral and even weakly acidic properties. Also some synthetic compounds of similar structure are attributed to alkaloids. In addition to carbon, hydrogen and nitrogen, alkaloids may also contain oxygen, sulfur and more rarely other elements such as chlorine, bromine, and phosphorus. (S)-2-Propylpiperidine is found in black elderberry. (S)-2-Propylpiperidine is an alkaloid of Amorphophalus rivieri (devils tongue Alkaloid of Amorphophalus rivieri (devils tongue). (S)-2-Propylpiperidine is found in pomegranate and black elderberry.
β-Bisabolene
(S)-beta-bisabolene is a beta-bisabolene which has (1S)-configuration. It is an enantiomer of a (R)-beta-bisabolene. beta-Bisabolene is a natural product found in Rattus rattus, Eupatorium cannabinum, and other organisms with data available. A beta-bisabolene which has (1S)-configuration. β-Bisabolene is a?sesquiterpene isolated from?opoponax (Commiphora guidotti). β-Bisabolene, an anti-cancer agent, can be used for the study of breast cancer[1]. β-Bisabolene is a?sesquiterpene isolated from?opoponax (Commiphora guidotti). β-Bisabolene, an anti-cancer agent, can be used for the study of breast cancer[1].
Mukurozidiol
Constituent of Japanese drug byakusi obtained from Angelica subspecies Also from lemon oil and other Citrus subspecies [DFC]. (R)-Byakangelicin is found in lemon, citrus, and herbs and spices. Mukurozidiol is a member of psoralens. (Rac)-Byakangelicin is a natural product found in Ruta graveolens, Angelica, and other organisms with data available. (S)-Byakangelicin is found in herbs and spices. (S)-Byakangelicin is a constituent of common rue (Ruta graveolens). D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins (Rac)-Byakangelicin is a racemate of Byakangelicin mainly isolated from the genus Angelica. Byakangelicin is an aldose-reductase inhibitor with an IC50 value of 6.2 μM[1]. (Rac)-Byakangelicin is a racemate of Byakangelicin mainly isolated from the genus Angelica. Byakangelicin is an aldose-reductase inhibitor with an IC50 value of 6.2 μM[1]. Byakangelicin, one of the active compounds found in the roots of Angelica gigas, can serve as a modulator to improve brain accumulation of diverse active compounds (Umb, Cur, and Dox) and enhance therapeutic effects[1]. Byakangelicin is likely to increase the expression of all PXR target genes (such as MDR1) and induce a wide range of agent-agent interactions. Byakangelicin can inhibit the effects of sex hormones, it may increase the catabolism of endogenous hormones[2]. Byakangelicin, one of the active compounds found in the roots of Angelica gigas, can serve as a modulator to improve brain accumulation of diverse active compounds (Umb, Cur, and Dox) and enhance therapeutic effects[1]. Byakangelicin is likely to increase the expression of all PXR target genes (such as MDR1) and induce a wide range of agent-agent interactions. Byakangelicin can inhibit the effects of sex hormones, it may increase the catabolism of endogenous hormones[2].
6-Hydroxyflavone
6-Hydroxyflavone is a hydroxyflavonoid. 6-Hydroxyflavone is a natural product found in Scutellaria baicalensis with data available. 6-Hydroxyflavone is a naturally occurring flavone, with anti-inflammatory activity. 6-Hydroxyflavone exhibits inhibitory effect towards bovine hemoglobin (BHb) glycation. 6-Hydroxyflavone can activate AKT, ERK 1/2, and JNK signaling pathways to effectively promote osteoblastic differentiation. 6-Hydroxyflavone inhibits the LPS-induced NO production[1] [2]. 6-Hydroxyflavone is a naturally occurring flavone, with anti-inflammatory activity. 6-Hydroxyflavone exhibits inhibitory effect towards bovine hemoglobin (BHb) glycation. 6-Hydroxyflavone can activate AKT, ERK 1/2, and JNK signaling pathways to effectively promote osteoblastic differentiation. 6-Hydroxyflavone inhibits the LPS-induced NO production[1] [2].
13-HoTrE
A hydroxyoctadecatrienoic acid that consists of 9Z,11E,15Z-octadecatrienoic acid bearing an additional 13-hydroxy substituent. CONFIDENCE standard compound; NATIVE_RUN_ID STD_neg_MSMS_1min0099.mzML; PROCESSING averaging of repeated ion fragments at 30.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID STD_neg_MSMS_1min0099.mzML; PROCESSING averaging of repeated ion fragments at 20.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID STD_neg_MSMS_1min0099.mzML; PROCESSING averaging of repeated ion fragments at 10.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001341.mzML; PROCESSING averaging of repeated ion fragments at 30.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001341.mzML; PROCESSING averaging of repeated ion fragments at 20.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001341.mzML; PROCESSING averaging of repeated ion fragments at 10.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001341.mzML; PROCESSING averaging of repeated ion fragments at 40.0 NCE within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001341.mzML; PROCESSING averaging of repeated ion fragments at 30.0 NCE within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001341.mzML; PROCESSING averaging of repeated ion fragments at 20.0 NCE within 5 ppm window [MS, MS:1000575, mean of spectra, ]
Dicloxacillin
J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01C - Beta-lactam antibacterials, penicillins > J01CF - Beta-lactamase resistant penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic CONFIDENCE standard compound; EAWAG_UCHEM_ID 3665
oxamniquine
P - Antiparasitic products, insecticides and repellents > P02 - Anthelmintics > P02B - Antitrematodals > P02BA - Quinoline derivatives and related substances D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C250 - Antihelminthic Agent [Raw Data] CB143_Oxamniquine_pos_50eV_CB000053.txt [Raw Data] CB143_Oxamniquine_pos_40eV_CB000053.txt [Raw Data] CB143_Oxamniquine_pos_30eV_CB000053.txt [Raw Data] CB143_Oxamniquine_pos_20eV_CB000053.txt [Raw Data] CB143_Oxamniquine_pos_10eV_CB000053.txt
thebaine
D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants > D003292 - Convulsants D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist > C1657 - Opiate D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics relative retention time with respect to 9-anthracene Carboxylic Acid is 0.549 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.537 IPB_RECORD: 2881; CONFIDENCE confident structure
Chlorfenvinfos
ORIGINAL_ACQUISITION_NO 9710; CONFIDENCE standard compound; INTERNAL_ID 376; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_PRECURSOR_SCAN_NO 9708 CONFIDENCE standard compound; INTERNAL_ID 376; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9710; ORIGINAL_PRECURSOR_SCAN_NO 9708 D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D010575 - Pesticides > D007306 - Insecticides D010575 - Pesticides > D056810 - Acaricides D004791 - Enzyme Inhibitors D016573 - Agrochemicals CONFIDENCE standard compound; INTERNAL_ID 376; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9724; ORIGINAL_PRECURSOR_SCAN_NO 9721 CONFIDENCE standard compound; INTERNAL_ID 376; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9748; ORIGINAL_PRECURSOR_SCAN_NO 9745 CONFIDENCE standard compound; INTERNAL_ID 376; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9768; ORIGINAL_PRECURSOR_SCAN_NO 9766 CONFIDENCE standard compound; INTERNAL_ID 376; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9748; ORIGINAL_PRECURSOR_SCAN_NO 9744 CONFIDENCE standard compound; INTERNAL_ID 376; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9777; ORIGINAL_PRECURSOR_SCAN_NO 9774 CONFIDENCE standard compound; INTERNAL_ID 2609 CONFIDENCE standard compound; INTERNAL_ID 4038
dihydroergotamine
Ergotamine in which a single bond replaces the double bond between positions 9 and 10. A semisynthetic ergot alkaloid with weaker oxytocic and vasoconstrictor properties than ergotamine, it is used (as the methanesulfonic or tartaric acid salts) for the treatment of migraine and orthostatic hypotension. N - Nervous system > N02 - Analgesics > N02C - Antimigraine preparations > N02CA - Ergot alkaloids C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018491 - Dopamine Agonists D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C66884 - Dopamine Agonist D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents D002491 - Central Nervous System Agents > D000700 - Analgesics relative retention time with respect to 9-anthracene Carboxylic Acid is 0.880 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.878 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.874
Linolenic Acid
relative retention time with respect to 9-anthracene Carboxylic Acid is 1.566 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.567 α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1].
alpha-Ergocryptine
Ergotaman bearing hydroxy, isopropyl, and 2-methylpropyl groups at the 12, 2 and 5 positions, respectively, and oxo groups at positions 3, 6, and 18. It is a natural ergot alkaloid. Ergocryptine discussed in the literature prior to 1967, when beta-ergocryptine was separated from alpha-ergocryptine, is now referred to as alpha-ergocryptine. D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018491 - Dopamine Agonists relative retention time with respect to 9-anthracene Carboxylic Acid is 1.085 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.083 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.081 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.080
cinoxacin
J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic D000890 - Anti-Infective Agents D004791 - Enzyme Inhibitors relative retention time with respect to 9-anthracene Carboxylic Acid is 0.746 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.738 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.740
Ergocornine
Ergotaman bearing a hydroxy group at the 12 position, isopropyl groups at the 2 and 5alpha positions, and oxo groups at positions 3, 6, and 18. It is a natural ergot alkaloid. CONFIDENCE Reference Standard (Level 1) relative retention time with respect to 9-anthracene Carboxylic Acid is 1.024 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.021 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.019 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.017
prilocaine
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics N - Nervous system > N01 - Anesthetics > N01B - Anesthetics, local > N01BB - Amides D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent
sulfathiazole
D - Dermatologicals > D06 - Antibiotics and chemotherapeutics for dermatological use > D06B - Chemotherapeutics for topical use > D06BA - Sulfonamides J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01E - Sulfonamides and trimethoprim > J01EB - Short-acting sulfonamides C254 - Anti-Infective Agent > C29739 - Sulfonamide Anti-Infective Agent D000890 - Anti-Infective Agents > D013432 - Sulfathiazoles D000890 - Anti-Infective Agents > D013424 - Sulfanilamides
L-Methionine sulfoximine
A methionine sulfoximine in which the amino group has S-stereochemistry.
Tryptophol
An indolyl alcohol that is ethanol substituted by a 1H-indol-3-yl group at position 2. Tryptophol (Indole-3-ethanol) is an endogenous metabolite. Tryptophol (Indole-3-ethanol) is an endogenous metabolite.
L-Homocystine
A homocystine in which both chiral centres have L configuration. 4,4'-Disulfanediylbis(2-aminobutanoic acid) is an endogenous metabolite. L-Homocystine is the oxidized member of the L-homocysteine. Homocysteine is a pro-thrombotic factor, vasodilation impairing agent, pro-inflammatory factor and endoplasmatic reticulum-stress inducer used to study cardiovascular disease mechanisms.
glycocyamine
D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D000345 - Affinity Labels MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; BPMFZUMJYQTVII-UHFFFAOYSA-N_STSL_0241_Glycocyamine_1000fmol_190403_S2_LC02MS02_057; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I.
ergocryptine
D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018491 - Dopamine Agonists CONFIDENCE Claviceps purpurea sclerotia
17a-Hydroxypregnenolone
C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones A hydroxypregnenolone carrying an alpha-hydroxy group at position 17. 17-α-hydroxypregnenolone, also known as (3beta)-3,17-dihydroxypregn-5-en-20-one or 5-pregnen-3b,17a-diol-20-one, belongs to gluco/mineralocorticoids, progestogins and derivatives class of compounds. Those are steroids with a structure based on a hydroxylated prostane moiety. Thus, 17-α-hydroxypregnenolone is considered to be a steroid lipid molecule. 17-α-hydroxypregnenolone is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 17-α-hydroxypregnenolone can be found in a number of food items such as strawberry guava, java plum, conch, and chives, which makes 17-α-hydroxypregnenolone a potential biomarker for the consumption of these food products. 17-α-hydroxypregnenolone can be found primarily in blood, as well as in human adrenal cortex and testes tissues. In humans, 17-α-hydroxypregnenolone is involved in a couple of metabolic pathways, which include androgen and estrogen metabolism and steroidogenesis. 17-α-hydroxypregnenolone is also involved in several metabolic disorders, some of which include aromatase deficiency, adrenal hyperplasia type 3 or congenital adrenal hyperplasia due to 21-hydroxylase deficiency, adrenal hyperplasia type 5 or congenital adrenal hyperplasia due to 17 alpha-hydroxylase deficiency, and apparent mineralocorticoid excess syndrome. 17a-Hydroxypregnenolone is a pregnane steroid. 17a-Hydroxypregnenolone is a prohormone in the formation of dehydroepiandrosterone (DHEA).
pimelic acid
An alpha,omega-dicarboxylic acid that is pentane with two carboxylic acid groups at positions C-1 and C-5. Pimelic acid is the organic compound and its derivatives are involved in the biosynthesis of the amino acid called lysine. Pimelic acid is the organic compound and its derivatives are involved in the biosynthesis of the amino acid called lysine.
1-Methyluric acid
An oxopurine that is 7,9-dihydro-1H-purine-2,6,8(3H)-trione substituted by a methyl group at N-1. It is one of the metabolites of caffeine found in human urine.
6-HYDROXYCAPROIC ACID
An omega-hydroxy fatty acid comprising hexanoic acid having a hydroxy group at the 6-position.
mepivacaine
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics N - Nervous system > N01 - Anesthetics > N01B - Anesthetics, local > N01BB - Amides D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent
Nizatidine
C78276 - Agent Affecting Digestive System or Metabolism > C29701 - Anti-ulcer Agent > C29702 - Histamine-2 Receptor Antagonist D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents
3-methylcatechol
A methylcatechol carrying a methyl substituent at position 3. It is a xenobiotic metabolite produced by some bacteria capable of degrading nitroaromatic compounds present in pesticide-contaminated soil samples. 3-Methylcatechol is a building block in the chemical synthesis produced by Pseudomonas putida MC2[1]. 3-Methylcatechol is a building block in the chemical synthesis produced by Pseudomonas putida MC2[1].
pemoline
N - Nervous system > N06 - Psychoanaleptics > N06B - Psychostimulants, agents used for adhd and nootropics > N06BA - Centrally acting sympathomimetics D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant
2,6-Dimethoxyquinone
2,6-Dimethoxy-1,4-benzoquinone, a natural phytochemical, is a known haustorial inducing factor. 2,6-Dimethoxy-1,4-benzoquinone exerts anti-cancer, anti-inflammatory, anti-adipogenic, antibacterial, and antimalaria effects[1]. 2,6-Dimethoxy-1,4-benzoquinone, a natural phytochemical, is a known haustorial inducing factor. 2,6-Dimethoxy-1,4-benzoquinone exerts anti-cancer, anti-inflammatory, anti-adipogenic, antibacterial, and antimalaria effects[1].
L-2,3-Diaminopropionic acid
COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Sophoramine
Origin: Plant; SubCategory_DNP: Alkaloids derived from lysine, Quinolizidine alkaloids, Sophora alkaloid
4-Chloro-3-methylphenol
CONFIDENCE standard compound; INTERNAL_ID 986; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4527; ORIGINAL_PRECURSOR_SCAN_NO 4526 C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D016573 - Agrochemicals D010575 - Pesticides CONFIDENCE standard compound; INTERNAL_ID 986; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4489; ORIGINAL_PRECURSOR_SCAN_NO 4487 CONFIDENCE standard compound; INTERNAL_ID 986; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4509; ORIGINAL_PRECURSOR_SCAN_NO 4507 CONFIDENCE standard compound; INTERNAL_ID 986; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4544; ORIGINAL_PRECURSOR_SCAN_NO 4540 CONFIDENCE standard compound; INTERNAL_ID 986; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4535; ORIGINAL_PRECURSOR_SCAN_NO 4534
CDP-ethanolamine
A phosphoethanolamine consisting of ethanolamine having a cytidine 5-diphosphate moiety attached to the oxygen.
BENZOYLFORMIC ACID
D000890 - Anti-Infective Agents > D000892 - Anti-Infective Agents, Urinary > D008333 - Mandelic Acids Phenylglyoxylic acid (Benzoylformic acid) is a metabolite of ethylbenzene and styrene (EB/S) and can be used as a biomarker of exposure to EB/S in human[1]. Phenylglyoxylic acid (Benzoylformic acid) is a metabolite of ethylbenzene and styrene (EB/S) and can be used as a biomarker of exposure to EB/S in human[1].
safrole
A member of the class of benzodioxoles that is 1,3-benzodioxole which is substituted by an allyl group at position 5. It is found in several plants, including black pepper, cinnamon and nutmeg, and is present in several essential oils, notably that of sassafras. It has insecticidal properties and has been used as a topical antiseptic. Although not thought to pose a significant carcinogenic risk to humans, findings of weak carcinogenicity in rats have resulted in the banning of its (previously widespread) use in perfumes and soaps, and as a food additive.
Nordihydrocapsacin
Nordihydrocapsaicin is a capsaicinoid analog and congener of capsaicin in chili peppers[1]. Nordihydrocapsaicin is a capsaicinoid analog and congener of capsaicin in chili peppers[1].
FA 20:5;O2
An oxylipin that is the (5S,6S)-epoxy-(15S)-hydroxy derivative of 7E,9E,11Z,13E-icosa-7,9,11,13-tetraenoic acid. D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000970 - Antineoplastic Agents
FAL 16:0
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Hexadecanal (Palmitaldehyde) is a free fatty aldehyde present in animals[1]. Hexadecanal (Palmitaldehyde) is a free fatty aldehyde present in animals[1].
CoA 20:5
An unsaturated fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of (5Z,8Z,11Z,14Z,17Z)-icosapentaenoic acid. It is a member of n-3 PUFA and by-product of alpha-linolenic acid metabolism.
N-HEPTADECANE
A straight-chain alkane with 17 carbon atoms. It is a component of essential oils from plants like Opuntia littoralis and Annona squamosa.
ST 21:2;O3
A hydroxypregnenolone that is pregnenolone substituted by a alpha-hydroxy group at position 16. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone 17a-Hydroxypregnenolone is a pregnane steroid. 17a-Hydroxypregnenolone is a prohormone in the formation of dehydroepiandrosterone (DHEA). 21-Hydroxypregnenolone is an essential intermediate in corticosterone synthesis.
ST 21:3;O5
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
ST 21:1;O4
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
beta-Cubebene
A tricyclic sesquiterpene, a constituent of the leaf oil cubebene obtained from a variety of species of flowering plant.
3-phenylpropanoic acid
A monocarboxylic acid that is propionic acid substituted at position 3 by a phenyl group. Hydrocinnamic acid is the major rhizospheric compound with known growth regulatory activities. Hydrocinnamic acid is the major rhizospheric compound with known growth regulatory activities.
mitobronitol
L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01A - Alkylating agents C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D009676 - Noxae > D000477 - Alkylating Agents D000970 - Antineoplastic Agents
Virginiamycin M1
D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D025361 - Streptogramins C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C259 - Antineoplastic Antibiotic Virginiamycin M1 (Pristinamycin IIA; Ostreogrycin A), produced by?Streptomyces virginiae, is an polyunsaturated macrocyclic lactone antibiotic and acts as a component of Virginiamycin (HY-112665)[1]. Virginiamycin M1 alone is against Staphylococcus aureus with a MIC of 0.25 μg/mL. The combination of Virginiamycin M1 and Virginiamycin S1 (HY-N6680) is 0.125 μg/mL (MIC Value), which can improve the bactericidal effect 1-30 times[2].
Iodofiltic acid (123I)
C1446 - Radiopharmaceutical Compound > C2124 - Radioconjugate
Methandriol
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D045930 - Anabolic Agents C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C2360 - Anabolic Steroid
Bolasterone
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D045930 - Anabolic Agents C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C2360 - Anabolic Steroid Same as: D03144
BETA-TERPINEOL
A member of the class of terpineols that is cyclohexanol carrying additional methyl and propenyl substituents at positions 1 and 4 respectively.
6Z-0282
(E)-Ethyl p-methoxycinnamate is a natural product found in Kaempferia galangal with anti-inflammatory, anti-neoplastic and anti-microbial effects. (E)-Ethyl p-methoxycinnamate inhibits COX-1 and COX-2 in vitro with IC50s of 1.12 and 0.83 μM, respectively[1]. (E)-Ethyl p-methoxycinnamate is a natural product found in Kaempferia galangal with anti-inflammatory, anti-neoplastic and anti-microbial effects. (E)-Ethyl p-methoxycinnamate inhibits COX-1 and COX-2 in vitro with IC50s of 1.12 and 0.83 μM, respectively[1].
Albafuran A
A member of the class of 1-benzofurans that is 1-benzofuran substituted by a hydroxy group at position 6 and a 2-[(2E)-3,7-dimethylocta-2,6-dien-1-yl]-3,5-dihydroxyphenyl group at position 2.
530-55-2
2,6-Dimethoxy-1,4-benzoquinone, a natural phytochemical, is a known haustorial inducing factor. 2,6-Dimethoxy-1,4-benzoquinone exerts anti-cancer, anti-inflammatory, anti-adipogenic, antibacterial, and antimalaria effects[1]. 2,6-Dimethoxy-1,4-benzoquinone, a natural phytochemical, is a known haustorial inducing factor. 2,6-Dimethoxy-1,4-benzoquinone exerts anti-cancer, anti-inflammatory, anti-adipogenic, antibacterial, and antimalaria effects[1].
palmitoyl
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Hexadecanal (Palmitaldehyde) is a free fatty aldehyde present in animals[1]. Hexadecanal (Palmitaldehyde) is a free fatty aldehyde present in animals[1].
CHEBI:299
(R)-(+)-Citronellal, isolated from citrus, lavender and eucalyptus oils, is a monoterpenoid and main component of citronellal oil with a distinct lemon scent. A flavouring agent. Used for insect repellent and antifungal properties[1][2]. (R)-(+)-Citronellal, isolated from citrus, lavender and eucalyptus oils, is a monoterpenoid and main component of citronellal oil with a distinct lemon scent. A flavouring agent. Used for insect repellent and antifungal properties[1][2].
AI3-05924
2-(Methylamino)benzoic acid is the main metabolite of methyl-N-methylanthranilates (MMA) (HY-76705) and is the compound in which the ester group is converted. MMA can be isolated from citrus fruits and has potential analgesic activity. 2-(Methylamino)benzoic acid was used to detect the metabolic levels of MMA in rat liver[1].
Byakangelicin
Byakangelicin is a member of psoralens. Byakangelicin is a natural product found in Murraya koenigii, Triphasia trifolia, and other organisms with data available. D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins (Rac)-Byakangelicin is a racemate of Byakangelicin mainly isolated from the genus Angelica. Byakangelicin is an aldose-reductase inhibitor with an IC50 value of 6.2 μM[1]. (Rac)-Byakangelicin is a racemate of Byakangelicin mainly isolated from the genus Angelica. Byakangelicin is an aldose-reductase inhibitor with an IC50 value of 6.2 μM[1]. Byakangelicin, one of the active compounds found in the roots of Angelica gigas, can serve as a modulator to improve brain accumulation of diverse active compounds (Umb, Cur, and Dox) and enhance therapeutic effects[1]. Byakangelicin is likely to increase the expression of all PXR target genes (such as MDR1) and induce a wide range of agent-agent interactions. Byakangelicin can inhibit the effects of sex hormones, it may increase the catabolism of endogenous hormones[2]. Byakangelicin, one of the active compounds found in the roots of Angelica gigas, can serve as a modulator to improve brain accumulation of diverse active compounds (Umb, Cur, and Dox) and enhance therapeutic effects[1]. Byakangelicin is likely to increase the expression of all PXR target genes (such as MDR1) and induce a wide range of agent-agent interactions. Byakangelicin can inhibit the effects of sex hormones, it may increase the catabolism of endogenous hormones[2].
Byakangelicol
Byakangelicol, isolated from Angelica dahurica, inhibits interleukin-1beta (IL-1beta) -induced prostaglandin E2 (PGE2) release in A549 cells mediated by suppression of cyclooxygenase-2 (COX-2) expression and the activity of COX-2 enzyme. Byakangelicol has therapeutic potential as an anti-inflammatory agent on airway inflammation[1]. Byakangelicol, isolated from Angelica dahurica, inhibits interleukin-1beta (IL-1beta) -induced prostaglandin E2 (PGE2) release in A549 cells mediated by suppression of cyclooxygenase-2 (COX-2) expression and the activity of COX-2 enzyme. Byakangelicol has therapeutic potential as an anti-inflammatory agent on airway inflammation[1].
537-73-5
Isoferulic acid (3-Hydroxy-4-methoxycinnamic acid) is a cinnamic acid derivative that has antidiabetic activity. Isoferulic acid binds to and activates α1-adrenergic receptors (IC50=1.4 μM) to enhance secretion of β-endorphin (EC50=52.2 nM) and increase glucose use. Isoferulic acid also has anti-influenza virus activities. Isoferulic acid (3-Hydroxy-4-methoxycinnamic acid) is a cinnamic acid derivative that has antidiabetic activity. Isoferulic acid binds to and activates α1-adrenergic receptors (IC50=1.4 μM) to enhance secretion of β-endorphin (EC50=52.2 nM) and increase glucose use. Isoferulic acid also has anti-influenza virus activities. Isoferulic acid (3-Hydroxy-4-methoxycinnamic acid) is a cinnamic acid derivative that has antidiabetic activity. Isoferulic acid binds to and activates α1-adrenergic receptors (IC50=1.4 μM) to enhance secretion of β-endorphin (EC50=52.2 nM) and increase glucose use. Isoferulic acid also has anti-influenza virus activities. trans-Isoferulic acid (trans-3-Hydroxy-4-methoxycinnamic acid) is an aromatic acid isolated from the roots of Clematis florida var. plena. trans-Isoferulic acid exhibits anti-inflammatory activity[1].trans-isoferulic acid suppresses NO and PGE2 production through the induction of Nrf2-dependent heme oxygenase-1 (HO-1)[2]. trans-Isoferulic acid (trans-3-Hydroxy-4-methoxycinnamic acid) is an aromatic acid isolated from the roots of Clematis florida var. plena. trans-Isoferulic acid exhibits anti-inflammatory activity[1].trans-isoferulic acid suppresses NO and PGE2 production through the induction of Nrf2-dependent heme oxygenase-1 (HO-1)[2].
Azulol
S - Sensory organs > S01 - Ophthalmologicals Guaiazulene is present in several essential oils of medicinal and aromatic plants, with antioxidant activity. Guaiazulene has in vitro cytotoxic activity against neuron and N2a neuroblastom (N2a-NB) cells[1][2]. Guaiazulene is present in several essential oils of medicinal and aromatic plants, with antioxidant activity. Guaiazulene has in vitro cytotoxic activity against neuron and N2a neuroblastom (N2a-NB) cells[1][2].
129-43-1
D009676 - Noxae > D002273 - Carcinogens 1-Hydroxyanthraquinone, a naturally occurring compound with oral activity from some plants like Tabebuia avellanedae, exhibits carcinogenic effect[1]. 1-Hydroxyanthraquinone, a naturally occurring compound with oral activity from some plants like Tabebuia avellanedae, exhibits carcinogenic effect[1].
E160E
D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids β-Apo-8'-carotenal (Apocarotenal), a provitamin A carotenoid, is an inducer of CYPlA1 and CYPlA2 in rat. β-Apo-8'-carotenal is present in many fruits and vegetables[1]. β-Apo-8'-carotenal (Apocarotenal), a provitamin A carotenoid, is an inducer of CYPlA1 and CYPlA2 in rat. β-Apo-8'-carotenal is present in many fruits and vegetables[1].
2,4-Hexadienal
(e,e)-2,4-hexadienal, also known as fema 3429, is a member of the class of compounds known as medium-chain aldehydes. Medium-chain aldehydes are an aldehyde with a chain length containing between 6 and 12 carbon atoms (e,e)-2,4-hexadienal is slightly soluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). (e,e)-2,4-hexadienal can be found in a number of food items such as fishes, tea, nuts, and fruits, which makes (e,e)-2,4-hexadienal a potential biomarker for the consumption of these food products.
Tetrahydrocorticosterone
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones Tetrahydrocorticosterone is one of the major urinary metabolites from corticosterone. Premenopausal patients with early breast cancer excrete subnormal amounts of tetrahydrocorticosterone as compared with the normal subjects of corresponding ages. (PMID 1133844) [HMDB]
H-Dab.HBr
A 2,4-diaminobutyric acid that has S-configuration. 2,4-diaminobutyric acid, also known as L-2,4-diaminobutanoate or alpha,gamma-diaminobutyrate, is a member of the class of compounds known as L-alpha-amino acids. L-alpha-amino acids are alpha amino acids which have the L-configuration of the alpha-carbon atom. 2,4-diaminobutyric acid is soluble (in water) and a moderately acidic compound (based on its pKa). 2,4-diaminobutyric acid can be synthesized from butyric acid. 2,4-diaminobutyric acid is also a parent compound for other transformation products, including but not limited to, N(4)-acetyl-L-2,4-diaminobutyric acid, (2S)-2-acetamido-4-aminobutanoic acid, and L-alpha-amino-gamma-oxalylaminobutyric acid. 2,4-diaminobutyric acid can be found in a number of food items such as caraway, chia, atlantic herring, and chayote, which makes 2,4-diaminobutyric acid a potential biomarker for the consumption of these food products. 2,4-diaminobutyric acid can be found primarily in blood and urine. Moreover, 2,4-diaminobutyric acid is found to be associated with alzheimers disease. L-DABA (L-2,4-Diaminobutyric acid) is a week GABA transaminase inhibitor with an IC50 of larger than 500 μM; exhibits antitumor activity in vivo and in vitro. L-DABA (L-2,4-Diaminobutyric acid) is a week GABA transaminase inhibitor with an IC50 of larger than 500 μM; exhibits antitumor activity in vivo and in vitro.
Uroporphyrinogen III
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Uroporphyrinogen iii, also known as urogen iii, is a member of the class of compounds known as porphyrins. Porphyrins are compounds containing a fundamental skeleton of four pyrrole nuclei united through the alpha-positions by four methine groups to form a macrocyclic structure. Uroporphyrinogen iii is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Uroporphyrinogen iii can be found in a number of food items such as pili nut, rubus (blackberry, raspberry), sunflower, and pecan nut, which makes uroporphyrinogen iii a potential biomarker for the consumption of these food products. Uroporphyrinogen iii can be found primarily in blood. Uroporphyrinogen iii exists in all living species, ranging from bacteria to humans. In humans, uroporphyrinogen iii is involved in the porphyrin metabolism. Uroporphyrinogen iii is also involved in few metabolic disorders, which include acute intermittent porphyria, congenital erythropoietic porphyria (CEP) or gunther disease, hereditary coproporphyria (HCP), and porphyria variegata (PV).
1,1-Diethyl-2-hydroxy-2-nitrosohydrazine
D002317 - Cardiovascular Agents > D020030 - Nitric Oxide Donors
1-methyl-3-[(Z)-(4-oxo-3-prop-2-enyl-1,3-thiazolidin-2-ylidene)amino]thiourea
Biacangelicol
Byakangelicol is a member of psoralens. Byakangelicol is a natural product found in Murraya koenigii, Ostericum grosseserratum, and other organisms with data available. Byakangelicol, isolated from Angelica dahurica, inhibits interleukin-1beta (IL-1beta) -induced prostaglandin E2 (PGE2) release in A549 cells mediated by suppression of cyclooxygenase-2 (COX-2) expression and the activity of COX-2 enzyme. Byakangelicol has therapeutic potential as an anti-inflammatory agent on airway inflammation[1]. Byakangelicol, isolated from Angelica dahurica, inhibits interleukin-1beta (IL-1beta) -induced prostaglandin E2 (PGE2) release in A549 cells mediated by suppression of cyclooxygenase-2 (COX-2) expression and the activity of COX-2 enzyme. Byakangelicol has therapeutic potential as an anti-inflammatory agent on airway inflammation[1].
Pikrotin
Picrotin is an organic heteropentacyclic compound that is picrotoxinin in which the olefinic double bond has undergone addition of water to give the corresponding tertiary alcohol. It is the less toxic component of picrotoxin, lacking GABA activity. It has a role as a plant metabolite. It is an organic heteropentacyclic compound, an epoxide, a tertiary alcohol, a gamma-lactone, a diol and a picrotoxane sesquiterpenoid. It is functionally related to a picrotoxinin. Picrotin is a natural product found in Dendrobium moniliforme and Anamirta cocculus with data available. An organic heteropentacyclic compound that is picrotoxinin in which the olefinic double bond has undergone addition of water to give the corresponding tertiary alcohol. It is the less toxic component of picrotoxin, lacking GABA activity. C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant Picrotin is an active compound, also is one of the composition of picrotoxin (an antagonist of GABAA receptors (GABAARs) and glycine receptors (GlyRs)). Picrotin has sensitivity for GlyRs/b> with IC50 values range from 5.2 μM to 106 μM. Picrotin can be used for the research of neurotransmission[1][2]. Picrotin is an active compound, also is one of the composition of picrotoxin (an antagonist of GABAA receptors (GABAARs) and glycine receptors (GlyRs)). Picrotin has sensitivity for GlyRs/b> with IC50 values range from 5.2 μM to 106 μM. Picrotin can be used for the research of neurotransmission[1][2]. Picrotin is an active compound, also is one of the composition of picrotoxin (an antagonist of GABAA receptors (GABAARs) and glycine receptors (GlyRs)). Picrotin has sensitivity for GlyRs/b> with IC50 values range from 5.2 μM to 106 μM. Picrotin can be used for the research of neurotransmission[1][2].
LeachianoneG
Leachianone G is a tetrahydroxyflavanone having the hydroxy groups at the 2-, 4-, 5- and 7-positions and a prenyl group at 8-position. It is a tetrahydroxyflavanone, a member of 4-hydroxyflavanones and a (2S)-flavan-4-one. It is functionally related to a (S)-naringenin. It is a conjugate acid of a leachianone G(1-). Leachianone G is a natural product found in Morus alba, Sophora flavescens, and Lespedeza cyrtobotrya with data available. A tetrahydroxyflavanone having the hydroxy groups at the 2-, 4-, 5- and 7-positions and a prenyl group at 8-position.
Apocarotenal
8-apo-beta,psi-caroten-8-al is an apo carotenoid triterpenoid compound arising from oxidative degradation of the beta,beta-carotene skeleton at the 8-position. It is an enal and an apo carotenoid triterpenoid. Apocarotenal is a natural product found in Dracaena draco, Palisota barteri, and other organisms with data available. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids β-Apo-8'-carotenal (Apocarotenal), a provitamin A carotenoid, is an inducer of CYPlA1 and CYPlA2 in rat. β-Apo-8'-carotenal is present in many fruits and vegetables[1]. β-Apo-8'-carotenal (Apocarotenal), a provitamin A carotenoid, is an inducer of CYPlA1 and CYPlA2 in rat. β-Apo-8'-carotenal is present in many fruits and vegetables[1].
Caprolactam
D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams
CYCLOHEXANECARBOXYLIC ACID
Cyclohexanecarboxylic acid is a Valproate structural analogue with anticonvulsant action[1].
Mezlocillin
J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01C - Beta-lactam antibacterials, penicillins > J01CA - Penicillins with extended spectrum D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic
Cogentin
N - Nervous system > N04 - Anti-parkinson drugs > N04A - Anticholinergic agents > N04AC - Ethers of tropine or tropine derivatives D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018765 - Dopamine Uptake Inhibitors D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents D049990 - Membrane Transport Modulators
triclofos
N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic
nilutamide
L - Antineoplastic and immunomodulating agents > L02 - Endocrine therapy > L02B - Hormone antagonists and related agents > L02BB - Anti-androgens D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D000726 - Androgen Antagonists C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C146993 - Androgen Receptor Inhibitor C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist > C242 - Anti-Androgen D000970 - Antineoplastic Agents
PHENOXYACETIC ACID
A monocarboxylic acid that is the O-phenyl derivative of glycolic acid. A metabolite of 2-phenoxyethanol, it is used in the manufacture of pharmaceuticals, pesticides, fungicides and dyes. COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Phenoxyacetic acid is an endogenous metabolite.
Azlocillin
J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01C - Beta-lactam antibacterials, penicillins > J01CA - Penicillins with extended spectrum A semisynthetic penicillin antibiotic used in treating infections caused by Pseudomonas aeruginosa, Escherichia coli, and Haemophilus influenzae. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic
mesotartaric acid
DL-Tartaric acid is a non-racemic mixture of L- and D-tartaric acids with antioxidant activities[1][2].
hexadecanal
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Hexadecanal (Palmitaldehyde) is a free fatty aldehyde present in animals[1]. Hexadecanal (Palmitaldehyde) is a free fatty aldehyde present in animals[1].
Cefotetan
A semi-synthetic cephalosporin antibiotic with [(1-methyl-1H-tetrazol-5-yl)sulfanyl]methyl, methoxy and {[4-(2-amino-1-carboxy-2-oxoethylidene)-1,3-dithietan-2-yl]carbonyl}amino groups at the 3, 7alpha, and 7beta positions, respectively, of the cephem skeleton. It is resistant to a wide range of beta-lactamases and is active against a broad spectrum of aerobic and anaerobic Gram-positive and Gram-negative microorganisms. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DC - Second-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002513 - Cephamycins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic
quazepam
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CD - Benzodiazepine derivatives C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C1012 - Benzodiazepine C78272 - Agent Affecting Nervous System > C28197 - Antianxiety Agent
Latamoxef
J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DD - Third-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic
Triamcinolone diacetate
C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D004791 - Enzyme Inhibitors
TRIMETHAPHAN
C - Cardiovascular system > C02 - Antihypertensives > C02B - Antiadrenergic agents, ganglion-blocking > C02BA - Sulfonium derivatives C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C66886 - Nicotinic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D005730 - Ganglionic Blockers D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002491 - Central Nervous System Agents
18-Hydroxycorticosterone
A 18-hydroxy steroid that is corticosterone substituted by a hydroxy group at position 18. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
Butoconazole
G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids > G01AF - Imidazole derivatives D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent
Echothiophate
S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01EB - Parasympathomimetics D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010277 - Parasympathomimetics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D008916 - Miotics C78272 - Agent Affecting Nervous System > C47796 - Cholinergic Agonist D004791 - Enzyme Inhibitors
11beta-Hydroxyandrostenedione
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones 11-Beta-hydroxyandrostenedione (4-Androsten-11β-ol-3,17-dione) is a steroid mainly found in the the adrenal origin (11β-hydroxylase is present in adrenal tissue, but absent in ovarian tissue). 11-Beta-hydroxyandrostenedione is a 11β-hydroxysteroid dehydrogenase (11βHSD) isozymes inhibitor. As 4-androstenedione increases, measuring plasma 11-Beta-hydroxyandrostenedione can distinguish the adrenal or ovarian origin of hyperandrogenism[1][2].
Precocene II
D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals Precocene II is the insect antijuvenile hormone[1].
L-Homophenylalanine
A non-proteinogenic L-alpha-amino acid that is an analogue of L-phenylalanine having a 2-phenylethyl rather than a benzyl side-chain.
L-m-Tyrosine
A hydroxyphenylalanine that is L-phenylalanine with a substituent hydroxy group at position 3.
Lauroyl-CoA
A medium-chain fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of lauric (dodecanoic) acid.
2-(2-Aminoethyl)thiazole
D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D017442 - Histamine Agonists
(3R)-3-Hydroxy-3-methyl-5-(phosphonooxy)pentanoic acid
5-Aminoimidazole ribonucleotide
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
N-Acetylglucosamine-1-phosphate
A N-acetyl-D-glucosamine 1-phosphate that is 2-deoxy-D-glucopyranose 1-(dihydrogen phosphate) substituted by an acetamido group at position 2. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Nicotinate mononucleotide
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
protoporphyrinogen
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
2-Methylhistamine
An aralkylamino compound that is histamine bearing a methyl substituent at the 2 position on the ring.
Tubulosine
A member of the class of beta-carbolines that is tubulosan bearing methoxy groups at positions 10 and 11 and a hydroxy group at the 8 position.
Chloroeremomycin
A complex glycopeptide antibiotic that is isolated from Amycolatopsis orientalis.
Grepafloxacin
J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials > J01MA - Fluoroquinolones D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic D004791 - Enzyme Inhibitors ATC code: J01MA11
Chlorocresol
C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D016573 - Agrochemicals D010575 - Pesticides Same as: D03468
e-Tokoferol
A tocotrienol that is chroman-6-ol substituted by methyl groups at positions 2, 5 and 8 and a farnesyl chain at position 2. It has been isolated from various cultivars of wheat.
Murideoxycholate
A 3alpha-hydroxy steroid that is cholan-24-oic acid substituted by hydroxy groups at positions 3 and 6. D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids
Dioxindole
D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D004791 - Enzyme Inhibitors > D008996 - Monoamine Oxidase Inhibitors
[(2S,3R)-3-Amino-2-hydroxy-4-phenylbutyryl]-L-leucine
trifluralin
D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals
Benzo[k]tetraphene
D009676 - Noxae > D002273 - Carcinogens Dibenz[a,h]anthracene (DBA) is a polycyclic aromatic hydrocarbon (PAH) of considerable tumorigenicity. Dibenz[a,h]anthracene results in DNA adduct formation leading to the activation of a DNA damage response. Dibenz[a,h]anthracene induces cell cycle arrest and apoptosis via both Tp53-dependent and Tp53-independent mechanisms[1][2].
EPN
D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals
S-Methyl N-(methylcarbamoyloxy)thioacetimidate
D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals
4-Hydroxyretinoic acid
A retinoid that consists of all-trans-retinoic acid bearing a hydroxy substituent at position 4 on the cyclohexenyl ring. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids
Phlorizine
17beta-Estradiol glucuronide
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
Pyrrolidine, 1,5-dimethyl-3,3-diphenyl-2-ethylidene-
2-Hydroxy-6-oxo-2,4-heptadienoic acid
An alpha,beta-unsaturated monocarboxylic acid that is 2,4-heptadienoic acid substituted by hydroxy and oxo groups at positions 2 and 6 respectively.