5-Acetylamino-6-amino-3-methyluracil (BioDeep_00000011142)

 

Secondary id: BioDeep_00001874449

human metabolite Endogenous blood metabolite Chemicals and Drugs


代谢物信息卡片


N-(6-amino-3-methyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)acetamide

化学式: C7H10N4O3 (198.0753)
中文名称: 5-乙酰氨基-6-氨基-3-甲基尿嘧啶(AAMU), 5-乙酰氨基-6-氨基-3-甲基尿嘧啶
谱图信息: 最多检出来源 Homo sapiens(feces) 15.6%

Reviewed

Last reviewed on 2024-09-13.

Cite this Page

5-Acetylamino-6-amino-3-methyluracil. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/5-acetylamino-6-amino-3-methyluracil (retrieved 2025-02-22) (BioDeep RN: BioDeep_00000011142). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: CC(=O)NC1=C(NC(=O)N(C1=O)C)N
InChI: InChI=1S/C7H10N4O3/c1-3(12)9-4-5(8)10-7(14)11(2)6(4)13/h8H2,1-2H3,(H,9,12)(H,10,14)

描述信息

5-Acetylamino-6-amino-3-methyluracil (AAMU) is one of caffeine major metabolites. Analysis of caffeine and its metabolites is of interest with respect to caffeine exposure, for kinetic and metabolism studies and for opportunistic in vivo estimation of drug metabolizing enzyme activity in humans and animals. Urinary caffeine metabolite ratios are used in humans to assess the activity of cytochrome P450 1A2 (CYP1A2), xanthine oxidase and N-acetyltransferase 2 (NAT2), which are involved in the activation or detoxification of various xenobiotic compounds, including carcinogens. Investigating the activity of these enzymes is of clinical relevance for assessing intra- and inter-individual differences in NAT2- and CYP1A2-mediated drug metabolism, and for evaluating the risk of developing specific exposure-related diseases. (PMID: 3506820, 15685651, 12534641) [HMDB]
5-Acetylamino-6-amino-3-methyluracil (AAMU) is one of caffeine major metabolites. Analysis of caffeine and its metabolites is of interest with respect to caffeine exposure, for kinetic and metabolism studies and for opportunistic in vivo estimation of drug metabolizing enzyme activity in humans and animals. Urinary caffeine metabolite ratios are used in humans to assess the activity of cytochrome P450 1A2 (CYP1A2), xanthine oxidase and N-acetyltransferase 2 (NAT2), which are involved in the activation or detoxification of various xenobiotic compounds, including carcinogens. Investigating the activity of these enzymes is of clinical relevance for assessing intra- and inter-individual differences in NAT2- and CYP1A2-mediated drug metabolism, and for evaluating the risk of developing specific exposure-related diseases. (PMID: 3506820, 15685651, 12534641).

同义名列表

8 个代谢物同义名

N-(6-amino-3-methyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)acetamide; N-(4-amino-1-methyl-2,6-dioxo-3H-pyrimidin-5-yl)acetamide; N-(6-amino-3-methyl-2,4-dioxo-1H-pyrimidin-5-yl)acetamide; 5-Acetylamino-6-amino-3-methyluracil; 5-AMMU; AAMU; 5-Acetylamino-6-amino-3-methyluracil; 5-Acetylamino-6-amino-3-methyluracil



数据库引用编号

15 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

4 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(4)

  • Caffeine Metabolism: Oxygen + Paraxanthine + Water ⟶ 1,7-Dimethyluric acid + Hydrogen peroxide
  • Caffeine Metabolism: Oxygen + Paraxanthine + Water ⟶ 1,7-Dimethyluric acid + Hydrogen peroxide
  • Caffeine Metabolism: Oxygen + Paraxanthine + Water ⟶ 1,7-Dimethyluric acid + Hydrogen peroxide
  • Caffeine Metabolism: Oxygen + Paraxanthine + Water ⟶ 1,7-Dimethyluric acid + Hydrogen peroxide

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 10 CYP2A6, CYP2B6, CYP2C19, CYP2C8, CYP2C9, CYP2D6, CYP2E1, CYP3A4, NAT2, XDH
Peripheral membrane protein 3 CYP1B1, CYP2B6, CYP2E1
Endoplasmic reticulum membrane 13 CD4, CYP1A2, CYP1B1, CYP2A6, CYP2B6, CYP2C19, CYP2C8, CYP2C9, CYP2D6, CYP2E1, CYP3A4, CYP3A5, TMX1
Mitochondrion membrane 1 TMX1
Nucleus 2 CBX4, NAT2
cytosol 3 GPT, NAT2, XDH
mitochondrial membrane 1 TMX1
nuclear body 1 CBX4
nucleoplasm 1 CBX4
Cell membrane 2 CD4, NAT2
Multi-pass membrane protein 1 NAT2
Golgi membrane 1 INS
mitochondrial inner membrane 1 CYP2E1
neuronal cell body 1 NAT2
plasma membrane 5 CD4, CYP2C19, CYP2C8, CYP2C9, NAT2
Membrane 7 CYP1B1, CYP2A6, CYP2D6, CYP3A4, CYP3A5, NAT2, TMX1
axon 1 NAT2
basolateral plasma membrane 1 NAT2
extracellular exosome 2 GPT, NAT2
endoplasmic reticulum 2 CYP2D6, TMX1
extracellular space 3 IL17A, INS, XDH
mitochondrion 2 CYP1B1, CYP2D6
intracellular membrane-bounded organelle 11 CYP1A2, CYP1B1, CYP2A6, CYP2B6, CYP2C19, CYP2C8, CYP2C9, CYP2D6, CYP2E1, CYP3A4, CYP3A5
Microsome membrane 8 CYP1A2, CYP1B1, CYP2B6, CYP2C9, CYP2D6, CYP2E1, CYP3A4, CYP3A5
Single-pass type I membrane protein 2 CD4, TMX1
Secreted 3 IL17A, INS, TMX1
extracellular region 3 IL17A, INS, TMX1
Single-pass membrane protein 1 CYP2D6
transcription regulator complex 1 NAT2
external side of plasma membrane 2 CD4, IL17A
Early endosome 1 CD4
Mitochondrion inner membrane 1 CYP2E1
Membrane raft 1 CD4
Peroxisome 1 XDH
sarcoplasmic reticulum 1 XDH
nuclear speck 1 CBX4
Endomembrane system 1 TMX1
endosome lumen 1 INS
mitochondria-associated endoplasmic reticulum membrane contact site 1 TMX1
Nucleus speckle 1 CBX4
secretory granule lumen 1 INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 2 CD4, INS
PcG protein complex 1 CBX4
PRC1 complex 1 CBX4
transport vesicle 1 INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
clathrin-coated endocytic vesicle membrane 1 CD4
cytoplasmic microtubule 1 CYP2A6
external side of apical plasma membrane 1 NAT2
T cell receptor complex 1 CD4
NatA complex 1 NAT2


文献列表

  • Michael E Rybak, Maya R Sternberg, Ching-I Pao, Namanjeet Ahluwalia, Christine M Pfeiffer. Urine excretion of caffeine and select caffeine metabolites is common in the U.S. population and associated with caffeine intake. The Journal of nutrition. 2015 Apr; 145(4):766-74. doi: 10.3945/jn.114.205476. [PMID: 25833779]
  • Alexander Jetter, Martina Kinzig, Michael Rodamer, Dorota Tomalik-Scharte, Fritz Sörgel, Uwe Fuhr. Phenotyping of N-acetyltransferase type 2 and xanthine oxidase with caffeine: when should urine samples be collected?. European journal of clinical pharmacology. 2009 Apr; 65(4):411-7. doi: 10.1007/s00228-008-0597-0. [PMID: 19082994]
  • Hans-Peter Rihs, Andrea John, Michael Scherenberg, Albrecht Seidel, Thomas Brüning. Concordance between the deduced acetylation status generated by high-speed: real-time PCR based NAT2 genotyping of seven single nucleotide polymorphisms and human NAT2 phenotypes determined by a caffeine assay. Clinica chimica acta; international journal of clinical chemistry. 2007 Feb; 376(1-2):240-3. doi: 10.1016/j.cca.2006.08.010. [PMID: 17011540]
  • Allan Weimann, Mads Sabroe, Henrik E Poulsen. Measurement of caffeine and five of the major metabolites in urine by high-performance liquid chromatography/tandem mass spectrometry. Journal of mass spectrometry : JMS. 2005 Mar; 40(3):307-16. doi: 10.1002/jms.785. [PMID: 15685651]
  • Alexander Jetter, Martina Kinzig-Schippers, Michael Illauer, Robert Hermann, Katharina Erb, Jürgen Borlak, Helga Wolf, Gillian Smith, Ingolf Cascorbi, Fritz Sörgel, Uwe Fuhr. Phenotyping of N-acetyltransferase type 2 by caffeine from uncontrolled dietary exposure. European journal of clinical pharmacology. 2004 Mar; 60(1):17-21. doi: 10.1007/s00228-003-0718-8. [PMID: 14747882]
  • Chi-Chen Hong, Bing-Kou Tang, Geoffrey L Hammond, David Tritchler, Martin Yaffe, Norman F Boyd. Cytochrome P450 1A2 (CYP1A2) activity and risk factors for breast cancer: a cross-sectional study. Breast cancer research : BCR. 2004; 6(4):R352-65. doi: 10.1186/bcr798. [PMID: 15217502]
  • Chi-Chen Hong, Bing-Kou Tang, Venketeshwer Rao, Sanjiv Agarwal, Lisa Martin, David Tritchler, Martin Yaffe, Norman F Boyd. Cytochrome P450 1A2 (CYP1A2) activity, mammographic density, and oxidative stress: a cross-sectional study. Breast cancer research : BCR. 2004; 6(4):R338-51. doi: 10.1186/bcr797. [PMID: 15217501]
  • Heiko Schneider, Lan Ma, Hansruedi Glatt. Extractionless method for the determination of urinary caffeine metabolites using high-performance liquid chromatography coupled with tandem mass spectrometry. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2003 Jun; 789(2):227-37. doi: 10.1016/s1570-0232(03)00065-5. [PMID: 12742114]
  • Pierre Wong, Gérald Villeneuve, Vicky Tessier, Kris Banerjee, Hinko Nedev, Bertrand J Jean-Claude, Brian Leyland-Jones. Stability of 5-acetamido-6-formylamino-3-methyluracil in buffers and urine. Journal of pharmaceutical and biomedical analysis. 2002 May; 28(3-4):693-700. doi: 10.1016/s0731-7085(01)00656-2. [PMID: 12008149]
  • K Tsutsumi, T Kotegawa, S Matsuki, Y Tanaka, Y Ishii, Y Kodama, M Kuranari, I Miyakawa, S Nakano. The effect of pregnancy on cytochrome P4501A2, xanthine oxidase, and N-acetyltransferase activities in humans. Clinical pharmacology and therapeutics. 2001 Aug; 70(2):121-5. doi: 10.1067/mcp.2001.116495. [PMID: 11503005]
  • A Nyéki, J Biollaz, U W Kesselring, L A Décosterd. Extractionless method for the simultaneous high-performance liquid chromatographic determination of urinary caffeine metabolites for N-acetyltransferase 2, cytochrome P450 1A2 and xanthine oxidase activity assessment. Journal of chromatography. B, Biomedical sciences and applications. 2001 May; 755(1-2):73-84. doi: 10.1016/s0378-4347(00)00616-2. [PMID: 11393735]
  • P Wong, K Banerjee, J Massengill, S Nowell, N Lang, B Leyland-Jones. Validity of an ELISA for N-acetyltransferase-2 (NAT2) phenotyping. Journal of immunological methods. 2001 May; 251(1-2):1-9. doi: 10.1016/s0022-1759(01)00310-6. [PMID: 11292476]
  • Y Kawakubo, M Nakamori, E Schöpf, M Ohkido. Acetylator phenotype in patients with p-phenylenediamine allergy. Dermatology (Basel, Switzerland). 1997; 195(1):43-5. doi: 10.1159/000245683. [PMID: 9267736]
  • P Wong, B Leyland-Jones, I W Wainer. A competitive enzyme linked immunosorbent assay for the determination of N-acetyltransferase (NAT2) phenotypes. Journal of pharmaceutical and biomedical analysis. 1995 Aug; 13(9):1079-86. doi: 10.1016/0731-7085(95)01550-5. [PMID: 8573631]
  • B K Tang, D Kadar, L Qian, J Iriah, J Yip, W Kalow. Caffeine as a metabolic probe: validation of its use for acetylator phenotyping. Clinical pharmacology and therapeutics. 1991 Jun; 49(6):648-57. doi: 10.1038/clpt.1991.82. [PMID: 2060254]
  • A J Kilbane, L K Silbart, M Manis, I Z Beitins, W W Weber. Human N-acetylation genotype determination with urinary caffeine metabolites. Clinical pharmacology and therapeutics. 1990 Apr; 47(4):470-7. doi: 10.1038/clpt.1990.59. [PMID: 2328555]
  • M E Morris, J C Griener, M E Msall. N-acetylator variability in Down's syndrome: characterization with caffeine. Clinical pharmacology and therapeutics. 1989 Sep; 46(3):359-66. doi: 10.1038/clpt.1989.151. [PMID: 2528436]
  • B K Tang, D Kadar, W Kalow. An alternative test for acetylator phenotyping with caffeine. Clinical pharmacology and therapeutics. 1987 Nov; 42(5):509-13. doi: 10.1038/clpt.1987.189. [PMID: 3677540]
  • K FINK, W S ADAMS, W PFLEIDERER. A NEW URINARY PYRIMIDINE, 5-ACETYLAMINO-6-AMINO-3-METHYLURACIL. ITS ISOLATION, IDENTIFICATION, AND SYNTHESIS. The Journal of biological chemistry. 1964 Dec; 239(?):4250-6. doi: 10.1016/s0021-9258(18)91165-8. [PMID: 14247678]