Gene Association: SERPINB1
UniProt Search:
SERPINB1 (PROTEIN_CODING)
Function Description: serpin family B member 1
found 112 associated metabolites with current gene based on the text mining result from the pubmed database.
Quercitrin
Quercitrin, also known as quercimelin or quercitronic acid, belongs to the class of organic compounds known as flavonoid-3-o-glycosides. These are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. A quercetin O-glycoside that is quercetin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. Quercitrin exists in all living organisms, ranging from bacteria to humans. Quercitrin is found, on average, in the highest concentration within a few different foods, such as lingonberries, american cranberries, and olives and in a lower concentration in common beans, tea, and welsh onions. Quercitrin has also been detected, but not quantified, in several different foods, such as guava, bilberries, common pea, apricots, and spearmints. Quercitrin is a quercetin O-glycoside that is quercetin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. It has a role as an antioxidant, an antileishmanial agent, an EC 1.1.1.184 [carbonyl reductase (NADPH)] inhibitor, an EC 1.1.1.21 (aldehyde reductase) inhibitor, an EC 1.14.18.1 (tyrosinase) inhibitor and a plant metabolite. It is a monosaccharide derivative, a tetrahydroxyflavone, an alpha-L-rhamnoside and a quercetin O-glycoside. It is a conjugate acid of a quercitrin-7-olate. Quercitrin is a natural product found in Xylopia emarginata, Lotus ucrainicus, and other organisms with data available. Quercitrin is a glycoside formed from the flavonoid quercetin and the deoxy sugar rhamnose. It is a constituent of the dye quercitron. Quercitrin is found in many foods, some of which are garden tomato (variety), kiwi, italian sweet red pepper, and guava. A quercetin O-glycoside that is quercetin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. [Raw Data] CBA03_Quercitrin_pos_10eV.txt [Raw Data] CBA03_Quercitrin_pos_20eV.txt [Raw Data] CBA03_Quercitrin_neg_50eV.txt [Raw Data] CBA03_Quercitrin_neg_30eV.txt [Raw Data] CBA03_Quercitrin_neg_10eV.txt [Raw Data] CBA03_Quercitrin_neg_40eV.txt [Raw Data] CBA03_Quercitrin_neg_20eV.txt [Raw Data] CBA03_Quercitrin_pos_50eV.txt [Raw Data] CBA03_Quercitrin_pos_30eV.txt [Raw Data] CBA03_Quercitrin_pos_40eV.txt Quercitrin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=522-12-3 (retrieved 2024-07-09) (CAS RN: 522-12-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2].
1-Hederin
Kalopanaxsaponin A is a triterpenoid saponin that is hederagenin attached to a 2-O-(6-deoxy-alpha-L-mannopyranosyl)-alpha-L-arabinopyranosyl residue at position 3 via a glycosidic linkage. It has been isolated from the stem bark of Kalopanax pictus. It has a role as an anti-inflammatory agent and a plant metabolite. It is a pentacyclic triterpenoid, a triterpenoid saponin, a disaccharide derivative and a hydroxy monocarboxylic acid. It is functionally related to a hederagenin. alpha-Hederin is a natural product found in Lonicera japonica, Hedera caucasigena, and other organisms with data available. A triterpenoid saponin that is hederagenin attached to a 2-O-(6-deoxy-alpha-L-mannopyranosyl)-alpha-L-arabinopyranosyl residue at position 3 via a glycosidic linkage. It has been isolated from the stem bark of Kalopanax pictus. alpha-Hederin (α-Hederin), a monodesmosidic triterpenoid saponin, exhibits promising antitumor potential against a variety of human cancer cell lines. alpha-Hederin could inhibit the proliferation and induce apoptosis of gastric cancer accompanied by glutathione decrement and reactive oxygen species generation via activating mitochondrial dependent pathway[1]. alpha-Hederin (α-Hederin), a monodesmosidic triterpenoid saponin, exhibits promising antitumor potential against a variety of human cancer cell lines. alpha-Hederin could inhibit the proliferation and induce apoptosis of gastric cancer accompanied by glutathione decrement and reactive oxygen species generation via activating mitochondrial dependent pathway[1].
Escin
Aescin is a triterpenoid saponin. escin Ib is a natural product found in Aesculus chinensis, Aesculus hippocastanum, and other organisms with data available. See also: Horse Chestnut (part of). D002317 - Cardiovascular Agents escin Ia is a natural product found in Aesculus chinensis and Aesculus hippocastanum with data available. See also: Horse Chestnut (part of). Escin, a natural compound of triterpenoid saponins isolated from horse chestnut (Aesculus hippocastanum) seeds, can be used as a vasoprotective anti-inflammatory, anti-edematous and anti-nociceptive agent[1]. Escin, a natural compound of triterpenoid saponins isolated from horse chestnut (Aesculus hippocastanum) seeds, can be used as a vasoprotective anti-inflammatory, anti-edematous and anti-nociceptive agent[1]. Escin IA is a triterpene saponin isolated from Aesculus hippocastanum, which inhibits HIV-1 protease with IC50 values of 35 μM. Escin IA has anti-TNBC metastasis activity, and its action mechanisms involved inhibition of epithelial-mesenchymal transition process by down-regulating LOXL2 expression[1][2]. Escin IA is a triterpene saponin isolated from Aesculus hippocastanum, which inhibits HIV-1 protease with IC50 values of 35 μM. Escin IA has anti-TNBC metastasis activity, and its action mechanisms involved inhibition of epithelial-mesenchymal transition process by down-regulating LOXL2 expression[1][2]. Escin IB is a saponin isolated from skin and the endosperm of seeds of horse chestnut (Aesculus hippocastanum). Escin IB shows inhibitory effect on pancreatic lipase activity[1][2]. Escin IB is a saponin isolated from skin and the endosperm of seeds of horse chestnut (Aesculus hippocastanum). Escin IB shows inhibitory effect on pancreatic lipase activity[1][2]. Escin IB is a saponin isolated from skin and the endosperm of seeds of horse chestnut (Aesculus hippocastanum). Escin IB shows inhibitory effect on pancreatic lipase activity[1][2].
Lupenone
Lupenone is a triterpenoid. It has a role as a metabolite. It derives from a hydride of a lupane. Lupenone is a natural product found in Liatris acidota, Euphorbia larica, and other organisms with data available. A natural product found in Cupania cinerea. Lupenone, isolated from Musa basjoo, belongs to lupane type triterpenoids. Lupenone shows various pharmacological activities including anti-inflammatory, anti-virus, anti-diabetes, anti-cancer, improving Chagas disease without major toxicity[1][2]. Lupenone is an orally active lupine-type triterpenoid that can be isolated from Musa basjoo. Lupenone Lupenone plays a role through the PI3K/Akt/mTOR and NF-κB signaling pathways. Lupenone has anti-inflammatory, antiviral, antidiabetic and anticancer activities[1][2][3]. Lupenone, isolated from Musa basjoo, belongs to lupane type triterpenoids. Lupenone shows various pharmacological activities including anti-inflammatory, anti-virus, anti-diabetes, anti-cancer, improving Chagas disease without major toxicity[1][2].
Arbutin
Hydroquinone O-beta-D-glucopyranoside is a monosaccharide derivative that is hydroquinone attached to a beta-D-glucopyranosyl residue at position 4 via a glycosidic linkage. It has a role as a plant metabolite and an Escherichia coli metabolite. It is a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a hydroquinone. Extracted from the dried leaves of bearberry plant in the genus Arctostaphylos and other plants commonly in the Ericaceae family, arbutin is a beta-D-glucopyranoside of [DB09526]. It is found in foods, over-the-counter drugs, and herbal dietary supplements. Most commonly, it is an active ingredient in skincare and cosmetic products as a skin-lightening agent for the prevention of melanin formation in various skin conditions that involve cutaneous hyperpigmentation or hyperactive melanocyte function. It has also been used as an anti-infective for the urinary system as well as a diuretic. Arbutin is available in both natural and synthetic forms; it can be synthesized from acetobromglucose and [DB09526]. Arbutin is a competitive inhibitor of tyrosinase (E.C.1.14.18.1) in melanocytes, and the inhibition of melanin synthesis at non-toxic concentrations was observed in vitro. Arbutin was shown to be less cytotoxic to melanocytes in culture compared to [DB09526]. Arbutin is a natural product found in Grevillea robusta, Halocarpus biformis, and other organisms with data available. See also: Arctostaphylos uva-ursi leaf (part of); Arbutin; octinoxate (component of); Adenosine; arbutin (component of) ... View More ... Arbutin, also known as hydroquinone-O-beta-D-glucopyranoside or P-hydroxyphenyl beta-D-glucopyranoside, is a member of the class of compounds known as phenolic glycosides. Phenolic glycosides are organic compounds containing a phenolic structure attached to a glycosyl moiety. Some examples of phenolic structures include lignans, and flavonoids. Among the sugar units found in natural glycosides are D-glucose, L-Fructose, and L rhamnose. Arbutin is soluble (in water) and a very weakly acidic compound (based on its pKa). Arbutin can be found in a number of food items such as guava, lingonberry, irish moss, and rowal, which makes arbutin a potential biomarker for the consumption of these food products. Arbutin is a glycoside; a glycosylated hydroquinone extracted from the bearberry plant in the genus Arctostaphylos among many other medicinal plants, primarily in the Ericaceae family. Applied topically, it inhibits tyrosinase and thus prevents the formation of melanin. Arbutin is therefore used as a skin-lightening agent. Very tiny amounts of arbutin are found in wheat, pear skins, and some other foods. It is also found in Bergenia crassifolia. Arbutin was also produced by an in vitro culture of Schisandra chinensis . A monosaccharide derivative that is hydroquinone attached to a beta-D-glucopyranosyl residue at position 4 via a glycosidic linkage. Arbutin is found in apple. Glucoside in pear leaves (Pyrus communis C471 - Enzyme Inhibitor CONFIDENCE standard compound; INTERNAL_ID 1335; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6126; ORIGINAL_PRECURSOR_SCAN_NO 6123 CONFIDENCE standard compound; INTERNAL_ID 1335; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6107; ORIGINAL_PRECURSOR_SCAN_NO 6104 CONFIDENCE standard compound; INTERNAL_ID 1335; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 811; ORIGINAL_PRECURSOR_SCAN_NO 808 CONFIDENCE standard compound; INTERNAL_ID 1335; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 806; ORIGINAL_PRECURSOR_SCAN_NO 804 CONFIDENCE standard compound; INTERNAL_ID 1335; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 813; ORIGINAL_PRECURSOR_SCAN_NO 811 CONFIDENCE standard compound; INTERNAL_ID 1335; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 832; ORIGINAL_PRECURSOR_SCAN_NO 828 CONFIDENCE standard compound; INTERNAL_ID 1335; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 817; ORIGINAL_PRECURSOR_SCAN_NO 816 Arbutin (β-Arbutin) is a competitive inhibitor of tyrosinase, with Kiapp values of 1.42 mM for monophenolase; 0.9 mM for diphenolase. Arbutin is also used as depigmenting agents[1]. Arbutin is a natural polyphenol isolated from the bearberry plant Arctostaphylos uvaursi, possesses with anti-oxidant, anti-inflammatory and anti-tumor properties[2][3]. Arbutin (β-Arbutin) is a competitive inhibitor of tyrosinase, with Kiapp values of 1.42 mM for monophenolase; 0.9 mM for diphenolase. Arbutin is also used as depigmenting agents[1]. Arbutin is a natural polyphenol isolated from the bearberry plant Arctostaphylos uvaursi, possesses with anti-oxidant, anti-inflammatory and anti-tumor properties[2][3].
Rutin
Rutin is a flavonoid known to have a variety of biological activities including antiallergic, anti-inflammatory, antiproliferative, and anticarcinogenic properties. A large number of flavonoids, mostly O-glycosides, are polyphenolic compounds of natural origin that are present in most fruits and vegetables. The average intake of the compounds by humans on a normal diet is more than 1 g per day. Although flavonoids are devoid of classical nutritional value, they are increasingly viewed as beneficial dietary components that act as potential protectors against human diseases such as coronary heart disease, cancers, and inflammatory bowel disease. Rutin acts as a quercetin deliverer to the large intestine; moreover, quercetin is extensively metabolized in the large intestine, which suggests that quercetin liberated from rutin and/or its colonic metabolites may play a role. Rutins anti-inflammatory actions are mediated through a molecular mechanism that underlies the quercetin-mediated therapeutic effects: quercetin-mediated inhibition of tumor necrosis factor-alpha (TNF-alpha)-induced nuclear factor kappa B (NFkB) activation. TNF-alpha-induced NFkB activity plays a central role in the production of pro-inflammatory mediators involved in progression of gut inflammation. (PMID:16132362). Rutin is a rutinoside that is quercetin with the hydroxy group at position C-3 substituted with glucose and rhamnose sugar groups. It has a role as a metabolite and an antioxidant. It is a disaccharide derivative, a quercetin O-glucoside, a tetrahydroxyflavone and a rutinoside. A flavonol glycoside found in many plants, including buckwheat; tobacco; forsythia; hydrangea; viola, etc. It has been used therapeutically to decrease capillary fragility. Rutin is a natural product found in Ficus virens, Visnea mocanera, and other organisms with data available. A flavonol glycoside found in many plants, including BUCKWHEAT; TOBACCO; FORSYTHIA; HYDRANGEA; VIOLA, etc. It has been used therapeutically to decrease capillary fragility. See also: Quercetin (related); Ginkgo (part of); Chamomile (part of) ... View More ... First isolated from Ruta graveolens (rue). Bioflavanoid. Quercetin 3-rutinoside is found in many foods, some of which are tea, bilberry, common oregano, and lemon grass. A rutinoside that is quercetin with the hydroxy group at position C-3 substituted with glucose and rhamnose sugar groups. C - Cardiovascular system > C05 - Vasoprotectives > C05C - Capillary stabilizing agents > C05CA - Bioflavonoids IPB_RECORD: 541; CONFIDENCE confident structure [Raw Data] CBA04_Rutin_neg_50eV.txt [Raw Data] CBA04_Rutin_pos_50eV.txt [Raw Data] CBA04_Rutin_neg_40eV.txt [Raw Data] CBA04_Rutin_pos_10eV.txt [Raw Data] CBA04_Rutin_neg_20eV.txt [Raw Data] CBA04_Rutin_neg_10eV.txt [Raw Data] CBA04_Rutin_neg_30eV.txt [Raw Data] CBA04_Rutin_pos_40eV.txt [Raw Data] CBA04_Rutin_pos_30eV.txt [Raw Data] CBA04_Rutin_pos_20eV.txt Rutin (Rutoside) is a flavonoid found in many plants and shows a wide range of biological activities including anti-inflammatory, antidiabetic, antioxidant, neuroprotective, nephroprotective, hepatoprotective and reducing Aβ oligomer activities. Rutin can cross the blood brain barrier. Rutin attenuates vancomycin-induced renal tubular cell apoptosis via suppression of apoptosis, mitochondrial dysfunction, and oxidative stress[1][2][3]. Rutin (Rutoside) is a flavonoid found in many plants and shows a wide range of biological activities including anti-inflammatory, antidiabetic, antioxidant, neuroprotective, nephroprotective, hepatoprotective and reducing Aβ oligomer activities. Rutin can cross the blood brain barrier. Rutin attenuates vancomycin-induced renal tubular cell apoptosis via suppression of apoptosis, mitochondrial dysfunction, and oxidative stress[1][2][3].
Ruscogenin
Ruscogenin is a triterpenoid. Ruscogenin is a natural product found in Cordyline rubra, Cordyline banksii, and other organisms with data available. Ruscogenin, an important steroid sapogenin derived from Ophiopogon japonicus, attenuates cerebral ischemia-induced blood-brain barrier dysfunction by suppressing TXNIP/NLRP3 inflammasome activation and the MAPK pathway. Ruscogenin exerts significant anti-inflammatory and anti-thrombotic activities. Ruscogenin has orally bioactivity[1][2]. Ruscogenin, an important steroid sapogenin derived from Ophiopogon japonicus, attenuates cerebral ischemia-induced blood-brain barrier dysfunction by suppressing TXNIP/NLRP3 inflammasome activation and the MAPK pathway. Ruscogenin exerts significant anti-inflammatory and anti-thrombotic activities. Ruscogenin has orally bioactivity[1][2].
8-Prenylnaringenin
Sophoraflavanone B is a trihydroxyflavanone that is (S)-naringenin having a prenyl group at position 8. It has a role as a platelet aggregation inhibitor and a plant metabolite. It is a trihydroxyflavanone, a member of 4-hydroxyflavanones and a (2S)-flavan-4-one. It is functionally related to a (S)-naringenin. It is a conjugate acid of a sophoraflavanone B(1-). 8-Prenylnaringenin is a natural product found in Macaranga conifera, Macaranga denticulata, and other organisms with data available. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens A trihydroxyflavanone that is (S)-naringenin having a prenyl group at position 8. INTERNAL_ID 2299; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2299
Silicristin
Silychristin is a flavonolignan isolated from Silybum marianum and has been shown to exhibit inhibitory activities against lipoxygenase and prostaglandin synthetase. It has a role as a radical scavenger, a lipoxygenase inhibitor, a prostaglandin antagonist and a metabolite. It is a flavonolignan, a member of 1-benzofurans, a polyphenol, an aromatic ether and a secondary alpha-hydroxy ketone. Silicristin is a natural product found in Cunila, Anastatica hierochuntica, and other organisms with data available. Isolated from fruits of Silybum marianum (milk thistle). Silicristin is found in coffee and coffee products and green vegetables. Silicristin is found in coffee and coffee products. Silicristin is isolated from fruits of Silybum marianum (milk thistle). C26170 - Protective Agent > C2081 - Hepatoprotective Agent Silychristin is an abundant flavonolignan present in the fruits of Silybum marianum, with antioxidant properties. Silychristin is a potent inhibitor of the thyroid hormone transporter MCT8, and elicits a strong inhibition of T3 uptake with an IC50 of 110 nM[1][2]. Silychristin is an abundant flavonolignan present in the fruits of Silybum marianum, with antioxidant properties. Silychristin is a potent inhibitor of the thyroid hormone transporter MCT8, and elicits a strong inhibition of T3 uptake with an IC50 of 110 nM[1][2].
Sclareol
Sclareol is a labdane diterpenoid that is labd-14-ene substituted by hydroxy groups at positions 8 and 13. It has been isolated from Salvia sclarea. It has a role as an antimicrobial agent, an apoptosis inducer, a fragrance, an antifungal agent and a plant metabolite. Sclareol is a natural product found in Curcuma aromatica, Curcuma wenyujin, and other organisms with data available. See also: Clary Sage Oil (part of). Constituent of Salvia sclarea (clary sage). Sclareol is found in many foods, some of which are common thyme, herbs and spices, tea, and nutmeg. Sclareol is found in alcoholic beverages. Sclareol is a constituent of Salvia sclarea (clary sage) Sclareol is isolated from Salvia sclarea with anticarcinogenic activity. Sclareol shows strong cytotoxic activity against mouse leukemia?(P-388), human epidermal?carcinoma?(KB) cells and human?leukemia?cell lines. Sclareol induces cell apoptosis[1]. Sclareol is isolated from Salvia sclarea with anticarcinogenic activity. Sclareol shows strong cytotoxic activity against mouse leukemia?(P-388), human epidermal?carcinoma?(KB) cells and human?leukemia?cell lines. Sclareol induces cell apoptosis[1].
Afzelin
Afzelin is a glycosyloxyflavone that is kaempferol attached to an alpha-L-rhamnosyl residue at position 3 via a glycosidic linkage. It has a role as a plant metabolite, an antibacterial agent and an anti-inflammatory agent. It is a glycosyloxyflavone, a trihydroxyflavone and a monosaccharide derivative. It is functionally related to a kaempferol. It is a conjugate acid of an afzelin(1-). Afzelin is a natural product found in Premna odorata, Vicia tenuifolia, and other organisms with data available. [Raw Data] CBA27_Afzelin_neg_30eV_1-1_01_1585.txt [Raw Data] CBA27_Afzelin_pos_20eV_1-1_01_1549.txt [Raw Data] CBA27_Afzelin_pos_10eV_1-1_01_1540.txt [Raw Data] CBA27_Afzelin_neg_10eV_1-1_01_1576.txt [Raw Data] CBA27_Afzelin_neg_20eV_1-1_01_1584.txt [Raw Data] CBA27_Afzelin_neg_40eV_1-1_01_1586.txt [Raw Data] CBA27_Afzelin_pos_30eV_1-1_01_1550.txt [Raw Data] CBA27_Afzelin_pos_50eV_1-1_01_1552.txt [Raw Data] CBA27_Afzelin_pos_40eV_1-1_01_1551.txt [Raw Data] CBA27_Afzelin_neg_50eV_1-1_01_1587.txt Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1]. Afzelin (Kaempferol-3-O-rhamnoside)It is a flavonol glycoside that has anti-inflammatory, anti-oxidative stress response, anti-apoptotic, and anti-cardiac cytotoxic effects. AfzelinIt can reduce mitochondrial damage, enhance mitochondrial biosynthesis, and reduce mitochondria-related proteins. Parkinand PTENinduced putative kinase 1 (putative kinase 1)s level. AfzelinCan be improved D-galactosamine(GalN)/LPSSurvival rate of mice treated with doxorubicin prophylaxis (HY-15142A)Induced cardiotoxicity and scopolamine (HY-N0296)-induced neurological injury. AfzelinAlso inhibits asthma and allergies caused by ovalbumin[1][2][3][4]. Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1].
Euscaphic acid
Euscaphic acid is a pentacyclic triterpenoid that is urs-12-en-28-oic acid substituted by hydroxy groups at positions 2, 3 and 19 respectively (the 2alpha,3alpha-stereoisomer). It has been isolated from the leaves of Rosa laevigata. It has a role as a plant metabolite. It is a pentacyclic triterpenoid, a hydroxy monocarboxylic acid and a triol. It derives from a hydride of an ursane. Euscaphic acid is a natural product found in Ternstroemia gymnanthera, Rhaphiolepis deflexa, and other organisms with data available. A pentacyclic triterpenoid that is urs-12-en-28-oic acid substituted by hydroxy groups at positions 2, 3 and 19 respectively (the 2alpha,3alpha-stereoisomer). It has been isolated from the leaves of Rosa laevigata. Euscaphic acid is found in herbs and spices. Euscaphic acid is a constituent of Coleus amboinicus (Cuban oregano). Constituent of Coleus amboinicus (Cuban oregano). Euscaphic acid is found in loquat and herbs and spices. Euscaphic acid, a DNA polymerase inhibitor, is a triterpene from the root of the R. alceaefolius Poir. Euscaphic inhibits calf DNA polymerase α (pol α) and rat DNA polymerase β (pol β) with IC50 values of 61 and 108 μM[1]. Euscaphic acid induces apoptosis[2]. Euscaphic acid, a DNA polymerase inhibitor, is a triterpene from the root of the R. alceaefolius Poir. Euscaphic inhibits calf DNA polymerase α (pol α) and rat DNA polymerase β (pol β) with IC50 values of 61 and 108 μM[1]. Euscaphic acid induces apoptosis[2].
6'-O-p-Coumaroyltrifolin
Kaempferol 3-(6-p-coumaroylgalactoside) is a member of the class of compounds known as flavonoid 3-o-p-coumaroyl glycosides. Flavonoid 3-o-p-coumaroyl glycosides are flavonoid 3-O-glycosides where the carbohydrate moiety is esterified with a p-coumaric acid. P-coumaric acid is an organic derivative of cinnamic acid, that carries a hydroxyl group at the 4-position of the benzene ring. Kaempferol 3-(6-p-coumaroylgalactoside) is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Within the cell, kaempferol 3-(6-p-coumaroylgalactoside) is primarily located in the membrane (predicted from logP). Tribuloside is a glycosyloxyflavone that is kaempferol attached to a 6-O-[(2E)-3-(4-hydroxyphenyl)prop-2-enoyl]-beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has a role as a plant metabolite. It is a glycosyloxyflavone, a cinnamate ester, a trihydroxyflavone and a monosaccharide derivative. It is functionally related to a kaempferol and a trans-4-coumaric acid. Tiliroside is a natural product found in Phlomoides spectabilis, Anaphalis contorta, and other organisms with data available. 6-O-p-Coumaroyltrifolin is a constituent of Pinus sylvestris (Scotch pine). Tiliroside, a glycosidic flavonoid, possesses anti-diabetic activities. Tiliroside is a noncompetitive inhibitor of α-amylase with a Ki value of 84.2? μM. Tiliroside inhibits carbohydrate digestion and glucose absorption in the gastrointestinal tract[1]. Tiliroside, a glycosidic flavonoid, possesses anti-diabetic activities. Tiliroside is a noncompetitive inhibitor of α-amylase with a Ki value of 84.2? μM. Tiliroside inhibits carbohydrate digestion and glucose absorption in the gastrointestinal tract[1]. Tribuloside is a flavonoid that can be isolated from Tribulus terrestris L[1]. Tribuloside exhibits anti-mycobacterial activity against the non-pathogenic Mycobacterium species with a minimum inhibitory concentration (MIC) of 5.0 mg/mL. Tribuloside has 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity[2]. Tribuloside is a flavonoid that can be isolated from Tribulus terrestris L[1]. Tribuloside exhibits anti-mycobacterial activity against the non-pathogenic Mycobacterium species with a minimum inhibitory concentration (MIC) of 5.0 mg/mL. Tribuloside has 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity[2].
(-)-Sabinene
Sabinene (CAS: 3387-41-5) belongs to the class of organic compounds known as bicyclic monoterpenoids. These are monoterpenoids containing exactly 2 rings, which are fused to each other. Thus, sabinene is considered to be an isoprenoid lipid molecule. Sabinene is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. (-)-Sabinene is found in herbs and spices and is a constituent of Laurus nobilis (bay laurel). Constituent of Laurus nobilis (bay laurel) and some other plants. (-)-4(10)-Thujene is found in sweet bay and herbs and spices. Sabinene is a thujene that is a bicyclic monoterpene isolated from the essential oils of various plant species. It has a role as a plant metabolite. Black pepper allergenic extract is used in allergenic testing. Laurus nobilis allergenic extract is used in allergenic testing. Nutmeg allergenic extract is used in allergenic testing. Sabinene is a natural product found in Teucrium montanum, Xylopia aromatica, and other organisms with data available. Carrot Seed Oil is the oil extracted from the seeds of Daucus carota. Carrot seed oil is primarily used in skin treatment preparations. Acquisition and generation of the data is financially supported in part by CREST/JST. Sabinene is an naturally occurring bicyclic monoterpene which can be used as flavorings, perfume additives, fine chemicals, and advanced biofuels. Sabinene is also an orally active compound to attenuates skeletal muscle atrophy and regulates ROS-mediated MAPK/MuRF-1 pathways[1][2]. Sabinene is an naturally occurring bicyclic monoterpene which can be used as flavorings, perfume additives, fine chemicals, and advanced biofuels. Sabinene is also an orally active compound to attenuates skeletal muscle atrophy and regulates ROS-mediated MAPK/MuRF-1 pathways[1][2].
(-)-3-Isothujone
(-)-3-Isothujone is found in alcoholic beverages. Ingredient of absinthe. Presence in food and beverages regulated by legislation.Thujone is a ketone and a monoterpene that occurs naturally in two diastereomeric forms: (-)-alpha-thujone and (+)-beta-thujone. It has a menthol odor. In addition to (-)-alpha-thujone and (+)-beta-thujone, there are their enantiomeric forms, (+)-alpha-thujone and (-)-beta-thujone. (Wikipedia (-)-alpha-thujone is the (1S,4R,5R)-stereoisomer of alpha-thujone. It is an enantiomer of a (+)-alpha-thujone. alpha-Thujone is a natural product found in Xylopia sericea, Rhododendron mucronulatum, and other organisms with data available. See also: Artemisia absinthium whole (part of). A thujane monoterpenoid that is thujane substituted by an oxo group at position 3. Ingredient of absinthe. Presence in food and beverages regulated by legislation α-Thujone is a monoterpene isolated from Thuja occidentalis essential oil with potent anti-tumor activities. α-Thujone is a reversible modulator of the GABA type A receptor and the IC50 for α-Thujone is 21 μM in suppressing the GABA-induced currents. α-Thujone induces ROS accumulation-dependent cytotoxicity, also induces cell apoptosis and autophagy. α-Thujone has antinociceptive, insecticidal, and anthelmintic activity, and easily penetrates the blood-brain barrier[1][2][3]. α-Thujone is a monoterpene isolated from Thuja occidentalis essential oil with potent anti-tumor activities. α-Thujone is a reversible modulator of the GABA type A receptor and the IC50 for α-Thujone is 21 μM in suppressing the GABA-induced currents. α-Thujone induces ROS accumulation-dependent cytotoxicity, also induces cell apoptosis and autophagy. α-Thujone has antinociceptive, insecticidal, and anthelmintic activity, and easily penetrates the blood-brain barrier[1][2][3]. α-Thujone is a monoterpene isolated from Thuja occidentalis essential oil with potent anti-tumor activities. α-Thujone is a reversible modulator of the GABA type A receptor and the IC50 for α-Thujone is 21 μM in suppressing the GABA-induced currents. α-Thujone induces ROS accumulation-dependent cytotoxicity, also induces cell apoptosis and autophagy. α-Thujone has antinociceptive, insecticidal, and anthelmintic activity, and easily penetrates the blood-brain barrier[1][2][3].
(-)-beta-Pinene
(-)-beta-pinene is the (1S,5S)-enantiomer of beta-pinene. It is an enantiomer of a (+)-beta-pinene. (-)-beta-Pinene is a natural product found in Curcuma amada, Molopospermum peloponnesiacum, and other organisms with data available. Flavouring ingredient. (-)-beta-Pinene is found in many foods, some of which are almond, hyssop, sweet bay, and common sage. (-)-beta-Pinene is found in almond. (-)-beta-Pinene is a flavouring ingredient. The (1S,5S)-enantiomer of beta-pinene. β-Pinene ((-)-β-Pinene), a major component of turpentine, inhibit infectious bronchitis virus (IBV) with an IC50 of 1.32 mM. β-Pinene presents antimicrobial activity[1][2]. β-Pinene ((-)-β-Pinene), a major component of turpentine, inhibit infectious bronchitis virus (IBV) with an IC50 of 1.32 mM. β-Pinene presents antimicrobial activity[1][2].
5-Isopropyl-2-methylphenol
5-Isopropyl-2-methylphenol, also known as 2-hydroxy-p-cymene or 2-p-cymenol, belongs to the class of organic compounds known as aromatic monoterpenoids. These are monoterpenoids containing at least one aromatic ring. Monoterpenoids are terpenes that contain 10 carbon atoms and are comprised of two isoprene units. The biosynthesis of monoterpenes is known to occur mainly through the methyl-erythritol-phosphate (MEP) pathway in the plastids. Geranyl diphosphate (GPP) is a key intermediate in the biosynthesis of cyclic monoterpenes. GPP undergoes several cyclization reactions to yield a diverse number of cyclic arrangements. 5-Isopropyl-2-methylphenol is a very hydrophobic molecule, practically insoluble in water, but fairly soluble in organic solvents. Thus, 5-Isopropyl-2-methylphenol is considered to be an isoprenoid lipid molecule. Thymol is found in the essential oil of thyme and in the essential oils of several different plants. It can be extracted from Thymus vulgaris (common thyme), Ajwain and various other kinds of plants as a white crystalline substance of a pleasant aromatic odor and strong antiseptic properties. Thymol also provides the distinctive, strong flavor of the culinary herb thyme, also produced from T. vulgaris. Thymol has also been identified as a volatile compound found in cannabis samples obtained from police seizures (PMID:26657499 ). Carvacrol is a phenol that is a natural monoterpene derivative of cymene. An inhibitor of bacterial growth, it is used as a food additive. Potent activator of the human ion channels transient receptor potential V3 (TRPV3) and A1 (TRPA1). It has a role as a volatile oil component, a flavouring agent, an antimicrobial agent, an agrochemical and a TRPA1 channel agonist. It is a member of phenols, a p-menthane monoterpenoid and a botanical anti-fungal agent. It derives from a hydride of a p-cymene. Carvacrol is a natural product found in Xylopia aromatica, Xylopia sericea, and other organisms with data available. Carvacrol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Oregano Leaf Oil (part of). A phenol that is a natural monoterpene derivative of cymene. An inhibitor of bacterial growth, it is used as a food additive. Potent activator of the human ion channels transient receptor potential V3 (TRPV3) and A1 (TRPA1). Constituent of many essential oils. Especies found in the Labiatae. Thyme oil (=70\\\\%) and Origanum oil (=80\\\\%) are rich sources. Flavouring ingredient COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Carvacrol is a monoterpenoid phenol isolated from Thymus mongolicus Ronn., with antioxidant, anti-inflammatory and anticancer properties. Carvacrol causes cell cycle arrest in G0/G1, downregulates Notch-1, and Jagged-1, and induces apoptosis[1]. Carvacrol is a monoterpenoid phenol isolated from Thymus mongolicus Ronn., with antioxidant, anti-inflammatory and anticancer properties. Carvacrol causes cell cycle arrest in G0/G1, downregulates Notch-1, and Jagged-1, and induces apoptosis[1].
Sugiol
Sugiol is an abietane diterpenoid that is ferruginol in which the methylene group para to the phenolic hydroxy group has been substituted by an oxo group. It has a role as a plant metabolite, an antiviral agent, an antineoplastic agent, an antioxidant and a radical scavenger. It is an abietane diterpenoid, a carbotricyclic compound, a meroterpenoid, a member of phenols and a cyclic terpene ketone. It is functionally related to a ferruginol. Sugiol is a natural product found in Austrocedrus chilensis, Libocedrus bidwillii, and other organisms with data available. An abietane diterpenoid that is ferruginol in which the methylene group para to the phenolic hydroxy group has been substituted by an oxo group.
Combretum caffrum
3,4,3-Tri-O-methylellagic acid is a tannin. 2,3,8-Tri-O-methylellagic acid is a natural product found in Lagerstroemia speciosa, Cercidiphyllum japonicum, and other organisms with data available.
Glabranin
Glabranin is a dihydroxyflavanone that is pinocembrin substituted by a prenyl group at position 8. It has a role as a plant metabolite. It is a dihydroxyflavanone and a (2S)-flavan-4-one. It is functionally related to a pinocembrin. Glabranin is a natural product found in Sophora tomentosa, Annona squamosa, and other organisms with data available. A dihydroxyflavanone that is pinocembrin substituted by a prenyl group at position 8. Saponin from licorice (Glycyrrhiza glabra). Glabranin B is found in tea and herbs and spices. Origin: Plant, Pyrans Glabranin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=41983-91-9 (retrieved 2024-07-09) (CAS RN: 41983-91-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Ferruginol
Ferruginol is an abietane diterpenoid that is abieta-8,11,13-triene substituted by a hydroxy group at positions 12. It has a role as an antineoplastic agent, an antibacterial agent, a protective agent and a plant metabolite. It is an abietane diterpenoid, a member of phenols, a carbotricyclic compound and a meroterpenoid. Ferruginol is a natural product found in Calocedrus macrolepis, Teucrium polium, and other organisms with data available. An abietane diterpenoid that is abieta-8,11,13-triene substituted by a hydroxy group at positions 12.
Ricinoleic acid
Ricinoleic acid is found in corn. Ricinoleic acid occurs in castor oil and other oils e.g. grape and ergot (Claviceps purpurea) Ricinoleic acid (12-hydroxy-9-cis-octadecenoic acid) is an unsaturated omega-9 fatty acid that naturally occurs in mature Castor plant (Ricinus communis L., Euphorbiaceae) seeds or in sclerotium of ergot (Claviceps purpurea Tul., Clavicipitaceae). About 90\\% of the fatty acid content in castor oil is the triglyceride formed from ricinoleic acid. Ricinoleic acid is manufactured for industries by saponification or fractional distillation of hydrolyzed castor oil. The zinc salt is used in personal care products, such as deodorants Ricinoleic acid is a (9Z)-12-hydroxyoctadec-9-enoic acid in which the 12-hydroxy group has R-configuration.. It is a conjugate acid of a ricinoleate. Ricinoleic acid is a natural product found in Cephalocroton cordofanus, Crotalaria retusa, and other organisms with data available. See also: Polyglyceryl-6 polyricinoleate (monomer of); Polyglyceryl-4 polyricinoleate (monomer of); Polyglyceryl-5 polyricinoleate (monomer of) ... View More ... CONFIDENCE standard compound; INTERNAL_ID 219; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5632; ORIGINAL_PRECURSOR_SCAN_NO 5630 CONFIDENCE standard compound; INTERNAL_ID 219; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5657; ORIGINAL_PRECURSOR_SCAN_NO 5655 CONFIDENCE standard compound; INTERNAL_ID 219; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5730; ORIGINAL_PRECURSOR_SCAN_NO 5728 CONFIDENCE standard compound; INTERNAL_ID 219; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5665; ORIGINAL_PRECURSOR_SCAN_NO 5664 CONFIDENCE standard compound; INTERNAL_ID 219; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5630; ORIGINAL_PRECURSOR_SCAN_NO 5629 CONFIDENCE standard compound; INTERNAL_ID 219; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5665; ORIGINAL_PRECURSOR_SCAN_NO 5662 Occurs in castor oil and other oils e.g. grape and ergot (Claviceps purpurea)
Geraniol
Geraniol, also known as beta-Geraniol, (E)-nerol (the isomer of nerol) or geranyl alcohol, is a monoterpenoid alcohol. It belongs to the class of organic compounds known as acyclic monoterpenoids. These are monoterpenes that do not contain a cycle. Monoterpenoids are terpenes that contain 10 carbon atoms and are comprised of two isoprene units. In plants, the biosynthesis of monoterpenes is known to occur mainly through the methyl-erythritol-phosphate (MEP) pathway in the plastids (PMID:7640522 ). Geranyl diphosphate (GPP) is a key intermediate in the biosynthesis of cyclic monoterpenes. GPP undergoes several cyclization reactions to yield a diverse number of cyclic arrangements. beta-Geraniol is an isoprenoid lipid molecule that is very hydrophobic, practically insoluble in water, and relatively neutral. beta-Geraniol has a sweet, citrus, and floral taste. beta-Geraniol is found in highest concentrations in common grapes, black walnuts, and common thymes and in lower concentrations in cardamoms, common oregano, and gingers. beta-Geraniol has also been detected in lemon verbena, oval-leaf huckleberries, common pea, sweet cherries, and nopals. It is found as an alcohol and as its ester in many essential oils including geranium oil. It is the primary part of rose oil, palmarosa oil, and citronella oil (Java type) and occurs in small quantities in geranium, lemon, and many other essential oils. Because it has a rose-like odor, it is commonly used in perfumes. It is used to create flavors such as peach, raspberry, grapefruit, red apple, plum, lime, orange, lemon, watermelon, pineapple, and blueberry. An alternate application has been found in the use of insect repellents or deterrants. Though it may repel mosquitoes, flies, lice, cockroaches, ants, and ticks, it is also produced by the scent glands of honey bees to help them mark nectar-bearing flowers and locate the entrances to their hives (http//doi:10.1051/apido:19900403). Extensive testing by Dr. Jerry Butler at the University of Florida has shown geraniol to be one of natures most effective insect repellents (PMID:20836800). Nerol is the (2Z)-stereoisomer of 3,7-dimethylocta-2,6-dien-1-ol. It has been isolated from the essential oils from plants like lemon grass. It has a role as a volatile oil component, a plant metabolite and a fragrance. Nerol is a natural product found in Eupatorium cannabinum, Vitis rotundifolia, and other organisms with data available. Nerol is a metabolite found in or produced by Saccharomyces cerevisiae. Constituent of many essential oils including neroli and bergamot oils. In essential oils it is a minor component always accompanied by geraniol. Flavouring agent The (2Z)-stereoisomer of 3,7-dimethylocta-2,6-dien-1-ol. It has been isolated from the essential oils from plants like lemon grass. Nerol is a constituent of neroli oil. Nerol Nerol triggers mitochondrial dysfunction and induces apoptosis via elevation of Ca2+ and ROS. Antifungal activity[1][2]. Nerol is a constituent of neroli oil. Nerol Nerol triggers mitochondrial dysfunction and induces apoptosis via elevation of Ca2+ and ROS. Antifungal activity[1][2]. Nerol is a constituent of neroli oil. Nerol Nerol triggers mitochondrial dysfunction and induces apoptosis via elevation of Ca2+ and ROS. Antifungal activity[1][2].
Safranal
Safranal is found in fig. Safranal is a constituent of saffron (Crocus sativa). Safranal is a flavouring ingredient It is believed that safranal is a degradation product of the carotenoid zeaxanthin via the intermediacy of picrocrocin. Safranal is an effective anticonvulsant shown to act as an agonist at GABAA receptors. Safranal also exhibits high antioxidant and free radical scavenging activity, along with cytotoxicity towards cancer cells in vitro. It has also been shown to have antidepressant properties. Safranal is an organic compound isolated from saffron, the spice consisting of the stigmas of crocus flowers (Crocus sativus). It is the constituent primarily responsible for the aroma of saffron Safranal is a monoterpenoid formally derived from beta-cyclocitral by dehydrogenation. It is functionally related to a beta-cyclocitral. Safranal is a natural product found in Aspalathus linearis, Cistus creticus, and other organisms with data available. Constituent of saffron (Crocus sativa). Flavouring ingredient Safranal is an orally active main component of Saffron (Crocus sativus) and is responsible for the unique aroma of this spice. Safranal has neuroprotective and anti-inflammatory effects and has the potential for Parkinson’s disease research[1]. Safranal is an orally active main component of Saffron (Crocus sativus) and is responsible for the unique aroma of this spice. Safranal has neuroprotective and anti-inflammatory effects and has the potential for Parkinson’s disease research[1].
Epi-alpha-amyrin
Alpha-amyrin is a pentacyclic triterpenoid that is ursane which contains a double bond between positions 12 and 13 and in which the hydrogen at the 3beta position is substituted by a hydroxy group. It is a pentacyclic triterpenoid and a secondary alcohol. It derives from a hydride of an ursane. alpha-Amyrin is a natural product found in Ficus septica, Ficus virens, and other organisms with data available. See also: Calendula Officinalis Flower (part of); Viburnum opulus bark (part of); Eupatorium perfoliatum whole (part of) ... View More ... Carissol is found in beverages. Carissol is a constituent of Carissa carandas (karanda). Constituent of Carissa carandas (karanda). Carissol is found in beverages and fruits.
beta-Phellandrene
beta-Phellandrene is found in allspice. beta-Phellandrene is widely distributed in essential oils (Angelica, Eucalyptus, Lavandula, Mentha, Pinus species). beta-Phellandrene is a flavour ingredient.Phellandrene is the name for a pair of organic compounds that have a similar molecular structure and similar chemical properties. alpha-Phellandrene and beta-phellandrene are cyclic monoterpenes and are double-bond isomers. The phellandrenes are used in fragrances because of their pleasing aromas. (Wikipedia Beta-phellandrene is one of a pair of phellandrene cyclic monoterpene double-bond isomers in which one double bond is exocyclic (cf. alpha-phellandrene, where both of them are endoocyclic). It has a role as a plant metabolite. beta-Phellandrene is a natural product found in Xylopia aromatica, Dacrydium nausoriense, and other organisms with data available. See also: Cannabis sativa subsp. indica top (part of). One of a pair of phellandrene cyclic monoterpene double-bond isomers in which one double bond is exocyclic (cf. alpha-phellandrene, where both of them are endoocyclic). Widely distributed in essential oils (Angelica, Eucalyptus, Lavandula, Mentha, Pinus subspecies). Flavour ingredient β-Phellandrene is obtained from Carum petroselinum. β-Phellandrene can be used to essential oil additives[1]. β-Phellandrene is obtained from Carum petroselinum. β-Phellandrene can be used to essential oil additives[1].
(R)-Menthofuran
Menthofuran is a monoterpenoid that is 4,5,6,7-tetrahydro-1-benzofuran substituted by methyl groups at positions 3 and 6. It has a role as a nematicide and a plant metabolite. It is a member of 1-benzofurans and a monoterpenoid. Menthofuran is a natural product found in Methanobacterium and Mentha pulegium with data available. Constituent of peppermint oil (Mentha piperita) and other Mentha subspecies as minor but essential organoleptic. It is used in peppermint oil formulations. (R)-Menthofuran is found in mentha (mint), orange mint, and herbs and spices. (R)-Menthofuran is found in herbs and spices. (R)-Menthofuran is a constituent of peppermint oil (Mentha piperita) and other Mentha species as minor but essential organoleptic. (R)-Menthofuran is used in peppermint oil formulations A monoterpenoid that is 4,5,6,7-tetrahydro-1-benzofuran substituted by methyl groups at positions 3 and 6.
(+)-alpha-Pinene
alpha-Pinene (CAS: 80-56-8) is an organic compound of the terpene class and is one of two isomers of pinene. It is found in the oils of many species of many coniferous trees, notably the pine. It is also found in the essential oil of rosemary (Rosmarinus officinalis). Both enantiomers are known in nature. 1S,5S- or (-)-alpha-pinene is more common in European pines, whereas the 1R,5R- or (+)-alpha-isomer is more common in North America. The racemic mixture is present in some oils such as eucalyptus oil (Wikipedia). alpha-Pinene is an organic compound of the terpene class, one of two isomers of pinene. It is found in the oils of many species of many coniferous trees, notably the pine. It is also found in the essential oil of rosemary (Rosmarinus officinalis). Both enantiomers are known in nature; 1S,5S- or (-)-alpha-pinene is more common in European pines, whereas the 1R,5R- or (+)-alpha-isomer is more common in North America. The racemic mixture is present in some oils such as eucalyptus oil. (+)-alpha-pinene is the (+)-enantiomer of alpha-pinene. It has a role as a plant metabolite and a human metabolite. It is an enantiomer of a (-)-alpha-pinene. (+)-alpha-Pinene is a natural product found in Juniperus drupacea, Eucalyptus deglupta, and other organisms with data available. The (+)-enantiomer of alpha-pinene. (1R)-α-Pinene is a volatile monoterpene with antimicrobial activities. (1R)-α-Pinene reduces Bacillus cereus population growth, and exhibits repellent effects[1][2]. (1R)-α-Pinene is a volatile monoterpene with antimicrobial activities. (1R)-α-Pinene reduces Bacillus cereus population growth, and exhibits repellent effects[1][2].
Diethyltoluamide
P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03B - Insecticides and repellents D010575 - Pesticides > D007302 - Insect Repellents CONFIDENCE standard compound; EAWAG_UCHEM_ID 213 CONFIDENCE standard compound; INTERNAL_ID 3353 CONFIDENCE standard compound; INTERNAL_ID 4176 CONFIDENCE standard compound; INTERNAL_ID 8223 CONFIDENCE standard compound; INTERNAL_ID 8797 D020011 - Protective Agents D016573 - Agrochemicals Same as: D02379
D-Alanyl-D-alanine
The ATP-dependent carboxylate-amine/thiol ligase superfamily is known to contain enzymes catalyzing the formation of various types of peptide, one of which is d-alanyl-d-alanine.(PMID: 16030213). The glycopeptide antibiotic vancomycin acts by binding to the D-alanyl-D-alanine terminus of the cell wall precursor lipid II in the cytoplasmic membrane.(PMID: 17418637). D-alanine-D-alanine ligase from Thermotoga maritima ATCC 43589 (TmDdl) was a useful biocatalyst for synthesizing D-amino acid dipeptides.D-Alanine-D-alanine ligase (Ddl) catalyzes the biosynthesis of an essential bacterial peptidoglycan precursor D-alanyl-D-alanine and it represents an important target for development of new antibacterial drugs. (PMID: 17267218). D-Alanyl-D-alanine is a microbial metabolite. Alanyl-alanine, also known as ala-ala or A-a dipeptide, is a member of the class of compounds known as dipeptides. Dipeptides are organic compounds containing a sequence of exactly two alpha-amino acids joined by a peptide bond. Alanyl-alanine is soluble (in water) and a weakly acidic compound (based on its pKa). Alanyl-alanine can be found in chives, which makes alanyl-alanine a potential biomarker for the consumption of this food product. Alanyl-alanine can be found primarily in feces. Alanyl-alanine exists in all living organisms, ranging from bacteria to humans. Acquisition and generation of the data is financially supported in part by CREST/JST. D-Ala-D-Ala constitutes the terminus of the peptide part of the peptidoglycan monomer unit and is involved in the transpeptidation reaction as the substrate. D-Ala-D-Ala is catalyzed by D-Alanine-D-Alanine ligase. D-Ala-D-Ala is a bacterial endogenous metabolite[1][2].
4-(Dimethylamino)azobenzene
4-(Dimethylamino)azobenzene is formerly used as a food dye, use discontinued.Methyl yellow, or C.I. 11020, is a chemical compound which may be used as a pH indicator. In aqueous solution at low pH, methyl yellow appears red. Between pH 2.9 and 4.0, methyl yellow undergoes a transition, to become yellow above pH 4.0. As "butter yellow" the agent had been used as a food additive before its toxicity was recognized (Opie EL). (Wikipedia Formerly used as a food dye, use discontinued D009676 - Noxae > D002273 - Carcinogens D004396 - Coloring Agents
Aspartame
Aspartame is the name for an artificial, non-carbohydrate sweetener, aspartyl-phenylalanine-1-methyl ester; i.e., the methyl ester of the dipeptide of the amino acids aspartic acid and phenylalanine. It is marketed under a number of trademark names, such as Equal, and Canderel, and is an ingredient of approximately 6,000 consumer foods and beverages sold worldwide. It is commonly used in diet soft drinks, and is often provided as a table condiment. It is also used in some brands of chewable vitamin supplements. In the European Union, it is also known under the E number (additive code) E951. Aspartame is also one of the sugar substitutes used by diabetics. Upon ingestion, aspartame breaks down into several constituent chemicals, including the naturally-occurring essential amino acid phenylalanine which is a health hazard to the few people born with phenylketonuria, a congenital inability to process phenylalanine. Aspartic acid is an amino acid commonly found in foods. Approximately 40\\\% of aspartame (by mass) is broken down into aspartic acid. Because aspartame is metabolized and absorbed very quickly (unlike aspartic acid-containing proteins in foods), it is known that aspartame could spike blood plasma levels of aspartate. Aspartic acid is in a class of chemicals known as excitotoxins. Abnormally high levels of excitotoxins have been shown in hundreds of animals studies to cause damage to areas of the brain unprotected by the blood-brain barrier and a variety of chronic diseases arising out of this neurotoxicity. Compd. with 100 times the sweetness of sucrose. Artificial sweetener permitted in foods in EU at 300-5500 ppmand is also permitted in USA. Widely used in foods, beverages and pharmaceutical formulations D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 2770 Aspartame (SC-18862) is a methyl ester of a dipeptide. Aspartame can be used as a synthetic nonnutritive sweetener[1][2].
Propazine
CONFIDENCE standard compound; INTERNAL_ID 842; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8960; ORIGINAL_PRECURSOR_SCAN_NO 8958 INTERNAL_ID 842; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8960; ORIGINAL_PRECURSOR_SCAN_NO 8958 CONFIDENCE standard compound; INTERNAL_ID 842; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9098; ORIGINAL_PRECURSOR_SCAN_NO 9096 CONFIDENCE standard compound; INTERNAL_ID 842; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8923; ORIGINAL_PRECURSOR_SCAN_NO 8922 CONFIDENCE standard compound; INTERNAL_ID 842; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8943; ORIGINAL_PRECURSOR_SCAN_NO 8941 CONFIDENCE standard compound; INTERNAL_ID 842; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9124; ORIGINAL_PRECURSOR_SCAN_NO 9123 CONFIDENCE standard compound; INTERNAL_ID 842; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8882; ORIGINAL_PRECURSOR_SCAN_NO 8880 CONFIDENCE standard compound; EAWAG_UCHEM_ID 2741 D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals
Fenthion
Fenthion is an insecticide with low mammalian toxicity. Fenthion is used in agriculture and against mosquito larvae in tropical fresh waters.Fenthion is an organothiophosphate insecticide, avicide, and acaricide. Like most other organophosphates, its mode of action is via cholinesterase inhibition. Due to its relatively low toxicity towards humans and mammals, fenthion is listed as moderately toxic compound in U.S. Environmental Protection Agency and World Health Organization toxicity class. (Wikipedia). Insecticide with low mammalian toxicity. It is used in agriculture and against mosquito larvae in tropical fresh waters D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals
Skullcapflavone II
Skullcapflavone II, a flavonoid derived from Scutellaria baicalensis, has anti-inflammatory, anti-microbial activities. Skullcapflavone II regulates osteoclast differentiation, survival, and function. Skullcapflavone II exerts potent antimicrobial activity against M. aurum and M. bovis BCG[1][2]. Skullcapflavone II, a flavonoid derived from Scutellaria baicalensis, has anti-inflammatory, anti-microbial activities. Skullcapflavone II regulates osteoclast differentiation, survival, and function. Skullcapflavone II exerts potent antimicrobial activity against M. aurum and M. bovis BCG[1][2].
Myricitrin
Myricitrin is a chemical compound. It can be isolated from the root bark of Myrica cerifera (Bayberry, a small tree native to North America). Myricetin 3-rhamnoside is found in many foods, some of which are common grape, black walnut, highbush blueberry, and lentils. Myricitrin is found in black walnut. Myricitrin is a chemical compound. It can be isolated from the root bark of Myrica cerifera (Bayberry, a small tree native to North America) Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CB067_Myricitrin_pos_30eV_CB000029.txt [Raw Data] CB067_Myricitrin_pos_40eV_CB000029.txt [Raw Data] CB067_Myricitrin_pos_10eV_CB000029.txt [Raw Data] CB067_Myricitrin_pos_50eV_CB000029.txt [Raw Data] CB067_Myricitrin_pos_20eV_CB000029.txt [Raw Data] CB067_Myricitrin_neg_40eV_000020.txt [Raw Data] CB067_Myricitrin_neg_30eV_000020.txt [Raw Data] CB067_Myricitrin_neg_50eV_000020.txt [Raw Data] CB067_Myricitrin_neg_10eV_000020.txt [Raw Data] CB067_Myricitrin_neg_20eV_000020.txt Myricitrin is a major antioxidant flavonoid[1]. Myricitrin is a major antioxidant flavonoid[1].
1H-Indole-2,3-dione
Isatin is an indoledione that is the 2,3-diketo derivative of indole. It has a role as an EC 1.4.3.4 (monoamine oxidase) inhibitor and a plant metabolite. Isatin is an indole derivative first obtained by Erdman and Laurent in 1841 as an oxidation product of Indigo dye with nitric acid and chromic acids. The compound is found in many plants and Schiff bases of Isatin are have been investigated for pharmaceutical applications. Isatin is a natural product found in Isatis tinctoria, Alteromonas, and other organisms with data available. An indole-dione that is obtained by oxidation of indigo blue. It is a MONOAMINE OXIDASE INHIBITOR and high levels have been found in urine of PARKINSONISM patients. 1H-Indole-2,3-dione belongs to the class of organic compounds known as indolines. These are compounds containing an indole moiety, which consists of pyrrolidine ring fused to benzene to form 2,3-dihydroindole. An indoledione that is the 2,3-diketo derivative of indole. COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS [Raw Data] CB237_Isatin_pos_20eV_rep000005.txt [Raw Data] CB237_Isatin_pos_50eV_rep000005.txt [Raw Data] CB237_Isatin_pos_30eV_rep000005.txt [Raw Data] CB237_Isatin_pos_40eV_rep000005.txt [Raw Data] CB237_Isatin_pos_10eV_rep000005.txt KEIO_ID I019 Isatin (Indoline-2,3-dione) is a potent inhibitor of monoamine oxidase (MAO) with an IC50 of 3 μM. Also binds to central benzodiazepine receptors (IC50 against clonazepam, 123 μM)[1]. Also acts as an antagonist of both atrial natriuretic peptide stimulated and nitric oxide-stimulated guanylate cyclase activity[2]. Shows effect on the serotonergic system[3]. Isatin (Indoline-2,3-dione) is a potent inhibitor of monoamine oxidase (MAO) with an IC50 of 3 μM. Also binds to central benzodiazepine receptors (IC50 against clonazepam, 123 μM)[1]. Also acts as an antagonist of both atrial natriuretic peptide stimulated and nitric oxide-stimulated guanylate cyclase activity[2]. Shows effect on the serotonergic system[3].
Kaempferide
Kaempferide is a monomethoxyflavone that is the 4-O-methyl derivative of kaempferol. It has a role as an antihypertensive agent and a metabolite. It is a trihydroxyflavone, a monomethoxyflavone and a 7-hydroxyflavonol. It is functionally related to a kaempferol. It is a conjugate acid of a kaempferide(1-). Kaempferide is a natural product found in Ageratina altissima, Chromolaena odorata, and other organisms with data available. Isolated from roots of Alpinia officinarum (lesser galangal). Kaempferide is found in many foods, some of which are herbs and spices, cloves, sour cherry, and european plum. Kaempferide is found in cloves. Kaempferide is isolated from roots of Alpinia officinarum (lesser galangal). A monomethoxyflavone that is the 4-O-methyl derivative of kaempferol. Acquisition and generation of the data is financially supported in part by CREST/JST. Kaempferide is an O-methylated flavonol also found in kaempferol. Kaempferide has antiviral activity. Kaempferide is an orally active flavonol isolated from Hippophae rhamnoides L. Kaempferide has anticancer, anti-inflammatory, antioxidant, antidiabetic, antiobesity, antihypertensive, and neuroprotective activities. Kaempferide induces apoptosis. Kaempferide promotes osteogenesis through antioxidants and can be used in osteoporosis research[1][2][3][4][5][6]. Kaempferide is an O-methylated flavonol also found in kaempferol. Kaempferide has antiviral activity.
Tamarixetin
Tamarixetin is a monomethoxyflavone that is quercetin methylated at position O-4. Isolated from Cyperus teneriffae. It has a role as a metabolite and an antioxidant. It is a 7-hydroxyflavonol, a monomethoxyflavone and a tetrahydroxyflavone. It is functionally related to a quercetin. Tamarixetin is a natural product found in Ageratina altissima, Chromolaena odorata, and other organisms with data available. See also: Trifolium pratense flower (part of). A monomethoxyflavone that is quercetin methylated at position O-4. Isolated from Cyperus teneriffae. Tamarixetin (4'-O-Methyl Quercetin) is a natural flavonoid derivative of quercetin, with anti-oxidative and anti-inflammatory effects. Tamarixetin protects against cardiac hypertrophy[1][2]. Tamarixetin (4'-O-Methyl Quercetin) is a natural flavonoid derivative of quercetin, with anti-oxidative and anti-inflammatory effects. Tamarixetin protects against cardiac hypertrophy[1][2].
Cupressuflavone
Cupressuflavone is a biflavonoid that is obtained by oxidative coupling of two molecules of apigenin resulting in a bond between positions C-8 of the two chromene rings respectively. Isolated from Cupressus sempervirens and Juniperus occidentalis, it exhibits free radical scavenging and antielastase activities. It has a role as an EC 3.4.21.37 (leukocyte elastase) inhibitor, a radical scavenger and a metabolite. It is a biflavonoid, a hydroxyflavone and a ring assembly. Cupressuflavone is a natural product found in Fitzroya cupressoides, Juniperus drupacea, and other organisms with data available. A biflavonoid that is obtained by oxidative coupling of two molecules of apigenin resulting in a bond between positions C-8 of the two chromene rings respectively. Isolated from Cupressus sempervirens and Juniperus occidentalis, it exhibits free radical scavenging and antielastase activities.
Liriodendrin
Liriodendrin is a natural product found in Kalopanax septemlobus, Eleutherococcus gracilistylus, and other organisms with data available. Eleutheroside D is found in tea. Eleutheroside D is a constituent of Siberian ginseng (Eleutherococcus (Acanthopanax) senticosus). Isolated from Eleutherococcus senticosus (Siberian ginseng). Liriodendrin is found in tea. Eleutheroside E is an important component of Acanthopanax, which has anti-inflammatory and protective effects on ischemic heart. Eleutheroside E is an important component of Acanthopanax, which has anti-inflammatory and protective effects on ischemic heart. Syringaresinol diglucoside is a natural compound from bamboo leaves[1]. Syringaresinol diglucoside is a natural compound from bamboo leaves[1].
Sinensetin
Sinensetin is a pentamethoxyflavone that is flavone substituted by methoxy groups at positions 5, 6, 7, 3 and 4 respectively. It has a role as a plant metabolite. It is functionally related to a flavone. Sinensetin is a natural product found in Citrus tankan, Citrus keraji, and other organisms with data available. See also: Tangerine peel (part of); Citrus aurantium fruit rind (part of). A pentamethoxyflavone that is flavone substituted by methoxy groups at positions 5, 6, 7, 3 and 4 respectively. Sinensetin is found in citrus. Sinensetin is found in orange peel and other plant sources. Found in orange peel and other plant sources Sinensetin is a methylated flavonoid found in fruits that has strong anti-vascular and anti-inflammatory properties. Sinensetin is a methylated flavonoid found in fruits that has strong anti-vascular and anti-inflammatory properties.
Beta-tocopherol
beta-Tocopherol is an antioxidant which is synthesized by photosynthetic organisms and plays an important role in human and animal nutrition. beta-Tocopherols can be oxidized in dry CH2Cl2 or CH3CN by one electron to form cation radicals that deprotonate to form the neutral phenoxyl radicals, which are then immediately further oxidized by one electron to the phenoxonium cations (an ECE electrochemical mechanism, where E signifies an electron transfer and C represents a chemical step, with the electrochemical mechanism having been determined by in situ spectroscopic analysis). The phenoxonium cation of beta-tocopherol is stable for several minutes (PMID: 16771430). beta-Tocopherol has been identified in the human placenta (PMID: 32033212). (rel)-β-Tocopherol is a relative configuration of β-Tocopherol.(±)-β-Tocopherol is a lipid-soluble form of vitamin E with antioxidant activity. β-Tocopherol can inhibit tyrosinase activity and melanin synthesis. β-Tocopherol also can prevent the inhibition of cell growth and of PKC activity caused by d-alpha-tocopherol[1].
Isosilybin
Constituent of Silybum marianum (milk thistle). Isosilybin is found in coffee and coffee products and green vegetables. Isosilybin is found in coffee and coffee products. Isosilybin is a constituent of Silybum marianum (milk thistle) Isosilybin is a natural product found in Silybum with data available. [Raw Data] CBA83_Isosilybin-B_pos_20eV.txt [Raw Data] CBA83_Isosilybin-B_neg_30eV.txt [Raw Data] CBA83_Isosilybin-B_neg_20eV.txt [Raw Data] CBA83_Isosilybin-B_pos_10eV.txt [Raw Data] CBA83_Isosilybin-B_pos_40eV.txt [Raw Data] CBA83_Isosilybin-B_neg_10eV.txt [Raw Data] CBA83_Isosilybin-B_pos_50eV.txt [Raw Data] CBA83_Isosilybin-B_pos_30eV.txt [Raw Data] CBA83_Isosilybin-B_neg_50eV.txt [Raw Data] CBA83_Isosilybin-B_neg_40eV.txt Isosilybin (Isosilybinin) is a flavonoid from Silybum marianum; inhibits CYP3A4 induction with an IC50 of 74 μM. Isosilybin (Isosilybinin) is a flavonoid from Silybum marianum; inhibits CYP3A4 induction with an IC50 of 74 μM.
(R)-1-Octen-3-ol
Isolated from a number of essential oils, e.g. lavender, leek, mint and mushrooms. Food odorant responsible for typical mushroom odour. Flavouring ingredient. (R)-1-Octen-3-ol is found in mushrooms, onion-family vegetables, and herbs and spices. (R)-1-Octen-3-ol, also known as 1-vinylhexanol or 3-hydroxy-1-octene, belongs to the class of organic compounds known as fatty alcohols. These are aliphatic alcohols consisting of a chain of a least six carbon atoms Oct-1-en-3-ol, a fatty acid fragrant, is a self-stimulating oxylipin messenger. Oct-1-en-3-ol serves as a signaling molecule in plant cellular responses, plant-herbivore interactions, and plant-plant interactions. Oct-1-en-3-ol causes dopamine neuron degeneration through disruption of dopamine handling[1][2]. Oct-1-en-3-ol, a fatty acid fragrant, is a self-stimulating oxylipin messenger. Oct-1-en-3-ol serves as a signaling molecule in plant cellular responses, plant-herbivore interactions, and plant-plant interactions. Oct-1-en-3-ol causes dopamine neuron degeneration through disruption of dopamine handling[1][2].
Proanthocyanidin A2
Isolated from cassia bark (Cinnamomum aromaticum). Proanthocyanidin A2 is found in many foods, some of which are herbs and spices, cinnamon, avocado, and lingonberry. Proanthocyanidin A2 is found in apple. Proanthocyanidin A2 is isolated from cassia bark (Cinnamomum aromaticum). Procyanidin A1 (Proanthocyanidin A1) is a procyanidin dimer, which inhibits degranulation downstream of protein kinase C activation or Ca2+ influx from an internal store in RBL-213 cells. Procyanidin A1 has antiallergic effects[1]. Procyanidin A1 (Proanthocyanidin A1) is a procyanidin dimer, which inhibits degranulation downstream of protein kinase C activation or Ca2+ influx from an internal store in RBL-213 cells. Procyanidin A1 has antiallergic effects[1]. Procyanidin A2 is a flavonoid found in grapes, with anti-cancer, antioxidant, antimicrobial and anti-inflammation activity[1][2]. Procyanidin A2 is a flavonoid found in grapes, with anti-cancer, antioxidant, antimicrobial and anti-inflammation activity[1][2].
m-Xylene
M-xylene, also known as 1,3-dimethylbenzene or M-xylol, is a member of the class of compounds known as M-xylenes. M-xylenes are aromatic compounds that contain a m-xylene moiety, which is a monocyclic benzene carrying exactly two methyl groups at the 1- and 3-positions. M-xylene is a plastic tasting compound found in black walnut, parsley, and safflower, which makes M-xylene a potential biomarker for the consumption of these food products. M-xylene can be found primarily in blood and feces. M-xylene exists in all eukaryotes, ranging from yeast to humans. M-xylene is formally rated as an unfounded non-carcinogenic (IARC 3) potentially toxic compound. m-Xylene (meta-xylene) is an aromatic hydrocarbon. It is one of the three isomers of dimethylbenzene known collectively as xylenes. The m- stands for meta-, indicating that the two methyl groups in m-xylene occupy positions 1 and 3 on a benzene ring. It is in the positions of the two methyl groups, their arene substitution pattern, that it differs from the other isomers, o-xylene and p-xylene. All have the same chemical formula C6H4(CH3)2. All xylene isomers are colorless and highly flammable . If the compound has been ingested, rapid gastric lavage should be performed using 5\\% sodium bicarbonate. For skin contact, the skin should be washed with soap and water. If the compound has entered the eyes, they should be washed with large quantities of isotonic saline or water. In serious cases, atropine and/or pralidoxime should be administered. Anti-cholinergic drugs work to counteract the effects of excess acetylcholine and reactivate AChE. Atropine can be used as an antidote in conjunction with pralidoxime or other pyridinium oximes (such as trimedoxime or obidoxime), though the use of -oximes has been found to be of no benefit, or possibly harmful, in at least two meta-analyses. Atropine is a muscarinic antagonist, and thus blocks the action of acetylcholine peripherally (T3DB). m-Xylene, also known as 1,3-xylene or m-dimethylbenzene, belongs to the class of organic compounds known as m-xylenes. These are aromatic compounds that contain a m-xylene moiety, which is a monocyclic benzene carrying exactly two methyl groups at the 1- and 3-positions. The conversion m-xylene to isophthalic acid entails catalytic oxidation. m-Xylene (meta-xylene) is an aromatic hydrocarbon. m-Xylene is possibly neutral. m-Xylene is a plastic tasting compound. m-xylene is found, on average, in the highest concentration in safflowers. m-xylene has also been detected, but not quantified, in black walnuts and parsley. This could make m-xylene a potential biomarker for the consumption of these foods. Xylenes are not acutely toxic, for example the LD50 (rat, oral) is 4300 mg/kg. m-Xylene is a potentially toxic compound. Concerns with xylenes focus on narcotic effects. The m- stands for meta-, indicating that the two methyl groups in m-xylene occupy positions 1 and 3 on a benzene ring. All xylene isomers are colorless and highly flammable. Petroleum contains about 1 weight percent xylenes.
(-)-alpha-Curcumene
1-[(2R)-hex-5-en-2-yl]-4-methylbenzene is a member of the class of compounds known as aromatic monoterpenoids. Aromatic monoterpenoids are monoterpenoids containing at least one aromatic ring. (-)-alpha-Curcumene belongs to the class of organic compounds known as sesquiterpenoids. These are terpenes with three consecutive isoprene units.
beta-Selinene
Constituent of celery oiland is) also from Cyperus rotundus (nutgrass) and Humulus lupulus (hops). beta-Selinene is found in many foods, some of which are safflower, star anise, chinese cinnamon, and allspice. beta-Selinene is found in alcoholic beverages. beta-Selinene is a constituent of celery oil. Also from Cyperus rotundus (nutgrass) and Humulus lupulus (hops)
Hypolaetin
A pentahydroxyflavone that consists of luteolin substituted by an additional hydroxy group at position 8.
Robustaflavone
A biflavonoid that is obtained by oxidative coupling of two molecules of apigenin resulting in a bond between positions C-3 of the hydroxyphenyl ring and C-6 of the chromene ring. Isolated from Thuja orientalis and Rhus succedanea it exhibits antioxidant, cytotoxic and anti-hepatitis B activity.
(-)-trans-Isopulegone
(-)-trans-Isopulegone is found in fats and oils. (-)-trans-Isopulegone is a flavouring ingredient. It is isolated from oil of American pennyroyal (Hedeoma pulegioides), Mentha species and others, usually with Pulegon Flavouring ingredient. Isolated from oil of American pennyroyal (Hedeoma pulegioides), Mentha subspecies and others, usually with Pulegone. (-)-trans-Isopulegone is found in fats and oils.
3-NITROFLUORANTHENE
D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens
Pinene
Pinene (is a bicyclic monoterpene chemical compound. There are two structural isomers of pinene found in nature: alpha-pinene and beta-pinene. As the name suggests, both forms are important constituents of pine resin; they are also found in the resins of many other conifers, as well as in non-coniferous plants. Both isomers are used by many insects in their chemical communication system.
β-Pinene
An isomer of pinene with an exocyclic double bond. It is a component of essential oils from many plants.
Widely distributed in plants, usually associated with a-Pinene
Neobaicalein
Scullcapflavone II is a tetramethoxyflavone that is flavone substituted by methoxy groups at positions 6, 7, 8 and 6 and hydroxy groups at positons 5 and 2 respectively. It has a role as a plant metabolite and an anti-asthmatic drug. It is a tetramethoxyflavone and a dihydroxyflavone. It is functionally related to a flavone. Skullcapflavone II is a natural product found in Lagochilus leiacanthus, Scutellaria guatemalensis, and other organisms with data available. A tetramethoxyflavone that is flavone substituted by methoxy groups at positions 6, 7, 8 and 6 and hydroxy groups at positons 5 and 2 respectively. Skullcapflavone II, a flavonoid derived from Scutellaria baicalensis, has anti-inflammatory, anti-microbial activities. Skullcapflavone II regulates osteoclast differentiation, survival, and function. Skullcapflavone II exerts potent antimicrobial activity against M. aurum and M. bovis BCG[1][2]. Skullcapflavone II, a flavonoid derived from Scutellaria baicalensis, has anti-inflammatory, anti-microbial activities. Skullcapflavone II regulates osteoclast differentiation, survival, and function. Skullcapflavone II exerts potent antimicrobial activity against M. aurum and M. bovis BCG[1][2].
alpha-Curcumene
alpha-Curcumene belongs to the family of Sesquiterpenes. These are terpenes with three consecutive isoprene units
Myricitrin
Myricitrin is a glycosyloxyflavone that consists of myricetin attached to a alpha-L-rhamnopyranosyl residue at position 3 via a glycosidic linkage. Isolated from Myrica cerifera, it exhibits anti-allergic activity. It has a role as an anti-allergic agent, an EC 1.14.13.39 (nitric oxide synthase) inhibitor, an EC 2.7.11.13 (protein kinase C) inhibitor and a plant metabolite. It is a pentahydroxyflavone, a glycosyloxyflavone, an alpha-L-rhamnoside and a monosaccharide derivative. It is functionally related to a myricetin. It is a conjugate acid of a myricitrin(1-). Myricitrin is a natural product found in Syzygium levinei, Limonium aureum, and other organisms with data available. A glycosyloxyflavone that consists of myricetin attached to a alpha-L-rhamnopyranosyl residue at position 3 via a glycosidic linkage. Isolated from Myrica cerifera, it exhibits anti-allergic activity. Myricitrin is a major antioxidant flavonoid[1]. Myricitrin is a major antioxidant flavonoid[1].
Proanthocyanidin A2
Proanthocyanidin A2 is a proanthocyanidin obtained by the condensation of (-)-epicatechin units. It has a role as an antioxidant, an anti-HIV agent, a metabolite and an angiogenesis modulating agent. It is a hydroxyflavan and a proanthocyanidin. It is functionally related to a (-)-epicatechin. Proanthocyanidin A2 is a natural product found in Cinnamomum iners, Cinnamomum aromaticum, and other organisms with data available. See also: Litchi fruit (part of). Isolated from cassia bark (Cinnamomum aromaticum). Proanthocyanidin A2 is found in many foods, some of which are herbs and spices, cinnamon, avocado, and lingonberry. Proanthocyanidin A2 is found in apple. Proanthocyanidin A2 is isolated from cassia bark (Cinnamomum aromaticum). Procyanidin A2 is a flavonoid found in grapes, with anti-cancer, antioxidant, antimicrobial and anti-inflammation activity[1][2]. Procyanidin A2 is a flavonoid found in grapes, with anti-cancer, antioxidant, antimicrobial and anti-inflammation activity[1][2].
Liriodendrin
(-)-syringaresinol O,O-bis(beta-D-glucoside) is a beta-D-glucoside that is the 4,4-bis(beta-D-glucosyl) derivative of (-)-syringaresinol. It has a role as a plant metabolite, an antioxidant and an anti-inflammatory agent. It is functionally related to a (-)-syringaresinol. Acanthoside D is a natural product found in Crescentia cujete, Daphne giraldii, and other organisms with data available. A beta-D-glucoside that is the 4,4-bis(beta-D-glucosyl) derivative of (-)-syringaresinol. Eleutheroside E is an important component of Acanthopanax, which has anti-inflammatory and protective effects on ischemic heart. Eleutheroside E is an important component of Acanthopanax, which has anti-inflammatory and protective effects on ischemic heart. Syringaresinol diglucoside is a natural compound from bamboo leaves[1]. Syringaresinol diglucoside is a natural compound from bamboo leaves[1].
Proanthocyanidin A2
Proanthocyanidin A2 is a proanthocyanidin obtained by the condensation of (-)-epicatechin units. It has a role as an antioxidant, an anti-HIV agent, a metabolite and an angiogenesis modulating agent. It is a hydroxyflavan and a proanthocyanidin. It is functionally related to a (-)-epicatechin. Proanthocyanidin A2 is a natural product found in Cinnamomum iners, Cinnamomum aromaticum, and other organisms with data available. See also: Litchi fruit (part of). Isolated from cassia bark (Cinnamomum aromaticum). Proanthocyanidin A2 is found in many foods, some of which are herbs and spices, cinnamon, avocado, and lingonberry. Proanthocyanidin A2 is found in apple. Proanthocyanidin A2 is isolated from cassia bark (Cinnamomum aromaticum). A proanthocyanidin obtained by the condensation of (-)-epicatechin units. Procyanidin A2 is a flavonoid found in grapes, with anti-cancer, antioxidant, antimicrobial and anti-inflammation activity[1][2]. Procyanidin A2 is a flavonoid found in grapes, with anti-cancer, antioxidant, antimicrobial and anti-inflammation activity[1][2].
Tiliroside
Acquisition and generation of the data is financially supported in part by CREST/JST. Tiliroside, a glycosidic flavonoid, possesses anti-diabetic activities. Tiliroside is a noncompetitive inhibitor of α-amylase with a Ki value of 84.2? μM. Tiliroside inhibits carbohydrate digestion and glucose absorption in the gastrointestinal tract[1]. Tiliroside, a glycosidic flavonoid, possesses anti-diabetic activities. Tiliroside is a noncompetitive inhibitor of α-amylase with a Ki value of 84.2? μM. Tiliroside inhibits carbohydrate digestion and glucose absorption in the gastrointestinal tract[1]. Tribuloside is a flavonoid that can be isolated from Tribulus terrestris L[1]. Tribuloside exhibits anti-mycobacterial activity against the non-pathogenic Mycobacterium species with a minimum inhibitory concentration (MIC) of 5.0 mg/mL. Tribuloside has 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity[2]. Tribuloside is a flavonoid that can be isolated from Tribulus terrestris L[1]. Tribuloside exhibits anti-mycobacterial activity against the non-pathogenic Mycobacterium species with a minimum inhibitory concentration (MIC) of 5.0 mg/mL. Tribuloside has 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity[2].
Afzelin
Afzelin is a glycosyloxyflavone that is kaempferol attached to an alpha-L-rhamnosyl residue at position 3 via a glycosidic linkage. It has a role as a plant metabolite, an antibacterial agent and an anti-inflammatory agent. It is a glycosyloxyflavone, a trihydroxyflavone and a monosaccharide derivative. It is functionally related to a kaempferol. It is a conjugate acid of an afzelin(1-). Afzelin is a natural product found in Premna odorata, Vicia tenuifolia, and other organisms with data available. A glycosyloxyflavone that is kaempferol attached to an alpha-L-rhamnosyl residue at position 3 via a glycosidic linkage. Acquisition and generation of the data is financially supported in part by CREST/JST. Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1]. Afzelin (Kaempferol-3-O-rhamnoside)It is a flavonol glycoside that has anti-inflammatory, anti-oxidative stress response, anti-apoptotic, and anti-cardiac cytotoxic effects. AfzelinIt can reduce mitochondrial damage, enhance mitochondrial biosynthesis, and reduce mitochondria-related proteins. Parkinand PTENinduced putative kinase 1 (putative kinase 1)s level. AfzelinCan be improved D-galactosamine(GalN)/LPSSurvival rate of mice treated with doxorubicin prophylaxis (HY-15142A)Induced cardiotoxicity and scopolamine (HY-N0296)-induced neurological injury. AfzelinAlso inhibits asthma and allergies caused by ovalbumin[1][2][3][4]. Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1].
Quercitrin
Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2].
Sinensetin
Sinensetin is a methylated flavonoid found in fruits that has strong anti-vascular and anti-inflammatory properties. Sinensetin is a methylated flavonoid found in fruits that has strong anti-vascular and anti-inflammatory properties.
Thujone
α-Thujone is a monoterpene isolated from Thuja occidentalis essential oil with potent anti-tumor activities. α-Thujone is a reversible modulator of the GABA type A receptor and the IC50 for α-Thujone is 21 μM in suppressing the GABA-induced currents. α-Thujone induces ROS accumulation-dependent cytotoxicity, also induces cell apoptosis and autophagy. α-Thujone has antinociceptive, insecticidal, and anthelmintic activity, and easily penetrates the blood-brain barrier[1][2][3]. α-Thujone is a monoterpene isolated from Thuja occidentalis essential oil with potent anti-tumor activities. α-Thujone is a reversible modulator of the GABA type A receptor and the IC50 for α-Thujone is 21 μM in suppressing the GABA-induced currents. α-Thujone induces ROS accumulation-dependent cytotoxicity, also induces cell apoptosis and autophagy. α-Thujone has antinociceptive, insecticidal, and anthelmintic activity, and easily penetrates the blood-brain barrier[1][2][3]. α-Thujone is a monoterpene isolated from Thuja occidentalis essential oil with potent anti-tumor activities. α-Thujone is a reversible modulator of the GABA type A receptor and the IC50 for α-Thujone is 21 μM in suppressing the GABA-induced currents. α-Thujone induces ROS accumulation-dependent cytotoxicity, also induces cell apoptosis and autophagy. α-Thujone has antinociceptive, insecticidal, and anthelmintic activity, and easily penetrates the blood-brain barrier[1][2][3].
Lupenone
Lupenone, isolated from Musa basjoo, belongs to lupane type triterpenoids. Lupenone shows various pharmacological activities including anti-inflammatory, anti-virus, anti-diabetes, anti-cancer, improving Chagas disease without major toxicity[1][2]. Lupenone is an orally active lupine-type triterpenoid that can be isolated from Musa basjoo. Lupenone Lupenone plays a role through the PI3K/Akt/mTOR and NF-κB signaling pathways. Lupenone has anti-inflammatory, antiviral, antidiabetic and anticancer activities[1][2][3]. Lupenone, isolated from Musa basjoo, belongs to lupane type triterpenoids. Lupenone shows various pharmacological activities including anti-inflammatory, anti-virus, anti-diabetes, anti-cancer, improving Chagas disease without major toxicity[1][2].
Gamma-tocopherol/beta-tocopherol
beta-Tocopherol is an antioxidant which is synthesized by photosynthetic organisms and plays an important role in human and animal nutrition. beta-Tocopherols can be oxidized in dry CH2Cl2 or CH3CN by one electron to form cation radicals that deprotonate to form the neutral phenoxyl radicals, which are then immediately further oxidized by one electron to the phenoxonium cations (an ECE electrochemical mechanism, where E signifies an electron transfer and C represents a chemical step, with the electrochemical mechanism having been determined by in situ spectroscopic analysis). The phenoxonium cation of beta-tocopherol is stable for several minutes (PMID: 16771430). beta-Tocopherol has been identified in the human placenta (PMID: 32033212). Beta-tocopherol is a tocopherol in which the chroman-6-ol core is substituted by methyl groups at positions 5 and 8. While it is found in low concentrations in many vegetable oils, only cottonseed oil contains significant amounts. It has a role as a plant metabolite and a food component. It is a vitamin E and a tocopherol. beta-Tocopherol is a natural product found in Trachycarpus fortunei, Crataegus monogyna, and other organisms with data available. A natural tocopherol with less antioxidant activity than alpha-tocopherol. It exhibits antioxidant activity by virtue of the phenolic hydrogen on the 2H-1-benzopyran-6-ol nucleus. As in GAMMA-TOCOPHEROL, it also has three methyl groups on the 6-chromanol nucleus but at different sites. A tocopherol in which the chroman-6-ol core is substituted by methyl groups at positions 5 and 8. While it is found in low concentrations in many vegetable oils, only cottonseed oil contains significant amounts. (rel)-β-Tocopherol is a relative configuration of β-Tocopherol.(±)-β-Tocopherol is a lipid-soluble form of vitamin E with antioxidant activity. β-Tocopherol can inhibit tyrosinase activity and melanin synthesis. β-Tocopherol also can prevent the inhibition of cell growth and of PKC activity caused by d-alpha-tocopherol[1]. β-Tocopherol is an analogue of vitamin E, exhibits antioxidant properties. β-Tocopherol can inhibit tyrosinase activity and melanin synthesis. β-Tocopherol also can prevent the inhibition of cell growth and of PKC activity caused by d-alpha-tocopherol[1][2][3]. β-Tocopherol is an analogue of vitamin E, exhibits antioxidant properties. β-Tocopherol can inhibit tyrosinase activity and melanin synthesis. β-Tocopherol also can prevent the inhibition of cell growth and of PKC activity caused by d-alpha-tocopherol[1][2][3].
fenthion
D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals CONFIDENCE standard compound; INTERNAL_ID 3155 CONFIDENCE standard compound; INTERNAL_ID 8480
Aspartame
D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; IAOZJIPTCAWIRG-QWRGUYRKSA-N_STSL_0231_Aspartame_0031fmol_190114_S2_LC02MS02_038; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. CONFIDENCE standard compound; INTERNAL_ID 5809 Aspartame (SC-18862) is a methyl ester of a dipeptide. Aspartame can be used as a synthetic nonnutritive sweetener[1][2].
Diethyltoluamide
P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03B - Insecticides and repellents D010575 - Pesticides > D007302 - Insect Repellents D020011 - Protective Agents D016573 - Agrochemicals Same as: D02379 CONFIDENCE Reference Standard (Level 1)
Sclareol
Sclareol is a labdane diterpenoid that is labd-14-ene substituted by hydroxy groups at positions 8 and 13. It has been isolated from Salvia sclarea. It has a role as an antimicrobial agent, an apoptosis inducer, a fragrance, an antifungal agent and a plant metabolite. Sclareol is a natural product found in Curcuma aromatica, Curcuma wenyujin, and other organisms with data available. See also: Clary Sage Oil (part of). A labdane diterpenoid that is labd-14-ene substituted by hydroxy groups at positions 8 and 13. It has been isolated from Salvia sclarea. relative retention time with respect to 9-anthracene Carboxylic Acid is 1.468 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.471 Sclareol is isolated from Salvia sclarea with anticarcinogenic activity. Sclareol shows strong cytotoxic activity against mouse leukemia?(P-388), human epidermal?carcinoma?(KB) cells and human?leukemia?cell lines. Sclareol induces cell apoptosis[1]. Sclareol is isolated from Salvia sclarea with anticarcinogenic activity. Sclareol shows strong cytotoxic activity against mouse leukemia?(P-388), human epidermal?carcinoma?(KB) cells and human?leukemia?cell lines. Sclareol induces cell apoptosis[1].
Kaempferide
relative retention time with respect to 9-anthracene Carboxylic Acid is 1.191 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.194 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.190 Kaempferide is an O-methylated flavonol also found in kaempferol. Kaempferide has antiviral activity. Kaempferide is an orally active flavonol isolated from Hippophae rhamnoides L. Kaempferide has anticancer, anti-inflammatory, antioxidant, antidiabetic, antiobesity, antihypertensive, and neuroprotective activities. Kaempferide induces apoptosis. Kaempferide promotes osteogenesis through antioxidants and can be used in osteoporosis research[1][2][3][4][5][6]. Kaempferide is an O-methylated flavonol also found in kaempferol. Kaempferide has antiviral activity.
Sabinene
Sabinene is a thujene that is a bicyclic monoterpene isolated from the essential oils of various plant species. It has a role as a plant metabolite. Black pepper allergenic extract is used in allergenic testing. Laurus nobilis allergenic extract is used in allergenic testing. Nutmeg allergenic extract is used in allergenic testing. Sabinene is a natural product found in Teucrium montanum, Xylopia aromatica, and other organisms with data available. Carrot Seed Oil is the oil extracted from the seeds of Daucus carota. Carrot seed oil is primarily used in skin treatment preparations. A thujene that is a bicyclic monoterpene isolated from the essential oils of various plant species. 4(10)-thujene, also known as sabinen or 1-isopropyl-4-methylenebicyclo[3.1.0]hexane, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. 4(10)-thujene is a citrus, pepper, and pine tasting compound and can be found in a number of food items such as sweet orange, green bell pepper, pot marjoram, and parsley, which makes 4(10)-thujene a potential biomarker for the consumption of these food products. Sabinene is an naturally occurring bicyclic monoterpene which can be used as flavorings, perfume additives, fine chemicals, and advanced biofuels. Sabinene is also an orally active compound to attenuates skeletal muscle atrophy and regulates ROS-mediated MAPK/MuRF-1 pathways[1][2]. Sabinene is an naturally occurring bicyclic monoterpene which can be used as flavorings, perfume additives, fine chemicals, and advanced biofuels. Sabinene is also an orally active compound to attenuates skeletal muscle atrophy and regulates ROS-mediated MAPK/MuRF-1 pathways[1][2].
Kaempferid
Kaempferide is an O-methylated flavonol also found in kaempferol. Kaempferide has antiviral activity. Kaempferide is an orally active flavonol isolated from Hippophae rhamnoides L. Kaempferide has anticancer, anti-inflammatory, antioxidant, antidiabetic, antiobesity, antihypertensive, and neuroprotective activities. Kaempferide induces apoptosis. Kaempferide promotes osteogenesis through antioxidants and can be used in osteoporosis research[1][2][3][4][5][6]. Kaempferide is an O-methylated flavonol also found in kaempferol. Kaempferide has antiviral activity.
nerol
Nerol is a constituent of neroli oil. Nerol Nerol triggers mitochondrial dysfunction and induces apoptosis via elevation of Ca2+ and ROS. Antifungal activity[1][2]. Nerol is a constituent of neroli oil. Nerol Nerol triggers mitochondrial dysfunction and induces apoptosis via elevation of Ca2+ and ROS. Antifungal activity[1][2]. Nerol is a constituent of neroli oil. Nerol Nerol triggers mitochondrial dysfunction and induces apoptosis via elevation of Ca2+ and ROS. Antifungal activity[1][2].
1-OCTEN-3-OL
Oct-1-en-3-ol, a fatty acid fragrant, is a self-stimulating oxylipin messenger. Oct-1-en-3-ol serves as a signaling molecule in plant cellular responses, plant-herbivore interactions, and plant-plant interactions. Oct-1-en-3-ol causes dopamine neuron degeneration through disruption of dopamine handling[1][2]. Oct-1-en-3-ol, a fatty acid fragrant, is a self-stimulating oxylipin messenger. Oct-1-en-3-ol serves as a signaling molecule in plant cellular responses, plant-herbivore interactions, and plant-plant interactions. Oct-1-en-3-ol causes dopamine neuron degeneration through disruption of dopamine handling[1][2].
7-isopropenyl-4a-methyl-1-methylenedecahydronaphthalene
β-Phellandrene
β-Phellandrene is obtained from Carum petroselinum. β-Phellandrene can be used to essential oil additives[1]. β-Phellandrene is obtained from Carum petroselinum. β-Phellandrene can be used to essential oil additives[1].
FOH 8:1
Oct-1-en-3-ol, a fatty acid fragrant, is a self-stimulating oxylipin messenger. Oct-1-en-3-ol serves as a signaling molecule in plant cellular responses, plant-herbivore interactions, and plant-plant interactions. Oct-1-en-3-ol causes dopamine neuron degeneration through disruption of dopamine handling[1][2]. Oct-1-en-3-ol, a fatty acid fragrant, is a self-stimulating oxylipin messenger. Oct-1-en-3-ol serves as a signaling molecule in plant cellular responses, plant-herbivore interactions, and plant-plant interactions. Oct-1-en-3-ol causes dopamine neuron degeneration through disruption of dopamine handling[1][2].
beta-selinene
An optically active form of beta-selinene having (+)-(4aR,7R,8aS)-configuration.
Isatin
COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Isatin (Indoline-2,3-dione) is a potent inhibitor of monoamine oxidase (MAO) with an IC50 of 3 μM. Also binds to central benzodiazepine receptors (IC50 against clonazepam, 123 μM)[1]. Also acts as an antagonist of both atrial natriuretic peptide stimulated and nitric oxide-stimulated guanylate cyclase activity[2]. Shows effect on the serotonergic system[3]. Isatin (Indoline-2,3-dione) is a potent inhibitor of monoamine oxidase (MAO) with an IC50 of 3 μM. Also binds to central benzodiazepine receptors (IC50 against clonazepam, 123 μM)[1]. Also acts as an antagonist of both atrial natriuretic peptide stimulated and nitric oxide-stimulated guanylate cyclase activity[2]. Shows effect on the serotonergic system[3].
17066-67-0
α-Pinene
A pinene that is bicyclo[3.1.1]hept-2-ene substituted by methyl groups at positions 2, 6 and 6 respectively. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1].
Antioxine
COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Carvacrol is a monoterpenoid phenol isolated from Thymus mongolicus Ronn., with antioxidant, anti-inflammatory and anticancer properties. Carvacrol causes cell cycle arrest in G0/G1, downregulates Notch-1, and Jagged-1, and induces apoptosis[1]. Carvacrol is a monoterpenoid phenol isolated from Thymus mongolicus Ronn., with antioxidant, anti-inflammatory and anticancer properties. Carvacrol causes cell cycle arrest in G0/G1, downregulates Notch-1, and Jagged-1, and induces apoptosis[1].
viminalol
Alpha-amyrin is a pentacyclic triterpenoid that is ursane which contains a double bond between positions 12 and 13 and in which the hydrogen at the 3beta position is substituted by a hydroxy group. It is a pentacyclic triterpenoid and a secondary alcohol. It derives from a hydride of an ursane. alpha-Amyrin is a natural product found in Ficus septica, Ficus virens, and other organisms with data available. See also: Calendula Officinalis Flower (part of); Viburnum opulus bark (part of); Eupatorium perfoliatum whole (part of) ... View More ...
Safranal
Safranal is an orally active main component of Saffron (Crocus sativus) and is responsible for the unique aroma of this spice. Safranal has neuroprotective and anti-inflammatory effects and has the potential for Parkinson’s disease research[1]. Safranal is an orally active main component of Saffron (Crocus sativus) and is responsible for the unique aroma of this spice. Safranal has neuroprotective and anti-inflammatory effects and has the potential for Parkinson’s disease research[1].
Helixin
alpha-Hederin (α-Hederin), a monodesmosidic triterpenoid saponin, exhibits promising antitumor potential against a variety of human cancer cell lines. alpha-Hederin could inhibit the proliferation and induce apoptosis of gastric cancer accompanied by glutathione decrement and reactive oxygen species generation via activating mitochondrial dependent pathway[1]. alpha-Hederin (α-Hederin), a monodesmosidic triterpenoid saponin, exhibits promising antitumor potential against a variety of human cancer cell lines. alpha-Hederin could inhibit the proliferation and induce apoptosis of gastric cancer accompanied by glutathione decrement and reactive oxygen species generation via activating mitochondrial dependent pathway[1].
NCI60_040650
Skullcapflavone II, a flavonoid derived from Scutellaria baicalensis, has anti-inflammatory, anti-microbial activities. Skullcapflavone II regulates osteoclast differentiation, survival, and function. Skullcapflavone II exerts potent antimicrobial activity against M. aurum and M. bovis BCG[1][2]. Skullcapflavone II, a flavonoid derived from Scutellaria baicalensis, has anti-inflammatory, anti-microbial activities. Skullcapflavone II regulates osteoclast differentiation, survival, and function. Skullcapflavone II exerts potent antimicrobial activity against M. aurum and M. bovis BCG[1][2].
Silychristin
A flavonolignan isolated from Silybum marianum and has been shown to exhibit inhibitory activities against lipoxygenase and prostaglandin synthetase. Silychristin is a flavonolignan isolated from Silybum marianum and has been shown to exhibit inhibitory activities against lipoxygenase and prostaglandin synthetase. It has a role as a radical scavenger, a lipoxygenase inhibitor, a prostaglandin antagonist and a metabolite. It is a flavonolignan, a member of 1-benzofurans, a polyphenol, an aromatic ether and a secondary alpha-hydroxy ketone. Silicristin is a natural product found in Cunila, Anastatica hierochuntica, and other organisms with data available. C26170 - Protective Agent > C2081 - Hepatoprotective Agent Silychristin is an abundant flavonolignan present in the fruits of Silybum marianum, with antioxidant properties. Silychristin is a potent inhibitor of the thyroid hormone transporter MCT8, and elicits a strong inhibition of T3 uptake with an IC50 of 110 nM[1][2]. Silychristin is an abundant flavonolignan present in the fruits of Silybum marianum, with antioxidant properties. Silychristin is a potent inhibitor of the thyroid hormone transporter MCT8, and elicits a strong inhibition of T3 uptake with an IC50 of 110 nM[1][2].
Tiliroside
Tribuloside is a glycosyloxyflavone that is kaempferol attached to a 6-O-[(2E)-3-(4-hydroxyphenyl)prop-2-enoyl]-beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has a role as a plant metabolite. It is a glycosyloxyflavone, a cinnamate ester, a trihydroxyflavone and a monosaccharide derivative. It is functionally related to a kaempferol and a trans-4-coumaric acid. Tiliroside is a natural product found in Phlomoides spectabilis, Anaphalis contorta, and other organisms with data available. A glycosyloxyflavone that is kaempferol attached to a 6-O-[(2E)-3-(4-hydroxyphenyl)prop-2-enoyl]-beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. Tiliroside, a glycosidic flavonoid, possesses anti-diabetic activities. Tiliroside is a noncompetitive inhibitor of α-amylase with a Ki value of 84.2? μM. Tiliroside inhibits carbohydrate digestion and glucose absorption in the gastrointestinal tract[1]. Tiliroside, a glycosidic flavonoid, possesses anti-diabetic activities. Tiliroside is a noncompetitive inhibitor of α-amylase with a Ki value of 84.2? μM. Tiliroside inhibits carbohydrate digestion and glucose absorption in the gastrointestinal tract[1]. Tribuloside is a flavonoid that can be isolated from Tribulus terrestris L[1]. Tribuloside exhibits anti-mycobacterial activity against the non-pathogenic Mycobacterium species with a minimum inhibitory concentration (MIC) of 5.0 mg/mL. Tribuloside has 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity[2]. Tribuloside is a flavonoid that can be isolated from Tribulus terrestris L[1]. Tribuloside exhibits anti-mycobacterial activity against the non-pathogenic Mycobacterium species with a minimum inhibitory concentration (MIC) of 5.0 mg/mL. Tribuloside has 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity[2].
Ricinoleic_acid
Ricinoleic acid is a (9Z)-12-hydroxyoctadec-9-enoic acid in which the 12-hydroxy group has R-configuration.. It is a conjugate acid of a ricinoleate. Ricinoleic acid is a natural product found in Cephalocroton cordofanus, Crotalaria retusa, and other organisms with data available. See also: Polyglyceryl-6 polyricinoleate (monomer of); Polyglyceryl-4 polyricinoleate (monomer of); Polyglyceryl-5 polyricinoleate (monomer of) ... View More ... A (9Z)-12-hydroxyoctadec-9-enoic acid in which the 12-hydroxy group has R-configuration..
Methyl Yellow
D009676 - Noxae > D002273 - Carcinogens D004396 - Coloring Agents
(-)-alpha-Curcumene
An alpha-curcumene that has R configuration at the chiral centre.