Adenosine phosphosulfate (BioDeep_00000001712)
Secondary id: BioDeep_00001868650
natural product human metabolite PANOMIX_OTCML-2023 Endogenous
代谢物信息卡片
化学式: C10H14N5O10PS (427.01989940000004)
中文名称: 硫酸化腺苷5'-磷酸
谱图信息:
最多检出来源 Homo sapiens(natural_products) 6.5%
分子结构信息
SMILES: C([C@@H]1[C@H]([C@H]([C@H](n2cnc3c(N)ncnc23)O1)O)O)OP(=O)(O)OS(=O)(=O)O
InChI: InChI=1S/C10H14N5O10PS/c11-8-5-9(13-2-12-8)15(3-14-5)10-7(17)6(16)4(24-10)1-23-26(18,19)25-27(20,21)22/h2-4,6-7,10,16-17H,1H2,(H,18,19)(H2,11,12,13)(H,20,21,22)/t4-,6-,7-,10-/m1/s1
描述信息
Adenosine phosphosulfate, also known as adenylylsulfate or adenosine sulfatophosphate, belongs to the class of organic compounds known as purine ribonucleoside monophosphates. These are nucleotides consisting of a purine base linked to a ribose to which one monophosphate group is attached. Adenosine phosphosulfate exists in all living species, ranging from bacteria to humans. Within humans, adenosine phosphosulfate participates in a number of enzymatic reactions. In particular, adenosine phosphosulfate can be biosynthesized from sulfate through the action of the enzyme bifunctional 3-phosphoadenosine 5-phosphosulfate synthase 2. In addition, adenosine phosphosulfate can be converted into phosphoadenosine phosphosulfate; which is catalyzed by the enzyme bifunctional 3-phosphoadenosine 5-phosphosulfate synthase 2. In humans, adenosine phosphosulfate is involved in sulfate/sulfite metabolism. Outside of the human body, Adenosine phosphosulfate has been detected, but not quantified in several different foods, such as chia, yardlong beans, swiss chards, sapodilla, and chicory leaves. This could make adenosine phosphosulfate a potential biomarker for the consumption of these foods. An adenosine 5-phosphate having a sulfo group attached to one the phosphate OH groups.
Adenosine phosphosulfate (also known as APS) is the initial compound formed by the action of ATP sulfurylase (or PAPS synthetase) on sulfate ions after sulfate uptake. PAPS synthetase 1 is a bifunctional enzyme with both ATP sulfurylase and APS kinase activity, which mediates two steps in the sulfate activation pathway. The first step is the transfer of a sulfate group to ATP to yield adenosine 5-phosphosulfate (APS), and the second step is the transfer of a phosphate group from ATP to APS yielding 3-phosphoadenylylsulfate (PAPS). In mammals, PAPS is the sole source of sulfate; APS appears to be only an intermediate in the sulfate-activation pathway. [HMDB]. Adenosine phosphosulfate is found in many foods, some of which are muskmelon, garlic, caraway, and peach (variety).
同义名列表
54 个代谢物同义名
[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]sulfonic acid; Adenylic acid monoanhydride with sulfuric acid; Adenylic acid monoanhydride with sulfurate; Adenosine-5-phosphosulfate sodium salt; Adenosine 5-phosphosulphuric acid; ADENOSINE-5-phosphosulphuric acid; Adenosine 5’-monophosphosulphate; Adenosine 5-phosphosulfuric acid; ADENOSINE-5-phosphosulfuric acid; Adenosine phosphosulphuric acid; Adenosine 5-monophosphosulphate; Adenosine 5’-monophosphosulfate; Adenosine phosphosulfuric acid; Adenosine 5-monophosphosulfate; Adenosine 5-sulphatophosphate; Adenosine 5’-sulfatophosphate; Adenosine 5-sulfatophosphate; Adenosine 5’-phosphosulphate; ADENOSINE-5-phosphosulphate; Adenosine 5-phosphosulphate; 5-Phosphosulfate, adenosine; Adenosine 5’-phosphosulfate; Adenosine 5 phosphosulfate; ADENOSINE-5-phosphosulfATE; Adenosine sulfatophosphate; Adenosine 5-phosphosulfate; Phosphosulfate, adenosine; 5-Adenylyl sulphuric acid; Adenosine phosphosulphate; Adenosine phosphosulfate; 5-Adenylyl sulfate (APS); 5-Adenylyl sulfuric acid; Adenylylsulphuric acid; Phospho adenylsulfate; Phospho-adenylsulfate; Adenylylsulfuric acid; 5’-Adenylyl sulphate; 5-Adenylyl sulphate; 5’-Adenylyl sulfate; 5-Adenylyl sulfate; Adenylyl-sulphate; Adenylyl sulphate; Sulfate, adenylyl; Adenylylsulphate; Adenylyl sulfate; Sulfatophosphate; Adenylyl-sulfate; Phosphosulphate; Adenylylsulfate; SCHEMBL4292820; Phosphosulfate; AMPS; APS; Adenosine 5'-phosphosulfate (APS)
数据库引用编号
24 个数据库交叉引用编号
- ChEBI: CHEBI:17709
- KEGG: C00224
- PubChem: 10238
- PubChem: 228
- HMDB: HMDB0001003
- Metlin: METLIN3531
- DrugBank: DB03708
- ChEMBL: CHEMBL572546
- MeSH: Adenosine Phosphosulfate
- MetaCyc: APS
- KNApSAcK: C00007445
- foodb: FDB022362
- chemspider: 9821
- CAS: 485-84-7
- MoNA: PS011108
- MoNA: PS011107
- MoNA: PS011109
- MoNA: PS011111
- PMhub: MS000001033
- PubChem: 3524
- PDB-CCD: ADX
- 3DMET: B01194
- NIKKAJI: J37.502K
- RefMet: Adenosine phosphosulfate
分类词条
相关代谢途径
Reactome(3)
PlantCyc(0)
代谢反应
297 个相关的代谢反应过程信息。
Reactome(26)
- Mycobacterium tuberculosis biological processes:
CYSTA + H2O ⟶ 2OBUTA + L-Cys + ammonia
- Sulfur compound metabolism:
CYSTA + H2O ⟶ 2OBUTA + L-Cys + ammonia
- Sulfate assimilation:
ATP + H2O + SubI--sulfate complex ⟶ ADP + Pi + SO4(2-) + SubI
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glycosaminoglycan metabolism:
H2O + linker chain(2) ⟶ D-xylose + Gal
- Transport and synthesis of PAPS:
ATP + SO4(2-) ⟶ APS + PPi
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + SAH ⟶ Ade-Rib + HCYS
- Cytosolic sulfonation of small molecules:
3,5,3'-triiodothyronine + PAPS ⟶ 3,5,3'-triiodothyronine 4-sulfate + PAP
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glycosaminoglycan metabolism:
H2O + linker chain(2) ⟶ D-xylose + Gal
- Transport and synthesis of PAPS:
ATP + SO4(2-) ⟶ APS + PPi
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + SAH ⟶ Ade-Rib + HCYS
- Cytosolic sulfonation of small molecules:
3,5,3'-triiodothyronine + PAPS ⟶ 3,5,3'-triiodothyronine 4-sulfate + PAP
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glycosaminoglycan metabolism:
H2O ⟶ CH3COO-
- Transport and synthesis of PAPS:
APS + ATP ⟶ ADP + PAPS
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Cytosolic sulfonation of small molecules:
H2O + PNPB ⟶ BUT + PNP
- Sulfur amino acid metabolism:
CYSTA + H2O ⟶ 2OBUTA + L-Cys + ammonia
- Cysteine synthesis from O-acetylserine:
OAcSer + S(2-) ⟶ CH3COO- + L-Cys
BioCyc(8)
- sulfate activation for sulfonation:
ATP + adenosine 5'-phosphosulfate ⟶ ADP + H+ + phosphoadenosine-5'-phosphosulfate
- sulfate reduction I (assimilatory):
adenosine 3',5'-bisphosphate + an oxidized thioredoxin + sulfite ⟶ a reduced thioredoxin + phosphoadenosine-5'-phosphosulfate
- sulfate assimilation:
SO3-2 + adenosine 3',5'-bisphosphate + an oxidized thioredoxin ⟶ PAPS + a reduced thioredoxin
- sulfite oxidation III:
A + adenosine-5'-phosphate + sulfite ⟶ A(H2) + adenosine 5'-phosphosulfate
- sulfate reduction I (assimilatory):
H2O + NADP+ + hydrogen sulfide ⟶ H+ + NADPH + sulfite
- superpathway of sulfate assimilation and cysteine biosynthesis:
O-acetyl-L-serine + hydrogen sulfide ⟶ L-cysteine + acetate
- sulfate reduction II (assimilatory):
H+ + adenosine-5'-phosphate + glutathione disulfide + sulfite ⟶ adenosine 5'-phosphosulfate + glutathione
- sulfate activation for sulfonation:
ATP + adenosine 5'-phosphosulfate ⟶ ADP + H+ + phosphoadenosine-5'-phosphosulfate
WikiPathways(0)
Plant Reactome(237)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Inorganic nutrients metabolism:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Sulfation pathway:
ATP + SO4(2-) ⟶ APS + diphosphate
INOH(1)
- Purine nucleotides and Nucleosides metabolism ( Purine nucleotides and Nucleosides metabolism ):
H2O + XTP ⟶ Pyrophosphate + XMP
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(25)
- Sulfate/Sulfite Metabolism:
Estrone + Phosphoadenosine phosphosulfate ⟶ Adenosine 3',5'-diphosphate + Estrone sulfate
- Sulfite Oxidase Deficiency:
Estrone + Phosphoadenosine phosphosulfate ⟶ Adenosine 3',5'-diphosphate + Estrone sulfate
- Cysteine Biosynthesis:
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism:
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Butanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Propanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Ethanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Isethionate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Methanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + Ammonium + L-Cysteine
- Sulfate/Sulfite Metabolism:
Estrone + Phosphoadenosine phosphosulfate ⟶ Adenosine 3',5'-diphosphate + Estrone sulfate
- Sulfite Oxidase Deficiency:
Estrone + Phosphoadenosine phosphosulfate ⟶ Adenosine 3',5'-diphosphate + Estrone sulfate
- Sulfate/Sulfite Metabolism:
Estrone + Phosphoadenosine phosphosulfate ⟶ Adenosine 3',5'-diphosphate + Estrone sulfate
- Sulfate/Sulfite Metabolism:
Estrone + Phosphoadenosine phosphosulfate ⟶ Adenosine 3',5'-diphosphate + Estrone sulfate
- Sulfate/Sulfite Metabolism:
Estrone + Phosphoadenosine phosphosulfate ⟶ Adenosine 3',5'-diphosphate + Estrone sulfate
- Sulfate/Sulfite Metabolism:
Estrone + Phosphoadenosine phosphosulfate ⟶ Adenosine 3',5'-diphosphate + Estrone sulfate
- Sulfite Oxidase Deficiency:
Estrone + Phosphoadenosine phosphosulfate ⟶ Adenosine 3',5'-diphosphate + Estrone sulfate
- Cysteine Biosynthesis:
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism:
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Butanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Propanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Ethanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Isethionate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Methanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Monobactam Biosynthesis:
Adenosine triphosphate + Sulfate ⟶ Adenosine phosphosulfate + Pyrophosphate
PharmGKB(0)
5 个相关的物种来源信息
- 7461 - Apis cerana: 10.1371/JOURNAL.PONE.0175573
- 3702 - Arabidopsis thaliana:
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
- 5691 - Trypanosoma brucei: 10.1128/AAC.00044-13
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Ivan Kushkevych, Daryna Abdulina, Jozef Kováč, Dani Dordević, Monika Vítězová, Galyna Iutynska, Simon K-M R Rittmann. Adenosine-5'-Phosphosulfate- and Sulfite Reductases Activities of Sulfate-Reducing Bacteria from Various Environments.
Biomolecules.
2020 06; 10(6):. doi:
10.3390/biom10060921
. [PMID: 32560561] - Magdalena K Stoeva, John D Coates. Specific inhibitors of respiratory sulfate reduction: towards a mechanistic understanding.
Microbiology (Reading, England).
2019 03; 165(3):254-269. doi:
10.1099/mic.0.000750
. [PMID: 30556806] - Anna Koprivova, Stanislav Kopriva. Sulfation pathways in plants.
Chemico-biological interactions.
2016 Nov; 259(Pt A):23-30. doi:
10.1016/j.cbi.2016.05.021
. [PMID: 27206694] - Jonathan Herrmann, David Nathin, Soon Goo Lee, Tony Sun, Joseph M Jez. Recapitulating the Structural Evolution of Redox Regulation in Adenosine 5'-Phosphosulfate Kinase from Cyanobacteria to Plants.
The Journal of biological chemistry.
2015 Oct; 290(41):24705-14. doi:
10.1074/jbc.m115.679514
. [PMID: 26294763] - Jonathan Herrmann, Geoffrey E Ravilious, Samuel E McKinney, Corey S Westfall, Soon Goo Lee, Patrycja Baraniecka, Marco Giovannetti, Stanislav Kopriva, Hari B Krishnan, Joseph M Jez. Structure and mechanism of soybean ATP sulfurylase and the committed step in plant sulfur assimilation.
The Journal of biological chemistry.
2014 Apr; 289(15):10919-10929. doi:
10.1074/jbc.m113.540401
. [PMID: 24584934] - Clare E M Stevenson, Richard K Hughes, Michael T McManus, David M Lawson, Stanislav Kopriva. The X-ray crystal structure of APR-B, an atypical adenosine 5'-phosphosulfate reductase from Physcomitrella patens.
FEBS letters.
2013 Nov; 587(22):3626-32. doi:
10.1016/j.febslet.2013.09.034
. [PMID: 24100135] - Geoffrey E Ravilious, Jonathan Herrmann, Soon Goo Lee, Corey S Westfall, Joseph M Jez. Kinetic mechanism of the dimeric ATP sulfurylase from plants.
Bioscience reports.
2013 Jul; 33(4):. doi:
10.1042/bsr20130073
. [PMID: 23789618] - Galina Brychkova, Dmitry Yarmolinsky, Moshe Sagi. Kinetic assays for determining in vitro APS reductase activity in plants without the use of radioactive substances.
Plant & cell physiology.
2012 Sep; 53(9):1648-58. doi:
10.1093/pcp/pcs091
. [PMID: 22833665] - Coralie Damon, Frédéric Lehembre, Christine Oger-Desfeux, Patricia Luis, Jacques Ranger, Laurence Fraissinet-Tachet, Roland Marmeisse. Metatranscriptomics reveals the diversity of genes expressed by eukaryotes in forest soils.
PloS one.
2012; 7(1):e28967. doi:
10.1371/journal.pone.0028967
. [PMID: 22238585] - Benjamin H Hudson, John D York. Roles for nucleotide phosphatases in sulfate assimilation and skeletal disease.
Advances in biological regulation.
2012 Jan; 52(1):229-38. doi:
10.1016/j.advenzreg.2011.11.002
. [PMID: 22100882] - Yunliu Zeng, Zhiyong Pan, Yuduan Ding, Andan Zhu, Hongbo Cao, Qiang Xu, Xiuxin Deng. A proteomic analysis of the chromoplasts isolated from sweet orange fruits [Citrus sinensis (L.) Osbeck].
Journal of experimental botany.
2011 Nov; 62(15):5297-309. doi:
10.1093/jxb/err140
. [PMID: 21841170] - Bok-Rye Lee, Anna Koprivova, Stanislav Kopriva. The key enzyme of sulfate assimilation, adenosine 5'-phosphosulfate reductase, is regulated by HY5 in Arabidopsis.
The Plant journal : for cell and molecular biology.
2011 Sep; 67(6):1042-54. doi:
10.1111/j.1365-313x.2011.04656.x
. [PMID: 21623972] - Fuqiang Yin, Agnieszka Pajak, Ralph Chapman, Andrew Sharpe, Shangzhi Huang, Frédéric Marsolais. Analysis of common bean expressed sequence tags identifies sulfur metabolic pathways active in seed and sulfur-rich proteins highly expressed in the absence of phaseolin and major lectins.
BMC genomics.
2011 May; 12(?):268. doi:
10.1186/1471-2164-12-268
. [PMID: 21615926] - Shirly O Curreem, Jade L Teng, Herman Tse, Kwok-Yung Yuen, Susanna K Lau, Patrick C Woo. General metabolism of Laribacter hongkongensis: a genome-wide analysis.
Cell & bioscience.
2011 Apr; 1(1):16. doi:
10.1186/2045-3701-1-16
. [PMID: 21711917] - Hao Chen, Baichen Zhang, Leslie M Hicks, Liming Xiong. A nucleotide metabolite controls stress-responsive gene expression and plant development.
PloS one.
2011; 6(10):e26661. doi:
10.1371/journal.pone.0026661
. [PMID: 22028934] - Hongxiang Guo, Huizhen Zhang, Yongchun Li, Jiangping Ren, Xiang Wang, Hongbin Niu, Jun Yin. Identification of changes in wheat (Triticum aestivum L.) seeds proteome in response to anti-trx s gene.
PloS one.
2011; 6(7):e22255. doi:
10.1371/journal.pone.0022255
. [PMID: 21811579] - Sarah G Mugford, Bok-Rye Lee, Anna Koprivova, Colette Matthewman, Stanislav Kopriva. Control of sulfur partitioning between primary and secondary metabolism.
The Plant journal : for cell and molecular biology.
2011 Jan; 65(1):96-105. doi:
10.1111/j.1365-313x.2010.04410.x
. [PMID: 21175893] - Martin Pabst, Josephine Grass, Richard Fischl, Renaud Léonard, Chunsheng Jin, Georg Hinterkörner, Nicole Borth, Friedrich Altmann. Nucleotide and nucleotide sugar analysis by liquid chromatography-electrospray ionization-mass spectrometry on surface-conditioned porous graphitic carbon.
Analytical chemistry.
2010 Dec; 82(23):9782-8. doi:
10.1021/ac101975k
. [PMID: 21043458] - Vijai Bhadauria, Li-Xia Wang, You-Liang Peng. Proteomic changes associated with deletion of the Magnaporthe oryzae conidial morphology-regulating gene COM1.
Biology direct.
2010 Nov; 5(?):61. doi:
10.1186/1745-6150-5-61
. [PMID: 21040590] - Corinna Hermsen, Anna Koprivova, Colette Matthewman, Dirk Wesenberg, Gerd-Joachim Krauss, Stanislav Kopriva. Regulation of sulfate assimilation in Physcomitrella patens: mosses are different!.
Planta.
2010 Jul; 232(2):461-70. doi:
10.1007/s00425-010-1190-1
. [PMID: 20473684] - Qi-Long Qin, Xi-Ying Zhang, Xu-Min Wang, Gui-Ming Liu, Xiu-Lan Chen, Bin-Bin Xie, Hong-Yue Dang, Bai-Cheng Zhou, Jun Yu, Yu-Zhong Zhang. The complete genome of Zunongwangia profunda SM-A87 reveals its adaptation to the deep-sea environment and ecological role in sedimentary organic nitrogen degradation.
BMC genomics.
2010 Apr; 11(?):247. doi:
10.1186/1471-2164-11-247
. [PMID: 20398413] - Muhammad Shahbaz, Mei Hwei Tseng, C Elisabeth E Stuiver, Aleksandra Koralewska, Freek S Posthumus, Jan Henk Venema, Saroj Parmar, Henk Schat, Malcolm J Hawkesford, Luit J De Kok. Copper exposure interferes with the regulation of the uptake, distribution and metabolism of sulfate in Chinese cabbage.
Journal of plant physiology.
2010 Apr; 167(6):438-46. doi:
10.1016/j.jplph.2009.10.016
. [PMID: 20022138] - Ruslan Yatusevich, Sarah G Mugford, Colette Matthewman, Tamara Gigolashvili, Henning Frerigmann, Sean Delaney, Anna Koprivova, Ulf-Ingo Flügge, Stanislav Kopriva. Genes of primary sulfate assimilation are part of the glucosinolate biosynthetic network in Arabidopsis thaliana.
The Plant journal : for cell and molecular biology.
2010 Apr; 62(1):1-11. doi:
10.1111/j.1365-313x.2009.04118.x
. [PMID: 20042022] - Víctor M Rodríguez, Aurore Chételat, Paul Majcherczyk, Edward E Farmer. Chloroplastic phosphoadenosine phosphosulfate metabolism regulates basal levels of the prohormone jasmonic acid in Arabidopsis leaves.
Plant physiology.
2010 Mar; 152(3):1335-45. doi:
10.1104/pp.109.150474
. [PMID: 20053710] - Sarah G Mugford, Colette A Matthewman, Lionel Hill, Stanislav Kopriva. Adenosine-5'-phosphosulfate kinase is essential for Arabidopsis viability.
FEBS letters.
2010 Jan; 584(1):119-23. doi:
10.1016/j.febslet.2009.11.014
. [PMID: 19903478] - Ursula Scheerer, Robert Haensch, Ralf R Mendel, Stanislav Kopriva, Heinz Rennenberg, Cornelia Herschbach. Sulphur flux through the sulphate assimilation pathway is differently controlled by adenosine 5'-phosphosulphate reductase under stress and in transgenic poplar plants overexpressing gamma-ECS, SO, or APR.
Journal of experimental botany.
2010; 61(2):609-22. doi:
10.1093/jxb/erp327
. [PMID: 19923196] - Sarah G Mugford, Naoko Yoshimoto, Michael Reichelt, Markus Wirtz, Lionel Hill, Sam T Mugford, Yoshimi Nakazato, Masaaki Noji, Hideki Takahashi, Robert Kramell, Tamara Gigolashvili, Ulf-Ingo Flügge, Claus Wasternack, Jonathan Gershenzon, Rüdiger Hell, Kazuki Saito, Stanislav Kopriva. Disruption of adenosine-5'-phosphosulfate kinase in Arabidopsis reduces levels of sulfated secondary metabolites.
The Plant cell.
2009 Mar; 21(3):910-27. doi:
10.1105/tpc.109.065581
. [PMID: 19304933] - Guillaume Queval, Dorothée Thominet, Hélène Vanacker, Myroslawa Miginiac-Maslow, Bertrand Gakière, Graham Noctor. H2O2-activated up-regulation of glutathione in Arabidopsis involves induction of genes encoding enzymes involved in cysteine synthesis in the chloroplast.
Molecular plant.
2009 Mar; 2(2):344-56. doi:
10.1093/mp/ssp002
. [PMID: 19825619] - Aleksandra Koralewska, Peter Buchner, C Elisabeth E Stuiver, Freek S Posthumus, Stanislav Kopriva, Malcolm J Hawkesford, Luit J De Kok. Expression and activity of sulfate transporters and APS reductase in curly kale in response to sulfate deprivation and re-supply.
Journal of plant physiology.
2009 Jan; 166(2):168-79. doi:
10.1016/j.jplph.2008.03.005
. [PMID: 18556087] - Jason M Abercrombie, Matthew D Halfhill, Priya Ranjan, Murali R Rao, Arnold M Saxton, Joshua S Yuan, C Neal Stewart. Transcriptional responses of Arabidopsis thaliana plants to As (V) stress.
BMC plant biology.
2008 Aug; 8(?):87. doi:
10.1186/1471-2229-8-87
. [PMID: 18684332] - Lin Zhu, Wei-Wei Deng, Ai-Hua Ye, Mei Yu, Zhao-Xia Wang, Chang-Jun Jiang. Cloning of two cDNAs encoding a family of ATP sulfurylase from Camellia sinensis related to selenium or sulfur metabolism and functional expression in Escherichia coli.
Plant physiology and biochemistry : PPB.
2008 Aug; 46(8-9):731-8. doi:
10.1016/j.plaphy.2007.03.029
. [PMID: 18657428] - Young-Su Seo, Malinee Sriariyanun, Li Wang, Janice Pfeiff, Jirapa Phetsom, Ye Lin, Ki-Hong Jung, Hui Hsien Chou, Adam Bogdanove, Pamela Ronald. A two-genome microarray for the rice pathogens Xanthomonas oryzae pv. oryzae and X. oryzae pv. oryzicola and its use in the discovery of a difference in their regulation of hrp genes.
BMC microbiology.
2008 Jun; 8(?):99. doi:
10.1186/1471-2180-8-99
. [PMID: 18564427] - Frances M Dupont. Metabolic pathways of the wheat (Triticum aestivum) endosperm amyloplast revealed by proteomics.
BMC plant biology.
2008 Apr; 8(?):39. doi:
10.1186/1471-2229-8-39
. [PMID: 18419817] - Anna Koprivova, Kathryn Anne North, Stanislav Kopriva. Complex signaling network in regulation of adenosine 5'-phosphosulfate reductase by salt stress in Arabidopsis roots.
Plant physiology.
2008 Mar; 146(3):1408-20. doi:
10.1104/pp.107.113175
. [PMID: 18218969] - Pallavi Phartiyal, Won-Seok Kim, Rebecca E Cahoon, Joseph M Jez, Hari B Krishnan. The role of 5'-adenylylsulfate reductase in the sulfur assimilation pathway of soybean: molecular cloning, kinetic characterization, and gene expression.
Phytochemistry.
2008 Jan; 69(2):356-64. doi:
10.1016/j.phytochem.2007.07.013
. [PMID: 17761201] - Gertrud Wiedemann, Anna Koprivova, Melanie Schneider, Cornelia Herschbach, Ralf Reski, Stanislav Kopriva. The role of the novel adenosine 5'-phosphosulfate reductase in regulation of sulfate assimilation of Physcomitrella patens.
Plant molecular biology.
2007 Nov; 65(5):667-76. doi:
10.1007/s11103-007-9231-2
. [PMID: 17786562] - Françoise Thibaud-Nissen, Matthew Campbell, John P Hamilton, Wei Zhu, C Robin Buell. EuCAP, a Eukaryotic Community Annotation Package, and its application to the rice genome.
BMC genomics.
2007 Oct; 8(?):388. doi:
10.1186/1471-2164-8-388
. [PMID: 17961238] - M Schiavon, M Wirtz, P Borsa, S Quaggiotti, R Hell, M Malagoli. Chromate differentially affects the expression of a high-affinity sulfate transporter and isoforms of components of the sulfate assimilatory pathway in Zea mays (L.).
Plant biology (Stuttgart, Germany).
2007 Sep; 9(5):662-71. doi:
10.1055/s-2007-965440
. [PMID: 17853366] - Stanislav Kopriva, Kai Fritzemeier, Gertrud Wiedemann, Ralf Reski. The putative moss 3'-phosphoadenosine-5'-phosphosulfate reductase is a novel form of adenosine-5'-phosphosulfate reductase without an iron-sulfur cluster.
The Journal of biological chemistry.
2007 Aug; 282(31):22930-8. doi:
10.1074/jbc.m702522200
. [PMID: 17519237] - Sung-Kun Kim, Varinnia Gomes, Yu Gao, Kala Chandramouli, Michael K Johnson, David B Knaff, Thomas Leustek. The two-domain structure of 5'-adenylylsulfate (APS) reductase from Enteromorpha intestinalis is a requirement for efficient APS reductase activity.
Biochemistry.
2007 Jan; 46(2):591-601. doi:
10.1021/bi0618971
. [PMID: 17209569] - Hanbin Dan, Guohua Yang, Zhi-Liang Zheng. A negative regulatory role for auxin in sulphate deficiency response in Arabidopsis thaliana.
Plant molecular biology.
2007 Jan; 63(2):221-35. doi:
10.1007/s11103-006-9084-0
. [PMID: 17063378] - Mark Durenkamp, Luit J De Kok, Stanislav Kopriva. Adenosine 5'-phosphosulphate reductase is regulated differently in Allium cepa L. and Brassica oleracea L. upon exposure to H2S.
Journal of experimental botany.
2007; 58(7):1571-9. doi:
10.1093/jxb/erm031
. [PMID: 17332418] - Michael Rother, Gerd-Joachim Krauss, Gregor Grass, Dirk Wesenberg. Sulphate assimilation under Cd2+ stress in Physcomitrella patens--combined transcript, enzyme and metabolite profiling.
Plant, cell & environment.
2006 Sep; 29(9):1801-11. doi:
10.1111/j.1365-3040.2006.01557.x
. [PMID: 16913869] - Xue-Mei Sun, Zhi-Min Yang. [Plant sulfate assimilation and regulation of the activity of related enzymes under cadmium stress].
Zhi wu sheng li yu fen zi sheng wu xue xue bao = Journal of plant physiology and molecular biology.
2006 Feb; 32(1):9-16. doi:
"
. [PMID: 16477125] - Melinda N Martin, Mitchell C Tarczynski, Bo Shen, Thomas Leustek. The role of 5'-adenylylsulfate reductase in controlling sulfate reduction in plants.
Photosynthesis research.
2005 Dec; 86(3):309-23. doi:
10.1007/s11120-005-9006-z
. [PMID: 16328785] - Christiane Loeffler, Susanne Berger, Alexandre Guy, Thierry Durand, Gerhard Bringmann, Michael Dreyer, Uta von Rad, Jörg Durner, Martin J Mueller. B1-phytoprostanes trigger plant defense and detoxification responses.
Plant physiology.
2005 Jan; 137(1):328-40. doi:
10.1104/pp.104.051714
. [PMID: 15618427] - L Hopkins, S Parmar, D L Bouranis, J R Howarth, M J Hawkesford. Coordinated expression of sulfate uptake and components of the sulfate assimilatory pathway in maize.
Plant biology (Stuttgart, Germany).
2004 Jul; 6(4):408-14. doi:
10.1055/s-2004-820872
. [PMID: 15248123] - Holger Hesse, Victoria Nikiforova, Bertrand Gakière, Rainer Hoefgen. Molecular analysis and control of cysteine biosynthesis: integration of nitrogen and sulphur metabolism.
Journal of experimental botany.
2004 Jun; 55(401):1283-92. doi:
10.1093/jxb/erh136
. [PMID: 15133050] - Holger Hesse, Nadine Trachsel, Marianne Suter, Stanislav Kopriva, Peter von Ballmoos, Heinz Rennenberg, Christian Brunold. Effect of glucose on assimilatory sulphate reduction in Arabidopsis thaliana roots.
Journal of experimental botany.
2003 Jul; 54(388):1701-9. doi:
10.1093/jxb/erg177
. [PMID: 12754263] - H Arakawa, M Shiokawa, O Imamura, M Maeda. Novel bioluminescent assay of alkaline phosphatase using adenosine-3'-phosphate-5'-phosphosulfate as substrate and the luciferin-luciferase reaction and its application.
Analytical biochemistry.
2003 Mar; 314(2):206-11. doi:
10.1016/s0003-2697(02)00657-7
. [PMID: 12654306] - Naoko Ohkama, Kentaro Takei, Hitoshi Sakakibara, Hiroaki Hayashi, Tadakatsu Yoneyama, Toru Fujiwara. Regulation of sulfur-responsive gene expression by exogenously applied cytokinins in Arabidopsis thaliana.
Plant & cell physiology.
2002 Dec; 43(12):1493-501. doi:
10.1093/pcp/pcf183
. [PMID: 12514246] - Cristina G Ravina, Chwenn-In Chang, George P Tsakraklides, Jeffery P McDermott, Jose M Vega, Thomas Leustek, Cecilia Gotor, John P Davies. The sac mutants of Chlamydomonas reinhardtii reveal transcriptional and posttranscriptional control of cysteine biosynthesis.
Plant physiology.
2002 Dec; 130(4):2076-84. doi:
10.1104/pp.012484
. [PMID: 12481091] - George Tsakraklides, Melinda Martin, Radhika Chalam, Mitchell C Tarczynski, Ahlert Schmidt, Thomas Leustek. Sulfate reduction is increased in transgenic Arabidopsis thaliana expressing 5'-adenylylsulfate reductase from Pseudomonas aeruginosa.
The Plant journal : for cell and molecular biology.
2002 Dec; 32(6):879-89. doi:
10.1046/j.1365-313x.2002.01477.x
. [PMID: 12492831] - Stanislav Kopriva, Marianne Suter, Peter von Ballmoos, Holger Hesse, Urs Krähenbühl, Heinz Rennenberg, Christian Brunold. Interaction of sulfate assimilation with carbon and nitrogen metabolism in Lemna minor.
Plant physiology.
2002 Nov; 130(3):1406-13. doi:
10.1104/pp.007773
. [PMID: 12428005] - Pierre Vauclare, Stanislav Kopriva, David Fell, Marianne Suter, Liliane Sticher, Peter von Ballmoos, Urs Krähenbühl, Roel Op den Camp, Christian Brunold. Flux control of sulphate assimilation in Arabidopsis thaliana: adenosine 5'-phosphosulphate reductase is more susceptible than ATP sulphurylase to negative control by thiols.
The Plant journal : for cell and molecular biology.
2002 Sep; 31(6):729-40. doi:
10.1046/j.1365-313x.2002.01391.x
. [PMID: 12220264] - Anna Koprivova, Andreas J Meyer, Gabriele Schween, Cornelia Herschbach, Ralf Reski, Stanislav Kopriva. Functional knockout of the adenosine 5'-phosphosulfate reductase gene in Physcomitrella patens revives an old route of sulfate assimilation.
The Journal of biological chemistry.
2002 Aug; 277(35):32195-201. doi:
10.1074/jbc.m204971200
. [PMID: 12070175] - Stanislav Kopriva, Thomas Büchert, Günter Fritz, Marianne Suter, Rüdiger Benda, Volker Schünemann, Anna Koprivova, Peter Schürmann, Alfred X Trautwein, Peter M H Kroneck, Christian Brunold. The presence of an iron-sulfur cluster in adenosine 5'-phosphosulfate reductase separates organisms utilizing adenosine 5'-phosphosulfate and phosphoadenosine 5'-phosphosulfate for sulfate assimilation.
The Journal of biological chemistry.
2002 Jun; 277(24):21786-91. doi:
10.1074/jbc.m202152200
. [PMID: 11940598] - Yuwei Shen, Parveen Sharma, Francisco G da Silva, Pamela Ronald. The Xanthomonas oryzae pv. lozengeoryzae raxP and raxQ genes encode an ATP sulphurylase and adenosine-5'-phosphosulphate kinase that are required for AvrXa21 avirulence activity.
Molecular microbiology.
2002 Apr; 44(1):37-48. doi:
10.1046/j.1365-2958.2002.02862.x
. [PMID: 11967067] - A Koprivova, M Melzer, P von Ballmoos, T Mandel, C Brunold, S Kopriva. Assimilatory sulfate reduction in C(3), C(3)-C(4), and C(4) species of Flaveria.
Plant physiology.
2001 Oct; 127(2):543-50. doi:
10.1104/pp.010144
. [PMID: 11598228] - J A Bick, A T Setterdahl, D B Knaff, Y Chen, L H Pitcher, B A Zilinskas, T Leustek. Regulation of the plant-type 5'-adenylyl sulfate reductase by oxidative stress.
Biochemistry.
2001 Jul; 40(30):9040-8. doi:
10.1021/bi010518v
. [PMID: 11467967] - R Höfgen, O Kreft, L Willmitzer, H Hesse. Manipulation of thiol contents in plants.
Amino acids.
2001; 20(3):291-9. doi:
10.1007/s007260170045
. [PMID: 11354605] - M Weber, M Suter, C Brunold, S Kopriva. Sulfate assimilation in higher plants characterization of a stable intermediate in the adenosine 5'-phosphosulfate reductase reaction.
European journal of biochemistry.
2000 Jun; 267(12):3647-53. doi:
10.1046/j.1432-1327.2000.01394.x
. [PMID: 10848982] - J A Bick, J J Dennis, G J Zylstra, J Nowack, T Leustek. Identification of a new class of 5'-adenylylsulfate (APS) reductases from sulfate-assimilating bacteria.
Journal of bacteriology.
2000 Jan; 182(1):135-42. doi:
10.1128/jb.182.1.135-142.2000
. [PMID: 10613872] - K Iwata, K Matsuda, Y Kurosaki, T Nakayama, H Nakajima, T Kimura. Disposition of intravenously administered adenosine 5'-phosphosulfate (APS) in rats.
Biological & pharmaceutical bulletin.
1996 Mar; 19(3):438-43. doi:
10.1248/bpb.19.438
. [PMID: 8924915] - Z Peng, D P Verma. A rice HAL2-like gene encodes a Ca(2+)-sensitive 3'(2'),5'-diphosphonucleoside 3'(2')-phosphohydrolase and complements yeast met22 and Escherichia coli cysQ mutations.
The Journal of biological chemistry.
1995 Dec; 270(49):29105-10. doi:
10.1074/jbc.270.49.29105
. [PMID: 7493934] - T Bakker-Grunwald, B Geilhorn. Sulfate metabolism in Entamoeba histolytica.
Molecular and biochemical parasitology.
1992 Jul; 53(1-2):71-8. doi:
10.1016/0166-6851(92)90008-8
. [PMID: 1501646] - K Sugahara, N B Schwartz. Defect in 3'-phosphoadenosine 5'-phosphosulfate synthesis in brachymorphic mice. II. Tissue distribution of the defect.
Archives of biochemistry and biophysics.
1982 Apr; 214(2):602-9. doi:
10.1016/0003-9861(82)90065-0
. [PMID: 6284030] - S Fukui, H Yoshida, I Yamashina. Sulfohydrolytic degradation of 3'-phosphoadenosine 5'-phosphosulfate (PAPS) and adenosine 5'-phosphosulfate (APS) by enzymes of a nucleotide pyrophosphatase nature.
Journal of biochemistry.
1981 Nov; 90(5):1537-40. doi:
10.1093/oxfordjournals.jbchem.a133621
. [PMID: 6121793] - . .
.
. doi:
. [PMID: 11488606]