ditrans,octacis-Undecaprenyl phosphate (BioDeep_00001870077)

Main id: BioDeep_00000004416

 


代谢物信息卡片


ditrans,octacis-Undecaprenyl phosphate

化学式: C55H91O4P (846.6654616)
中文名称:
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CC(=CCCC(=CCCC(=CCCC(=CCCC(=CCCC(=CCCC(=CCCC(=CCCC(=CCCC(=CCCC(=CCOP(=O)(O)O)C)C)C)C)C)C)C)C)C)C)C
InChI: InChI=1S/C55H91O4P/c1-45(2)23-13-24-46(3)25-14-26-47(4)27-15-28-48(5)29-16-30-49(6)31-17-32-50(7)33-18-34-51(8)35-19-36-52(9)37-20-38-53(10)39-21-40-54(11)41-22-42-55(12)43-44-59-60(56,57)58/h23,25,27,29,31,33,35,37,39,41,43H,13-22,24,26,28,30,32,34,36,38,40,42,44H2,1-12H3,(H2,56,57,58)/b46-25+,47-27+,48-29-,49-31-,50-33-,51-35-,52-37-,53-39-,54-41-,55-43-

描述信息

同义名列表

1 个代谢物同义名

ditrans,octacis-Undecaprenyl phosphate



数据库引用编号

6 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Ian J Roney, David Z Rudner. Bacillus subtilis uses the SigM signaling pathway to prioritize the use of its lipid carrier for cell wall synthesis. PLoS biology. 2024 Apr; 22(4):e3002589. doi: 10.1371/journal.pbio.3002589. [PMID: 38683856]
  • Hannah R Noel, Sowmya Keerthi, Xiaomei Ren, Jonathan D Winkelman, Jerry M Troutman, Lauren D Palmer. Genetic synergy between Acinetobacter baumannii undecaprenyl phosphate biosynthesis and the Mla system impacts cell envelope and antimicrobial resistance. mBio. 2024 Mar; 15(3):e0280423. doi: 10.1128/mbio.02804-23. [PMID: 38364179]
  • Emily J Kay, Manoj K Dooda, Joseph C Bryant, Amanda J Reid, Brendan W Wren, Jerry M Troutman, Matthew A Jorgenson. Engineering Escherichia coli for increased Und-P availability leads to material improvements in glycan expression technology. Microbial cell factories. 2024 Mar; 23(1):72. doi: 10.1186/s12934-024-02339-8. [PMID: 38429691]
  • Brandon Sit, Veerasak Srisuknimit, Emilio Bueno, Franz G Zingl, Karthik Hullahalli, Felipe Cava, Matthew K Waldor. Undecaprenyl phosphate translocases confer conditional microbial fitness. Nature. 2023 Jan; 613(7945):721-728. doi: 10.1038/s41586-022-05569-1. [PMID: 36450355]
  • Ian J Roney, David Z Rudner. Two broadly conserved families of polyprenyl-phosphate transporters. Nature. 2023 Jan; 613(7945):729-734. doi: 10.1038/s41586-022-05587-z. [PMID: 36450357]
  • Matthew A Jorgenson, Joseph C Bryant. A genetic screen to identify factors affected by undecaprenyl phosphate recycling uncovers novel connections to morphogenesis in Escherichia coli. Molecular microbiology. 2021 02; 115(2):191-207. doi: 10.1111/mmi.14609. [PMID: 32979869]
  • Hélène Barreteau, Delphine Patin, Ahmed Bouhss, Didier Blanot, Dominique Mengin-Lecreulx, Thierry Touzé. CbrA Mediates Colicin M Resistance in Escherichia coli through Modification of Undecaprenyl-Phosphate-Linked Peptidoglycan Precursors. Journal of bacteriology. 2020 11; 202(23):. doi: 10.1128/jb.00436-20. [PMID: 32958631]
  • Sean D Workman, Natalie C J Strynadka. A Slippery Scaffold: Synthesis and Recycling of the Bacterial Cell Wall Carrier Lipid. Journal of molecular biology. 2020 08; 432(18):4964-4982. doi: 10.1016/j.jmb.2020.03.025. [PMID: 32234311]
  • Xudong Tian, Rodolphe Auger, Guillaume Manat, Frédéric Kerff, Dominique Mengin-Lecreulx, Thierry Touzé. Insight into the dual function of lipid phosphate phosphatase PgpB involved in two essential cell-envelope metabolic pathways in Escherichia coli. Scientific reports. 2020 08; 10(1):13209. doi: 10.1038/s41598-020-70047-5. [PMID: 32764655]
  • Amanda J Reid, Beth A Scarbrough, Tiffany C Williams, Claire E Gates, Colleen R Eade, Jerry M Troutman. General Utilization of Fluorescent Polyisoprenoids with Sugar Selective Phosphoglycosyltransferases. Biochemistry. 2020 02; 59(4):615-626. doi: 10.1021/acs.biochem.9b01026. [PMID: 31876413]
  • Matthew A Jorgenson, William J MacCain, Bernadette M Meberg, Suresh Kannan, Joseph C Bryant, Kevin D Young. Simultaneously inhibiting undecaprenyl phosphate production and peptidoglycan synthases promotes rapid lysis in Escherichia coli. Molecular microbiology. 2019 07; 112(1):233-248. doi: 10.1111/mmi.14265. [PMID: 31022322]
  • Sean D Workman, Liam J Worrall, Natalie C J Strynadka. Crystal structure of an intramembranal phosphatase central to bacterial cell-wall peptidoglycan biosynthesis and lipid recycling. Nature communications. 2018 03; 9(1):1159. doi: 10.1038/s41467-018-03547-8. [PMID: 29559664]
  • Lin-Ya Huang, Shih-Chi Wang, Ting-Jen R Cheng, Chi-Huey Wong. Undecaprenyl Phosphate Phosphatase Activity of Undecaprenol Kinase Regulates the Lipid Pool in Gram-Positive Bacteria. Biochemistry. 2017 10; 56(40):5417-5427. doi: 10.1021/acs.biochem.7b00603. [PMID: 28872301]
  • Matthew A Jorgenson, Kevin D Young. Interrupting Biosynthesis of O Antigen or the Lipopolysaccharide Core Produces Morphological Defects in Escherichia coli by Sequestering Undecaprenyl Phosphate. Journal of bacteriology. 2016 11; 198(22):3070-3079. doi: 10.1128/jb.00550-16. [PMID: 27573014]
  • Matthew A Jorgenson, Suresh Kannan, Mary E Laubacher, Kevin D Young. Dead-end intermediates in the enterobacterial common antigen pathway induce morphological defects in Escherichia coli by competing for undecaprenyl phosphate. Molecular microbiology. 2016 Apr; 100(1):1-14. doi: 10.1111/mmi.13284. [PMID: 26593043]
  • Vasileios I Petrou, Carmen M Herrera, Kathryn M Schultz, Oliver B Clarke, Jérémie Vendome, David Tomasek, Surajit Banerjee, Kanagalaghatta R Rajashankar, Meagan Belcher Dufrisne, Brian Kloss, Edda Kloppmann, Burkhard Rost, Candice S Klug, M Stephen Trent, Lawrence Shapiro, Filippo Mancia. Structures of aminoarabinose transferase ArnT suggest a molecular basis for lipid A glycosylation. Science (New York, N.Y.). 2016 Feb; 351(6273):608-12. doi: 10.1126/science.aad1172. [PMID: 26912703]
  • Guillaume Manat, Sophie Roure, Rodolphe Auger, Ahmed Bouhss, Hélène Barreteau, Dominique Mengin-Lecreulx, Thierry Touzé. Deciphering the metabolism of undecaprenyl-phosphate: the bacterial cell-wall unit carrier at the membrane frontier. Microbial drug resistance (Larchmont, N.Y.). 2014 Jun; 20(3):199-214. doi: 10.1089/mdr.2014.0035. [PMID: 24799078]
  • Meredith D Hartley, Philipp E Schneggenburger, Barbara Imperiali. Lipid bilayer nanodisc platform for investigating polyprenol-dependent enzyme interactions and activities. Proceedings of the National Academy of Sciences of the United States of America. 2013 Dec; 110(52):20863-70. doi: 10.1073/pnas.1320852110. [PMID: 24302767]
  • Kinnari B Patel, Miguel A Valvano. In vitro UDP-sugar:undecaprenyl-phosphate sugar-1-phosphate transferase assay and product detection by thin layer chromatography. Methods in molecular biology (Clifton, N.J.). 2013; 1022(?):173-83. doi: 10.1007/978-1-62703-465-4_14. [PMID: 23765662]
  • Hideki Hashizume. [Studies for the development of novel anti-MRSA/VRE drugs]. Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan. 2012; 132(1):59-67. doi: 10.1248/yakushi.132.59. [PMID: 22214581]
  • M A Valvano. Common themes in glycoconjugate assembly using the biogenesis of O-antigen lipopolysaccharide as a model system. Biochemistry. Biokhimiia. 2011 Jul; 76(7):729-35. doi: 10.1134/s0006297911070029. [PMID: 21999533]
  • Feng Song, Ziqiang Guan, Christian R H Raetz. Biosynthesis of undecaprenyl phosphate-galactosamine and undecaprenyl phosphate-glucose in Francisella novicida. Biochemistry. 2009 Feb; 48(6):1173-82. doi: 10.1021/bi802212t. [PMID: 19166326]
  • Hélène Barreteau, Sophie Magnet, Meriem El Ghachi, Thierry Touzé, Michel Arthur, Dominique Mengin-Lecreulx, Didier Blanot. Quantitative high-performance liquid chromatography analysis of the pool levels of undecaprenyl phosphate and its derivatives in bacterial membranes. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2009 Jan; 877(3):213-20. doi: 10.1016/j.jchromb.2008.12.010. [PMID: 19110475]
  • Ahmed Bouhss, Amy E Trunkfield, Timothy D H Bugg, Dominique Mengin-Lecreulx. The biosynthesis of peptidoglycan lipid-linked intermediates. FEMS microbiology reviews. 2008 Mar; 32(2):208-33. doi: 10.1111/j.1574-6976.2007.00089.x. [PMID: 18081839]
  • Thierry Touzé, An X Tran, Jessica V Hankins, Dominique Mengin-Lecreulx, M Stephen Trent. Periplasmic phosphorylation of lipid A is linked to the synthesis of undecaprenyl phosphate. Molecular microbiology. 2008 Jan; 67(2):264-77. doi: 10.1111/j.1365-2958.2007.06044.x. [PMID: 18047581]
  • Miguel A Valvano. Undecaprenyl phosphate recycling comes out of age. Molecular microbiology. 2008 Jan; 67(2):232-5. doi: 10.1111/j.1365-2958.2007.06052.x. [PMID: 18086187]
  • Laura D Tatar, Cristina L Marolda, Andrew N Polischuk, Deborah van Leeuwen, Miguel A Valvano. An Escherichia coli undecaprenyl-pyrophosphate phosphatase implicated in undecaprenyl phosphate recycling. Microbiology (Reading, England). 2007 Aug; 153(Pt 8):2518-2529. doi: 10.1099/mic.0.2007/006312-0. [PMID: 17660416]
  • Bobbi Xayarath, Janet Yother. Mutations blocking side chain assembly, polymerization, or transport of a Wzy-dependent Streptococcus pneumoniae capsule are lethal in the absence of suppressor mutations and can affect polymer transfer to the cell wall. Journal of bacteriology. 2007 May; 189(9):3369-81. doi: 10.1128/jb.01938-06. [PMID: 17322316]
  • Meriem El Ghachi, Ahmed Bouhss, Hélène Barreteau, Thierry Touzé, Geneviève Auger, Didier Blanot, Dominique Mengin-Lecreulx. Colicin M exerts its bacteriolytic effect via enzymatic degradation of undecaprenyl phosphate-linked peptidoglycan precursors. The Journal of biological chemistry. 2006 Aug; 281(32):22761-72. doi: 10.1074/jbc.m602834200. [PMID: 16777846]
  • Dennis Linton, Nick Dorrell, Paul G Hitchen, Saba Amber, Andrey V Karlyshev, Howard R Morris, Anne Dell, Miguel A Valvano, Markus Aebi, Brendan W Wren. Functional analysis of the Campylobacter jejuni N-linked protein glycosylation pathway. Molecular microbiology. 2005 Mar; 55(6):1695-703. doi: 10.1111/j.1365-2958.2005.04519.x. [PMID: 15752194]
  • Atiya Rattanapittayaporn, Dhirayos Wititsuwannakul, Rapepun Wititsuwannakul. Significant role of bacterial undecaprenyl diphosphate (C55-UPP) for rubber synthesis by Hevea latex enzymes. Macromolecular bioscience. 2004 Nov; 4(11):1039-52. doi: 10.1002/mabi.200400096. [PMID: 15543542]
  • J Kato, S Fujisaki, K Nakajima, Y Nishimura, M Sato, A Nakano. The Escherichia coli homologue of yeast RER2, a key enzyme of dolichol synthesis, is essential for carrier lipid formation in bacterial cell wall synthesis. Journal of bacteriology. 1999 May; 181(9):2733-8. doi: 10.1128/jb.181.9.2733-2738.1999. [PMID: 10217761]
  • T Janas, T Janas. Interaction of undecaprenyl phosphate with phospholipid bilayers. Chemistry and physics of lipids. 1995 Aug; 77(1):89-97. doi: 10.1016/0009-3084(95)02457-t. [PMID: 7586095]
  • T D Bugg, P E Brandish. From peptidoglycan to glycoproteins: common features of lipid-linked oligosaccharide biosynthesis. FEMS microbiology letters. 1994 Jun; 119(3):255-62. doi: 10.1111/j.1574-6968.1994.tb06898.x. [PMID: 8050708]
  • W C Lang. Glycoprotein biosynthesis in Chlamydomonas. A mannolipid intermediate with the properties of a short-chain alpha-saturated polyprenyl monophosphate. The Biochemical journal. 1984 Jun; 220(3):747-54. doi: 10.1042/bj2200747. [PMID: 6466300]
  • G E Bettinger, A N Chatterjee, F E Young. Incorporation of N-acetyl-D-glucosamine from UDP-N-acetyl-D-glucosamine by isolated membranes of Bacillus subtilis. Identification of undecaprenyl poly(N-acetylglucosaminyl pyrophosphate). The Journal of biological chemistry. 1977 Jun; 252(12):4118-24. doi: . [PMID: 405389]
  • F A Troy, I K Vijay, N Tesche. Role of undecaprenyl phosphate in synthesis of polymers containing sialic acid in Escherichia coli. The Journal of biological chemistry. 1975 Jan; 250(1):156-63. doi: . [PMID: 1095566]
  • I K Vijay, F A Troy. Properties of membrane-associated sialyltransferase of Escherichia coli. The Journal of biological chemistry. 1975 Jan; 250(1):164-70. doi: . [PMID: 1095567]