15-Keto-prostaglandin F2a (BioDeep_00000006018)

 

Secondary id: BioDeep_00000629499, BioDeep_00001868642

human metabolite Endogenous blood metabolite natural product


代谢物信息卡片


(5Z)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E)-3-oxooct-1-en-1-yl]cyclopentyl]hept-5-enoic acid

化学式: C20H32O5 (352.225)
中文名称: 15-酮-前列腺素F2α
谱图信息: 最多检出来源 Homo sapiens(blood) 23.42%

分子结构信息

SMILES: CCCCCC(=O)/C=C/[C@H]1[C@H](O)C[C@H](O)[C@@H]1C/C=C\CCCC(=O)O
InChI: InChI=1S/C20H32O5/c1-2-3-6-9-15(21)12-13-17-16(18(22)14-19(17)23)10-7-4-5-8-11-20(24)25/h4,7,12-13,16-19,22-23H,2-3,5-6,8-11,14H2,1H3,(H,24,25)/b7-4-,13-12+/t16-,17-,18+,19-/m1/s1

描述信息

15-Keto-prostaglandin F2a is the oxidized product of prostaglandin F2a by 15-hydroxyprostaglandin dehydrogenase, which is present in lung, kidney, placenta and other tissues and catalyzes the NAD- or NADP-dependent dehydrogenation of 15-dydroxyl group. 15-Keto-prostaglandin F2a is further metabolized by its delta13-reduction, beta-oxidation and omega oxidation. The ultimate metabolite is 5a,7a-dihydroxy-11-keto-tetranorprosta-1,16-dioic acid, and excreted in urine. Prostaglandin F2a (PGF2) is one of the earliest discovered and most common prostaglandins is actively biosynthesized in various organs of mammals and exhibits a variety of biological activities, including contraction of pulmonary arteries. PGF2 is mainly synthesized directly from PGH2 by PGH2 9,11-endoperoxide reductase. A small amount of PGF2 is also produced from PGE2 by PGE2 9-ketoreductase. A PGF2 epimer has been reported to exhibit various biological activities, and its levels are increased in bronchoalveolar lavage fluid, plasma, and urine in patients with mastocytosis and bronchial asthma. PGF2 is synthesized from PGD2 by PGD2 11-ketoreductase. (PMID: 16475787, 184496, 5951401, 12432938)Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways.
15-Keto-prostaglandin F2a is the oxidized product of prostaglandin F2a by 15-hydroxyprostaglandin dehydrogenase, which is present in lung, kidney, placenta and other tissues and catalyzes the NAD- or NADP-dependent dehydrogenation of 15-dydroxyl group. 15-Keto-prostaglandin F2a is further metabolized by its delta13-reduction, beta-oxidation and omega oxidation. The ultimate metabolite is 5a,7a-dihydroxy-11-keto-tetranorprosta-1,16-dioic acid, and excreted in urine. Prostaglandin F2a (PGF2) is one of the earliest discovered and most common prostaglandins is actively biosynthesized in various organs of mammals and exhibits a variety of biological activities, including contraction of pulmonary arteries. PGF2 is mainly synthesized directly from PGH2 by PGH2 9,11-endoperoxide reductase. A small amount of PGF2 is also produced from PGE2 by PGE2 9-ketoreductase. A PGF2 epimer has been reported to exhibit various biological activities, and its levels are increased in bronchoalveolar lavage fluid, plasma, and urine in patients with mastocytosis and bronchial asthma. PGF2 is synthesized from PGD2 by PGD2 11-ketoreductase. (PMID: 16475787, 184496, 5951401, 12432938)

同义名列表

20 个代谢物同义名

(5Z)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E)-3-oxooct-1-en-1-yl]cyclopentyl]hept-5-enoic acid; 9S,11R-dihydroxy-15-oxo-5Z,13E-prostadienoic acid; 9S,11R-Dihydroxy-15-oxo-5Z,13E-prostadienoate; 15-Keto-prostaglandin F2 alpha; 15-keto-Prostaglandin F2alpha; 15-oxo-Prostaglandin F2alpha; 15-Ketoprostaglandin F2alpha; 15-keto-prostaglandin F2 α; 15-Keto-prostaglandin F2a; 15-Keto-prostaglandin F2α; 15-Ketoprostaglandin F2α; 15-Ketoprostaglandin F2a; 15-oxoprostaglandin F2α; 15-Oxoprostaglandin F2a; 15-keto-PGF2α 15-oxo PGF-2alpha; 15-keto-PGF2alpha; 15-Keto-PGF2α; 15-Keto-PGF2a; DB-048880



数据库引用编号

15 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

1 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(1)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

10 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 8 GNAQ, HPGD, HSD17B4, PIK3CA, PRKAA2, PTGFR, PTGS1, PTGS2
Peripheral membrane protein 3 AP1S2, PTGS1, PTGS2
Endoplasmic reticulum membrane 2 PTGS1, PTGS2
Nucleus 3 GNAQ, PLCZ1, PRKAA2
cytosol 6 AP1S2, HPGD, HSD17B4, PIK3CA, PLCZ1, PRKAA2
dendrite 1 PRKAA2
nucleoplasm 3 HPGD, PLCZ1, PRKAA2
Cell membrane 3 CYSLTR2, GNAQ, PTGFR
Lipid-anchor 1 GNAQ
Cytoplasmic side 1 AP1S2
lamellipodium 1 PIK3CA
Multi-pass membrane protein 2 CYSLTR2, PTGFR
Synapse 1 GNAQ
cell surface 2 ADIPOQ, CD40
Golgi apparatus 4 AP1S2, GNAQ, PRKAA2, PTGS1
Golgi membrane 1 AP1S2
lysosomal membrane 2 AP1S2, GNAQ
neuronal cell body 2 CD40, PRKAA2
plasma membrane 7 CD40, CD83, CSF2, CYSLTR2, GNAQ, PIK3CA, PTGFR
Membrane 5 CD40, CD83, GNAQ, HSD17B4, PRKAA2
axon 1 PRKAA2
basolateral plasma membrane 1 HPGD
caveola 1 PTGS2
extracellular exosome 4 CD40, GNAQ, HPGD, PTGS1
endoplasmic reticulum 2 ADIPOQ, PTGS2
extracellular space 4 ADIPOQ, CD40, CSF2, IL4
perinuclear region of cytoplasm 2 PIK3CA, PLCZ1
intercalated disc 1 PIK3CA
protein-containing complex 1 PTGS2
intracellular membrane-bounded organelle 5 AP1S2, CD40, CSF2, HSD17B4, PTGS1
Microsome membrane 2 PTGS1, PTGS2
pronucleus 1 PLCZ1
Single-pass type I membrane protein 1 CD40
Secreted 3 ADIPOQ, CSF2, IL4
extracellular region 4 ADIPOQ, CSF2, IL4, PTGFR
photoreceptor outer segment 2 GNAQ, PTGS1
Nucleus membrane 1 GNAQ
nuclear membrane 1 GNAQ
CD40 receptor complex 1 CD40
external side of plasma membrane 2 CD40, CD83
varicosity 1 CD40
nucleolus 1 PLCZ1
Early endosome 1 AP1S2
Membrane, clathrin-coated pit 1 AP1S2
clathrin-coated pit 1 AP1S2
Cytoplasm, perinuclear region 1 PLCZ1
Peroxisome 1 HSD17B4
collagen trimer 1 ADIPOQ
peroxisomal matrix 1 HSD17B4
peroxisomal membrane 1 HSD17B4
collagen-containing extracellular matrix 1 ADIPOQ
nuclear speck 1 PRKAA2
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
neuron projection 2 PTGS1, PTGS2
Endomembrane system 2 AP1S2, PTGS1
heterotrimeric G-protein complex 1 GNAQ
Cytoplasmic vesicle membrane 1 AP1S2
cytoplasmic stress granule 1 PRKAA2
trans-Golgi network membrane 1 AP1S2
endoplasmic reticulum lumen 1 PTGS2
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
AP-type membrane coat adaptor complex 1 AP1S2
membrane coat 1 AP1S2
nucleotide-activated protein kinase complex 1 PRKAA2
AP-1 adaptor complex 1 AP1S2
granulocyte macrophage colony-stimulating factor receptor complex 1 CSF2
sperm head 1 PLCZ1
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA


文献列表

  • Peter W Sorensen, Christopher Appelt, Norman E Stacey, Fredrick Wm Goetz, Alan R Brash. High levels of circulating prostaglandin F2α associated with ovulation stimulate female sexual receptivity and spawning behavior in the goldfish (Carassius auratus). General and comparative endocrinology. 2018 10; 267(?):128-136. doi: 10.1016/j.ygcen.2018.06.014. [PMID: 29940184]
  • Tomoaki Kubo, Kosuke Iga, Naoki Fukuju, Keiichiro Kizaki, Takeshi Osawa, Yoshiaki Izaike, Toru Takahashi. Different prostaglandin F2 α secretion in response to oxytocin injection between pregnant and non-pregnant cows: effect of the day of oxytocin challenge test for determining the difference. Animal science journal = Nihon chikusan Gakkaiho. 2018 Feb; 89(2):332-339. doi: 10.1111/asj.12952. [PMID: 29178632]
  • Julio Mesa, Cristina Alsina, Udo Oppermann, Xavier Parés, Jaume Farrés, Sergio Porté. Human prostaglandin reductase 1 (PGR1): Substrate specificity, inhibitor analysis and site-directed mutagenesis. Chemico-biological interactions. 2015 Jun; 234(?):105-13. doi: 10.1016/j.cbi.2015.01.021. [PMID: 25619643]
  • Kensaku Aihara, Tomohiro Handa, Toru Oga, Kizuku Watanabe, Kiminobu Tanizawa, Kohei Ikezoe, Yoshio Taguchi, Hiroe Sato, Kazuo Chin, Sonoko Nagai, Shuh Narumiya, Athol U Wells, Michiaki Mishima. Clinical relevance of plasma prostaglandin F2α metabolite concentrations in patients with idiopathic pulmonary fibrosis. PloS one. 2013; 8(6):e66017. doi: 10.1371/journal.pone.0066017. [PMID: 23776595]
  • Maria Cristina Veronesi, Sara Panzani, Nadia Govoni, Hans Kindahl, Giovanna Galeati, Domenico Robbe, Augusto Carluccio. Peripartal plasma concentrations of 15-ketodihydro-PGF2α, cortisol, progesterone and 17-β-estradiol in Martina Franca jennies. Theriogenology. 2011 Mar; 75(4):752-9. doi: 10.1016/j.theriogenology.2010.10.017. [PMID: 21111471]
  • M C Veronesi, U Tosi, M Villani, N Govoni, M Faustini, H Kindahl, A Madej, A Carluccio. Oxytocin, vasopressin, prostaglandin F(2alpha), luteinizing hormone, testosterone, estrone sulfate, and cortisol plasma concentrations after sexual stimulation in stallions. Theriogenology. 2010 Mar; 73(4):460-7. doi: 10.1016/j.theriogenology.2009.09.028. [PMID: 20022362]
  • S Panzani, M Villani, N Govoni, H Kindahl, M Faustini, G Romano, M C Veronesi. 15-Ketodihydro-PGF2alpha and cortisol plasma concentrations in newborn foals after spontaneous or oxytocin-induced parturition. Theriogenology. 2009 Mar; 71(5):768-74. doi: 10.1016/j.theriogenology.2008.09.053. [PMID: 19004488]
  • Hsun-Lang Fang, Wen-Chuan Lin. Lipid peroxidation products do not activate hepatic stellate cells. Toxicology. 2008 Nov; 253(1-3):36-45. doi: 10.1016/j.tox.2008.08.007. [PMID: 18789371]
  • Hsun-Lang Fang, Wen-Chuan Lin. Corn oil enhancing hepatic lipid peroxidation induced by CCl4 does not aggravate liver fibrosis in rats. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2008 Jun; 46(6):2267-73. doi: 10.1016/j.fct.2008.03.005. [PMID: 18420326]
  • M Villani, F Cairoli, H Kindahl, G Galeati, M Faustini, A Carluccio, M C Veronesi. Effects of mating on plasma concentrations of testosterone, cortisol, oestrone sulphate and 15-ketodihydro-PGF2alpha in stallions. Reproduction in domestic animals = Zuchthygiene. 2006 Dec; 41(6):544-8. doi: 10.1111/j.1439-0531.2006.00711.x. [PMID: 17107515]
  • Samar Basu. F2-isoprostane induced prostaglandin formation in the rabbit. Free radical research. 2006 Mar; 40(3):273-7. doi: 10.1080/10715760500511492. [PMID: 16484043]
  • Annika Smedman, Samar Basu, Stefan Jovinge, Gunilla Nordin Fredrikson, Bengt Vessby. Conjugated linoleic acid increased C-reactive protein in human subjects. The British journal of nutrition. 2005 Nov; 94(5):791-5. doi: 10.1079/bjn20041419. [PMID: 16277783]
  • M C Veronesi, M Faustini, M Villani, H Kindahl, G Galeati, M Battocchio. Plasma concentrations of 15-ketodihydro-PGF(2alpha), cortisol and progesterone during manual twin reduction in thoroughbred mares. Journal of veterinary medicine. A, Physiology, pathology, clinical medicine. 2005 Oct; 52(8):411-5. doi: 10.1111/j.1439-0442.2005.00748.x. [PMID: 16176572]
  • Samar Basu, Anders Larsson, Johan Vessby, Bengt Vessby, Christian Berne. Type 1 diabetes is associated with increased cyclooxygenase- and cytokine-mediated inflammation. Diabetes care. 2005 Jun; 28(6):1371-5. doi: 10.2337/diacare.28.6.1371. [PMID: 15920054]
  • Jakob Johansson, Peter Ridefelt, Samar Basu, Sten Rubertsson. Antithrombin administration during experimental cardiopulmonary resuscitation. Resuscitation. 2004 Jul; 62(1):71-8. doi: 10.1016/j.resuscitation.2004.02.010. [PMID: 15246586]
  • Kevin Camphausen, Cynthia Ménard, Mary Sproull, Elizabeth Goley, Samar Basu, C Norman Coleman. Isoprostane levels in the urine of patients with prostate cancer receiving radiotherapy are not elevated. International journal of radiation oncology, biology, physics. 2004 Apr; 58(5):1536-9. doi: 10.1016/j.ijrobp.2003.09.011. [PMID: 15050334]
  • Annika Smedman, Bengt Vessby, Samar Basu. Isomer-specific effects of conjugated linoleic acid on lipid peroxidation in humans: regulation by alpha-tocopherol and cyclo-oxygenase-2 inhibitor. Clinical science (London, England : 1979). 2004 Jan; 106(1):67-73. doi: 10.1042/cs20030105. [PMID: 12956622]
  • Samar Basu, Xiaoli Liu, Ala Nozari, Sten Rubertsson, Adriana Miclescu, Lars Wiklund. Evidence for time-dependent maximum increase of free radical damage and eicosanoid formation in the brain as related to duration of cardiac arrest and cardio-pulmonary resuscitation. Free radical research. 2003 Mar; 37(3):251-6. doi: 10.1080/1071576021000043058. [PMID: 12688420]
  • P Razdan, A M Mwanza, H Kindahl, H Rodriguez-Martinez, F Hultén, S Einarsson. Effect of repeated ACTH-stimulation on early embryonic development and hormonal profiles in sows. Animal reproduction science. 2002 Mar; 70(1-2):127-37. doi: 10.1016/s0378-4320(01)00182-8. [PMID: 11841912]
  • K Håkan Olsén, Anna-Karin Johansson, Rickard Bjerselius, Ian Mayer, Hans Kindhal. Mature atlantic salmon (Salmo salar L.) male parr are attracted to ovulated female urine but not to ovarian fluid. Journal of chemical ecology. 2002 Jan; 28(1):29-40. doi: 10.1023/a:1013506701218. [PMID: 11868677]
  • S Basu, D K Mutschler, A O Larsson, R Kiiski, A Nordgren, M B Eriksson. Propofol (Diprivan-EDTA) counteracts oxidative injury and deterioration of the arterial oxygen tension during experimental septic shock. Resuscitation. 2001 Sep; 50(3):341-8. doi: 10.1016/s0300-9572(01)00351-3. [PMID: 11719164]
  • J Helmersson, S Basu. F(2)-isoprostane and prostaglandin F(2 alpha)metabolite excretion rate and day to day variation in healthy humans. Prostaglandins, leukotrienes, and essential fatty acids. 2001 Aug; 65(2):99-102. doi: 10.1054/plef.2001.0295. [PMID: 11545626]
  • S Basu, M Eriksson. Retinol palmitate counteracts oxidative injury during experimental septic shock. Annals of the Academy of Medicine, Singapore. 2001 May; 30(3):265-9. doi: NULL. [PMID: 11455740]
  • C M Weitz, R B Ghodgaonkar, N H Dubin, J R Niebyl. Prostaglandin F metabolite concentration as a prognostic factor in preterm labor. Obstetrics and gynecology. 1986 Apr; 67(4):496-9. doi: NULL. [PMID: 3457328]
  • G Feuerstein, Z Zukowska-Grojec, M M Krausz, M L Blank, F Snyder, I J Kopin. Cardiovascular and sympathetic effects of l-O-hexadecyl-2-acetyl-sn-glycero-3-phosphocholine in conscious SHR and WKY rats. Clinical and experimental hypertension. Part A, Theory and practice. 1982; 4(8):1335-50. doi: 10.3109/10641968209060793. [PMID: 7116669]
  • V N Goncharova, M S Morozova, L G Razina, I A Manuilova, L E Murashko. [Effect of 15-methyl-prostaglandin F2 alpha used for dilating the cervix uteri before abortion on endogenous prostaglandin F2 alpha synthesis]. Akusherstvo i ginekologiia. 1981 Dec; ?(12):37-8. doi: NULL. [PMID: 6950671]