Subcellular Location: Melanosome membrane

Found 500 associated metabolites.

24 associated genes. ABCB6, ATP7A, BACE2, CANX, CTNS, DCT, DTNBP1, GPNMB, GPR143, MFSD12, MLANA, MREG, NMB, OCA2, PMEL, RAB27A, RAB32, RAB38, RAB7A, SLC45A2, TH, TPCN2, TYR, TYRP1

Homoplantaginin

5-hydroxy-2-(4-hydroxyphenyl)-6-methoxy-7-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxychromen-4-one

C22H22O11 (462.1162)


Homoplantaginin is a glycoside and a member of flavonoids. Homoplantaginin is a natural product found in Scoparia dulcis, Eriocaulon buergerianum, and other organisms with data available. Homoplantaginin is a flavonoid from a traditional Chinese medicine Salvia plebeia with antiinflammatory and antioxidant properties. Homoplantaginin could inhibit TNF-α and IL-6 mRNA expression, IKKβ and NF-κB phosphorylation. Homoplantaginin is a flavonoid from a traditional Chinese medicine Salvia plebeia with antiinflammatory and antioxidant properties. Homoplantaginin could inhibit TNF-α and IL-6 mRNA expression, IKKβ and NF-κB phosphorylation.

   

Senkyunolide

1(3H)-Isobenzofuranone, 3-butyl-4,5-dihydro-, (3S)-

C12H16O2 (192.115)


Senkyunolide is a member of 2-benzofurans. Senkyunolide A is a natural product found in Ligusticum striatum, Angelica sinensis, and other organisms with data available. See also: Celery (part of); Scutellaria baicalensis Root (part of); Angelica acutiloba Root (part of) ... View More ... Senkyunolide A, isolated from Ligusticum chuanxiong Hort, has cytoprotective and antiproliferative activities. Anti-tumor activity[1][2]. Senkyunolide A, isolated from Ligusticum chuanxiong Hort, has cytoprotective and antiproliferative activities. Anti-tumor activity[1][2].

   

Isoliquiritin

(E)-1-(2,4-Dihydroxyphenyl)-3-(4-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)phenyl)prop-2-en-1-one

C21H22O9 (418.1264)


Isoliquiritin is a monosaccharide derivative that is trans-chalcone substituted by hydroxy groups at positions 2 and 4 and a beta-D-glucopyranosyloxy group at position 4 respectively. It has a role as an antineoplastic agent and a plant metabolite. It is a member of chalcones, a member of resorcinols, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a trans-chalcone. Isoliquiritin is a natural product found in Allium chinense, Portulaca oleracea, and other organisms with data available. See also: Glycyrrhiza Glabra (part of). Isoliquiritin is found in fruits. Isoliquiritin is isolated from Glycyrrhiza specie Isolated from Glycyrrhiza subspecies Isoliquiritin is found in tea and fruits. Isoliquiritin, isolated from Licorice Root, inhibits angiogenesis and tube formation. Isoliquiritin also exhibits antidepressant-like effects and antifungal activity[1][2][3]. Isoliquiritin, isolated from Licorice Root, inhibits angiogenesis and tube formation. Isoliquiritin also exhibits antidepressant-like effects and antifungal activity[1][2][3].

   

Chrysosplenetin

4H-1-Benzopyran-4-one, 5-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-3,6,7-trimethoxy-

C19H18O8 (374.1002)


Chrysosplenetin, also known as quercetagetin 3,6,7,3-tetramethyl ether or 3,6,7,3-tetra-methylquercetagetin, is a member of the class of compounds known as 7-o-methylated flavonoids. 7-o-methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, chrysosplenetin is considered to be a flavonoid lipid molecule. Chrysosplenetin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Chrysosplenetin can be found in german camomile, which makes chrysosplenetin a potential biomarker for the consumption of this food product. Chrysosplenetin is an O-methylated flavonol. It can be found in the root of Berneuxia thibetica and in Chamomilla recutita . Chrysosplenetin is a tetramethoxyflavone that is the 3,6,7,3-tetramethyl ether derivative of quercetagetin. It has a role as an antiviral agent and a plant metabolite. It is a tetramethoxyflavone and a dihydroxyflavone. It is functionally related to a quercetagetin. Chrysosplenetin is a natural product found in Haplophyllum myrtifolium, Cleome amblyocarpa, and other organisms with data available. Chrysosplenetin is one of the polymethoxylated flavonoids in Artemisia annua L. (Compositae) and other several Chinese herbs. Chrysosplenetin inhibits P-gp activity and reverses the up-regulated P-gp and MDR1 levels induced by artemisinin (ART). Chrysosplenetin significantly augments the rat plasma level and anti-malarial efficacy of ART, partially due to the uncompetitive inhibition effect of Chrysosplenetin on rat CYP3A[1]. Chrysosplenetin is one of the polymethoxylated flavonoids in Artemisia annua L. (Compositae) and other several Chinese herbs. Chrysosplenetin inhibits P-gp activity and reverses the up-regulated P-gp and MDR1 levels induced by artemisinin (ART). Chrysosplenetin significantly augments the rat plasma level and anti-malarial efficacy of ART, partially due to the uncompetitive inhibition effect of Chrysosplenetin on rat CYP3A[1].

   

Kaempferitrin

7-((6-deoxy-alpha-L-mannopyranosyl)oxy)-5-hydroxy-2-(4-hydroxyphenyl)-4-oxo-4H-1-benzopyran-3-yl 6-deoxy-alpha-L-mannopyranoside

C27H30O14 (578.1635)


Kaempferol 3,7-di-O-alpha-L-rhamnoside is a glycosyloxyflavone that is kaempferol attached to alpha-L-rhamnopyranosyl residues at positions 3 and 7 respectively via glycosidic linkages. It has been isolated from the aerial parts of Vicia faba and Lotus edulis. It has a role as a bone density conservation agent, a hypoglycemic agent, an immunomodulator, an anti-inflammatory agent, an antineoplastic agent, a plant metabolite, an apoptosis inducer and an antidepressant. It is an alpha-L-rhamnoside, a monosaccharide derivative, a dihydroxyflavone, a glycosyloxyflavone and a polyphenol. It is functionally related to a kaempferol. Kaempferitrin is a natural product found in Ficus septica, Cleome amblyocarpa, and other organisms with data available. See also: Selenicereus grandiflorus stem (part of). A glycosyloxyflavone that is kaempferol attached to alpha-L-rhamnopyranosyl residues at positions 3 and 7 respectively via glycosidic linkages. It has been isolated from the aerial parts of Vicia faba and Lotus edulis. Kaempferitrin is found in linden. Kaempferitrin is a chemical compound. It can be isolated from the leaves of Hedyotis verticillata. Kaempferitrin is a natural flavonoid, possesses antinociceptive, anti-inflammatory, anti-diabetic, antitumoral and chemopreventive effects, and activates insulin signaling pathway. Kaempferitrin is a natural flavonoid, possesses antinociceptive, anti-inflammatory, anti-diabetic, antitumoral and chemopreventive effects, and activates insulin signaling pathway.

   

Farrerol

(2S)-2,3-Dihydro-5,7-dihydroxy-2- (4-hydroxyphenyl)-6,8-dimethyl-4H-1-benzopyran-4-one

C17H16O5 (300.0998)


Farrerol is an organic molecular entity. It has a role as a metabolite. (S)-2,3-Dihydro-5,7-dihydroxy-2-(4-hydroxyphenyl)-6,8-dimethyl-4-benzopyrone is a natural product found in Rhododendron spinuliferum, Wikstroemia canescens, and other organisms with data available. Farrerol is a bioactive constituent of Rhododendron, with broad activities such as anti-oxidative, anti-inflammatory, anti-tumor, neuroprotective and hepatoprotective effects[1][2][3][4][5][6]. Farrerol is a bioactive constituent of Rhododendron, with broad activities such as anti-oxidative, anti-inflammatory, anti-tumor, neuroprotective and hepatoprotective effects[1][2][3][4][5][6].

   

Phorbol

1,1a,1b,4,4a,7a,7b,8,9,9a-Decahydro-4a,7b,9,9a-tetrahydroxy-3-(hydroxymethyl)-1,1,6,8-tetramethyl-5H-cyclopropa(3,4)benz(1,2-e)azulen-5-one (1aR-(1aalpha,1bbeta,4abeta,7aalpha,7balpha,8alpha,9beta,9aalpha))-

C20H28O6 (364.1886)


Phorbol is a white solid. (NTP, 1992) Phorbol is a diterpenoid with the structure of tigliane hydroxylated at C-4, -9, -12(beta), -13 and -20, with an oxo group at C-3 and unsaturation at the 1- and 6-positions. It is a tetracyclic diterpenoid, an enone, a cyclic ketone, a tertiary alcohol and a tertiary alpha-hydroxy ketone. It derives from a hydride of a tigliane. Phorbol is a natural product found in Euphorbia tirucalli, Croton tiglium, and Rehmannia glutinosa with data available. Phorbol is a natural, plant-derived organic compound. It is a member of the tigliane family of diterpenes. Phorbol was first isolated in 1934 as the hydrolysis product of croton oil, which is derived from the seeds of the purging croton, Croton tiglium. The structure of phorbol was determined in 1967. It is very soluble in most polar organic solvents, as well as in water. Phorbol is a highly toxic diterpene, whose esters have important biological properties. Phorbol is a highly toxic diterpene, whose esters have important biological properties.

   

Coniferin

(2R,3S,4S,5R,6S)-2-(Hydroxymethyl)-6-(4-((E)-3-hydroxyprop-1-en-1-yl)-2-methoxyphenoxy)tetrahydro-2H-pyran-3,4,5-triol

C16H22O8 (342.1315)


Coniferin (CAS: 531-29-3), also known as abietin or coniferoside, belongs to the class of organic compounds known as phenolic glycosides. These are organic compounds containing a phenolic structure attached to a glycosyl moiety. Some examples of phenolic structures include lignans and flavonoids. Among the sugar units found in natural glycosides are D-glucose, L-fructose, and L-rhamnose. Coniferin is an extremely weak basic (essentially neutral) compound (based on its pKa). Coniferin is a monosaccharide derivative consisting of coniferol attached to a beta-D-glucopyranosyl residue at position 1 via a glycosidic linkage. Coniferin is found in asparagus and has been isolated from Scorzonera hispanica (black salsify). Coniferin is a monosaccharide derivative that is coniferol attached to a beta-D-glucopyranosyl residue at position 1 via a glycosidic linkage. It has a role as a plant metabolite. It is a cinnamyl alcohol beta-D-glucoside, an aromatic ether and a monosaccharide derivative. It is functionally related to a coniferol. Coniferin is a natural product found in Salacia chinensis, Astragalus onobrychis, and other organisms with data available. A monosaccharide derivative that is coniferol attached to a beta-D-glucopyranosyl residue at position 1 via a glycosidic linkage. Isolated from Scorzonera hispanica (scorzonera) Coniferin (Laricin) is a glucoside of coniferyl alcohol. Coniferin inhibits fungal growth and melanization[1]. Coniferin (Laricin) is a glucoside of coniferyl alcohol. Coniferin inhibits fungal growth and melanization[1].

   

Yangonin

5-Hydroxy-3-methoxy-7-(p-methoxyphenyl)-2,4,6-heptatrienoic acid .gamma.-lactone

C15H14O4 (258.0892)


Yangonin is a member of 2-pyranones and an aromatic ether. Yangonin is a natural product found in Piper methysticum, Ranunculus silerifolius, and Piper majusculum with data available. See also: Piper methysticum root (part of). Yangonin is found in beverages. Yangonin is found in kava root (Piper methysticum). FDA advises against use of kava in food due to potential risk of severe liver damage (2002). Found in kava root (Piper methysticum). FDA advises against use of kava in food due to potential risk of severe liver damage (2002) Yangonin exhibits affinity for the human recombinant cannabinoid CB1 receptor with an IC50 and a Ki of 1.79 μM and 0.72 μM, respectively. Yangonin exhibits affinity for the human recombinant cannabinoid CB1 receptor with an IC50 and a Ki of 1.79 μM and 0.72 μM, respectively.

   

Luteolin 7-glucuronide

(2S,3S,4S,5R,6S)-6-{[2-(3,4-dihydroxyphenyl)-5-hydroxy-4-oxo-4H-chromen-7-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

C21H18O12 (462.0798)


Luteolin 7-glucuronide, also known as cyanidenon-7-O-B-D-glucuronate or luteolin 7-O-beta-D-glucuronopyranoside, is a member of the class of compounds known as flavonoid-7-o-glucuronides. Flavonoid-7-o-glucuronides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to glucuronic acid at the C7-position. Luteolin 7-glucuronide is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Luteolin 7-glucuronide can be found in a number of food items such as globe artichoke, wild carrot, carrot, and lettuce, which makes luteolin 7-glucuronide a potential biomarker for the consumption of these food products. Luteolin 7-O-glucuronide could inhibit Matrix Metalloproteinases (MMP) activities, with IC50s of 17.63, 7.99, 11.42, 12.85, 0.03 μM for MMP-1, MMP-3, MMP-8, MMP-9, MMP-13, respectively. Luteolin 7-O-glucuronide could inhibit Matrix Metalloproteinases (MMP) activities, with IC50s of 17.63, 7.99, 11.42, 12.85, 0.03 μM for MMP-1, MMP-3, MMP-8, MMP-9, MMP-13, respectively.

   

Bellidifolin

9H-Xanthen-9-one, 1,5,8-trihydroxy-3-methoxy-

C14H10O6 (274.0477)


Bellidifolin is a member of the xanthone family that is bellidin substituted with a methyl group at O-3. A natural product found particularly in Swertia chirata and Gentianella campestris. It has a role as an EC 3.1.1.7 (acetylcholinesterase) inhibitor, a hypoglycemic agent and a metabolite. It is a member of xanthones and a polyphenol. It is functionally related to a bellidin. Bellidifolin is a natural product found in Gentiana orbicularis, Gentianella amarella, and other organisms with data available. Bellidifolin is a xanthone isolated from the stems of Swertia punicea, with hepatoprotective, hypoglycemic, anti-oxidation, anti-inflammatory and antitumor activities[1][2][3]. Bellidifolin also acts as a viral protein R (Vpr) inhibitor[4]. Bellidifolin is a xanthone isolated from the stems of Swertia punicea, with hepatoprotective, hypoglycemic, anti-oxidation, anti-inflammatory and antitumor activities[1][2][3]. Bellidifolin also acts as a viral protein R (Vpr) inhibitor[4].

   

4'-Demethylepipodophyllotoxin

(5S,5aR,8aR,9R)-5-hydroxy-9-(4-hydroxy-3,5-dimethoxyphenyl)-5a,6,8a,9-tetrahydro-5H-[2]benzofuro[5,6-f][1,3]benzodioxol-8-one

C21H20O8 (400.1158)


4-demethylepipodophyllotoxin is an organic heterotetracyclic compound that is the 9- epimer of 4-demethylpodophyllotoxin. It has a role as an antineoplastic agent. It is a furonaphthodioxole, an organic heterotetracyclic compound and a member of phenols. An organic heterotetracyclic compound that is the 9- epimer of 4-demethylpodophyllotoxin. 4'-Demethylepipodophyllotoxin (4'-DMEP) is an intermediate compound that inhibits microtubule assembly. 4'-Demethylepipodophyllotoxin (4'-DMEP) is an intermediate compound that inhibits microtubule assembly.

   

alpha-Spinasterol

(3S,5S,9R,10S,13R,14R,17R)-17-((2R,5S,E)-5-ethyl-6-methylhept-3-en-2-yl)-10,13-dimethyl-2,3,4,5,6,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.3705)


Alpha-Spinasterol is a steroid. It derives from a hydride of a stigmastane. alpha-Spinasterol is a natural product found in Pandanus utilis, Benincasa hispida, and other organisms with data available. See also: Menyanthes trifoliata leaf (part of). Constituent of spinach (Spinacia oleracea) leaves, cucumber (Cucumis sativus), alfalfa meal, pumpkin seeds and senega root. alpha-Spinasterol is found in many foods, some of which are bitter gourd, towel gourd, muskmelon, and green vegetables. alpha-Spinasterol is found in alfalfa. alpha-Spinasterol is a constituent of spinach (Spinacia oleracea) leaves, cucumber (Cucumis sativus), alfalfa meal, pumpkin seeds and senega root. α-Spinasterol, isolated from Melandrium firmum, has antibacterial activity[1]. α-Spinasterol is a transient receptor potential vanilloid 1 (TRPV1) antagonist, has anti-inflammatory, antidepressant, antioxidant and antinociceptive effects. α-Spinasterol inhibits COX-1 andCOX-2 activities with IC50 values of 16.17 μM and 7.76 μM, respectively[2]. α-Spinasterol, isolated from Melandrium firmum, has antibacterial activity[1]. α-Spinasterol is a transient receptor potential vanilloid 1 (TRPV1) antagonist, has anti-inflammatory, antidepressant, antioxidant and antinociceptive effects. α-Spinasterol inhibits COX-1 andCOX-2 activities with IC50 values of 16.17 μM and 7.76 μM, respectively[2].

   

Afzelin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-(((2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O10 (432.1056)


Afzelin is a glycosyloxyflavone that is kaempferol attached to an alpha-L-rhamnosyl residue at position 3 via a glycosidic linkage. It has a role as a plant metabolite, an antibacterial agent and an anti-inflammatory agent. It is a glycosyloxyflavone, a trihydroxyflavone and a monosaccharide derivative. It is functionally related to a kaempferol. It is a conjugate acid of an afzelin(1-). Afzelin is a natural product found in Premna odorata, Vicia tenuifolia, and other organisms with data available. [Raw Data] CBA27_Afzelin_neg_30eV_1-1_01_1585.txt [Raw Data] CBA27_Afzelin_pos_20eV_1-1_01_1549.txt [Raw Data] CBA27_Afzelin_pos_10eV_1-1_01_1540.txt [Raw Data] CBA27_Afzelin_neg_10eV_1-1_01_1576.txt [Raw Data] CBA27_Afzelin_neg_20eV_1-1_01_1584.txt [Raw Data] CBA27_Afzelin_neg_40eV_1-1_01_1586.txt [Raw Data] CBA27_Afzelin_pos_30eV_1-1_01_1550.txt [Raw Data] CBA27_Afzelin_pos_50eV_1-1_01_1552.txt [Raw Data] CBA27_Afzelin_pos_40eV_1-1_01_1551.txt [Raw Data] CBA27_Afzelin_neg_50eV_1-1_01_1587.txt Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1]. Afzelin (Kaempferol-3-O-rhamnoside)It is a flavonol glycoside that has anti-inflammatory, anti-oxidative stress response, anti-apoptotic, and anti-cardiac cytotoxic effects. AfzelinIt can reduce mitochondrial damage, enhance mitochondrial biosynthesis, and reduce mitochondria-related proteins. Parkinand PTENinduced putative kinase 1 (putative kinase 1)s level. AfzelinCan be improved D-galactosamine(GalN)/LPSSurvival rate of mice treated with doxorubicin prophylaxis (HY-15142A)Induced cardiotoxicity and scopolamine (HY-N0296)-induced neurological injury. AfzelinAlso inhibits asthma and allergies caused by ovalbumin[1][2][3][4]. Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1].

   

Erythrodiol

(3S,4aR,6aR,6bS,8aS,12aS,14aR,14bR)-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-ol

C30H50O2 (442.3811)


Erythrodiol is a pentacyclic triterpene, found in the non-glyceride fraction of olive pomace oil (Olive pomace oil, also known as "orujo" olive oil, is a blend of refined-pomace oil and virgin olive oil, fit for human consumption). Pentacyclic triterpenes are natural compounds which are widely distributed in plants. These natural products have been demonstrated to possess anti-inflammatory properties. Triterpenoids have been reported to possess antioxidant properties, since they prevent lipid peroxidation and suppress superoxide anion generation. The triterpenes have a history of medicinal use in many Asian countries. Erythrodiol exhibits both pro- and anti-inflammatory properties depending on chemical structure and dose and may be useful in modulating the immune response; further studies are required to confirm the immunomodulatory behaviour of this triterpenoid, and characterise the mechanisms underlying the biphasic nature of some aspects of the inflammatory response. (PMID: 17292619, 15522132). Erythrodiol is a pentacyclic triterpenoid that is beta-amyrin in which one of the hydrogens of the methyl group at position 28 has been replaced by a hydroxy group. It is a plant metabolite found in olive oil as well as in Rhododendron ferrugineum and other Rhododendron species. It has a role as a plant metabolite. It is a pentacyclic triterpenoid, a primary alcohol, a secondary alcohol and a diol. It is functionally related to a beta-amyrin. Erythrodiol is a natural product found in Salacia chinensis, Monteverdia ilicifolia, and other organisms with data available. See also: Calendula Officinalis Flower (part of); Centaurium erythraea whole (part of). A pentacyclic triterpenoid that is beta-amyrin in which one of the hydrogens of the methyl group at position 28 has been replaced by a hydroxy group. It is a plant metabolite found in olive oil as well as in Rhododendron ferrugineum and other Rhododendron species. Found in grapes, olives, pot marigold (Calendula officinalis) and other plants Erythrodiol is an olive oil component. Erythrodiol promotes Cholesterol efflux (ChE) by selectively inhibiting the degradation of ABCA1 protein. Erythrodiol is a good candidate to be further explored for therapeutic or preventive application in the context of atherosclerosis[1]. Erythrodiol is an olive oil component. Erythrodiol promotes Cholesterol efflux (ChE) by selectively inhibiting the degradation of ABCA1 protein. Erythrodiol is a good candidate to be further explored for therapeutic or preventive application in the context of atherosclerosis[1].

   

Swertisin

5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-6-((2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)-4H-chromen-4-one

C22H22O10 (446.1213)


Swertisin is a flavone C-glycoside that is 7-O-methylapigenin in which the hydrogen at position 6 has been replaced by a beta-D-glucosyl residue. It has a role as a plant metabolite, an adenosine A1 receptor antagonist, an anti-inflammatory agent, an antioxidant and a hypoglycemic agent. It is a flavone C-glycoside, a monosaccharide derivative, a polyphenol, a monomethoxyflavone and a dihydroxyflavone. It is functionally related to an apigenin. Swertisin is a natural product found in Carex fraseriana, Gentiana orbicularis, and other organisms with data available. A flavone C-glycoside that is 7-O-methylapigenin in which the hydrogen at position 6 has been replaced by a beta-D-glucosyl residue. Swertisin, a C-glucosylflavone isolated from Iris tectorum, is known to have antidiabetic, anti-inflammatory and antioxidant effects. Swertisin is an adenosine A1 receptor antagonist[1][2].

   

lappacontine

[(1S,2S,3S,4S,5R,6S,8S,9S,13S,16S,17S)-11-Ethyl-3,8-dihydroxy-4,6,16-trimethoxy-11-azahexacyclo[7.7.2.12,5.01,10.03,8.013,17]nonadecan-13-yl] 2-acetamidobenzoate

C32H44N2O8 (584.3098)


D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002491 - Central Nervous System Agents > D000700 - Analgesics Lappaconitine is a diterpenoid.

   

3-(3,4-Dihydroxyphenyl)lactic acid

3-(3,4-DIHYDROXYPHENYL)LACTIC ACID DL-.BETA.-(3,4-DIHYDROXYPHENYL)LACTIC ACID

C9H10O5 (198.0528)


3-(3,4-dihydroxyphenyl)lactic acid is a 2-hydroxy monocarboxylic acid and a member of catechols. It is functionally related to a rac-lactic acid. It is a conjugate acid of a 3-(3,4-dihydroxyphenyl)lactate. 3-(3,4-Dihydroxyphenyl)-2-hydroxypropanoic acid is a natural product found in Salvia miltiorrhiza, Salvia sonchifolia, and other organisms with data available. 3-(3,4-Dihydroxyphenyl)lactic acid is a natural catecholamine metabolite present in normal newborns plasma (PMID 1391254) and in normal urine (PMID 7460271) [HMDB]. 3-(3,4-Dihydroxyphenyl)lactic acid is found in rosemary. 3-(3,4-Dihydroxyphenyl)lactic acid is a natural catecholamine metabolite present in normal newborns plasma (PMID 1391254) and in normal urine (PMID 7460271).

   

Haemanthamine

(1S,13S,15S,18R)-15-methoxy-5,7-dioxa-12-azapentacyclo[10.5.2.01,13.02,10.04,8]nonadeca-2,4(8),9,16-tetraen-18-ol

C17H19NO4 (301.1314)


Haemanthamine is an alkaloid. Hemanthamine is a natural product found in Sternbergia clusiana, Cyrtanthus elatus, and other organisms with data available.

   

Gossypetin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-3,5,7,8-tetrahydroxy-

C15H10O8 (318.0376)


Gossypetin is a hexahydroxyflavone having the hydroxy groups placed at the 3-, 3-, 4-, 5- 7- and 8-positions. It has a role as a plant metabolite. It is a 7-hydroxyflavonol and a hexahydroxyflavone. It is a conjugate acid of a gossypetin-3-olate and a gossypetin(1-). Gossypetin is a natural product found in Sedum brevifolium, Rhododendron stenophyllum, and other organisms with data available. See also: Primula veris flower (part of); Larrea tridentata whole (part of). A hexahydroxyflavone having the hydroxy groups placed at the 3-, 3-, 4-, 5- 7- and 8-positions.

   

MOROL

(3S,4aR,6aR,6bR,8aR,12bR,14aR,14bR)-4,4,6a,6b,8a,11,11,14b-Octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12b,13,14,14a,14b-eicosahydro-picen-3-ol

C30H50O (426.3861)


Germanicol is a pentacyclic triterpenoid that is oleanane substituted by a hydroxy group at the 3beta-position and with a double bond between positioins 18 and 19. It is a pentacyclic triterpenoid and a secondary alcohol. It derives from a hydride of an oleanane. Germanicol is a natural product found in Barringtonia racemosa, Euphorbia nicaeensis, and other organisms with data available.

   

Tricetin

2-(3,4,5-TRIHYDROXYPHENYL)-5,7-DIHYDROXY-4H-1-BENZOPYRAN-4-ONE; PENTAHYDROXYFLAVONE

C15H10O7 (302.0427)


Tricetin is flavone hydroxylated at positions 3, 4, 5, 5 and 7. It has a role as an antineoplastic agent and a metabolite. It is a conjugate acid of a tricetin(1-). Tricetin is a natural product found in Punica granatum, Lathyrus pratensis, and other organisms with data available. Constituent of the seed coat of lentil (Lens culinaris). Tricetin is found in many foods, some of which are ginkgo nuts, pulses, tea, and cereals and cereal products. Tricetin is found in cereals and cereal products. Tricetin is a constituent of the seed coat of lentil (Lens culinaris) Flavone hydroxylated at positions 3, 4, 5, 5 and 7.

   

Primuliten

InChI=1/C15H10O3/c16-11-7-4-8-13-15(11)12(17)9-14(18-13)10-5-2-1-3-6-10/h1-9,16H

C15H10O3 (238.063)


5-Hydroxyflavone is a member of flavones. 5-Hydroxyflavone is a natural product found in Conchocarpus heterophyllus, Primula denticulata, and Lophomyrtus bullata with data available. relative retention time with respect to 9-anthracene Carboxylic Acid is 1.263 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.268 5-Hydroxyflavone, a flavonoid ligand, shows no cytotoxic activity against MCF-7, FaDU, MDA-MB-435S, U87, RPE-1, and HEK293 cells[1]. 5-Hydroxyflavone, a flavonoid ligand, shows no cytotoxic activity against MCF-7, FaDU, MDA-MB-435S, U87, RPE-1, and HEK293 cells[1].

   

Asparagusic acid

5-19-07-00224 (Beilstein Handbook Reference)

C4H6O2S2 (149.9809)


Asparagusic acid is a sulfur-containing carboxylic acid, a dithiolanecarboxylic acid and a member of dithiolanes. It is a conjugate acid of an asparagusate. It derives from a hydride of a 1,2-dithiolane. Asparagusic acid is a natural product found in Asparagus officinalis with data available. Asparagusic acid is found in asparagus. Asparagusic acid is isolated from asparagus (Asparagus officinalis Isolated from asparagus (Asparagus officinalis) [DFC] Asparagusic acid is a sulfur-containing flavor component produced by Asparagus officinalis Linn., with anti-parasitic effect. Asparagusic acid is a plant growth inhibitor[1][2][3].

   

Sugiol

9(1H)-Phenanthrenone, 2,3,4,4a,10,10a-hexahydro-6-hydroxy-1,1,4a-trimethyl-7-(1-methylethyl)-, (4aS-trans)-

C20H28O2 (300.2089)


Sugiol is an abietane diterpenoid that is ferruginol in which the methylene group para to the phenolic hydroxy group has been substituted by an oxo group. It has a role as a plant metabolite, an antiviral agent, an antineoplastic agent, an antioxidant and a radical scavenger. It is an abietane diterpenoid, a carbotricyclic compound, a meroterpenoid, a member of phenols and a cyclic terpene ketone. It is functionally related to a ferruginol. Sugiol is a natural product found in Austrocedrus chilensis, Libocedrus bidwillii, and other organisms with data available. An abietane diterpenoid that is ferruginol in which the methylene group para to the phenolic hydroxy group has been substituted by an oxo group.

   

Alphitolsaure

(1R,3aS,5aR,5bR,7aR,9R,10R,11aR,11bR,13aR,13bR)-9,10-dihydroxy-5a,5b,8,8,11a-pentamethyl-1-prop-1-en-2-yl-1,2,3,4,5,6,7,7a,9,10,11,11b,12,13,13a,13b-hexadecahydrocyclopenta[a]chrysene-3a-carboxylic acid

C30H48O4 (472.3552)


2alpha,3beta-dihydroxy-20(29)-lupen-28-oic acid is a pentacyclic triterpenoid that is betulinic acid carrying an additional alpha-hydroxy group at position 2. It has been isolated from Breynia fruticosa. It has a role as a plant metabolite. It is a pentacyclic triterpenoid and a dihydroxy monocarboxylic acid. It is functionally related to a betulinic acid. It derives from a hydride of a lupane. Alphitolic acid is a natural product found in Quercus aliena, Alphitonia petriei, and other organisms with data available. A pentacyclic triterpenoid that is betulinic acid carrying an additional alpha-hydroxy group at position 2. It has been isolated from Breynia fruticosa.

   

Ayanin

4H-1-BENZOPYRAN-4-ONE, 5-HYDROXY-2-(3-HYDROXY-4-METHOXYPHENYL)-3,7-DIMETHOXY-

C18H16O7 (344.0896)


3,5-dihydroxy-3,4,7-trimethoxyflavone is a trimethoxyflavone that is quercetin in which the hydroxy groups at positions 3, 4 and 7 have been replaced by methoxy groups. It has a role as a plant metabolite. It is a dihydroxyflavone and a trimethoxyflavone. It is functionally related to a quercetin. It is a conjugate acid of a 3,5-dihydroxy-3,4,7-trimethoxyflavone(1-). Ayanin is a natural product found in Psiadia viscosa, Solanum pubescens, and other organisms with data available. A trimethoxyflavone that is quercetin in which the hydroxy groups at positions 3, 4 and 7 have been replaced by methoxy groups.

   

Canthin-6-one

1,6-diazatetracyclo[7.6.1.0⁵,¹⁶.0¹⁰,¹⁵]hexadeca-3,5,7,9(16),10(15),11,13-heptaen-2-one

C14H8N2O (220.0637)


Canthin-6-one is an indole alkaloid that is 6H-indolo[3,2,1-de][1,5]naphthyridine substituted by an oxo group at position 6. It has a role as a metabolite and an antimycobacterial drug. It is an indole alkaloid, an organic heterotetracyclic compound and an enone. Canthin-6-one is a natural product found in Zanthoxylum mayu, Zanthoxylum ovalifolium, and other organisms with data available. D016573 - Agrochemicals D010575 - Pesticides Canthin-6-one displays a wide range of biological activities, such as antimycobacterial activity[1]. Canthin-6-one displays a wide range of biological activities, such as antimycobacterial activity[1].

   

Glabranin

4H-1-Benzopyran-4-one, 2,3-dihydro-5,7-dihydroxy-8-(3-methyl-2-butenyl)-2-phenyl-, (2S)-

C20H20O4 (324.1362)


Glabranin is a dihydroxyflavanone that is pinocembrin substituted by a prenyl group at position 8. It has a role as a plant metabolite. It is a dihydroxyflavanone and a (2S)-flavan-4-one. It is functionally related to a pinocembrin. Glabranin is a natural product found in Sophora tomentosa, Annona squamosa, and other organisms with data available. A dihydroxyflavanone that is pinocembrin substituted by a prenyl group at position 8. Saponin from licorice (Glycyrrhiza glabra). Glabranin B is found in tea and herbs and spices. Origin: Plant, Pyrans Glabranin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=41983-91-9 (retrieved 2024-07-09) (CAS RN: 41983-91-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Picrocrocin

(R)-2,6,6-trimethyl-4-(((2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)cyclohex-1-ene-1-carbaldehyde

C16H26O7 (330.1678)


Picrocrocin is a glycoside formed from glucose and safranal. It is found in the spice saffron, which comes from the crocus flower. Picrocrocin has a bitter taste and is the chemical most responsible for the taste of saffron. It is believed that picrocrocin is a degradation product of the carotenoid zeaxanthin (Wikipedia). Picrocrocin is a beta-D-glucoside of beta-cyclocitral; the precursor of safranal. It is the compound most responsible for the bitter taste of saffron. It is functionally related to a beta-cyclocitral. Picrocrocin is a natural product found in Crocus tommasinianus, Crocus sativus, and Crocus vernus with data available. Isolated from saffron (stamens of Crocus sativus). Food colour and flavouring ingredient Picrocrocin, an apocarotenoid found in Saffron. Picrocrocin shows anticancer effect. Picrocrocin exhibits growth inhibitory effects against SKMEL-2 human malignant melanoma cells[1]. Picrocrocin, an apocarotenoid found in Saffron. Picrocrocin shows anticancer effect. Picrocrocin exhibits growth inhibitory effects against SKMEL-2 human malignant melanoma cells[1].

   

Lotaustralin

(R)-2-methyl-2-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)butanenitrile

C11H19NO6 (261.1212)


Lotaustralin is a cyanogenic glycoside. Lotaustralin is a natural product found in Osteospermum ecklonis, Lotus arenarius, and other organisms with data available. Epilotaustralin is found in cereals and cereal products. Epilotaustralin is isolated from Triticum monococcum (wheat). Glycoside from Trifolium repens (white clover) and other plants Lotaustralin is a cyanogenic glucoside isolated from Manihot esculenta [1].

   

4-O-beta-Glucopyranosyl-cis-coumaric acid

(Z)-3-(4-(((2S,3R,4S,5S,6R)-3,4,5-Trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)phenyl)acrylic acid

C15H18O8 (326.1002)


4-O-beta-D-glucosyl-cis-p-coumaric acid is a 4-O-beta-D-glucosyl-4-coumaric acid. It is a conjugate acid of a 4-O-beta-D-glucosyl-cis-p-coumarate. 4-O-beta-D-glucosyl-cis-p-coumaric acid is a natural product found in Kunzea ambigua, Breynia rostrata, and other organisms with data available.

   

3-Feruloylquinic acid

(1S,3R,4R,5R)-1,3,4-trihydroxy-5-{[(2E)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}cyclohexane-1-carboxylic acid

C17H20O9 (368.1107)


3-Feruloylquinic acid (3-FQA) (CAS: 1899-29-2) belongs to the class of organic compounds known as quinic acids and derivatives. Quinic acids and derivatives are compounds containing a quinic acid moiety (or a derivative thereof), which is a cyclitol made up of a cyclohexane ring that bears four hydroxyl groups at positions 1,3.4, and 5, as well as a carboxylic acid at position 1. Coffee, especially green or raw coffee, is a major source of chlorogenic acids (CGA). CGAs have been associated with a range of health benefits including a reduction in the risk of cardiovascular disease, diabetes type 2, and Alzheimers disease. Major CGAs in coffee include 3-, 4-, and 5-feruloylquinic acids (PMID: 19022950). 3-FQA has been detected in the plasma and urine of humans who have ingested coffee (PMID: 19460943). 3-FQA is also found in chicory, tomatoes (Lycopersicon esculentum), and sunflowers (Helianthus annuus). 3-O-feruloyl-D-quinic acid is a quinic acid that is the 3-O-feruloyl derivative of D-quinic acid. It has a role as a plant metabolite. It is a quinic acid and an enoate ester. It is functionally related to a (-)-quinic acid and a ferulic acid. 3-O-Feruloylquinic acid is a natural product found in Astragalus onobrychis, Astragalus arguricus, and other organisms with data available. 5-feruloylquinic acid, also known as O-feruloylquinate, belongs to quinic acids and derivatives class of compounds. Those are compounds containing a quinic acid moiety (or a derivative thereof), which is a cyclitol made up of a cyclohexane ring that bears four hydroxyl groups at positions 1,3.4, and 5, as well as a carboxylic acid at position 1. 5-feruloylquinic acid is slightly soluble (in water) and a weakly acidic compound (based on its pKa). 5-feruloylquinic acid can be found in a number of food items such as sweet cherry, apricot, redcurrant, and peach (variety), which makes 5-feruloylquinic acid a potential biomarker for the consumption of these food products. . 3-Feruloylquinic acid, a derivative of quinic acid-bound phenolic acid, shows antioxidant activity. 3-Feruloylquinic acid markedly enhances by high photosynthetically active radiation (PAR) and UV irradiances[1][2]. 3-Feruloylquinic acid, a derivative of quinic acid-bound phenolic acid, shows antioxidant activity. 3-Feruloylquinic acid markedly enhances by high photosynthetically active radiation (PAR) and UV irradiances[1][2].

   

Crocin 3

(2E,4E,6E,8E,10E,12E,14E)-2,6,11,15-tetramethyl-16-oxo-16-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxyhexadeca-2,4,6,8,10,12,14-heptaenoic acid

C32H44O14 (652.2731)


Beta-D-gentiobiosyl crocetin is a dicarboxylic acid monoester resulting from the formal condensation of one of the carboxylic acid groups of crocetin with the anomeric hydroxy group of beta-D-gentiobiose. It is a dicarboxylic acid monoester, a glycoside and a disaccharide derivative. It is functionally related to a crocetin and a gentiobiose. It is a conjugate acid of a beta-D-gentiobiosyl crocetin(1-). beta-D-gentiobiosyl crocetin is a natural product found in Gardenia jasminoides, Apis cerana, and Crocus sativus with data available. Isolated from saffron. Crocin 3 is found in saffron and herbs and spices. Crocin 3 is found in herbs and spices. Crocin 3 is isolated from saffron.

   

beta-Carotinal

2,4,6,8,10,12,14,16-Heptadecaoctaenal, 2,6,11,15-tetramethyl-17-(2,6,6-trimethyl-1-cyclohexen-1-yl)-, (2E,4E,6E,8E,10E,12E,14E,16E)-

C30H40O (416.3079)


8-apo-beta,psi-caroten-8-al is an apo carotenoid triterpenoid compound arising from oxidative degradation of the beta,beta-carotene skeleton at the 8-position. It is an enal and an apo carotenoid triterpenoid. Apocarotenal is a natural product found in Dracaena draco, Palisota barteri, and other organisms with data available. Constituent of orange peel, spinach, marigolds and egg yolks. Colour additive. beta-Carotinal is found in many foods, some of which are eggs, green vegetables, sweet orange, and citrus. beta-Carotinal is found in citrus. beta-Carotinal is a constituent of orange peel, spinach, marigolds and egg yolks. Colour additive. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids β-Apo-8'-carotenal (Apocarotenal), a provitamin A carotenoid, is an inducer of CYPlA1 and CYPlA2 in rat. β-Apo-8'-carotenal is present in many fruits and vegetables[1]. β-Apo-8'-carotenal (Apocarotenal), a provitamin A carotenoid, is an inducer of CYPlA1 and CYPlA2 in rat. β-Apo-8'-carotenal is present in many fruits and vegetables[1].

   

Cycloartenol

(3R,6S,11S,12S,15R,16R)-7,7,12,16-tetramethyl-15-[(2R)-6-methylhept-5-en-2-yl]pentacyclo[9.7.0.0^{1,3}.0^{3,8}.0^{12,16}]octadecan-6-ol

C30H50O (426.3861)


Cycloartenol is found in alcoholic beverages. Cycloartenol is a constituent of Artocarpus integrifolia fruits and Solanum tuberosum (potato) Cycloartenol is a sterol precursor in photosynthetic organisms and plants. The biosynthesis of cycloartenol starts from the triterpenoid squalene. Its structure is also related to triterpenoid lanosterol Cycloartenol is a pentacyclic triterpenoid, a 3beta-sterol and a member of phytosterols. It has a role as a plant metabolite. It derives from a hydride of a lanostane. Cycloartenol is a natural product found in Euphorbia nicaeensis, Euphorbia boetica, and other organisms with data available. Constituent of Artocarpus integrifolia fruits and Solanum tuberosum (potato)

   

trans-beta-Farnesene

TRANS-.BETA.-FARNESENE (CONSTITUENT OF CHAMOMILE) [DSC]

C15H24 (204.1878)


Trans-beta-farnesene is a beta-farnesene in which the double bond at position 6-7 has E configuration. It is the major or sole alarm pheromone in most species of aphid. It has a role as an alarm pheromone and a metabolite. beta-Farnesene is a natural product found in Nepeta nepetella, Eupatorium capillifolium, and other organisms with data available. trans-beta-Farnesene, also known as (E)-β-Farnesene or (E)-7,11-Dimethyl-3-methylenedodeca-1,6,10-triene, is classified as a member of the Sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units. trans-beta-Farnesene is a hydrocarbon lipid molecule. (E)-β-Farnesene (trans-β-Farnesene) is a volatile sesquiterpene hydrocarbon which can be found in Phlomis aurea Decne essential oil. (E)-β-Farnesene can be used as a feeding stimulant for the sand fly Lutzomyia longipalpis[1][2]. (E)-β-Farnesene (trans-β-Farnesene) is a volatile sesquiterpene hydrocarbon which can be found in Phlomis aurea Decne essential oil. (E)-β-Farnesene can be used as a feeding stimulant for the sand fly Lutzomyia longipalpis[1][2].

   

(-)-Homoeriodictyol

4H-1-Benzopyran-4-one, 2,3-dihydro-5,7-dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-, (2S)-

C16H14O6 (302.079)


Homoeriodictyol is a trihydroxyflavanone that consists of 3-methoxyflavanone in which the three hydroxy substituents are located at positions 4, 5, and 7. It has a role as a metabolite and a flavouring agent. It is a monomethoxyflavanone, a trihydroxyflavanone, a member of 3-methoxyflavanones and a member of 4-hydroxyflavanones. It is functionally related to an eriodictyol. Homoeriodictyol is a natural product found in Smilax corbularia, Limonium aureum, and other organisms with data available. Homoeriodictyol is a flavonoid metabolite of Eriocitrin in plasma and urine. Eriocitrin is a strong antioxidant agent[1]. Homoeriodictyol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=446-71-9 (retrieved 2024-09-19) (CAS RN: 446-71-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Neriifolin

3-[(3S,5R,8R,9S,10S,13R,14S,17R)-3-[(2R,3S,4R,5S,6S)-3,5-dihydroxy-4-methoxy-6-methyloxan-2-yl]oxy-14-hydroxy-10,13-dimethyl-1,2,3,4,5,6,7,8,9,11,12,15,16,17-tetradecahydrocyclopenta[a]phenanthren-17-yl]-2H-furan-5-one

C30H46O8 (534.3193)


Neriifolin is a cardenolide glycoside that is digitoxigenin in which the hydroxy goup at position 3 has been converted to its (6-deoxy-3-O-methyl-alpha-L-glucopyranoside derivative. Found in the seeds of Cerbera odollamand in Thevetia ahouia and Thevitia neriifolia. It has a role as a cardiotonic drug, a toxin and a neuroprotective agent. It is functionally related to a digitoxigenin. Neriifolin is a natural product found in Cerbera manghas, Cerbera odollam, and other organisms with data available. A cardenolide glycoside that is digitoxigenin in which the hydroxy goup at position 3 has been converted to its (6-deoxy-3-O-methyl-alpha-L-glucopyranoside derivative. Found in the seeds of Cerbera odollamand in Thevetia ahouia and Thevitia neriifolia. D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides [Raw Data] CB071_Neriifolin_pos_40eV_CB000031.txt [Raw Data] CB071_Neriifolin_pos_10eV_CB000031.txt [Raw Data] CB071_Neriifolin_pos_20eV_CB000031.txt [Raw Data] CB071_Neriifolin_pos_50eV_CB000031.txt [Raw Data] CB071_Neriifolin_pos_30eV_CB000031.txt Neriifolin, a CNS-penetrating cardiac glycoside, is an inhibitor of the Na+, K+-ATPase. Neriifolin can target beclin 1, inhibits the formation of LC3-associated phagosomes and ameliorates experimental autoimmune encephalomyelitis (EAE) development. Neriifolin induces cell cycle arrest and apoptosis in human hepatocellular carcinoma HepG2 cells[1][2. Neriifolin, a CNS-penetrating cardiac glycoside, is an inhibitor of the Na+, K+-ATPase. Neriifolin can target beclin 1, inhibits the formation of LC3-associated phagosomes and ameliorates experimental autoimmune encephalomyelitis (EAE) development. Neriifolin induces cell cycle arrest and apoptosis in human hepatocellular carcinoma HepG2 cells[1][2.

   

napelline

(1R,2R,4S,5S,7R,8R,9R,13R,16S,17R)-11-ethyl-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.15,8.01,10.02,8.013,17]nonadecane-4,7,16-triol

C22H33NO3 (359.246)


LSM-1634 is a kaurane diterpenoid. Napelline is a natural product found in Aconitum karakolicum, Aconitum baicalense, and other organisms with data available. 12-Epinapelline is a kaurane diterpenoid. 12-Epinapelline is a natural product found in Aconitum napellus, Delphinium leroyi, and other organisms with data available. Annotation level-1 12-Epinapelline is a diterpene alkaloid isolated from Aconitum baikalense. 12-Epinapelline exhibits Anti-inflammatory activity and stimulates the growth of colonies from fibroblast precursors[1][2]. 12-Epinapelline is a diterpene alkaloid isolated from Aconitum baikalense. 12-Epinapelline exhibits Anti-inflammatory activity and stimulates the growth of colonies from fibroblast precursors[1][2].

   

Lauric aldehyde

InChI=1/C12H24O/c1-2-3-4-5-6-7-8-9-10-11-12-13/h12H,2-11H2,1H

C12H24O (184.1827)


Dodecanal is a long-chain fatty aldehyde that is dodecane in which two hydrogens attached to a terminal carbon are replaced by an oxo group. It has a role as a plant metabolite. It is a 2,3-saturated fatty aldehyde, a medium-chain fatty aldehyde and a long-chain fatty aldehyde. It derives from a hydride of a dodecane. Dodecanal is a natural product found in Mikania cordifolia, Zingiber mioga, and other organisms with data available. Occurs in peel oil from Citrus subspecies and kumquatand is also present in ginger, coriander, chervil and scallop. Flavouring agent. Lauric aldehyde is found in many foods, some of which are mollusks, rocket salad (sspecies), sweet orange, and fruits. Lauric aldehyde is found in citrus. Lauric aldehyde occurs in peel oil from Citrus species and kumquat. Also present in ginger, coriander, chervil and scallop. Lauric aldehyde is a flavouring agent. A long-chain fatty aldehyde that is dodecane in which two hydrogens attached to a terminal carbon are replaced by an oxo group.

   

alpha-Terpinene

InChI=1/C10H16/c1-8(2)10-6-4-9(3)5-7-10/h4,6,8H,5,7H2,1-3H

C10H16 (136.1252)


Alpha-Terpinene is one of four isomers of terpinene (the other three being beta terpinene, gamma terpenine, and delta terpinine or terpimolene) that differ in the position of carbon-carbon double bonds. Alpha-Terpinene belongs to the class of organic compounds known as menthane monoterpenes. These are monoterpenes with a structure based on the o-, m-, or p-menthane backbone. p-Menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. alpha-Terpinene is a naturally occurring monoterpene found in allspice, cardamom, and marjoram. alpha-Terpinene is a constituent of many essential oils with oil from Litsea ceylanica being is a major source (20\\\\%) of it. alpha-Terpinene has been found in Citrus, Eucalyptus and Juniperus species, and cannabis plants (PMID:6991645 ). ±-Terpinene is a flavouring agent and is produced industrially by acid-catalyzed rearrangement of ±-pinene. It has perfume and flavoring properties but is mainly used to confer a pleasant odor to industrial fluids. Alpha-terpinene is one of three isomeric monoterpenes differing in the positions of their two double bonds (beta- and gamma-terpinene being the others). In alpha-terpinene the double bonds are at the 1- and 3-positions of the p-menthane skeleton. It has a role as a volatile oil component and a plant metabolite. It is a monoterpene and a cyclohexadiene. alpha-Terpinene is a natural product found in Xylopia aromatica, Xylopia sericea, and other organisms with data available. One of three isomeric monoterpenes differing in the positions of their two double bonds (beta- and gamma-terpinene being the others). In alpha-terpinene the double bonds are at the 1- and 3-positions of the p-menthane skeleton. Alpha-terpinene, also known as 1-isopropyl-4-methyl-1,3-cyclohexadiene or 1-methyl-4-(1-methylethyl)-1,3-cyclohexadiene, is a member of the class of compounds known as menthane monoterpenoids. Menthane monoterpenoids are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. Thus, alpha-terpinene is considered to be an isoprenoid lipid molecule. Alpha-terpinene is a camphoraceous, citrus, and herbal tasting compound and can be found in a number of food items such as summer savory, cabbage, pot marjoram, and wild celery, which makes alpha-terpinene a potential biomarker for the consumption of these food products. Alpha-terpinene can be found primarily in saliva. Alpha-terpinene exists in all eukaryotes, ranging from yeast to humans. α-Terpinene (Terpilene) is a monoterpene found in the essential oils of a large variety of foods and aromatic plants such as Mentha piperita. α-Terpinene is active against Trypanosoma evansi and has the potential for trypanosomosis treatment. α-Terpinene has antioxidant and antifungal properties[1][2][3][4]. α-Terpinene (Terpilene) is a monoterpene found in the essential oils of a large variety of foods and aromatic plants such as Mentha piperita. α-Terpinene is active against Trypanosoma evansi and has the potential for trypanosomosis treatment. α-Terpinene has antioxidant and antifungal properties[1][2][3][4].

   

Fenpropimorph

(2R,6S)-4-[(2S)-3-[4-(1,1-Dimethylethyl)phenyl]-2-methylpropyl]-2,6-dimethylmorpholine

C20H33NO (303.2562)


Fenpropimorph (CAS: 67564-91-4) belongs to the class of organic compounds known as phenylpropanes. These are organic compounds containing a phenylpropane moiety. Fenpropimorph is possibly neutral. Fenpropimorph is an agricultural fungicide used against powdery mildews on sugar beets, beans, and leek. Agricultural fungicide used against powdery mildews on sugar beet, beans and leeks CONFIDENCE standard compound; INTERNAL_ID 8406 CONFIDENCE standard compound; INTERNAL_ID 2573 D016573 - Agrochemicals D010575 - Pesticides

   

BAS 490 F

kresoxim-methyl

C18H19NO4 (313.1314)


D010575 - Pesticides > D005659 - Fungicides, Industrial > D000073739 - Strobilurins D016573 - Agrochemicals CONFIDENCE standard compound; EAWAG_UCHEM_ID 154 Kresoxim-methyl (BAS 490 F), a Strobilurin-based fungicide, inhibits the respiration at the complex III (cytochrome bc1 complex). Kresoxim-methyl binds to complex III from yeast with an apparent Kd of 0.07 μM proving a high affinity for this enzyme[1][2].

   

Pirimicarb

Dimethylcarbamic acid 2-(dimethylamino)-5,6-dimethyl-4-pyrimidinyl ester

C11H18N4O2 (238.143)


CONFIDENCE standard compound; INTERNAL_ID 44; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6664; ORIGINAL_PRECURSOR_SCAN_NO 6663 CONFIDENCE standard compound; INTERNAL_ID 44; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6584; ORIGINAL_PRECURSOR_SCAN_NO 6582 CONFIDENCE standard compound; INTERNAL_ID 44; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6632; ORIGINAL_PRECURSOR_SCAN_NO 6631 CONFIDENCE standard compound; INTERNAL_ID 44; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6671; ORIGINAL_PRECURSOR_SCAN_NO 6669 CONFIDENCE standard compound; INTERNAL_ID 44; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6662; ORIGINAL_PRECURSOR_SCAN_NO 6661 CONFIDENCE standard compound; INTERNAL_ID 44; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6612; ORIGINAL_PRECURSOR_SCAN_NO 6610 C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor CONFIDENCE standard compound; EAWAG_UCHEM_ID 2711 CONFIDENCE standard compound; INTERNAL_ID 8417 CONFIDENCE standard compound; INTERNAL_ID 4039 CONFIDENCE standard compound; INTERNAL_ID 2577 D010575 - Pesticides > D007306 - Insecticides KEIO_ID P177; [MS3] KO009152 KEIO_ID P177; [MS3] KO009153 KEIO_ID P177; [MS2] KO009151 D016573 - Agrochemicals KEIO_ID P177

   

Terbuthylazine

N-tert-butyl-4-chloro-6-(ethylimino)-1,6-dihydro-1,3,5-triazin-2-amine

C9H16ClN5 (229.1094)


CONFIDENCE standard compound; INTERNAL_ID 991; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9075; ORIGINAL_PRECURSOR_SCAN_NO 9073 CONFIDENCE standard compound; INTERNAL_ID 991; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9016; ORIGINAL_PRECURSOR_SCAN_NO 9014 CONFIDENCE standard compound; INTERNAL_ID 991; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9020; ORIGINAL_PRECURSOR_SCAN_NO 9018 CONFIDENCE standard compound; INTERNAL_ID 991; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9092; ORIGINAL_PRECURSOR_SCAN_NO 9087 CONFIDENCE standard compound; INTERNAL_ID 991; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9043; ORIGINAL_PRECURSOR_SCAN_NO 9041 CONFIDENCE standard compound; INTERNAL_ID 991; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9038; ORIGINAL_PRECURSOR_SCAN_NO 9037 CONFIDENCE standard compound; INTERNAL_ID 3676 CONFIDENCE standard compound; INTERNAL_ID 8413 CONFIDENCE standard compound; INTERNAL_ID 4032 D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

D-alpha-Aminobutyric acid

alpha-Aminobutyric acid, (+-)-isomer

C4H9NO2 (103.0633)


D-alpha-Aminobutyric acid (AABA), also known as alpha-aminobutyrate, (R)-2-aminobutanoic acid or D-homoalanine, belongs to the class of organic compounds known as D-alpha-amino acids. These are alpha amino acids which have the D-configuration of the alpha-carbon atom. D-alpha-aminobutyric acid is an optically active form of alpha-aminobutyric acid having D-configuration. It is an enantiomer of a L-alpha-aminobutyric acid and a non-proteinogenic amino acid. Alpha-aminobutyric acid is one of the three isomers of aminobutyric acid. The two others are the neurotransmitter Gamma-Aminobutyric acid (GABA) and Beta-Aminobutyric acid (BABA) which is known for inducing plant disease resistance. Optically active organic compounds found in meteorites typically exist in racemic form, yet life on Earth has almost exclusively selected for L- over D-enantiomers of amino acids. D-enantiomers of non-proteinogenic amino acids are known to inhibit aerobic microorganisms. D-alpha-aminobutyric acid has been shown to inhibit microbial iron reduction by a number of Geobacter strains including Geobacter bemidjiensis, Geobacter metallireducens and Geopsychrobacter electrodiphilus (PMID: 25695622). D-alpha-Aminobutyric acid is a known substrate of D-amino acid oxidase (PMID: 6127341). Constituent of seedlings of Glycine max (soybean), Dolichos lablab (hyacinth bean), Canavalia gladiata (swordbean), Arachis hypogaea (peanut), Pisum sativum (pea), Phaseolus vulgaris (kidney bean) and Vigna sesquipedalis (asparagus bean) after hydrolysis D(-)-2-Aminobutyric acid is a substrate of D-amino acid oxidase. D(-)-2-Aminobutyric acid is a substrate of D-amino acid oxidase.

   

Tryptophol

3-(2-Hydroxyethyl)-1H-indole

C10H11NO (161.0841)


Tryptophol, also known as indole-3-ethanol, is an indolyl alcohol that is ethanol substituted by a 1H-indol-3-yl group at position 2. It has a role as a Saccharomyces cerevisiae metabolite, an auxin and a plant metabolite. Tryptophol is a catabolite of tryptophan converted by the gut microbiota. After absorption through the intestinal epithelium, tryptophan catabolites enter the bloodstream and are later excreted in the urine (PMID:30120222). Tryptophol production was negatively associated with interferon-gamma production (IFNγ) which suggests that tryptophol has anti-inflammatory properties (PMID:27814509). Tryptophol has also been identified as the hypnotic agent in trypanosomal sleeping sickness, and because it is formed in vivo after ethanol or disulfiram treatment, it is also associated with the study of alcoholism (PMID:7241135). Indole-3-ethanol is a dietary indole present in cruciferous vegetables that has been shown to influence estradiol metabolism in humans and may provide a new chemopreventive approach to estrogen-dependent diseases. (PMID 2342128) Tryptophol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=526-55-6 (retrieved 2024-06-29) (CAS RN: 526-55-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Tryptophol (Indole-3-ethanol) is an endogenous metabolite. Tryptophol (Indole-3-ethanol) is an endogenous metabolite.

   

4-hydroxymandelic acid

(2S)-hydroxy(4-hydroxyphenyl)ethanoic acid

C8H8O4 (168.0423)


p-Hydroxymandelic acid, also known as 4-hydroxymandelate or 4-hydroxyphenylglycolate, belongs to the class of organic compounds known as 1-hydroxy-2-unsubstituted benzenoids. These are phenols that are unsubstituted at the 2-position. p-Hydroxymandelic acid has been detected, but not quantified in, a few different foods, such as anatidaes (Anatidae), chickens (Gallus gallus), and domestic pigs (Sus scrofa domestica). This could make p-hydroxymandelic acid a potential biomarker for the consumption of these foods. p-Hydroxymandelic acid is a secondary metabolite. Secondary metabolites are metabolically or physiologically non-essential metabolites that may serve a role as defense or signalling molecules. In some cases they are simply molecules that arise from the incomplete metabolism of other secondary metabolites. Based on a literature review a significant number of articles have been published on p-Hydroxymandelic acid. p-Hydroxymandelic acid is a valuable aromatic fine chemical and widely used for production of pharmaceuticals and food additives.

   

10-Hydroxydecanoic acid

10-hydroxy-decanoic acid

C10H20O3 (188.1412)


10-hydroxycapric acid is a 10-carbon, omega-hydroxy fatty acid, shown to be the preferred hydroxylation product (together with the 9-OH isomer) of capric acid in biosystems, and used as a standard in lipid assays; reported to have cytotoxic effects. It is a straight-chain saturated fatty acid and an omega-hydroxy-medium-chain fatty acid. It is functionally related to a decanoic acid. It is a conjugate acid of a 10-hydroxycaprate. 10-Hydroxydecanoic acid, also known as 10-OH-capric acid or 10-OH-caprate, belongs to the class of organic compounds known as medium-chain hydroxy acids and derivatives. These are hydroxy acids with a 6 to 12 carbon atoms long side chain. Based on a literature review a significant number of articles have been published on 10-Hydroxydecanoic acid. This compound has been identified in human blood as reported by (PMID: 31557052 ). 10-hydroxydecanoic acid is not a naturally occurring metabolite and is only found in those individuals exposed to this compound or its derivatives. Technically 10-Hydroxydecanoic acid is part of the human exposome. The exposome can be defined as the collection of all the exposures of an individual in a lifetime and how those exposures relate to health. An individual's exposure begins before birth and includes insults from environmental and occupational sources. 10-Hydroxydecanoic acid (NSC 15139) is a saturated fatty acid of 10-hydroxy-trans-2-decenoic acid from royal jelly, with anti-inflammatory activity[1].

   

16a-Hydroxyestrone

(1S,10R,11S,13R,15S)-5,13-dihydroxy-15-methyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadeca-2(7),3,5-trien-14-one

C18H22O3 (286.1569)


16a-Hydroxyestrone or 16alpha-hydroxyestrone (16α-OH-E1 or 16a OHE1), or hydroxyestrone, is an endogenous steroidal estrogen and a major metabolite of estrone and estradiol. 16a-hydroxyestrone belongs to the class of organic compounds known as estrogens and derivatives. These are steroids with a structure containing a 3-hydroxylated estrane. Thus, 16a-hydroxyestrone is considered to be a steroid molecule. 16a-hydroxyestrone is found in all vertebrates. Vertebrates, especially mammals, metabolizes estrogen into two major pathways and one minor. The two major pathways lead to 2-hydroxyestrone and 16a-hydroxyestrone (2-OHE1 and 16a OHE1 respectively). The minor pathway leads to 4-hydroxyestrone (4-OHE1). 2a-hydroxyestrone is considered to be the good metabolite (PMID: 8943806) as 2-hydroxyestrone does not stimulate cell growth and it blocks the action of stronger estrogens that may be carcinogenic. 16a-Hydroxyestrone, on the other hand, has a significantly stronger estrogenic activity, and studies show that it may increase the risk of breast cancer. The binding of 16a-hydroxyestrone to the estrogen receptor is reported to be covalent and irreversible (PMID: 3186693). A low urinary ratio of 2-hydroxyestrone to 16-alpha-hydroxyestrone is a strong predictor of breast cancer risk among women (PMID: 19502596). Estrone (also oestrone) is an estrogenic hormone secreted by the ovary. Its molecular formula is C18H22O2. estrone has a melting point of 254.5 degrees Celsius. estrone is one of the three estrogens, which also include estriol and estradiol. estrone is the least prevalent of the three hormones, estradiol being prevalent almost always in a female body, estriol being prevalent primarily during pregnancy. estrone sulfate is relevant to health and disease due to its conversion to estrone sulfate, a long-lived derivative of estrone. estrone sulfate acts as a pool of estrone which can be converted as needed to the more active estradiol. [HMDB] C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

Epinephrine

(R)-(-)-3,4-Dihydroxy-α-(methylaminomethyl)benzyl alcohol, L-Adrenaline, L-Epinephrine

C9H13NO3 (183.0895)


Epinephrine, also known as adrenaline, is both a neurotransmitter and a hormone. It plays an important role in your body’s “fight-or-flight” response. It’s also used as a medication to treat many life-threatening conditions. Epinephrine is a catecholamine, a sympathomimetic monoamine derived from the amino acids phenylalanine and tyrosine. It is the active sympathomimetic hormone secreted from the adrenal medulla in most species. It stimulates both the alpha- and beta- adrenergic systems, causes systemic vasoconstriction and gastrointestinal relaxation, stimulates the heart, and dilates bronchi and cerebral vessels. It is used in asthma and cardiac failure and to delay absorption of local anesthetics. Epinephrine also constricts arterioles in the skin and gut while dilating arterioles in leg muscles. It elevates the blood sugar level by increasing hydrolysis of glycogen to glucose in the liver, and at the same time begins the breakdown of lipids in adipocytes. Epinephrine has a suppressive effect on the immune system. [HMDB] Epinephrine, also called adrenaline, is both a hormone and a neurotransmitter. As a hormone, it’s made and released by your adrenal glands, which are hat-shaped glands that sit on top of each kidney. As a central nervous system neurotransmitter, it’s a chemical messenger that helps transmit nerve signals across nerve endings to another nerve cell, muscle cell or gland cell. Epinephrine is part of your sympathetic nervous system, which is part of your body’s emergency response system to danger — the “fight-or-flight” response. Medically, the flight-or-flight response is known as the acute stress response. Epinephrine is also called a catecholamine, as are norepinephrine and dopamine. They’re given this name because of a certain molecule in its structure. As a hormone, epinephrine is made from norepinephrine inside of your adrenal gland. As a neurotransmitter, epinephrine plays a small role. Only a small amount is produced in your nerves. It plays a role in metabolism, attention, focus, panic and excitement. Abnormal levels are linked to sleep disorders, anxiety, hypertension and lowered immunity. Epinephrine’s major action is in its role as a hormone. Epinephrine is released by your adrenal glands in response to stress. This reaction causes a number of changes in your body and is known as the fight-or-flight response.

   

L-2,4-diaminobutyric acid

2,4-Diaminobutyric acid monohydrochloride, (+-)-isomer

C4H10N2O2 (118.0742)


L-3-Amino-isobutanoic acid is a component of branched-chain amino acid biosynthesis and metabolism. It can also be used in pyrimidine metabolism. L-3-Amino-isobutanoic acid is produced from S-methylmalonate semialdehyde by the enzyme 4-aminobutyrate aminotransferase. KEIO_ID D038 L-DABA (L-2,4-Diaminobutyric acid) is a week GABA transaminase inhibitor with an IC50 of larger than 500 μM; exhibits antitumor activity in vivo and in vitro. L-DABA (L-2,4-Diaminobutyric acid) is a week GABA transaminase inhibitor with an IC50 of larger than 500 μM; exhibits antitumor activity in vivo and in vitro.

   

Cysteine S-sulfate

(2R)-2-amino-3-(sulfosulfanyl)propanoic acid

C3H7NO5S2 (200.9766)


Cysteine-S-sulfate (SSC) is produced by reaction of inorganic sulfite and cystine by a yet unknown pathway and is a very potent NMDA-receptor agonist. Electrophysiological studies have shown that SSC displays depolarizing properties similar to glutamate. Patients affected with either Molybdenum cofactor deficiency (MOCOD, an autosomal recessive disease that leads to a combined deficiency of the enzymes sulphite oxidase, an enzyme that catalyzes the conversion of sulfite to inorganic sulfate, xanthine dehydrogenase and aldehyde oxidase) or isolated sulphite oxidase deficiency (ISOD, an extremely rare autosomal recessive disorder with identical clinical manifestations to MOCOD) excrete elevated levels of SSC. This rare disorder is associated with brain damage (seizures, spastic quadriplegia, and cerebral atrophy), mental retardation, dislocated ocular lenses, blindness, and excretion in the urine of abnormally large amounts of SSC, sulfite, and thiosulfate but no inorganic sulfate (PMID: 17764028, 15558695). Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID C127; [MS2] KO008902 KEIO_ID C127

   

4-Sulfophenol

4-Hydroxybenzenesulfonic acid

C6H6O4S (173.9987)


4-Hydroxybenzenesulfonic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=98-67-9 (retrieved 2024-08-06) (CAS RN: 98-67-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Prostaglandin B1

7-{2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopent-1-en-1-yl}heptanoic acid

C20H32O4 (336.23)


Prostaglandin B1 (PGB1) is a metabolite of PGE1. PGE1 is a prostanoid. Prostanoids is a term that collectively describes prostaglandins, prostacyclines and thromboxanes. Prostanoids are a subclass of the lipid mediator group known as eicosanoids. They derive from C-20 polyunsaturated fatty acids, mainly dihomo-gamma-linoleic (20:3n-6), arachidonic (20:4n-6), and eicosapentaenoic (20:5n-3) acids, through the action of cyclooxygenases-1 and -2 (COX-1 and COX-2). PGB1does not inhibit phospholipase activity, but oligomers of PGB1 (PGBx) extracted from human neutrophils inhibit human phospholipases A2 in vitro and in situ in a dose-dependent manner; these oligomers inhibit arachidonic acid mobilization in human neutrophils and endothelial cells. One mechanism for the pharmacological effects of PGBx may be inhibition of cell-associated and extracellular phospholipase A2. PGB1 has the ability to enhance peripheral vascular resistance and elevate blood pressure. The effect is not central in origin and apparently is not the result of changes in cholinergic or alpha-adrenoceptor sensitivity or changes in vascular smooth muscle susceptibility per se. PGB1 blocks S-phase DNA synthesis; inhibition of DNA synthesis does not appear to require elevated levels of cAMP. (PMID: 7667505, 1477202, 2129000, 2597672, 6635328). Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. Prostaglandin B1 (PGB1) is a metabolite of PGE1. PGE1 is a prostanoid. Prostanoids is a term that collectively describes prostaglandins, prostacyclines and thromboxanes. Prostanoids are a subclass of the lipid mediator group known as eicosanoids. They derive from C-20 polyunsaturated fatty acids, mainly dihomo-gamma-linoleic (20:3n-6), arachidonic (20:4n-6), and eicosapentaenoic (20:5n-3) acids, through the action of cyclooxygenases-1 and -2 (COX-1 and COX-2).

   

2,4-Dihydroxybenzophenone

2,4-DIHYDROXYBENZOPHENONE

C13H10O3 (214.063)


CONFIDENCE standard compound; INTERNAL_ID 1342; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4541; ORIGINAL_PRECURSOR_SCAN_NO 4540 CONFIDENCE standard compound; INTERNAL_ID 1342; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4551; ORIGINAL_PRECURSOR_SCAN_NO 4547 CONFIDENCE standard compound; INTERNAL_ID 1342; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4529; ORIGINAL_PRECURSOR_SCAN_NO 4528 CONFIDENCE standard compound; INTERNAL_ID 1342; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4560; ORIGINAL_PRECURSOR_SCAN_NO 4559 CONFIDENCE standard compound; INTERNAL_ID 1342; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4583; ORIGINAL_PRECURSOR_SCAN_NO 4581 CONFIDENCE standard compound; INTERNAL_ID 1342; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4585; ORIGINAL_PRECURSOR_SCAN_NO 4582 ORIGINAL_PRECURSOR_SCAN_NO 4528; CONFIDENCE standard compound; INTERNAL_ID 1342; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4529 CONFIDENCE standard compound; INTERNAL_ID 8332

   

Sulfadoxine

4-amino-N-(5,6-dimethoxypyrimidin-4-yl)benzene-1-sulfonamide

C12H14N4O4S (310.0736)


Sulfadoxine is only found in individuals that have used or taken this drug. It is a long acting sulfonamide that is used, usually in combination with other drugs, for respiratory, urinary tract, and malarial infections. [PubChem]Sulfadoxine is a sulfa drug, often used in combination with pyrimethamine to treat malaria. This medicine may also be used to prevent malaria in people who are living in, or will be traveling to, an area where there is a chance of getting malaria. Sulfadoxine targets Plasmodium dihydropteroate synthase and dihydrofolate reductase. Sulfa drugs or Sulfonamides are antimetabolites. They compete with para-aminobenzoic acid (PABA) for incorporation into folic acid. The action of sulfonamides exploits the difference between mammal cells and other kinds of cells in their folic acid metabolism. All cells require folic acid for growth. Folic acid (as a vitamin) diffuses or is transported into human cells. However, folic acid cannot cross bacterial (and certain protozoan) cell walls by diffusion or active transport. For this reason bacteria must synthesize folic acid from p-aminobenzoic acid. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent D000890 - Anti-Infective Agents > D013424 - Sulfanilamides CONFIDENCE standard compound; INTERNAL_ID 1010

   

Boldenon

(8xi,9xi,14xi)-17-Hydroxyandrosta-1,4-dien-3-one

C19H26O2 (286.1933)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D045930 - Anabolic Agents C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C2360 - Anabolic Steroid Same as: D07536 Origin: Animal; SubCategory_DNP: The sterols, Androstanes

   

N-Acetyltryptophan

(2S)-2-[(1-hydroxyethylidene)amino]-3-(1H-indol-3-yl)propanoic acid

C13H14N2O3 (246.1004)


N-Acetyl-L-tryptophan or N-Acetyltryptophan, belongs to the class of organic compounds known as N-acyl-alpha amino acids. N-acyl-alpha amino acids are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. N-Acetyltryptophan can also be classified as an alpha amino acid or a derivatized alpha amino acid. Technically, N-Acetyltryptophan is a biologically available N-terminal capped form of the proteinogenic alpha amino acid L-tryptophan. N-acetyl amino acids can be produced either via direct synthesis of specific N-acetyltransferases or via the proteolytic degradation of N-acetylated proteins by specific hydrolases. N-terminal acetylation of proteins is a widespread and highly conserved process in eukaryotes that is involved in protection and stability of proteins (PMID: 16465618). About 85\\\\\% of all human proteins and 68\\\\\% of all yeast proteins are acetylated at their N-terminus (PMID: 21750686). Several proteins from prokaryotes and archaea are also modified by N-terminal acetylation. The majority of eukaryotic N-terminal-acetylation reactions occur through N-acetyltransferase enzymes or NAT’s (PMID: 30054468). These enzymes consist of three main oligomeric complexes NatA, NatB, and NatC, which are composed of at least a unique catalytic subunit and one unique ribosomal anchor. The substrate specificities of different NAT enzymes are mainly determined by the identities of the first two N-terminal residues of the target protein. The human NatA complex co-translationally acetylates N-termini that bear a small amino acid (A, S, T, C, and occasionally V and G) (PMID: 30054468). NatA also exists in a monomeric state and can post-translationally acetylate acidic N-termini residues (D-, E-). NatB and NatC acetylate N-terminal methionine with further specificity determined by the identity of the second amino acid. N-acetylated amino acids, such as N-acetyltryptophan can be released by an N-acylpeptide hydrolase from peptides generated by proteolytic degradation (PMID: 16465618). In addition to the NAT enzymes and protein-based acetylation, N-acetylation of free tryptophan can also occur. Many N-acetylamino acids, including N-acetyltryptophan are classified as uremic toxins if present in high abundance in the serum or plasma (PMID: 26317986; PMID: 20613759). Uremic toxins are a diverse group of endogenously produced molecules that, if not properly cleared or eliminated by the kidneys, can cause kidney damage, cardiovascular disease and neurological deficits (PMID: 18287557). N-Acetyltryptophan has also been used as a protein stabilizer. It prevents protein molecules from oxidative degradation by scavenging oxygen dissolved in protein solutions (PMID: 21903216 ). N-Acetyltryptophan has been identified as a catabolite of tryptophan generated by the gut microbiota. After absorption through the intestinal epithelium, tryptophan catabolites enter the bloodstream and are later excreted in the urine (PMID: 28916042). N-Acetyltryptophan is an inhibitor of cytochrome c release and an antagonist of the neurokinin 1 receptor (NK-1R). These inhibitory effects are thought have a useful role in neuroprotection. For instance, in mouse models of amyotrophic lateral sclerosis (ALS) the administration of N-Acetyltryptophan has been shown delay disease onset, extend survival, and ameliorate deterioration in motor performance ALS transgenic mice (PMID: 25986728). N-acetyltryptophan has been shown to significantly reduce blood-brain barrier permeability and improve functional outcome in rat models of traumatic brain injury (PMID: 29256408). N-Acetyltryptophan has also been shown to have a role in preventing hepatic ischemia-reperfusion injury. This is thought to occur through de-activation of the RIP2/caspase/IL-1beta signaling pathway (PMID: 31184936). D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors Ac-DL-Trp-OH is an endogenous metabolite. Ac-DL-Trp-OH is an endogenous metabolite. N-Acetyl-L-tryptophan is an endogenous metabolite.

   

Nitrazepam

1, 3-Dihydro-7-nitro-5-phenyl-2H-1,4-benzodiazepin-2-one

C15H11N3O3 (281.08)


Nitrazepam is only found in individuals that have used or taken this drug. It is a benzodiazepine derivative used as an anticonvulsant and hypnotic.Nitrazepam belongs to a group of medicines called benzodiazepines. It acts on benzodiazepine receptors in the brain which are associated with the GABA receptors causing an enhanced binding of GABA (gamma amino butyric acid) to GABAA receptors. GABA is a major inhibitory neurotransmitter in the brain, involved in inducing sleepiness, muscular relaxation and control of anxiety and fits, and slows down the central nervous system. The anticonvulsant properties of nitrazepam and other benzodiazepines may be in part or entirely due to binding to voltage-dependent sodium channels rather than benzodiazepine receptors. Sustained repetitive firing seems to be limited by benzodiazepines effect of slowing recovery of sodium channels from inactivation. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CD - Benzodiazepine derivatives D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C1012 - Benzodiazepine D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C28197 - Antianxiety Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants CONFIDENCE standard compound; EAWAG_UCHEM_ID 3683

   

Oxymorphone

(1S,5R,13R,17S)-10,17-dihydroxy-4-methyl-12-oxa-4-azapentacyclo[9.6.1.0¹,¹³.0⁵,¹⁷.0⁷,¹⁸]octadeca-7(18),8,10-trien-14-one

C17H19NO4 (301.1314)


An opioid analgesic with actions and uses similar to those of morphine, apart from an absence of cough suppressant activity. It is used in the treatment of moderate to severe pain, including pain in obstetrics. It may also be used as an adjunct to anesthesia. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1092) D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids N - Nervous system > N02 - Analgesics > N02A - Opioids > N02AA - Natural opium alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D000700 - Analgesics

   

2-Naphthalenesulfonic acid

beta-Naphthalenesulphonic acid

C10H8O3S (208.0194)


CONFIDENCE standard compound; INTERNAL_ID 1273; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3266; ORIGINAL_PRECURSOR_SCAN_NO 3264 CONFIDENCE standard compound; INTERNAL_ID 1273; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3270; ORIGINAL_PRECURSOR_SCAN_NO 3268 CONFIDENCE standard compound; INTERNAL_ID 1273; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3298; ORIGINAL_PRECURSOR_SCAN_NO 3294 CONFIDENCE standard compound; INTERNAL_ID 1273; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3290; ORIGINAL_PRECURSOR_SCAN_NO 3285 CONFIDENCE standard compound; INTERNAL_ID 1273; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3285; ORIGINAL_PRECURSOR_SCAN_NO 3282 CONFIDENCE standard compound; INTERNAL_ID 1273; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3292; ORIGINAL_PRECURSOR_SCAN_NO 3289 CONFIDENCE standard compound; INTERNAL_ID 626; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3356; ORIGINAL_PRECURSOR_SCAN_NO 3352 CONFIDENCE standard compound; INTERNAL_ID 626; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3363; ORIGINAL_PRECURSOR_SCAN_NO 3361 CONFIDENCE standard compound; INTERNAL_ID 626; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3353; ORIGINAL_PRECURSOR_SCAN_NO 3350 CONFIDENCE standard compound; INTERNAL_ID 626; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3351; ORIGINAL_PRECURSOR_SCAN_NO 3348 CONFIDENCE standard compound; INTERNAL_ID 626; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3344; ORIGINAL_PRECURSOR_SCAN_NO 3341 CONFIDENCE standard compound; INTERNAL_ID 626; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3371; ORIGINAL_PRECURSOR_SCAN_NO 3368 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 8811 CONFIDENCE standard compound; EAWAG_UCHEM_ID 653 CONFIDENCE standard compound; INTERNAL_ID 2300

   

6-Chloro-N-(1-methylethyl)-1,3,5-triazine-2,4-diamine

6-chloro-N-(1-Methylethyl)-1,3,5-triazine-2,4-diamine, 9ci

C6H10ClN5 (187.0625)


CONFIDENCE standard compound; INTERNAL_ID 1296; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7123; ORIGINAL_PRECURSOR_SCAN_NO 7121 CONFIDENCE standard compound; INTERNAL_ID 1296; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7114; ORIGINAL_PRECURSOR_SCAN_NO 7112 CONFIDENCE standard compound; INTERNAL_ID 1296; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7136; ORIGINAL_PRECURSOR_SCAN_NO 7132 CONFIDENCE standard compound; INTERNAL_ID 1296; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7127; ORIGINAL_PRECURSOR_SCAN_NO 7125 CONFIDENCE standard compound; INTERNAL_ID 1296; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7139; ORIGINAL_PRECURSOR_SCAN_NO 7137 CONFIDENCE standard compound; INTERNAL_ID 1296; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7129; ORIGINAL_PRECURSOR_SCAN_NO 7127 6-Chloro-N-(1-methylethyl)-1,3,5-triazine-2,4-diamine is a major soil metabolite of Atrazine DKW85-F. Environmental pollutant of soil and water. Major soil metabolite of Atrazine DKW85-F. Environmental pollutant of soil and water. CONFIDENCE standard compound; EAWAG_UCHEM_ID 309 CONFIDENCE standard compound; INTERNAL_ID 4025 INTERNAL_ID 3016; CONFIDENCE standard compound CONFIDENCE standard compound; INTERNAL_ID 8408 CONFIDENCE standard compound; INTERNAL_ID 3016 CONFIDENCE standard compound; INTERNAL_ID 2537

   

Sulfanilic acid

4-Sulfanilic acid, zinc (2:1) salt

C6H7NO3S (173.0147)


CONFIDENCE standard compound; EAWAG_UCHEM_ID 652 KEIO_ID S073

   

Tetrachlorvinphos

2-Chloro-1-(2,4,5-trichlorophenyl)vinyl dimethyl phosphate

C10H9Cl4O4P (363.8993)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals CONFIDENCE standard compound; INTERNAL_ID 497; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9564; ORIGINAL_PRECURSOR_SCAN_NO 9561 ORIGINAL_PRECURSOR_SCAN_NO 9569; CONFIDENCE standard compound; INTERNAL_ID 497; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9571 CONFIDENCE standard compound; INTERNAL_ID 497; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9637; ORIGINAL_PRECURSOR_SCAN_NO 9633 CONFIDENCE standard compound; INTERNAL_ID 497; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9615; ORIGINAL_PRECURSOR_SCAN_NO 9613 CONFIDENCE standard compound; INTERNAL_ID 497; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9571; ORIGINAL_PRECURSOR_SCAN_NO 9569 CONFIDENCE standard compound; INTERNAL_ID 497; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9608; ORIGINAL_PRECURSOR_SCAN_NO 9606 CONFIDENCE standard compound; INTERNAL_ID 497; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9523; ORIGINAL_PRECURSOR_SCAN_NO 9519

   

Dodecanedioic acid

Dodecanedioic acid, sodium salt

C12H22O4 (230.1518)


Dodecanedioic acid is an aliphatic dicarboxylic acid containing 12 carbon atoms. More formally it is an alpha,omega-dicarboxylic acid with both the first and last carbons of the aliphatic chain having carboxylic acids. Dodecanedioic acid is water soluble. It can be produced in yeast and fungi through the oxidation of dodecane via fungal peroxygenases (PMID: 27573441). High levels of dodecanedioic acid is an indicator of hepatic carnitine palmitoyltransferase I (CPT IA) deficiency (PMID: 16146704). CPT IA deficiency is characterized by hypoketotic dicarboxylic aciduria with high urinary levels of dodecanedioic acid. It is thought that carnitine palmitoyltransferase I may play a role in the uptake of long-chain dicarboxylic acids by mitochondria after their initial shortening by beta-oxidation in peroxisomes (PMID: 16146704). CPT IA deficiency is characterized by acute encephalopathy with hypoglycemia and hepatomegaly. Dodecanedioic acid is a dicarboxylic acid which is water soluble and involves in a metabolic pathway intermediate to those of lipids and carbohydrates. (PMID 9591306). Dodecanedioid acid is an indicator of hepatic carnitine palmitoyltransferase I (CPT IA) deficiency. CPT IA deficiency is characterized by hypoketotic dicarboxylic aciduria with high urinary levels of dodecanedioic acid. This C12 dicarboxylic aciduria suggests that carnitine palmitoyltransferase I may play a role in the uptake of long-chain dicarboxylic acids by mitochondria after their initial shortening by beta-oxidation in peroxisomes. (PMID: 16146704) [HMDB] Dodecanedioic acid (C12) is a dicarboxylic acid with a metabolic pathway intermediate to those of lipids and carbohydrates.

   

Pimelic acid

1,5-Pentanedicarboxylic acid

C7H12O4 (160.0736)


Pimelic acid, also known as heptanedioic acid is a dicarboxylic acid. Derivatives of pimelic acid are involved in the biosynthesis of the amino acid called lysine. Pimelic acid is one methylene longer than a related dicarboxylic acid, adipic acid, a precursor to many polyesters and polyamides. Pimelic acid is essential for the synthesis of biotin (also called vitamin B7). Biotin is a heterocyclic, S-containing monocarboxylic acid that is made from two precursors, alanine and pimeloyl-CoA. Biotin is important in fatty acid synthesis, branched-chain amino acid catabolism, and gluconeogenesis. Biotin is found in a wide range of foods. Likewise, intestinal bacteria synthesize biotin, which is then absorbed by the host animal. Pimelic acid (which is the precursor for pimeloyl-CoA) is synthesized in many bacteria via a head-to-tail incorporation of acetate units through a modified fatty acid synthetic pathway using O-methyl esters disguised to resemble the canonical intermediates of the fatty acid synthetic pathway (PMID:21435937). Some bacteria and yeast synthesize pimelic acid not by biosynthesis, but via cleavage of longer chain fatty acids (such as linolenic acid) via a cytochrome P450-like enzyme (PMID:28196402, 21435937, 3236079). Pimelic acid is excreted in elevated amounts in the urine of individuals with mitochondrial beta-oxidation disorders and peroxisomal beta oxidation disorders (PMID:1527989) A group of compounds that are derivatives of heptanedioic acid with the general formula R-C7H11O4. KEIO_ID P063 Pimelic acid is the organic compound and its derivatives are involved in the biosynthesis of the amino acid called lysine. Pimelic acid is the organic compound and its derivatives are involved in the biosynthesis of the amino acid called lysine.

   

2,6-Dihydroxybenzoic acid

2,6-Dihydroxybenzoic acid (acd/name 4.0)

C7H6O4 (154.0266)


2,6-dihydroxybenzoic acid, also known as gamma-resorcylic acid or 6-hydroxysalicylic acid, is a member of the class of compounds known as salicylic acids. Salicylic acids are ortho-hydroxylated benzoic acids. 2,6-dihydroxybenzoic acid is slightly soluble (in water) and a moderately acidic compound (based on its pKa). 2,6-dihydroxybenzoic acid can be found in beer and olive, which makes 2,6-dihydroxybenzoic acid a potential biomarker for the consumption of these food products. 2,6-dihydroxybenzoic acid can be found primarily in blood and urine. 2,6-Dihydroxybenzoic acid (γ-resorcylic acid) is a dihydroxybenzoic acid. It is a very strong acid due to its intramolecular hydrogen bonding . 2,6-dihydroxybenzoic acid is a secondary metabolite of salicylic acid which has been hydrolyzed by liver enzymes during phase I metabolism. 2,6-Dihydroxybenzoic acid is a secondary metabolite of salicylic acid which has been hydrolyzed by liver enzymes during phase I metabolism. 2,6-Dihydroxybenzoic acid is a secondary metabolite of salicylic acid which has been hydrolyzed by liver enzymes during phase I metabolism.

   

Phenylglyoxylic acid

Phenylglyoxylic acid, potassium salt

C8H6O3 (150.0317)


Phenylglyoxylic acid is one of the major urinary metabolites of toluene, o-, m- and p-xylenes, styrene and ethylbenzene. (PMID 3782394). For the biological monitoring of workers exposure to solvent used in industry, its concentration is measured in human urine samples. (PMID 2739101). Phenylglyoxylic acid is one of the major urinary metabolites of toluene, o-, m- and p-xylenes, styrene and ethylbenzene. (PMID 3782394) D000890 - Anti-Infective Agents > D000892 - Anti-Infective Agents, Urinary > D008333 - Mandelic Acids KEIO_ID B041 Phenylglyoxylic acid (Benzoylformic acid) is a metabolite of ethylbenzene and styrene (EB/S) and can be used as a biomarker of exposure to EB/S in human[1]. Phenylglyoxylic acid (Benzoylformic acid) is a metabolite of ethylbenzene and styrene (EB/S) and can be used as a biomarker of exposure to EB/S in human[1].

   

3-tert-Butylphenol

3-tert-Butylphenol

C10H14O (150.1045)


   

4-Methylbenzoic acid

4-Toluic acid, potassium salt

C8H8O2 (136.0524)


4-Methylbenzoic acid is found in brassicas. 4-Methylbenzoic acid is isolated from horseradis KEIO_ID M017 p-Toluic acid (4-Methylbenzoic acid) is a substituted?benzoic acid?and can be used as an intermediate for the synthesis of para-aminomethylbenzoic acid (PAMBA), p-tolunitrile, etc. p-Toluic acid (4-Methylbenzoic acid) is a substituted?benzoic acid?and can be used as an intermediate for the synthesis of para-aminomethylbenzoic acid (PAMBA), p-tolunitrile, etc.

   

MCPB

4-(4-Chloro-2-methylphenoxy)butanoic acid

C11H13ClO3 (228.0553)


D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals CONFIDENCE standard compound; EAWAG_UCHEM_ID 2710 CONFIDENCE standard compound; INTERNAL_ID 578; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5034; ORIGINAL_PRECURSOR_SCAN_NO 5030 CONFIDENCE standard compound; INTERNAL_ID 578; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4996; ORIGINAL_PRECURSOR_SCAN_NO 4991 CONFIDENCE standard compound; INTERNAL_ID 578; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5038; ORIGINAL_PRECURSOR_SCAN_NO 5036 CONFIDENCE standard compound; INTERNAL_ID 578; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5019; ORIGINAL_PRECURSOR_SCAN_NO 5018 CONFIDENCE standard compound; INTERNAL_ID 578; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5021; ORIGINAL_PRECURSOR_SCAN_NO 5016 CONFIDENCE standard compound; INTERNAL_ID 578; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5033; ORIGINAL_PRECURSOR_SCAN_NO 5031

   

4-Chlorophenylacetic acid

4-Chlorophenylacetic acid, potassium salt

C8H7ClO2 (170.0135)


   

Testosterone enanthate

[(8R,9S,10R,13S,14S,17S)-10,13-dimethyl-3-oxo-1,2,6,7,8,9,11,12,14,15,16,17-dodecahydrocyclopenta[a]phenanthren-17-yl] heptanoate

C26H40O3 (400.2977)


testosterone enanthate is used in androgen substitution to replace testosterone at levels as close to physiological levels as is possible. For some androgen-dependent functions testosterone is a pro-hormone, peripherally converted to 5alpha-dihydrotestosterone (DHT) and 17beta-estradiol (E2), of which the levels preferably should be within normal physiological ranges. Furthermore, androgens should have a good safety profile without adverse effects on the prostate, serum lipids, liver or respiratory function, and they must be convenient to use and patient-friendly, with a relative independence from medical services. Natural testosterone is viewed as the best androgen for substitution in hypogonadal men. testosterone enanthate is used to treat male hypogonadism. Male hypogonadism is one of the most common endocrinologic syndromes. The diagnosis is based on clinical signs and symptoms plus laboratory confirmation via the measurement of low morning testosterone levels on two different occasions. Serum luteinizing hormone and follicle-stimulating hormone levels distinguish between primary (hypergonadotropic) and secondary (hypogonadotropic) hypogonadism. Osteoporosis in male hypogonadism: responses to androgen substitution differ among men with primary and secondary hypogonadism. In primary hypogonadal men the on bone mineral density (BMD) responds dose dependently to testosterone substitution, whereas in secondary hypogonadism only testosterone enanthate treatment significantly increased the BMD. In all mammalian species studied to date, testosterone has been found to be the predominant intratesticular steroid. In volunteers receiving hormonal contraception by using a combination of testosterone enanthate and levonorgestrel, there is a profound reduction of both intratesticular testosterone concentration and androgen bioactivity. High doses of testosterone enanthate can normalize hematocrit values of maintenance hemodialysis patients with replenished bone marrow iron stores. testosterone enanthate is classified as a prohibited substance by the World Anti-Doping Agency (WADA) and its use may be detected by way of the urinary testosterone/epitestosterone (T/E) ratio. (PMID: 16185098, 16467270, 15329035, 17530941, 17484401, 4028529, 12792150) [HMDB] Testosterone enanthate is used in androgen substitution to replace testosterone at levels as close to physiological levels as is possible. For some androgen-dependent functions testosterone is a pro-hormone, peripherally converted to 5alpha-dihydrotestosterone (DHT) and 17beta-estradiol (E2), of which the levels preferably should be within normal physiological ranges. Furthermore, androgens should have a good safety profile without adverse effects on the prostate, serum lipids, liver or respiratory function, and they must be convenient to use and patient-friendly, with a relative independence from medical services. Natural testosterone is viewed as the best androgen for substitution in hypogonadal men. testosterone enanthate is used to treat male hypogonadism. Male hypogonadism is one of the most common endocrinologic syndromes. The diagnosis is based on clinical signs and symptoms plus laboratory confirmation via the measurement of low morning testosterone levels on two different occasions. Serum luteinizing hormone and follicle-stimulating hormone levels distinguish between primary (hypergonadotropic) and secondary (hypogonadotropic) hypogonadism. Osteoporosis in male hypogonadism: responses to androgen substitution differ among men with primary and secondary hypogonadism. In primary hypogonadal men the on bone mineral density (BMD) responds dose dependently to testosterone substitution, whereas in secondary hypogonadism only testosterone enanthate treatment significantly increased the BMD. In all mammalian species studied to date, testosterone has been found to be the predominant intratesticular steroid. In volunteers receiving hormonal contraception by using a combination of testosterone enanthate and levonorgestrel, there is a profound reduction of both intratesticular testosterone concentration and androgen bioactivity. High doses of testosterone enanthate can normalize hematocrit values of maintenance hemodialysis patients with replenished bone marrow iron stores. testosterone enanthate is classified as a prohibited substance by the World Anti-Doping Agency (WADA) and its use may be detected by way of the urinary testosterone/epitestosterone (T/E) ratio. (PMID: 16185098, 16467270, 15329035, 17530941, 17484401, 4028529, 12792150). D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D000728 - Androgens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C2360 - Anabolic Steroid

   

Tsumacide

METOLCARB

C9H11NO2 (165.079)


C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor

   

Gesfid

methyl (E)-3-dimethoxyphosphoryloxybut-2-enoate

C7H13O6P (224.045)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals

   

Protriptyline

methyl(3-{tricyclo[9.4.0.0³,⁸]pentadeca-1(15),3,5,7,9,11,13-heptaen-2-yl}propyl)amine

C19H21N (263.1674)


Protriptyline hydrochloride is a dibenzocycloheptene-derivative tricyclic antidepressant (TCA). TCAs are structurally similar to phenothiazines. They contain a tricyclic ring system with an alkyl amine substituent on the central ring. In non-depressed individuals, protriptyline does not affect mood or arousal, but may cause sedation. In depressed individuals, protriptyline exerts a positive effect on mood. TCAs are potent inhibitors of serotonin and norepinephrine reuptake. In addition, TCAs down-regulate cerebral cortical β-adrenergic receptors and sensitize post-synaptic serotonergic receptors with chronic use. The antidepressant effects of TCAs are thought to be due to an overall increase in serotonergic neurotransmission. TCAs also block histamine H1 receptors, α1-adrenergic receptors and muscarinic receptors, which accounts for their sedative, hypotensive and anticholinergic effects (e.g. blurred vision, dry mouth, constipation, urinary retention), respectively. See toxicity section below for a complete listing of side effects. Protriptyline may be used for the treatment of depression. N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AA - Non-selective monoamine reuptake inhibitors D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent > C94727 - Tricyclic Antidepressant D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D049990 - Membrane Transport Modulators

   

Nirvanol

2,4-Imidazolidinedione,5-ethyl-5-phenyl-

C11H12N2O2 (204.0899)


Nirvanol is a metabolite of Mephenytoin. Nirvanol, also known as ethylphenylhydantoin, is a derivative of hydantoin with anticonvulsant properties. Its 5-ethyl-5-phenyl substitution pattern is similar to that of phenobarbital. It is useful in the treatment of chorea. (Wikipedia) D002491 - Central Nervous System Agents > D000927 - Anticonvulsants

   

Oxyfluorfen

4-[2-chloro-4-(trifluoromethyl)phenoxy]-2-ethoxy-1-nitrobenzene

C15H11ClF3NO4 (361.0329)


   

Proguanil

(E)-1-({amino[(4-chlorophenyl)amino]methylidene}amino)-N-(propan-2-yl)methenimidamide

C11H16ClN5 (253.1094)


Proguanil is a prophylactic antimalarial drug, which works by stopping the malaria parasite, Plasmodium falciparum and Plasmodium vivax, from reproducing once it is in the red blood cells. It does this by inhibiting the enzyme, dihydrofolate reductase, which is involved in the reproduction of the parasite. P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01B - Antimalarials > P01BB - Biguanides D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent C471 - Enzyme Inhibitor > C2153 - Dihydrofolate Reductase Inhibitor D007004 - Hypoglycemic Agents > D001645 - Biguanides D009676 - Noxae > D000963 - Antimetabolites

   

Oleic acid

Emersol 221 low titer white oleic acid

C18H34O2 (282.2559)


Oleic acid (or 9Z)-Octadecenoic acid) is an unsaturated C-18 or an omega-9 fatty acid that is the most widely distributed and abundant fatty acid in nature. It occurs naturally in various animal and vegetable fats and oils. It is an odorless, colorless oil, although commercial samples may be yellowish. The name derives from the Latin word oleum, which means oil. Oleic acid is the most abundant fatty acid in human adipose tissue, and the second most abundant in human tissues overall, following palmitic acid. Oleic acid is a component of the normal human diet, being a part of animal fats and vegetable oils. Triglycerides of oleic acid represent the majority of olive oil (about 70\\\\%). Oleic acid triglycerides also make up 59–75\\\\% of pecan oil, 61\\\\% of canola oil, 36–67\\\\% of peanut oil, 60\\\\% of macadamia oil, 20–80\\\\% of sunflower oil, 15–20\\\\% of grape seed oil, sea buckthorn oil, 40\\\\% of sesame oil, and 14\\\\% of poppyseed oil. High oleic variants of plant sources such as sunflower (~80\\\\%) and canola oil (70\\\\%) also have been developed. consumption has been associated with decreased low-density lipoprotein (LDL) cholesterol, and possibly with increased high-density lipoprotein (HDL) cholesterol, however, the ability of oleic acid to raise HDL is still debated. Oleic acid may be responsible for the hypotensive (blood pressure reducing) effects of olive oil that is considered a health benefit. Oleic acid is used in manufacturing of surfactants, soaps, plasticizers. It is also used as an emulsifying agent in foods and pharmaceuticals. Oleic acid is used commercially in the preparation of oleates and lotions, and as a pharmaceutical solvent. Major constituent of plant oils e.g. olive oil (ca. 80\\\\%), almond oil (ca. 80\\\\%) and many others, mainly as glyceride. Constituent of tall oiland is also present in apple, melon, raspberry oil, tomato, banana, roasted peanuts, black tea, rice bran, cardamon, plum brandy, peated malt, dairy products and various animal fats. Component of citrus fruit coatings. Emulsifying agent in foods CONFIDENCE standard compound; INTERNAL_ID 290 COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2]. Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2].

   

Clothianidin

((e)-1-(2-chloro-1,3-Thiazol-5-ylmethyl)-3-methyl-2-nitroguanidine)

C6H8ClN5O2S (249.0087)


CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6612; ORIGINAL_PRECURSOR_SCAN_NO 6610 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3164; ORIGINAL_PRECURSOR_SCAN_NO 3162 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3102; ORIGINAL_PRECURSOR_SCAN_NO 3100 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6570; ORIGINAL_PRECURSOR_SCAN_NO 6567 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3103; ORIGINAL_PRECURSOR_SCAN_NO 3100 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3120; ORIGINAL_PRECURSOR_SCAN_NO 3119 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3100; ORIGINAL_PRECURSOR_SCAN_NO 3098 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6580; ORIGINAL_PRECURSOR_SCAN_NO 6577 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6605; ORIGINAL_PRECURSOR_SCAN_NO 6603 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6531; ORIGINAL_PRECURSOR_SCAN_NO 6529 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3091; ORIGINAL_PRECURSOR_SCAN_NO 3089 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6599; ORIGINAL_PRECURSOR_SCAN_NO 6595 D010575 - Pesticides > D007306 - Insecticides > D000073943 - Neonicotinoids CONFIDENCE standard compound; INTERNAL_ID 8455 CONFIDENCE standard compound; INTERNAL_ID 2328 D016573 - Agrochemicals

   

Deisopropylatrazine

6-chloro-N2-ethyl-1,3,5-triazine-2,4-diamine

C5H8ClN5 (173.0468)


CONFIDENCE standard compound; INTERNAL_ID 140; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6172; ORIGINAL_PRECURSOR_SCAN_NO 6168 CONFIDENCE standard compound; INTERNAL_ID 140; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6175; ORIGINAL_PRECURSOR_SCAN_NO 6173 CONFIDENCE standard compound; INTERNAL_ID 140; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6181; ORIGINAL_PRECURSOR_SCAN_NO 6180 CONFIDENCE standard compound; INTERNAL_ID 140; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6202; ORIGINAL_PRECURSOR_SCAN_NO 6200 CONFIDENCE standard compound; INTERNAL_ID 140; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6192; ORIGINAL_PRECURSOR_SCAN_NO 6191 CONFIDENCE standard compound; EAWAG_UCHEM_ID 287 CONFIDENCE standard compound; INTERNAL_ID 2539 CONFIDENCE standard compound; INTERNAL_ID 3726 CONFIDENCE standard compound; INTERNAL_ID 4030 CONFIDENCE standard compound; INTERNAL_ID 8411 KEIO_ID A203

   

P-Toluenesulfonamide

4-Toluenesulfonamide, mercury (+2) salt (2:1)

C7H9NO2S (171.0354)


CONFIDENCE standard compound; INTERNAL_ID 926; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4179; ORIGINAL_PRECURSOR_SCAN_NO 4178 CONFIDENCE standard compound; INTERNAL_ID 926; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4160; ORIGINAL_PRECURSOR_SCAN_NO 4155 CONFIDENCE standard compound; INTERNAL_ID 926; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4177; ORIGINAL_PRECURSOR_SCAN_NO 4175 CONFIDENCE standard compound; INTERNAL_ID 926; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4145; ORIGINAL_PRECURSOR_SCAN_NO 4142 CONFIDENCE standard compound; INTERNAL_ID 926; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4171; ORIGINAL_PRECURSOR_SCAN_NO 4169 CONFIDENCE standard compound; INTERNAL_ID 926; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4164; ORIGINAL_PRECURSOR_SCAN_NO 4159 C274 - Antineoplastic Agent > C129839 - Apoptotic Pathway-targeting Antineoplastic Agent CONFIDENCE standard compound; EAWAG_UCHEM_ID 3618 CONFIDENCE standard compound; INTERNAL_ID 4185 CONFIDENCE standard compound; INTERNAL_ID 2869 CONFIDENCE standard compound; INTERNAL_ID 8805 COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Propazine

6-chloro-N2,N4-bis(propan-2-yl)-1,3,5-triazine-2,4-diamine

C9H16ClN5 (229.1094)


CONFIDENCE standard compound; INTERNAL_ID 842; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8960; ORIGINAL_PRECURSOR_SCAN_NO 8958 INTERNAL_ID 842; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8960; ORIGINAL_PRECURSOR_SCAN_NO 8958 CONFIDENCE standard compound; INTERNAL_ID 842; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9098; ORIGINAL_PRECURSOR_SCAN_NO 9096 CONFIDENCE standard compound; INTERNAL_ID 842; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8923; ORIGINAL_PRECURSOR_SCAN_NO 8922 CONFIDENCE standard compound; INTERNAL_ID 842; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8943; ORIGINAL_PRECURSOR_SCAN_NO 8941 CONFIDENCE standard compound; INTERNAL_ID 842; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9124; ORIGINAL_PRECURSOR_SCAN_NO 9123 CONFIDENCE standard compound; INTERNAL_ID 842; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8882; ORIGINAL_PRECURSOR_SCAN_NO 8880 CONFIDENCE standard compound; EAWAG_UCHEM_ID 2741 D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

Malaoxon

1,4-diethyl 2-[(dimethoxyphosphoryl)sulfanyl]butanedioate

C10H19O7PS (314.0589)


Malaoxon is a metabolite of malathion. Malaoxon is a chemical compound with the formula C10H19O7PS. More specifically, it is a phosphorothioate. It is a breakdown product of, and more toxic than, malathion. (Wikipedia) CONFIDENCE standard compound; EAWAG_UCHEM_ID 3713 D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

Cyromazine

2,4-Diamino-6-(cyclopropylamino)-S-triazine (8ci)

C6H10N6 (166.0967)


Ectoparasiticide. Insect growth regulator. Specific activity against dipterous larvae. Cyromazine is a fda approved for use in livestoc CONFIDENCE standard compound; INTERNAL_ID 8456 CONFIDENCE standard compound; INTERNAL_ID 3021 CONFIDENCE standard compound; INTERNAL_ID 2625 D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals Cyromazine, the cyclopropyl derivative of melamine, is an insect growth regulator used as an insecticide and acaricide that acts by affecting the nervous system in the larval stages of certain insects.

   

Oleamide

(9Z)-octadec-9-enamide

C18H35NO (281.2719)


Oleamide is an amide of the fatty acid oleic acid. It is an endogenous substance: it occurs naturally in the body of animals. It accumulates in the cerebrospinal fluid during sleep deprivation and induces sleep in animals. It is being studied as a potential medical treatment for mood and sleep disorders, and cannabinoid-regulated depression. The mechanism of action of oleamides sleep inducing effects is an area of current research. It is likely that oleamide interacts with multiple neurotransmitter systems. Oleamide is structurally related to the endogenous cannabinoid anandamide, and has the ability to bind to the CB1 receptor as a full agonist. Oleamide. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=301-02-0 (retrieved 2024-07-02) (CAS RN: 301-02-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Oleamide is an endogenous fatty acid amide which can be synthesized de novo in the mammalian nervous system, and has been detected in human plasma.

   

Quinoclamin

2-Amino-3-chloro-1,4-naphthoquinone

C10H6ClNO2 (207.0087)


   

Prazepam

7-chloro-1-(cyclopropylmethyl)-5-phenyl-2,3-dihydro-1H-1,4-benzodiazepin-2-one

C19H17ClN2O (324.1029)


Prazepam is only found in individuals that have used or taken this drug. It is a benzodiazepine that is used in the treatment of anxiety disorders. It is a schedule IV drug in the U.S. Prazepam is believed to stimulate GABA receptors in the ascending reticular activating system. Since GABA is inhibitory, receptor stimulation increases inhibition and blocks both cortical and limbic arousal following stimulation of the brain stem reticular formation. D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents N - Nervous system > N05 - Psycholeptics > N05B - Anxiolytics > N05BA - Benzodiazepine derivatives C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C1012 - Benzodiazepine D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C28197 - Antianxiety Agent

   

Dihydromorphine

(1S,5R,13R,14S,17R)-4-methyl-12-oxa-4-azapentacyclo[9.6.1.0^{1,13}.0^{5,17}.0^{7,18}]octadeca-7(18),8,10-triene-10,14-diol

C17H21NO3 (287.1521)


Dihydromorphine is a metabolite of Hydromorphone. Dihydromorphine is a semi-synthetic opioid structurally related to and derived from morphine. The 7,8-double bond in morphine is reduced to a single bond to get dihydromorphine. (Wikipedia) D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics

   

Azinphos-ethyl

O,O-diethyl {[(4-oxo-3,4-dihydro-1,2,3-benzotriazin-3-yl)methyl]sulfanyl}phosphonothioate

C12H16N3O3PS2 (345.0371)


C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor CONFIDENCE standard compound; EAWAG_UCHEM_ID 3654 CONFIDENCE standard compound; INTERNAL_ID 2608 CONFIDENCE standard compound; INTERNAL_ID 8478

   

Azinphos-methyl

O,O-dimethyl {[(4-oxo-3,4-dihydro-1,2,3-benzotriazin-3-yl)methyl]sulfanyl}phosphonothioate

C10H12N3O3PS2 (317.0058)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor CONFIDENCE standard compound; EAWAG_UCHEM_ID 3655 CONFIDENCE standard compound; INTERNAL_ID 8473 CONFIDENCE standard compound; INTERNAL_ID 2601 D010575 - Pesticides > D007306 - Insecticides D010575 - Pesticides > D056810 - Acaricides D004791 - Enzyme Inhibitors D016573 - Agrochemicals

   

Cefadroxil

(6R,7R)-7-{[(2R)-2-amino-2-(4-hydroxyphenyl)acetyl]amino}-3-methyl-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid

C16H17N3O5S (363.0889)


Cefadroxil is only found in individuals that have used or taken this drug. It is a long-acting, broad-spectrum, water-soluble, cephalexin derivative.Like all beta-lactam antibiotics, cefadroxil binds to specific penicillin-binding proteins (PBPs) located inside the bacterial cell wall, causing the inhibition of the third and last stage of bacterial cell wall synthesis. Cell lysis is then mediated by bacterial cell wall autolytic enzymes such as autolysins; it is possible that cefadroxil interferes with an autolysin inhibitor. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DB - First-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic CONFIDENCE standard compound; EAWAG_UCHEM_ID 3662

   

Indole-3-carboxylic acid

1H-Indole-3-carboxylic acid

C9H7NO2 (161.0477)


Indole-3-carboxylic acid, also known as 3-carboxyindole or 3-indolecarboxylate, belongs to the class of organic compounds known as indolecarboxylic acids and derivatives. Indolecarboxylic acids and derivatives are compounds containing a carboxylic acid group (or a derivative thereof) linked to an indole. Naphthylmethylindoles: Any compound containing a 1H-indol-3-yl-(1-naphthyl)methane structure with substitution at the nitrogen atom of the indole ring by an alkyl, haloalkyl, alkenyl, cycloalkylmethyl, cycloalkylethyl, 1-(N-methyl-2-piperidinyl)methyl, or 2-(4-morpholinyl)ethyl group whether or not further substituted in the indole ring to any extent and whether or not substituted in the naphthyl ring to any extent. One example given is JWH-250. Outside of the human body, indole-3-carboxylic acid has been detected, but not quantified in several different foods, such as brassicas, broccoli, pulses, common beets, and barley. This could make indole-3-carboxylic acid a potential biomarker for the consumption of these foods. Notice the pentyl group substituted onto the nitrogen atom of the indole ring. Note that this definition encompasses only those compounds that have OH groups attached to both the phenyl and the cyclohexyl rings, and so does not include compounds such as O-1871 which lacks the cyclohexyl OH group, or compounds such as JWH-337 or JWH-344 which lack the phenolic OH group. Present in plants, e.g. apple (Pyrus malus), garden pea (Pisum sativum) and brassicas Indole-3-carboxylic acid is a normal urinary indolic tryptophan metabolite and has been found elevated in patients with liver diseases[1][2]. Indole-3-carboxylic acid is a normal urinary indolic tryptophan metabolite and has been found elevated in patients with liver diseases[1][2].

   

5,6,7,8-Tetrahydro-2-naphthol

5,6,7,8-Tetrahydro-2-naphthol

C10H12O (148.0888)


   

Morin

2-(2,4-Dihydroxyphenyl)-3,5,7-trihydroxy-4H-1-benzopyran-4-one, 9CI

C15H10O7 (302.0427)


Morin is a pentahydroxyflavone that is 7-hydroxyflavonol bearing three additional hydroxy substituents at positions 2 4 and 5. It has a role as an antioxidant, a metabolite, an antihypertensive agent, a hepatoprotective agent, a neuroprotective agent, an anti-inflammatory agent, an antineoplastic agent, an antibacterial agent, an EC 5.99.1.2 (DNA topoisomerase) inhibitor and an angiogenesis modulating agent. It is a pentahydroxyflavone and a 7-hydroxyflavonol. Morin is a natural product found in Lotus ucrainicus, Psidium guajava, and other organisms with data available. Constituent of various woods, e.g. Morus alba (white mulberry). First isol. in 1830. Morin is found in many foods, some of which are blackcurrant, european cranberry, bilberry, and fruits. Morin is found in bilberry. Morin is a constituent of various woods, e.g. Morus alba (white mulberry). First isolated in 1830 A pentahydroxyflavone that is 7-hydroxyflavonol bearing three additional hydroxy substituents at positions 2 4 and 5. D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents D020011 - Protective Agents > D000975 - Antioxidants Morin, a plant-derived flavonoid, possesses low antioxidant activity. Morin is a fluorescing chelating agent used in aluminum speciation[1][2]. Morin, a plant-derived flavonoid, possesses low antioxidant activity. Morin is a fluorescing chelating agent used in aluminum speciation[1][2].

   

Kaempferol 3-O-beta-robinoside 7-O-alpha-L-rhamnopyranoside

5-hydroxy-2-(4-hydroxyphenyl)-3-{[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-({[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-7-{[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-4H-chromen-4-one

C33H40O19 (740.2164)


Kaempferol 3-o-beta-robinoside 7-o-alpha-l-rhamnopyranoside, also known as kaempherol-3-O-robinoside-7-O-rhamnoside, is a member of the class of compounds known as flavonoid-7-o-glycosides. Flavonoid-7-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C7-position. Kaempferol 3-o-beta-robinoside 7-o-alpha-l-rhamnopyranoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Kaempferol 3-o-beta-robinoside 7-o-alpha-l-rhamnopyranoside can be found in common bean, which makes kaempferol 3-o-beta-robinoside 7-o-alpha-l-rhamnopyranoside a potential biomarker for the consumption of this food product. Acquisition and generation of the data is financially supported in part by CREST/JST. Robinin is present in?flavonoid?fraction of?Vigna unguiculata?leaf. Robinin inhibits upregulated expression of TLR2 and TLR4. Robinin ameliorates oxidized low density lipoprotein?(Ox-LDL) induced inflammatory insult through TLR4/NF-κB pathway[1]. Robinin is present in?flavonoid?fraction of?Vigna unguiculata?leaf. Robinin inhibits upregulated expression of TLR2 and TLR4. Robinin ameliorates oxidized low density lipoprotein?(Ox-LDL) induced inflammatory insult through TLR4/NF-κB pathway[1].

   

Phenylacetone

1-phenylpropan-2-one

C9H10O (134.0732)


Phenylacetone is a DEA Schedule II controlled substance. Substances in the DEA Schedule II have a high potential for abuse which may lead to severe psychological or physical dependence. It is a Immediate precursors substance. Phenylacetone is a propanone that is propan-2-one substituted by a phenyl group at position 1. It is a member of propanones and a methyl ketone. Phenylacetone. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=103-79-7 (retrieved 2024-10-28) (CAS RN: 103-79-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Boldione

(1S,2R,10R,11S,15S)-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadeca-3,6-diene-5,14-dione

C19H24O2 (284.1776)


Boldione is a direct precursor (prohormone) to the anabolic steroid boldenone (1,4-androstadiene-17beta-ol-3-one). It is advertised as a highly anabolic/androgenic compound promoting muscularity, enhancing strength and overall physical performance, and is available on the Internet and in health stores. Conflicting findings regarding the boldenone content of bovine faeces suggest it may be synthesized de novo in emitted faeces. Boldione is the oxidized form of boldenone, an this anabolic steroid is forbidden in EU countries in calves and bulls bred for meat production, and is illegally used as growth promoters, as they improve the growth and feed conversion in food producing animals. (PMID: 16449054, 16308875, 16244993) [HMDB] Boldione is a direct precursor (prohormone) to the anabolic steroid boldenone (1,4-androstadiene-17beta-ol-3-one). It is advertised as a highly anabolic/androgenic compound promoting muscularity, enhancing strength and overall physical performance, and is available on the Internet and in health stores. Conflicting findings regarding the boldenone content of bovine faeces suggest it may be synthesized de novo in emitted faeces. Boldione is the oxidized form of boldenone, an this anabolic steroid is forbidden in EU countries in calves and bulls bred for meat production, and is illegally used as growth promoters, as they improve the growth and feed conversion in food producing animals. (PMID: 16449054, 16308875, 16244993).

   

Primolut depot

Pregn-4-ene-3,20-dione, 17-[(1-oxohexyl)oxy]-

C27H40O4 (428.2926)


CONFIDENCE standard compound; INTERNAL_ID 655; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10390; ORIGINAL_PRECURSOR_SCAN_NO 10389 CONFIDENCE standard compound; INTERNAL_ID 655; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10271; ORIGINAL_PRECURSOR_SCAN_NO 10269 CONFIDENCE standard compound; INTERNAL_ID 655; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10375; ORIGINAL_PRECURSOR_SCAN_NO 10374 CONFIDENCE standard compound; INTERNAL_ID 655; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10383; ORIGINAL_PRECURSOR_SCAN_NO 10381 CONFIDENCE standard compound; INTERNAL_ID 655; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10318; ORIGINAL_PRECURSOR_SCAN_NO 10317 CONFIDENCE standard compound; INTERNAL_ID 655; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10339; ORIGINAL_PRECURSOR_SCAN_NO 10337 D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D004965 - Estrogen Antagonists D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D011372 - Progestins C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone

   

Fenoprofen

calcium(-1) anion; 2-(3-phenoxyphenyl)propanoate

C15H14O3 (242.0943)


Fenoprofen is only found in individuals that have used or taken this drug. It is an anti-inflammatory analgesic and antipyretic highly bound to plasma proteins. It is pharmacologically similar to aspirin, but causes less gastrointestinal bleeding. [PubChem]Fenoprofens exact mode of action is unknown, but it is thought that prostaglandin synthetase inhibition is involved. Fenoprofen has been shown to inhibit prostaglandin synthetase isolated from bovine seminal vesicles. M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AE - Propionic acid derivatives D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor D000893 - Anti-Inflammatory Agents D004791 - Enzyme Inhibitors

   

Mephentermine

methyl(2-methyl-1-phenylpropan-2-yl)amine

C11H17N (163.1361)


A sympathomimetic agent with mainly indirect effects on adrenergic receptors. It is used to maintain blood pressure in hypotensive states, for example, following spinal anesthesia. Although the central stimulant effects of mephentermine are much less than those of amphetamine, its use may lead to amphetamine-type dependence. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1248) C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides > C01CA - Adrenergic and dopaminergic agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant

   

3-(4-hydroxyphenyl)lactate

2-Hydroxy-3-(4-hydroxyphenyl)propanoic acid

C9H10O4 (182.0579)


Hydroxyphenyllactic acid or 4-hydroxyphenyllactate (the L-form) is a tyrosine metabolite. The level of L-hydroxyphenyllactic acid is elevated in patients with a deficiency of the enzyme p-hydroxyphenylpyruvate oxidase (EC 1.14.2.2) (PMID: 4720815). L-hydroxyphenyllactate is present in relatively higher concentrations in the cerebrospinal fluid and urine of patients with phenylketonuria (PKU) and tyrosinemia (PMID: 3126358). However, the D-form of hydroxyphenyllactate is of bacterial origin and is also found in individuals with bacterial overgrowth or unusual gut microflora (PMID: 3126358). Microbial hydroxyphenyllactate is likely derived from phenolic or polyphenolic compounds in the diet. Bifidobacteria and lactobacilli produce considerable amounts of phenyllactic and p-hydroxyphenyllactic acids (PMID: 23061754). It has also been shown that hydroxyphenyllactate decreases ROS (reactive oxygen species) production in both mitochondria and neutrophils and so hydroxyphenyllactate may function as a natural anti-oxidant (PMID: 23061754). Hydroxyphenyllactic acid is a microbial metabolite found in Acinetobacter, Bacteroides, Bifidobacteria, Bifidobacterium, Clostridium, Enterococcus, Escherichia, Eubacterium, Klebsiella, Lactobacillus, Pseudomonas and Staphylococcus (PMID: 19961416). Acquisition and generation of the data is financially supported in part by CREST/JST. Hydroxyphenyllactic acid is an antifungal metabolite.

   

Ginkgolide C

8-tert-butyl-6,9,12,17-tetrahydroxy-16-methyl-2,4,14,19-tetraoxahexacyclo[8.7.2.0¹,¹¹.0³,⁷.0⁷,¹¹.0¹³,¹⁷]nonadecane-5,15,18-trione

C20H24O11 (440.1319)


Ginkgolide C is found in fats and oils. Ginkgolide C is a bitter principle from Ginkgo biloba (ginkgo). Bitter principle from Ginkgo biloba (ginkgo). Ginkgolide C is found in ginkgo nuts and fats and oils. Ginkgolide C is a flavone isolated from Ginkgo biloba leaves, possessing multiple biological functions, such as decreasing platelet aggregation and ameliorating Alzheimer disease. Ginkgolide C is a flavone isolated from Ginkgo biloba leaves, possessing multiple biological functions, such as decreasing platelet aggregation and ameliorating Alzheimer disease. Ginkgolide C is a flavone isolated from Ginkgo biloba leaves, possessing multiple biological functions, such as decreasing platelet aggregation and ameliorating Alzheimer disease. Ginkgolide C is a flavone isolated from Ginkgo biloba leaves, possessing multiple biological functions, such as decreasing platelet aggregation and ameliorating Alzheimer disease.

   

6beta-Hydroxytestosterone

(1S,2R,8R,10R,11S,14S,15S)-8,14-dihydroxy-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-6-en-5-one

C19H28O3 (304.2038)


Testosterone is reported to have an acute vasodilating action in vitro, an effect that may impart a favourable haemodynamic response in patients with chronic heart failure.

   

Pyrequan

Pyrequan

C11H14N2S (206.0878)


P - Antiparasitic products, insecticides and repellents > P02 - Anthelmintics > P02C - Antinematodal agents > P02CC - Tetrahydropyrimidine derivatives D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents > D009466 - Neuromuscular Blocking Agents D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C250 - Antihelminthic Agent

   

Dibenz[a,j]acridine

Dibenzo[a,j]acridine

C21H13N (279.1048)


D009676 - Noxae > D002273 - Carcinogens CONFIDENCE standard compound; INTERNAL_ID 8309 CONFIDENCE standard compound; INTERNAL_ID 8180

   

N-Phenyl-2-naphthylamine

N-beta -Naphthyl-N-phenylamine

C16H13N (219.1048)


CONFIDENCE standard compound; INTERNAL_ID 1105; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10025; ORIGINAL_PRECURSOR_SCAN_NO 10023 CONFIDENCE standard compound; INTERNAL_ID 1105; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10038; ORIGINAL_PRECURSOR_SCAN_NO 10033 CONFIDENCE standard compound; INTERNAL_ID 1105; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10043; ORIGINAL_PRECURSOR_SCAN_NO 10042 CONFIDENCE standard compound; INTERNAL_ID 1105; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9976; ORIGINAL_PRECURSOR_SCAN_NO 9974 CONFIDENCE standard compound; INTERNAL_ID 1105; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9984; ORIGINAL_PRECURSOR_SCAN_NO 9980 CONFIDENCE standard compound; INTERNAL_ID 1105; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9994; ORIGINAL_PRECURSOR_SCAN_NO 9992 N-Phenyl-2-naphthylamine is found in root vegetables. N-Phenyl-2-naphthylamine is a constituent of Daucus carota (carrot). Constituent of Daucus carota (carrot). N-Phenyl-2-naphthylamine is found in root vegetables. CONFIDENCE standard compound; INTERNAL_ID 8366 CONFIDENCE standard compound; INTERNAL_ID 28

   

1,3-Cyclohexanedione

cyclohexane-1,3-dione

C6H8O2 (112.0524)


   

Adrenosterone

(1S,2R,10S,11S,15S)-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-6-ene-5,14,17-trione

C19H24O3 (300.1725)


Adrenosterone is a steroid hormone with weak androgenic effect. It was first isolated in 1936 from the adrenal cortex by Tadeus Reichstein at the Pharmaceutical Institute in the University of Basel. Originally, adrenosterone was called Reichsteins substance G.(Wikipedia). Andrenosterone is created from androst-4-ene-3,17-dione by the work of two enzymes, CYP11B (E1.14.15.4) and 11beta-hydroxysteroid dehydrogenase [EC:1.1.1.146]. Adrenosterone is a steroid hormone with weak androgenic effect. It was first isolated in 1936 from the adrenal cortex by Tadeus Reichstein at the Pharmaceutical Institute in the University of Basel. Originally, adrenosterone was called Reichsteins substance G. Adrenosterone ((+)-Adrenosterone) is a competitive hydroxysteroid (11-beta) dehydrogenase 1 (HSD11β1) inhibitor. Adrenosterone is a steroid hormone with weak androgenic effect. Adrenosterone is a dietary supplement that can decrease fat and increase muscle mass. Adrenosterone acts as a suppressor of metastatic progression of human cancer cells[1][2][3].

   

Beta-Guanidinopropionic acid

3-(diaminomethylideneamino)propanoic acid

C4H9N3O2 (131.0695)


Beta-Guanidinopropionic acid is analog of creatine and is reported to decrease phosphocreatine and ATP content in animal tissues in vivo. Acquisition and generation of the data is financially supported in part by CREST/JST. A human metabolite taken as a putative food compound of mammalian origin [HMDB] C274 - Antineoplastic Agent > C177430 - Agent Targeting Cancer Metabolism KEIO_ID G039

   

3b,17b-Dihydroxyetiocholane

(2S,5S,14S,15S)-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecane-5,14-diol

C19H32O2 (292.2402)


The unspecified form of the steroid, normally a major metabolite of testosterone with androgenic activity. It has been implicated as a regulator of gonadotropin secretion. [HMDB] The unspecified form of the steroid, normally a major metabolite of testosterone with androgenic activity. It has been implicated as a regulator of gonadotropin secretion.

   

Diphenoxylate

Ethyl 1-(3-cyano-3,3-diphenylpropyl)-4-phenyl-4-piperidinecarboxylic acid

C30H32N2O2 (452.2464)


A meperidine congener used as an antidiarrheal, usually in combination with atropine. At high doses, it acts like morphine. Its unesterified metabolite difenoxin has similar properties and is used similarly. It has little or no analgesic activity. This medication is classified as a Schedule V under the Controlled Substances Act by the Food and Drug Administration (FDA) and the DEA in the United States when used in preparations. When diphenoxylate is used alone, it is classified as a Schedule II. A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07D - Antipropulsives > A07DA - Antipropulsives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics C78276 - Agent Affecting Digestive System or Metabolism > C266 - Antidiarrheal Agent D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D005765 - Gastrointestinal Agents > D000930 - Antidiarrheals

   

1,2-Dihydronaphthalene-1,2-diol

(1R,2S)-cis-1,2-Dihydro-1,2-naphthalenediol

C10H10O2 (162.0681)


A member of the class of naphthalenediols that is 1,2-dihydronaphthalene substituted by hydroxy groups at positions 1 and 2 respectively.

   

Aminomethylphosphonic acid

aminomethylphosphonic acid

CH6NO3P (111.0085)


Aminomethylphosphonic acid, also known as AMPA, belongs to the class of organic compounds known as organic phosphonic acids. These are organic compounds containing phosphonic acid. Based on a literature review a significant number of articles have been published on Aminomethylphosphonic acid. (aminomethyl)phosphonic acid is a member of the class of phosphonic acids that is phosphonic acid substituted by an aminomethyl group. It is a metabolite of the herbicide glyphosate. It is a one-carbon compound and a member of phosphonic acids. It is functionally related to a phosphonic acid. It is a conjugate acid of an (aminomethyl)phosphonate(1-). (Aminomethyl)phosphonic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=1066-51-9 (retrieved 2024-10-30) (CAS RN: 1066-51-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

4-Chlorobenzoic acid

4-Chlorobenzoic acid, sodium salt, 11C-labeled

C7H5ClO2 (155.9978)


CONFIDENCE standard compound; INTERNAL_ID 431; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4340; ORIGINAL_PRECURSOR_SCAN_NO 4338 CONFIDENCE standard compound; INTERNAL_ID 431; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4332; ORIGINAL_PRECURSOR_SCAN_NO 4329 CONFIDENCE standard compound; INTERNAL_ID 431; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4361; ORIGINAL_PRECURSOR_SCAN_NO 4356 CONFIDENCE standard compound; INTERNAL_ID 431; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4423; ORIGINAL_PRECURSOR_SCAN_NO 4419 CONFIDENCE standard compound; INTERNAL_ID 431; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4331; ORIGINAL_PRECURSOR_SCAN_NO 4328 CONFIDENCE standard compound; INTERNAL_ID 431; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4339; ORIGINAL_PRECURSOR_SCAN_NO 4337 KEIO_ID C104

   

3,5-Dinitrosalicylic acid

3,5-Dinitrosalicylic acid, monopotassium salt

C7H4N2O7 (228.0019)


D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates KEIO_ID D050

   

4-Fluorobenzoic acid

4-Fluorobenzoic acid, copper (+2) salt dihydrate

C7H5FO2 (140.0274)


KEIO_ID F023

   

Glutamylglutamic acid

(2S)-2-[(2S)-2-amino-4-carboxybutanamido]pentanedioic acid

C10H16N2O7 (276.0957)


Glutamylglutamic acid is a dipeptide composed of two glutamic acid residues, and is a proteolytic breakdown product of larger proteins. It belongs to the family of N-acyl-alpha amino acids and derivatives. These are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. Glutamylglutamic acid is an incomplete breakdown product of protein digestion or protein catabolism. Some dipeptides are known to have physiological or cell-signaling effects although most are simply short-lived intermediates on their way to specific amino acid degradation pathways following further proteolysis. KEIO_ID G043; [MS2] KO008970 KEIO_ID G043

   

Kanamycin B

Kanamycin B

C18H37N5O10 (483.254)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01G - Aminoglycoside antibacterials C784 - Protein Synthesis Inhibitor > C2363 - Aminoglycoside Antibiotic D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C254 - Anti-Infective Agent > C258 - Antibiotic KEIO_ID B028 Bekanamycin (Kanamycin B) is an aminoglycoside antibiotic produced by Streptomyces kanamyceticus, against an array of Gram-positive and Gram-negative bacterial strain[1][2].

   

Undecylenic acid

Zinc undecylenate (undecylenic acid)

C11H20O2 (184.1463)


Undecylenic acid, also known as 10-undecylenate or omega-undecenoic acid, belongs to the class of organic compounds known as medium-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 4 and 12 carbon atoms. Undecylenic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Undecylenic acid is found in black elderberry. Undecylenic acid is a flavouring ingredient and is a sweet and woody-tasting compound. Undecylenic acid was identified as one of forty plasma metabolites that could be used to predict gut microbiome Shannon diversity (PMID:31477923). Shannon diversity is a metric that summarizes both species abundance and evenness, and it has been suggested as a marker for microbiome health. Undecylenic acid is used in the production of the bioplastic Nylon-11, in the treatment of fungal infections in the skin, and as a precursor in the manufacture of a wide assortment of pharmaceuticals, cosmetics, perfumes, and personal hygiene products. D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use Flavouring ingredient. Undecylenic acid is found in black elderberry. C254 - Anti-Infective Agent > C514 - Antifungal Agent Same as: D02159 10-Undecenoic acid is used as a starting agent in the synthesis of Pheromone (11Z)-hexadecenal. 10-Undecenoic acid is used as a starting agent in the synthesis of Pheromone (11Z)-hexadecenal.

   

Isobutyryl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-2,2-dimethyl-3-{[2-({2-[(2-methylpropanoyl)sulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}propoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C25H42N7O17P3S (837.1571)


Isobutyryl-CoA is a substrate for Acyl-CoA dehydrogenase (short-chain specific, mitochondrial), Acyl-CoA dehydrogenase (medium-chain specific, mitochondrial) and Acyl-CoA dehydrogenase (long-chain specific, mitochondrial). [HMDB] Isobutyryl-CoA is a substrate for Acyl-CoA dehydrogenase (short-chain specific, mitochondrial), Acyl-CoA dehydrogenase (medium-chain specific, mitochondrial) and Acyl-CoA dehydrogenase (long-chain specific, mitochondrial). Acquisition and generation of the data is financially supported in part by CREST/JST.

   

Gluconasturtiin

{[(e)-(3-phenyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]sulphanyl}propylidene)amino]oxy}sulphonic acid

C15H21NO9S2 (423.0658)


Isolated from Nasturtium officinale (water cress), Barbarea vulgaris (winter cress) and other crucifers. Gluconasturtiin is found in many foods, some of which are radish, broccoli, watercress, and brassicas. Gluconasturtiin is found in brassicas. Gluconasturtiin is isolated from Nasturtium officinale (water cress), Barbarea vulgaris (winter cress) and other crucifers. Acquisition and generation of the data is financially supported in part by CREST/JST.

   

L-Gulonolactone

(3S,4R,5R)-5-[(1S)-1,2-dihydroxyethyl]-3,4-dihydroxyoxolan-2-one

C6H10O6 (178.0477)


L-Gulonolactone (also known as reduced ascorbic acid, RAA) is the substrate of the enzyme L-gulono-1,4-lactone oxidoreductase (EC 1.1.3.8), which catalyzes the last step of the biosynthesis of L-ascorbic acid (vitamin C) in plants and animals. The enzyme L-Gulono-1,4-lactone oxidase is missing in scurvy-prone, vitamin C-deficient animals, such as humans. L-Gulonolactone is present in human blood and has been used as one of the markers to compare changes in exercise-induced oxidative stress. (PMID: 16956367, 16494601) [HMDB] L-Gulonolactone (also known as reduced ascorbic acid, RAA) is the substrate of the enzyme L-gulono-1,4-lactone oxidoreductase (EC 1.1.3.8), which catalyzes the last step of the biosynthesis of L-ascorbic acid (vitamin C) in plants and animals. The enzyme L-Gulono-1,4-lactone oxidase is missing in scurvy-prone, vitamin C-deficient animals, such as humans. L-Gulonolactone is present in human blood and has been used as one of the markers to compare changes in exercise-induced oxidative stress. (PMID:16956367, 16494601). COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS L-Gulono-1,4-lactone is a substrate of L-gulono-1,4-lactone oxidoreductase, which catalyzes the last step of the biosynthesis of L-ascorbic (Vatamin) C. In other words, L-Gulono-1,4-lactone is a direct precursor of vitamin C in animals, in plants and in some protists.

   

Ginkgolide A

9H-1,7a-(Epoxymethano)-1H,6aH-cyclopenta[c]furo[2,3-b]furo[3,2:3,4]cyclopenta[1,2-d]furan-5,9,12(4H)-trione, 3-tert-butylhexahydro-4,7b-dihydroxy-8-methyl-

C20H24O9 (408.142)


Ginkgolide A is found in fats and oils. Ginkgolide A is a bitter principle from Ginkgo biloba (ginkgo). Ginkgolide A (BN-52020) is an extract from in Ginkgo biloba and a g-aminobutyric acid (GABA) antagonist. Ginkgolide A (BN-52020) is an extract from in Ginkgo biloba and a g-aminobutyric acid (GABA) antagonist. Ginkgolide A (BN-52020) is an extract from in Ginkgo biloba and a g-aminobutyric acid (GABA) antagonist.

   

Prunetin

5-Hydroxy-3-(4-hydroxyphenyl)-7-methoxy-4H-1-benzopyran-4-one, 9CI

C16H12O5 (284.0685)


Prunetin is a hydroxyisoflavone that is genistein in which the hydroxy group at position 7 is replaced by a methoxy group. It has a role as a metabolite, an EC 1.3.1.22 [3-oxo-5alpha-steroid 4-dehydrogenase (NADP(+))] inhibitor, an anti-inflammatory agent and an EC 1.2.1.3 [aldehyde dehydrogenase (NAD(+))] inhibitor. It is a hydroxyisoflavone and a member of 7-methoxyisoflavones. It is functionally related to a genistein. It is a conjugate acid of a prunetin-5-olate. Prunetin is a natural product found in Iris milesii, Prunus leveilleana, and other organisms with data available. Occurs in several Prunus subspecies and Glycyrrhiza glabra (licorice). Prunetin is found in tea, herbs and spices, and sour cherry. Prunetin is found in herbs and spices. Prunetin occurs in several Prunus species and Glycyrrhiza glabra (licorice). A hydroxyisoflavone that is genistein in which the hydroxy group at position 7 is replaced by a methoxy group. Prunetin, an O-methylated isoflavone, possesses anti-inflammatory activity. Prunetin is a potent human aldehyde dehydrogenases inhibitor[1][2]. Prunetin, an O-methylated isoflavone, possesses anti-inflammatory activity. Prunetin is a potent human aldehyde dehydrogenases inhibitor[1][2]. Prunetin, an O-methylated isoflavone, possesses anti-inflammatory activity. Prunetin is a potent human aldehyde dehydrogenases inhibitor[1][2].

   

6-Hydroxyflavanone

6-Hydroxyflavanone

C15H12O3 (240.0786)


A monohydroxyflavanone that is flavanone substituted by a hydroxy group at position 6. Annotation level-1

   

Nevadensin

5,7-Dihydroxy-6,8-dimethoxy-2-(4-methoxyphenyl)-4H-chromen-4-one

C18H16O7 (344.0896)


Nevadensin, also known as pedunculin or 5,7-hydroxy-4,6,8-trimethoxyflavone, is a member of the class of compounds known as 8-o-methylated flavonoids. 8-o-methylated flavonoids are flavonoids with methoxy groups attached to the C8 atom of the flavonoid backbone. Thus, nevadensin is considered to be a flavonoid lipid molecule. Nevadensin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Nevadensin can be found in peppermint and sweet basil, which makes nevadensin a potential biomarker for the consumption of these food products. Nevadensin is a naturally occurring selective inhibitor of human carboxylesterase 1 (hCE1) with an IC50 of 2.64 μM. Nevadensin has a variety of pharmacological effects such as anti-mycobacterium tuberculosis activities, antitussive, anti-inflammatory and anti-hypertensive[1][2]. Nevadensin is a naturally occurring selective inhibitor of human carboxylesterase 1 (hCE1) with an IC50 of 2.64 μM. Nevadensin has a variety of pharmacological effects such as anti-mycobacterium tuberculosis activities, antitussive, anti-inflammatory and anti-hypertensive[1][2].

   

Haplopine

4,8-Dimethoxyfuro[2,3-b]quinolin-7-ol; 7-Hydroxy-8-methoxydictamnine

C13H11NO4 (245.0688)


Haplopine is an oxacycle, an organonitrogen heterocyclic compound and an organic heterotricyclic compound. Haplopine is a natural product found in Haplophyllum bucharicum, Haplophyllum cappadocicum, and other organisms with data available.

   

DB-042973

3,4,2,4,6-Pentahydroxychalcone

C15H12O6 (288.0634)


   

Neoxanthin

(1R,3S)-6-[(1M,3E,5E,7E,9E,11E,13E,15Z,17E)-18-[(1S,4S,6R)-4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-ylidene]-1,5,5-trimethylcyclohexane-1,3-diol

C40H56O4 (600.4178)


Neoxanthin belongs to the class of organic compounds known as xanthophylls. These are carotenoids containing an oxygenated carotene backbone. Carotenes are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Xanthophylls arise by oxygenation of the carotene backbone. Neoxanthin is an intermediate in the synthesis of abscisic acid from violaxanthin. Neoxanthin has been detected, but not quantified in, several different foods, such as apples, paprikas, Valencia oranges, kiwis, globe artichokes, sparkleberries, hard wheat, and cinnamon. This could make neoxanthin a potential biomarker for the consumption of these foods. Neoxanthin has been shown to exhibit apoptotic and anti-proliferative functions (PMID: 15333710, 15333710). Neoxanthin is a carotenoid and xanthophyll. In plants, it is an intermediate in the biosynthesis of the plant hormone abscisic acid. It is produced from violaxanthin by the action of neoxanthin synthase. It is a major xanthophyll found in green leafy vegetables such as spinach. [Wikipedia] D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

4-Hydroxybenzoate-O-glucoside

4-(beta-D-glucosyloxy)benzoic acid

C13H16O8 (300.0845)


   

6-Aminopenicillanic acid

(2S,5R,6R)-6-Amino-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid

C8H12N2O3S (216.0569)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams 6-Aminopenicillanic acid is a metabolite of penicillin v; penicillin g.

   

Chebulagic acid

chebulagic acid

C41H30O27 (954.0974)


D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059004 - Topoisomerase I Inhibitors D004791 - Enzyme Inhibitors > D016859 - Lipoxygenase Inhibitors Chebulagic acid is a COX-LOX dual inhibitor isolated from the fruits of Terminalia chebula Retz, on angiogenesis. Chebulagic acid is a M2 serine to asparagine 31 mutation (S31N) inhibitor and influenza antiviral. Chebulagic acid also against SARS-CoV-2 viral replication with an EC50 of 9.76 μM. Chebulagic acid is a COX-LOX dual inhibitor isolated from the fruits of Terminalia chebula Retz, on angiogenesis. Chebulagic acid is a M2 serine to asparagine 31 mutation (S31N) inhibitor and influenza antiviral. Chebulagic acid also against SARS-CoV-2 viral replication with an EC50 of 9.76 μM. Chebulagic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=23094-71-5 (retrieved 2024-09-27) (CAS RN: 23094-71-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

(-)-Salsoline

1(R),2(N)-Dimethyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline

C11H15NO2 (193.1103)


(-)-Salsoline is a compound that crystallizes from alcohol solution, melts at 221 oC, soluble in hot alcohol and chloroform; used in medicine as an antihypertensive agent. Salsoline as well as salsolinol were found in male alcoholic inpatientss urine and lumbar cerebrospinal fluid when patients were still intoxicated after a heavy alcohol debauch and after they had been inpatients and off alcohol for one week.There was a wide interindividual variation and no statistical significant difference in the levels between the first and second sampling in CSF or urine.[PMID: 6935920]. (-)-Salsoline is a compound that crystallizes from alcohol solution, melts at 221 oC, soluble in hot alcohol and chloroform; used in medicine as an antihypertensive agent. D009676 - Noxae > D009498 - Neurotoxins

   

Tephrosin

(1R,14R)-14-hydroxy-17,18-dimethoxy-7,7-dimethyl-2,8,21-trioxapentacyclo[12.8.0.03,12.04,9.015,20]docosa-3(12),4(9),5,10,15,17,19-heptaen-13-one

C23H22O7 (410.1365)


Tephrosin is a member of the class of rotenones that is 13,13a-dihydro-3H-chromeno[3,4-b]pyrano[2,3-h]chromen-7(7aH)-one substituted with geminal methyl groups at position 3, hydroxy group at position 7a and methoxy groups at positions 9 and 10 (the 7aR,13aR stereoisomer). It is isolated from the leaves and twigs of Antheroporum pierrei and exhibits antineoplastic and pesticidal activities. It has a role as a pesticide, an antineoplastic agent and a metabolite. It is an organic heteropentacyclic compound, an aromatic ether, a cyclic ketone and a member of rotenones. Tephrosin is a natural product found in Millettia ferruginea, Tephrosia vogelii, and other organisms with data available. A member of the class of rotenones that is 13,13a-dihydro-3H-chromeno[3,4-b]pyrano[2,3-h]chromen-7(7aH)-one substituted with geminal methyl groups at position 3, hydroxy group at position 7a and methoxy groups at positions 9 and 10 (the 7aR,13aR stereoisomer). It is isolated from the leaves and twigs of Antheroporum pierrei and exhibits antineoplastic and pesticidal activities.

   

Glucocapangulin

1,6-dihydroxy-3-methyl-8-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-9,10-dihydroanthracene-9,10-dione

C21H20O10 (432.1056)


Glucocapangulin, also known as anthraglycoside b, is a member of the class of compounds known as hydroxyanthraquinones. Hydroxyanthraquinones are compounds containing a hydroxyanthraquinone moiety, which consists of an anthracene bearing a quinone, and hydroxyl group. Thus, glucocapangulin is considered to be an aromatic polyketide lipid molecule. Glucocapangulin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Glucocapangulin can be found in capers, which makes glucocapangulin a potential biomarker for the consumption of this food product. Emodin-1-O-β-D-glucopyranoside, isolated from medicinal plant Polygonum cuspidatum Sieb. & Zucc, is a potent and noncompetitive bacterial neuraminidase (BNA) inhibitor with an IC50 of 0.85 μM[1]. Emodin-1-O-β-D-glucopyranoside, isolated from medicinal plant Polygonum cuspidatum Sieb. & Zucc, is a potent and noncompetitive bacterial neuraminidase (BNA) inhibitor with an IC50 of 0.85 μM[1].

   

1-(2,6-Dihydroxy-4-methoxyphenyl)-3-phenyl-1-propanone

1-(2,6-Dihydroxy-4-methoxyphenyl)-3-phenyl-1-propanone

C16H16O4 (272.1049)


1-(2,6-Dihydroxy-4-methoxyphenyl)-3-phenyl-1-propanone is isolated from Populus balsamifera (balsam poplar) oi Isolated from Populus balsamifera (balsam poplar) oil.

   

Phytolaccasaponin G

11-hydroxy-9-(hydroxymethyl)-2-(methoxycarbonyl)-2,6a,6b,9,12a-pentamethyl-10-[(3,4,5-trihydroxyoxan-2-yl)oxy]-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C36H56O11 (664.3822)


From Phytolacca americana (pokeberry). Phytolaccasaponin G is found in fruits, green vegetables, and american pokeweed. Phytolaccasaponin G is found in american pokeweed. Phytolaccasaponin G is from Phytolacca americana (pokeberry

   

Gentisyl alcohol

2,5-Dihydroxybenzyl alcohol

C7H8O3 (140.0473)


An aromatic primary alcohol that is benzyl alcohol substituted by hydroxy groups at positions 2 and 5. CONFIDENCE Culture of Penicillium eurotium strain

   

Levulose

(3S,4S,5R)-2,5-bis(hydroxymethyl)oxolane-2,3,4-triol

C6H12O6 (180.0634)


D-Fructose (D(-)-Fructose) is a naturally occurring monosaccharide found in many plants. D-Fructose (D(-)-Fructose) is a naturally occurring monosaccharide found in many plants.

   

echinenone

Echinenone/ (Myxoxanthin)

C40H54O (550.4174)


A carotenone that is beta-carotene in which the 4 position has undergone formal oxidation to afford the corresponding ketone. Isolated as orange-red crystals, it is widely distributed in marine invertebrates. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Window width for selecting the precursor ion was 3 Da.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 16HP2005 to the Mass Spectrometry Society of Japan.

   

Norathyriol

1,3,6,7-TETRAHYDROXY-9H-XANTHEN-9-ONE

C13H8O6 (260.0321)


A polyphenol metabolite detected in biological fluids [PhenolExplorer]

   

Feruloyl-CoA

trans-feruloyl-CoA

C31H44N7O19P3S (943.1625)


An acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of ferulic acid.

   

2-Methylcitric acid

2-hydroxy-1-methylpropane-1,2,3-tricarboxylic acid

C7H10O7 (206.0427)


Methylcitric acid (MCA) is elevated in body fluids of patients with propionic acidaemia (PA; OMIM 232000, 232050), methylmalonic aciduria (MMA; OMIM 251000, 251120) and multiple carboxylase deficiency (OMIM 253260, 253270), which are inherited disorders. MCA is formed by condensation of accumulated propionyl- CoA and oxalacetate by the enzyme si-citrate synthase (EC 4.1.3.7). MCA molecule has two stereogenic centers so that it can occur in the form of four stereoisomers. Only two stereoisomers of MCA, (2S, 3S) and (2R, 3S), were found in human urine (PMID: 17295121). Methylcitric acid (MCA) is elevated in body fluids of patients with propionic acidaemia (PA; OMIM 232000, 232050), methylmalonic aciduria (MMA; OMIM 251000, 251120) and multiple carboxylase deficiency (OMIM 253260, 253270). MCA is formed by condensation of accumulated propionyl- CoA and oxalacetate by the enzyme si-citrate synthase (EC 4.1.3.7). MCA molecule has two stereogenic centers so that it can occur in the form of four stereoisomers. Only two stereoisomers of MCA, (2S, 3S) and (2R, 3S), were found in human urine. (PMID: 17295121) [HMDB] 2-Methylcitric acid (Methylcitric acid) is an endogenous metabolite in the 2-methylcitric acid cycle. 2-Methylcitric acid accumulates in methylmalonic and propionic acidemias and acts as a marker metabolite. 2-Methylcitric acid markedly inhibits ADP-stimulated and uncoupled respiration in mitochondria supported by glutamate[1]. 2-Methylcitric acid (Methylcitric acid) is an endogenous metabolite in the 2-methylcitric acid cycle. 2-Methylcitric acid accumulates in methylmalonic and propionic acidemias and acts as a marker metabolite. 2-Methylcitric acid markedly inhibits ADP-stimulated and uncoupled respiration in mitochondria supported by glutamate[1]. 2-Methylcitric acid (Methylcitric acid) is an endogenous metabolite in the 2-methylcitric acid cycle. 2-Methylcitric acid accumulates in methylmalonic and propionic acidemias and acts as a marker metabolite. 2-Methylcitric acid markedly inhibits ADP-stimulated and uncoupled respiration in mitochondria supported by glutamate[1].

   

Dihydrolipoamide

Dihydrolipoamide, (+-)-isomer

C8H17NOS2 (207.0752)


Dihydrolipoamide is an intermediate in glycolysis/gluconeogenesis, citrate cycle (TCA cycle), alanine, aspartate and pyruvate metabolism, and valine, leucine and isoleucine degradation (KEGG ID C00579). It is converted to lipoamide via the enzyme dihydrolipoamide dehydrogenase [EC:1.8.1.4]. Dihydrolipoamide is also a substrate of enzyme Acyltransferases [EC 2.3.1.-]. (KEGG) [HMDB]. Dihydrolipoamide is found in many foods, some of which are enokitake, mugwort, welsh onion, and tea. Dihydrolipoamide is an intermediate in glycolysis/gluconeogenesis, citrate cycle (TCA cycle), alanine, aspartate and pyruvate metabolism, and valine, leucine and isoleucine degradation (KEGG ID C00579). It is converted to lipoamide via the enzyme dihydrolipoamide dehydrogenase [EC:1.8.1.4]. Dihydrolipoamide is also a substrate of enzyme Acyltransferases [EC 2.3.1.-]. (KEGG).

   

Protoporphyrinogen IX

3-[20-(2-carboxyethyl)-9,14-diethenyl-5,10,15,19-tetramethyl-21,22,23,24-tetraazapentacyclo[16.2.1.1^{3,6}.1^{8,11}.1^{13,16}]tetracosa-1(20),3,5,8,10,13,15,18-octaen-4-yl]propanoic acid

C34H40N4O4 (568.3049)


Protoporphyrinogen IX is an intermediate in heme biosynthesis. It is a porphyrinogen in which two pyrrole rings each have one methyl and one propionate side chain, and the other two pyrrole rings each have one methyl and one vinyl side chain. Fifteen isomers are possible but only one, type IX, occurs naturally. Protoporphyrinogen is produced by oxidative decarboxylation of coproporphyrinogen. Under certain conditions, protoporphyrinogen IX can act as a phototoxin, a neurotoxin, and a metabotoxin. A phototoxin leads to cell damage upon exposure to light. A neurotoxin causes damage to nerve cells and nerve tissues. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of porphyrins are associated with porphyrias such as porphyria variegate, acute intermittent porphyria, and hereditary coproporphyria (HCP). In particular, protoporphyrinogen IX is accumulated and excreted excessively in the feces in acute intermittent porphyria, protoporphyria, and variegate porphyria. There are several types of porphyrias (most are inherited). Hepatic porphyrias are characterized by acute neurological attacks (seizures, psychosis, extreme back and abdominal pain, and an acute polyneuropathy), while the erythropoietic forms present with skin problems (usually a light-sensitive blistering rash and increased hair growth). The neurotoxicity of porphyrins may be due to their selective interactions with tubulin, which disrupt microtubule formation and cause neural malformations (PMID: 3441503). Protoporphyrinogen IX is an intermediate in heme biosynthesis. It is a porphyrinogen in which 2 pyrrole rings each have one methyl and one propionate side chain and the other two pyrrole rings each have one methyl and one vinyl side chain. 15 isomers are possible but only one, type IX, occurs naturally. Protoporphyrinogen is produced by oxidative decarboxylation of coproporphyrinogen. [HMDB]. Protoporphyrinogen IX is found in many foods, some of which are elderberry, grapefruit, green vegetables, and pepper (c. annuum). COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

neamine

5-amino-2-(aminomethyl)-6-(4,6-diamino-2,3-dihydroxycyclohexyl)oxyoxane-3,4-diol

C12H26N4O6 (322.1852)


C784 - Protein Synthesis Inhibitor > C2363 - Aminoglycoside Antibiotic C254 - Anti-Infective Agent > C258 - Antibiotic

   

Arsenate

Orthoarsenic acid, dihydrate

AsH3O4 (141.9247)


Arsenate is an ion consisting of arsenic. An arsenate is any compound containing the arsenate ion AsO43−. Arsenates are also referred to as pentavalent arsenic [As(V)] as the arsenic atom in arsenate has a valence of five. Arsenates can be both salts and esters of arsenic acid. Arsenate can be used as an indicator of mineral deposits, as a result of transition metals reacting with it to form bright colours. These mineral blooms can be used to find nickel (annabergite), copper (chalcophyllite), and cobalt (erythrite) arsenide ores. Arsenate is a chemical analogue of phosphate due to arsenic and phosphorous being part of the same group (pnictogens). Because of the similarities, arsenate can be taken by phosphate transporters due to imperfect selectivity (PMID: 328484, 8598055). Arsenate is much less toxic than the trivalent form arsenite, which is more mobile in groundwater and soils, and forms strong metal-like interactions with thiol groups in protein cysteine residues and small molecule thiols (PMID: 30852446). The arsenate ion is AsO43−. An arsenate (compound) is any compound that contains this ion.The arsenic atom in arsenate has a valency of 5 and is also known as pentavalent arsenic or As[V].Arsenate resembles phosphate in many respects, since arsenic and phosphorus occur in the same group (column) of the periodic table. D010575 - Pesticides > D006540 - Herbicides D009676 - Noxae > D013723 - Teratogens D016573 - Agrochemicals

   

Viomycin

Tuberactinomycin B; Vinacetin A; Vioactane

C25H43N13O10 (685.3256)


A cyclic peptide antibiotic produced by the actinomycete Streptomyces puniceus, used in the treatment of tuberculosis. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D000995 - Antitubercular Agents C254 - Anti-Infective Agent > C52588 - Antibacterial Agent > C280 - Antitubercular Agent D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors

   

3-Oxosteroid

Dodecahydro-10,13-dimethyl-2H-cyclopenta[a]phenanthren-3(4H,9H,14H)-one

C19H30O (274.2297)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

Isoflavanone

2,3-dihydro-3-Phenyl-4H-1-benzopyran-4-one

C15H12O2 (224.0837)


   

Aspulvinone E

(5Z)-4-Hydroxy-3-(4-hydroxyphenyl)-5-[(4-hydroxyphenyl)methylene]-2(5H)-furanone

C17H12O5 (296.0685)


A 4-hydroxy-5-(4-hydroxybenzylidene)-3-(4-hydroxyphenyl)furan-2(5H)-one in which the double bond adopts a Z-configuration. It is a marine metabolite isolated from the fungus Aspergillus terreus and exhibits antiviral activity.

   

Deoxycytosine

2,3-dihydropyrimidin-4-amine

C4H7N3 (97.064)


   

4-Chlorocatechol

4-Chloro-benzene-1,2-diol

C6H5ClO2 (143.9978)


4-chlorocatechol belongs to the family of Catechols. These are compounds containing a 1,2-benzenediol moeity.

   

6-Hydroxymellein

Isocoumarin, 3,4-dihydro-6,8-dihydroxy-3-methyl-

C10H10O4 (194.0579)


   

17-Deoxyestradiol

15-methyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadeca-2(7),3,5-trien-5-ol

C18H24O (256.1827)


   

6-Methylsalicylic acid

2-HYDROXY-6-METHYLBENZOIC ACID

C8H8O3 (152.0473)


A monohydroxybenzoic acid that is salicylic acid in which the hydrogen ortho to the carboxylic acid group is substituted by a methyl group. D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates

   

Acenaphthoquinone

1,2-Diketoacenaphthene

C12H6O2 (182.0368)


   

Isovaleryl-CoA

(2R)-4-({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-3,3-dimethyl-N-[2-({2-[(3-methylbutanoyl)sulfanyl]ethyl}-C-hydroxycarbonimidoyl)ethyl]butanimidic acid

C26H44N7O17P3S (851.1727)


Isovaleryl-CoA is an intermediate metabolite in the catabolic pathway of leucine. The accumulation of derivatives of isovaleryl-CoA occurs in patients affected with isovaleric acidemia (IVA, OMIM 243500) an autosomal recessive inborn error of leucine metabolism caused by a deficiency of the mitochondrial enzyme isovaleryl-CoA dehydrogenase (IVD, EC 1.3.99.10, a flavoenzyme that catalyzes the conversion of isovaleryl-CoA to 3-methylcrotonyl-CoA). IVA was the first organic acidemia recognized in humans and can cause significant morbidity and mortality. Early diagnosis and treatment with a protein restricted diet and supplementation with carnitine and glycine are effective in promoting normal development in severely affected individuals. Both intra- and interfamilial variability have been recognized. Initially, two phenotypes with either an acute neonatal or a chronic intermittent presentation were described. More recently, a third group of individuals with mild biochemical abnormalities who can be asymptomatic have been identified through newborn screening of blood spots by tandem mass spectrometry. The majority of patients with IVA today are diagnosed pre-symptomatically through newborn screening by use of MS/MS which reveals elevations of the marker metabolite C5 acylcarnitine in dried blood spots. C5 acylcarnitine represents a mixture of isomers (isovalerylcarnitine, 2-methylbutyrylcarnitine, and pivaloylcarnitine). (PMID: 16602101, Am J Med Genet C Semin Med Genet. 2006 May 15;142(2):95-103.) [HMDB]. Isovaleryl-CoA is found in many foods, some of which are purple laver, alaska wild rhubarb, macadamia nut (m. tetraphylla), and green zucchini. Isovaleryl-CoA is an intermediate metabolite in the catabolic pathway of leucine. The accumulation of derivatives of isovaleryl-CoA occurs in patients affected with isovaleric acidemia (IVA, OMIM: 243500), an autosomal recessive inborn error of leucine metabolism caused by a deficiency of the mitochondrial enzyme isovaleryl-CoA dehydrogenase (IVD, EC 1.3.99.10), a flavoenzyme that catalyzes the conversion of isovaleryl-CoA into 3-methylcrotonyl-CoA. IVA was the first organic acidemia recognized in humans and can cause significant morbidity and mortality. Early diagnosis and treatment with a protein-restricted diet and supplementation with carnitine and glycine are effective in promoting normal development in severely affected individuals. Both intra- and interfamilial variability have been recognized. Initially, two phenotypes with either an acute neonatal or a chronic intermittent presentation were described. More recently, a third group of individuals with mild biochemical abnormalities who can be asymptomatic have been identified through newborn screening of blood spots by tandem mass spectrometry. The majority of patients with IVA today are diagnosed pre-symptomatically through newborn screening by use of MS/MS which reveals elevations of the marker metabolite C5 acylcarnitine in dried blood spots. C5 Acylcarnitine represents a mixture of isomers (isovalerylcarnitine, 2-methylbutyrylcarnitine, and pivaloylcarnitine) (PMID: 16602101).

   

Kyotorphin

(2S)-2-[(2S)-2-amino-3-(4-hydroxyphenyl)propanamido]-5-carbamimidamidopentanoic acid

C15H23N5O4 (337.175)


Kyotorphin (L-tyrosyl-L-arginine) is a neuroactive dipeptide which plays a role in pain regulation in the brain. It was first isolated from bovine brain by Japanese scientists in 1979. Kyotorphin was named for the site of its discovery, Kyoto, Japan and because of its morphine- (or endorphin-) like analgesic activity. Kyotorphin has an analgesic effect, but it does not interact with the opioid receptors. Instead, it acts by releasing an Met-enkephalin and stabilizing it from degradation. It may also possess properties of neuromediator/neuromodulator. It has been shown that kyotorphin is present in the human cerebrospinal fluid and that it is lower in patients with persistent pain. [HMDB] Kyotorphin (L-tyrosyl-L-arginine) is a neuroactive dipeptide which plays a role in pain regulation in the brain. It was first isolated from bovine brain by Japanese scientists in 1979. Kyotorphin was named for the site of its discovery, Kyoto, Japan and because of its morphine- (or endorphin-) like analgesic activity. Kyotorphin has an analgesic effect, but it does not interact with the opioid receptors. Instead, it acts by releasing an Met-enkephalin and stabilizing it from degradation. It may also possess properties of neuromediator/neuromodulator. It has been shown that kyotorphin is present in the human cerebrospinal fluid and that it is lower in patients with persistent pain. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D018377 - Neurotransmitter Agents > D018847 - Opioid Peptides D018377 - Neurotransmitter Agents > D004723 - Endorphins Kyotorphin is an endogenou neuroactive dipeptide with analgesic properties. Kyotorphin possesses anti-inflammatory and antimicrobial activity. Kyotorphin levels in cerebro-spinal fluid correlate negatively with the progression of neurodegeneration in Alzheimer's Disease patients[1].

   

Trypanothione disulfide

(2S)-2-amino-4-{[(4R,23R)-23-{[(4S)-4-amino-4-carboxy-1-hydroxybutylidene]amino}-5,8,19,22-tetrahydroxy-1,2-dithia-6,9,13,18,21-pentaazacyclotetracosa-5,8,18,21-tetraen-4-yl]-C-hydroxycarbonimidoyl}butanoic acid

C27H47N9O10S2 (721.2887)


This compound belongs to the family of Cyclic Peptides. These are compounds containing a cyclic moiety bearing a peptide backbone

   

4-Hydroxypheoxyacetate

4-Hydroxyphenoxyacetic acid

C8H8O4 (168.0423)


   

5-Aminoimidazole ribonucleotide

{[(2R,3S,4R,5R)-5-(5-amino-1H-imidazol-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}phosphonic acid

C8H14N3O7P (295.0569)


5-aminoimidazole ribonucleotide (AIR), is an intermediate of purine nucleotide biosynthesis. It is also the precursor to 4-amino-2-methyl-5-hydroxymethylpyrimidine (HMP), the first product of pyrimidine biosynthesis. This reaction is mediated by the enzyme HMP-P kinase (ThiD). HMP is a precursor of thiamine phosphate (TMP), and subsequently to thiamine pyrophosphate (TPP). TPP is an essential cofactor in all living systems that plays a central role in metabolism. (PMID: 15326535). 5-Aminoimidazole ribonucleotide is a substrate for a number of proteins including: Scaffold attachment factor B2, Multifunctional protein ADE2, Pulmonary surfactant-associated protein B, Tumor necrosis factor receptor superfamily member 25, Pulmonary surfactant-associated protein C, Serine/threonine-protein kinase Chk1, Vinexin, Trifunctional purine biosynthetic protein adenosine-3, Antileukoproteinase 1 and Scaffold attachment factor B. 5-aminoimidazole ribonucleotide (AIR), is an intermediate of purine nucleotide biosynthesis. It is also the precursor to 4-amino-2-methyl-5-hydroxymethylpyrimidine (HMP), the first product of pyrimidine biosynthesis. This reaction is mediated by the enzyme HMP-P kinase (ThiD). HMP is a precursor of thiamine phosphate (TMP), and subsequently to thiamine pyrophosphate (TPP). TPP is an essential cofactor in all living systems that plays a central role in metabolism. (PMID: 15326535) COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

NSC627046

N6,N6-Dimethyladenosine

C12H17N5O4 (295.128)


N6,N6-Dimethyladenosine is a modified ribonucleoside previously found in rRNA, and also exhibits in mycobacterium bovis Bacille Calmette-Guérin tRNA[1].

   

2-trans,6-trans-Farnesal

(2-trans,6-trans)-3,7,11-Trimethyldodeca-2,6,10-trienal

C15H24O (220.1827)


Farnesal, also known as (2e,6e)-3,7,11-trimethyl-2,6,10-dodecatrienal or 2-trans,6-trans-farnesal, is a member of the class of compounds known as sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units. Thus, farnesal is considered to be an isoprenoid lipid molecule. Farnesal is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Farnesal is a floral and minty tasting compound and can be found in a number of food items such as bamboo shoots, dandelion, italian sweet red pepper, and chicory roots, which makes farnesal a potential biomarker for the consumption of these food products. This compound belongs to the family of Sesquiterpenes. These are terpenes with three consecutive isoprene units.

   

2-Deoxy-2,3-dehydro-N-acetylneuraminic acid

3-acetamido-4-hydroxy-2-(1,2,3-trihydroxypropyl)-3,4-dihydro-2H-pyran-6-carboxylic acid

C11H17NO8 (291.0954)


D004791 - Enzyme Inhibitors

   

MPTP N-oxide

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine N-oxide

C12H15NO (189.1154)


   

Dihydroneopterin triphosphate

{[({[(2R,3S)-3-(2-amino-4-oxo-1,4,7,8-tetrahydropteridin-6-yl)-2,3-dihydroxypropoxy](hydroxy)phosphoryl}oxy)(hydroxy)phosphoryl]oxy}phosphonic acid

C9H16N5O13P3 (494.9957)


The biosynthesis of tetrahydrobiopterin (BH4) from dihydroneopterin triphosphate (NH2P3) was studied in human liver extract. The phosphate-eliminating enzyme (PEE) was purified approximately 750-fold. The conversion of NH2P3 to BH4 was catalyzed by this enzyme in the presence of partially purified sepiapterin reductase, Mg2+, and NADPH. The PEE is heat stable when heated at 80°C for 5 min. It has a molecular weight of 63 000 daltons. One possible intermediate 6-(1-hydroxy-2-oxopropyl)5,6,7,8-tetrahydropterin(2-oxo-tetrahydropte rin) was formed upon incubation of BH4 in the presence of sepiapterin reductase and NADP+ at pH 9.0. The reduction of this compound with NaBD4 yielded monodeutero-, threo-, and erythro-BH4; the deuterium was incorporated at the 2 position. This and the UV spectra were consistent with a 2-oxo-tetrahydropterin structure. Dihydrofolate reductase (DHFR) catalyzed the reduction of BH2 into BH4 and was found to be specific for the pro-R-NADPH side. The sepiapterin reductase catalyzed the transfer of the pro-S hydrogen of NADPH during the reduction of sepiapterin into BH2. In the presence of crude liver extracts, the conversion of NH2P3 into BH4 requires NADPH. Two deuterium atoms were incorporated from (4S-2H)NADHP in the 1 and 2 position of the BH4 side chain. The incorporation of one hydrogen from the solvent was found at position C(6). These results are consistent with the occurrence of an intramolecular redox exchange between the pteridine nucleus and the side chain and formation of 6-pyruvoyl-5,6,7,8-tetrahydropterin(tetrahydro-1-2-dioxopterin) as an intermediate (PMID: 3930838). COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Cinnavalininate

2-amino-3-oxo-3H-phenoxazine-1,9-dicarboxylic acid

C14H8N2O6 (300.0382)


Cinnavalininate is an intermediate in the tryptophan metabolic pathway [Kegg: C05640]. It is generated from 3-hydroxyanthranilate via the enzyme catalase (EC:1.11.1.6). [HMDB] Cinnavalininate is an intermediate in the tryptophan metabolic pathway [Kegg: C05640]. It is generated from 3-hydroxyanthranilate via the enzyme catalase (EC:1.11.1.6). Cinnabarinic acid is a specific orthosteric agonist of mGlu4 by interacting with residues of the glutamate binding pocket of mGlu4, has no activity at other mGlu receptors. Cinnabarinic acid is an endogenous metabolite of the kynurenine pathway of tryptophan. Cinnabarinic acid induces cell apoptosis[1].

   

Formyl-5-hydroxykynurenamine

N-(2-(6-Hydroxy-5-methoxy-1H-indol-3-yl)ethyl)-acetamide

C10H12N2O3 (208.0848)


Formyl-5-hydroxykynurenamine belongs to the class of organic compounds known as alkyl-phenylketones. These are aromatic compounds containing a ketone substituted by one alkyl group and a phenyl group. Formyl-5-hydroxykynurenamine is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Formyl-5-hydroxykynurenamine can be biosynthesized from serotonin; which is mediated by the enzyme indoleamine 2,3-dioxygenase 1 [EC 1.13.11.52]. In humans, formyl-5-hydroxykynurenamine is involved in the tryptophan metabolism pathway. Formyl-5-hydroxykynurenamine is found in the tryptophan metabolism pathway. It is produced from serotonin through the action of indoleamine 2,3-dioxygenase [EC:1.13.11.52]. [HMDB]

   

Bilirubin diglucuronide

(2S,3S,4S,5R,6S)-6-{[3-(2-{[3-(3-{[(2S,3R,4S,5S,6S)-6-carboxy-3,4,5-trihydroxyoxan-2-yl]oxy}-3-oxopropyl)-5-{[(2E)-3-ethenyl-4-methyl-5-oxo-2,5-dihydro-1H-pyrrol-2-ylidene]methyl}-4-methyl-1H-pyrrol-2-yl]methyl}-5-{[(2E)-4-ethenyl-3-methyl-5-oxo-2,5-dihydro-1H-pyrrol-2-ylidene]methyl}-4-methyl-1H-pyrrol-3-yl)propanoyl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

C45H52N4O18 (936.3276)


Bilirubin diglucuronide is a glucuronidated version of bilirubin, a tetrapyrrole compound produced via heme degradation. Heme is the red pigment in haemoglobin and red blood cells (RBCs). RBCs have a life span of about 120 days. When the RBCs have reached the end of their useful lifespan, the cells are engulfed by macrophages and their constituents recycled or disposed of. Heme is broken down when the heme ring is opened by the enzyme known as heme oxygenase, which is found in the endoplasmic reticulum of the macrophages. The oxidation process produces the linear tetrapyrrole known as biliverdin along with ferric iron (Fe3+), and carbon monoxide (CO). In the next reaction, a second methylene group (located between rings III and IV of the porphyrin ring) is reduced by the enzyme known as biliverdin reductase, producing bilirubin. Bilirubin is significantly less extensively conjugated than biliverdin. This reduction causes a change in the color of the biliverdin molecule from blue-green (vert or verd for green) to yellow-red, which is the color of bilirubin (ruby or rubi for red). In plasma virtually all the bilirubin is tightly bound to plasma proteins, largely albumin, because it is only sparingly soluble in aqueous solutions at physiological pH. In the sinusoids unconjugated bilirubin dissociates from albumin, enters the liver cells across the cell membrane through non-ionic diffusion to the smooth endoplasmatic reticulum. In hepatocytes, bilirubin-UDP-glucuronyltransferase (bilirubin-UGT) adds 2 additional glucuronic acid molecules to bilirubin to produce the more water-soluble version of the molecule known as bilirubin diglucuronide. The bilirubin diglucuronide is transferred rapidly across the canalicular membrane into the bile canaliculi where it is then excreted as bile into the large intestine.

   

6-Ketoprostaglandin E1

7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]-6-oxoheptanoic acid

C20H32O6 (368.2199)


6-Ketoprostaglandin E1 (6-keto PGE1) is a biologically active and stable prostacyclin (PGI2) metabolite and a substrate for Adenylate cyclase type III. 6-keto PGE1 is a potent coronary vasodilator. 6-keto PGE1 could be elevated in plasma of patients with primary thrombocythaemia. 6-keto-PGE1 has approximately four times less potent antiplatelet activity than PGI2 on a molar basis in man. The cardiovascular and plasma renin activity (PRA) changes are less prominent for 6-keto-PGE1 than PGI2. Salt loading slightly increases urinary 6-keto PGE1. 6-keto-PGE1 elicits the same biological effects as PGI2 in human platelets and in rabbit aorta and mesenteric artery, being, however, less potent. 6-keto-PGE1 dose-dependently stimulates adenylate cyclase activity in membranes of human platelets and cultured myocytes from rabbit aorta and mesenteric artery. The extent of stimulation of the enzyme by 6-keto-PGE1 is the same as elicited by PGI2, while the apparent affinity is lower than that of prostacyclin, both in platelets and in vascular smooth muscle cells. At the level of platelet membranes, 6-keto-PGE1 interacts with the binding sites labelled by PGI2. However, in platelets as well as in mesenteric artery myocytes, 6-keto-PGE1 interacts with only one class of sites as demonstrated either by binding or by adenylate cyclase studies, whereas PGI2 in the same conditions recognizes two different classes. (PMID: 3186779, 3075239, 3472253, 3912001, 3881881, 6391491)Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. 6-Ketoprostaglandin E1(6-keto PGE1) is a biologically active and stable prostacyclin (PGI2) metabolite and a substrate for Adenylate cyclase type III. 6-keto PGE1 is a potent coronary vasodilator. 6-keto PGE1 could be elevated in plasma of patients with primary thrombocythaemia. 6-keto-PGE1 has approximately four times less potent antiplatelet activity than PGI2 on a molar basis in man. The cardiovascular and plasma renin activity (PRA) changes are less prominent for 6-keto-PGE1 than PGI2. Salt loading slightly increases urinary 6-keto PGE1. D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents

   

4-Chlorobiphenyl

1-Chloro-4-phenyl benzene

C12H9Cl (188.0393)


   

Clavaminate

Clavaminic acid

C8H10N2O4 (198.0641)


   

Cefradine

(6R,7R)-7-{[(2R)-2-amino-2-cyclohexa-1,4-dien-1-ylacetyl]amino}-3-methyl-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid

C16H19N3O4S (349.1096)


Cefradine is only found in individuals that have used or taken this drug. It is a semi-synthetic cephalosporin antibiotic.Cefradine is a first generation cephalosporin antibiotic with a spectrum of activity similar to Cefalexin. Cefradine, like the penicillins, is a beta-lactam antibiotic. By binding to specific penicillin-binding proteins (PBPs) located inside the bacterial cell wall, it inhibits the third and last stage of bacterial cell wall synthesis. Cell lysis is then mediated by bacterial cell wall autolytic enzymes such as autolysins; it is possible that Cefradine interferes with an autolysin inhibitor. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DB - First-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   

Echothiophate

diethyl {[2-(trimethylazaniumyl)ethyl]sulfanyl}phosphonate

C9H23NO3PS+ (256.1136)


Echothiophate is only found in individuals that have used or taken this drug. It is a potent, long-acting irreversible cholinesterase inhibitor used as an ocular hypertensive in the treatment of glaucoma. Occasionally used for accomodative esotropia.Echothiophate Iodide is a long-acting cholinesterase inhibitor for topical use which enhances the effect of endogenously liberated acetylcholine in iris, ciliary muscle, and other parasympathetically innervated structures of the eye. Echothiophate iodide binds irreversibly to cholinesterase, and is long acting due to the slow rate of hydrolysis by cholinesterase. It causes miosis, increase in facility of outflow of aqueous humor, fall in intraocular pressure, and potentiation of accommodation. S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01EB - Parasympathomimetics D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010277 - Parasympathomimetics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D008916 - Miotics C78272 - Agent Affecting Nervous System > C47796 - Cholinergic Agonist D004791 - Enzyme Inhibitors

   

Edrophonium

N-Ethyl-3-hydroxy-N,N-dimethylbenzenaminium

C10H16NO+ (166.1232)


Edrophonium is only found in individuals that have used or taken this drug. It is a rapid-onset, short-acting cholinesterase inhibitor used in cardiac arrhythmias and in the diagnosis of myasthenia gravis. It has also been used as an antidote to curare principles. [PubChem]Edrophonium works by prolonging the action acetylcholine, which is found naturally in the body. It does this by inhibiting the action of the enzyme acetylcholinesterase. Acetylcholine stimulates nicotinic and muscarinic receptors. When stimulated, these receptors have a range of effects. D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D020011 - Protective Agents > D000931 - Antidotes V - Various > V04 - Diagnostic agents D004791 - Enzyme Inhibitors

   

Trimethaphan

3,5-dibenzyl-4-oxo-8λ⁴-thia-3,5-diazatricyclo[6.3.0.0²,⁶]undecan-8-ylium

C22H25N2OS+ (365.1688)


Trimethaphan is only found in individuals that have used or taken this drug. It is a nicotinic antagonist that has been used as a ganglionic blocker in hypertension, as an adjunct to anesthesia, and to induce hypotension during surgery. [PubChem]Trimethaphan is a ganglionic blocking agent prevents stimulation of postsynaptic receptors by competing with acetylcholine for these receptor sites. Additional effects may include direct peripheral vasodilation and release of histamine. Trimethaphans hypotensive effect is due to reduction in sympathetic tone and vasodilation, and is primarily postural. C - Cardiovascular system > C02 - Antihypertensives > C02B - Antiadrenergic agents, ganglion-blocking > C02BA - Sulfonium derivatives C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C66886 - Nicotinic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D005730 - Ganglionic Blockers D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002491 - Central Nervous System Agents

   

Doxacurium

Doxacurium

C56H78N2O16+2 (1034.5351)


D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents > D009466 - Neuromuscular Blocking Agents

   

Pipecuronium

Pipecuronium

C35H62N4O4+2 (602.4771)


D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents > D009466 - Neuromuscular Blocking Agents C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C66886 - Nicotinic Antagonist D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists

   

Aldophosphamide

Aldophosphamide

C7H15Cl2N2O3P (276.0197)


D000970 - Antineoplastic Agents > D018906 - Antineoplastic Agents, Alkylating > D009588 - Nitrogen Mustard Compounds D000970 - Antineoplastic Agents > D018906 - Antineoplastic Agents, Alkylating > D010752 - Phosphoramide Mustards

   

Ibutilide

N-(4-{4-[ethyl(heptyl)amino]-1-hydroxybutyl}phenyl)methanesulfonamide

C20H36N2O3S (384.2447)


Ibutilide is only found in individuals that have used or taken this drug. It is a Class III antiarrhythmic agent that is indicated for acute cardioconversion of atrial fibrillation and atrial flutter of a recent onset to sinus rhythm. [Wikipedia]Ibutilide is a pure class III antiarrhythmic drug, used intravenously against atrial flutter and fibrillation. At a cellular level it exerts two main actions: induction of a persistent Na+ current sensitive to dihydropyridine Ca2+ channel blockers and potent inhibition of the cardiac rapid delayed rectifier K+ current, by binding within potassium channel pores. In other words, Ibutilide binds to and alters the activity of hERG potassium channels, delayed inward rectifier potassium (IKr) channels and L-type (dihydropyridine sensitive) calcium channels C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BD - Antiarrhythmics, class iii C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents C93038 - Cation Channel Blocker

   

Brinzolamide

(R)-4-(Ethylamino)-3,4-dihydro-2-(3-methoxypropyl)-2H-thieno(3,2-e)-1,2-thiazine-6-sulfonamide 1,1-dioxide

C12H21N3O5S3 (383.0643)


Brinzolamide is a highly specific, non-competitive, reversible carbonic anhydrase inhibitor. Carbonic anhydrase (CA) is an enzyme found in many tissues of the body including the eye. It catalyzes the reversible reaction involving the hydration of carbon dioxide and the dehydration of carbonic acid. In humans, carbonic anhydrase exists as a number of isoenzymes, the most active being carbonic anhydrase II (CA-II). Inhibition of carbonic anhydrase in the ciliary processes of the eye decreases aqueous humor secretion, presumably by slowing the formation of bicarbonate ions with subsequent reduction in sodium and fluid transport. The result is a reduction in intraocular pressure. Brinzolamide is indicated in the treatment of elevated intraocular pressure in patients with ocular hypertension or open-angle glaucoma. S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01EC - Carbonic anhydrase inhibitors C78283 - Agent Affecting Organs of Special Senses > C29705 - Anti-glaucoma Agent D004791 - Enzyme Inhibitors > D002257 - Carbonic Anhydrase Inhibitors C471 - Enzyme Inhibitor > C29577 - Carbonic Anhydrase Inhibitor

   

Tazobactam

(2S,3S,5S)-3-Methyl-7-oxo-3-(1H-1,2,3-triazol-1-ylmethyl)-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid 4,4-dioxide

C10H12N4O5S (300.0528)


Tazobactam is only found in individuals that have used or taken this drug.It is a antibacterial penicillin derivative which inhibits the action of bacterial beta-lactamases.Tazobactam broadens the spectrum of piperacillin by making it effective against organisms that express beta-lactamase and would normally degrade piperacillin. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01C - Beta-lactam antibacterials, penicillins > J01CG - Beta-lactamase inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D065093 - beta-Lactamase Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C2140 - Adjuvant > C183118 - Beta-lactamase Inhibitor D004791 - Enzyme Inhibitors Tazobactam (CL-298741) is a potent β-lactamases inhibitor and penicillin antibiotic. Tazobactam has antibacterial activity. Tazobactam can be used for pneumonia research[1][2].

   

Paraldehyde

2,4,6-Trimethyl-1,3,5-trioxacyclohexane

C6H12O3 (132.0786)


Paraldehyde is used as a food additive [EAFUS] ("EAFUS: Everything Added to Food in the United States. [http://www.eafus.com/]") D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CC - Aldehydes and derivatives D002491 - Central Nervous System Agents > D000927 - Anticonvulsants

   

Metipranolol

Acetic acid 4-(2-hydroxy-3-isopropylamino-propoxy)-2,3,6-trimethyl-phenyl ester

C17H27NO4 (309.194)


Metipranolol is only found in individuals that have used or taken this drug. It is a beta-adrenergic antagonist effective for both beta-1 and beta-2 receptors. It is used as an antiarrhythmic, antihypertensive, and antiglaucoma agent. [PubChem]Although it is known that metipranolol binds the beta1 and beta2 adrenergic receptors, the mechanism of metipranolols action is not known. It has no significant intrinsic sympathomimetic activity, and has only weak local anesthetic (membrane-stabilizing) and myocardial depressant activity. It appears that the ophthalmic beta-adrenergic blocking agents reduce aqueous humor production, as demonstrated by tonography and fluorophotometry. A slight increase in aqueous humor outflow may be an additional mechanism. S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01ED - Beta blocking agents C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents Metipranolol is a nonselective and orally active β-adrenergic receptor antagonist. Metipranolol can be used for hypertension and glaucoma research[1][2].

   

Chlorphenesin

3-(4-Chlorophenoxy)-1,2-propanediol

C9H11ClO3 (202.0397)


Chlorphenesin is only found in individuals that have used or taken this drug. It is a centrally acting muscle relaxant. Its mode of action is unknown. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1203)The mechanism of action of chlorphenesin is not well defined, and its effects are measured mainly by subjective responses. It is known that chlorphenesin acts in the central nervous system (CNS) rather than directly on skeletal muscle. D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D002491 - Central Nervous System Agents

   

Fluphenazine decanoate

2-(4-{3-[2-(trifluoromethyl)-10H-phenothiazin-10-yl]propyl}piperazin-1-yl)ethyl decanoate

C32H44F3N3O2S (591.3106)


D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent Fluphenazine decanoate is a dopamine D2 receptor inhibitor, is a long-acting phenothiazine neuroleptic. Fluphenazine can be used for schizophrenia research[1][2][3].

   

MELARSOPROL

MELARSOPROL

C12H15AsN6OS2 (397.9965)


P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01C - Agents against leishmaniasis and trypanosomiasis > P01CD - Arsenic compounds D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent

   

Dipropyl disulfide

1-(propyldisulfanyl)propane

C6H14S2 (150.0537)


Dipropyl disulfide, also known as 1,1-dithiodipropane or 4,5-dithiaoctane, belongs to the class of organic compounds known as dialkyldisulfides. These are organic compounds containing a disulfide group R-SS-R where R and R are both alkyl groups. Dipropyl disulfide is possibly neutral. Dipropyl disulfide is a burnt, earthy, and green tasting compound. Dipropyl disulfide has been detected, but not quantified, in several different foods, such as chives, cabbages, garden onions, nuts, and brassicas. Constituent of garlic, onion and other Allium subspecies Also present in raw cabbage, roast beef and roasted peanuts. Flavouring agent. Dipropyl disulfide is found in many foods, some of which are garden onion, onion-family vegetables, brassicas, and allium (onion).

   

Violet-leaf aldehyde

(2E,6Z)-2,6-nonadienal;(E,Z)-2,6-nonadienal

C9H14O (138.1045)


Violet-leaf aldehyde is found in cereals and cereal products. Violet-leaf aldehyde is a constituent of cherry, melon, peas, cooked potato, wheat bread, other breads, milk, lean and fatty fish, black tea, oyster, clam and other foods. Primary odourant in cucumbers. Violet-leaf aldehyde is present in cucumber juice. Violet-leaf aldehyde is a flavouring agent. Violet-leaf aldehyde is a constituent of cherry, melon, peas, cooked potato, wheat bread, other breads, milk, lean and fatty fish, black tea, oyster, clam and other foods. It is the primary odourant in cucumbers. Present in cucumber juice. Flavouring agent.

   

Miraxanthin III

Miraxanthin III

C17H18N2O5 (330.1216)


   
   

alpha-Antiarin

Antiarigenin 3-O-beta-D-antiaroside

C29H42O11 (566.2727)


   

Ophiobolin A

(+)-Ophiobolin A

C25H36O4 (400.2613)


   
   

alpha-Cubebene

(1R,5S,6R,7S,10R)-4,10-dimethyl-7-(propan-2-yl)tricyclo[4.4.0.0^{1,5}]dec-3-ene

C15H24 (204.1878)


alpha-Cubebene is found in cloves. alpha-Cubebene is a constituent of oil of cubeb pepper (Piper cubeba).

   

Laserpitin

SCHEMBL11029669

C25H38O7 (450.2617)


   

alpha-Santal-10-en-12-ol

Santalol A;[R(Z)]-5-(2,3-dimethyltricyclo[2.2.1.0(2,6)]hept-3-yl)-2-methyl-2-penten-1-ol

C15H24O (220.1827)


(7R,10Z)-alpha-Santal-10-en-12-ol is a constituent of sandalwood oil. (7R,10Z)-alpha-Santal-10-en-12-ol is a flavouring agent

   

(-)-Pinocarvone

6,6-dimethyl-2-methylidenebicyclo[3.1.1]heptan-3-one

C10H14O (150.1045)


Pinocarvone, also known as (1)-2(10)-pinen-3-one or pina-2(10)-ene-3-one, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. Thus, pinocarvone is considered to be an isoprenoid lipid molecule. Pinocarvone is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Pinocarvone is a minty tasting compound found in hyssop, spearmint, and sweet bay, which makes pinocarvone a potential biomarker for the consumption of these food products. (-)-Pinocarvone is isolated from oil of Eucalyptus globulus (Tasmanian blue gum

   

Ohioensin-A

Ohioensin-A

C23H16O5 (372.0998)


   

1,3,5,8-Tetrahydroxyxanthone

1,3,5,8-Tetrahydroxy-9H-xanthen-9-one

C13H8O6 (260.0321)


   

Acetone oxime

N-(propan-2-ylidene)hydroxylamine

C3H7NO (73.0528)


   

Primetin

5,8-Dihydroxy-2-phenyl-4H-1-benzopyran-4-one

C15H10O4 (254.0579)


A dihydroxyflavone that is flavone substituted by hydroxy groups at positions 5 and 8.

   

Dihydropinosylvin

5-(2-Phenylethyl)-1,3-benzenediol; 5-Phenethylresorcinol; Dihydropinosylvin

C14H14O2 (214.0994)


Dihydropinosylvin is a member of the class of resorcinols carrying an additional 2-phenylethyl substituent at position 5. It has a role as an EC 1.14.18.1 (tyrosinase) inhibitor and a plant metabolite. It is a member of resorcinols and a diphenylethane. Dihydropinosylvin is a natural product found in Dioscorea mangenotiana, Stemona tuberosa, and other organisms with data available. A member of the class of resorcinols carrying an additional 2-phenylethyl substituent at position 5. Dihydropinosylvin is a stilbenoid that can be found in Stemona collinsae[1]. Dihydropinosylvin is a stilbenoid that can be found in Stemona collinsae[1].

   

Lunularin

3,4-Ethylenebisphenol

C14H14O2 (214.0994)


   

Tectoquinone

2-methylanthracene-9,10-dione

C15H10O2 (222.0681)


CONFIDENCE standard compound; INTERNAL_ID 1128; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9354; ORIGINAL_PRECURSOR_SCAN_NO 9353 CONFIDENCE standard compound; INTERNAL_ID 1128; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9397; ORIGINAL_PRECURSOR_SCAN_NO 9396 CONFIDENCE standard compound; INTERNAL_ID 1128; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9371; ORIGINAL_PRECURSOR_SCAN_NO 9370 CONFIDENCE standard compound; INTERNAL_ID 1128; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9424; ORIGINAL_PRECURSOR_SCAN_NO 9423 CONFIDENCE standard compound; INTERNAL_ID 1128; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9336; ORIGINAL_PRECURSOR_SCAN_NO 9335 CONFIDENCE standard compound; INTERNAL_ID 1128; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9398; ORIGINAL_PRECURSOR_SCAN_NO 9396 Tectoquinone (2-Methylanthraquinone) is a SARSCoV-2 main protease inhibitor against COVID-19. Tectoquinone exhibits strong mosquito larvicidal activity with the LC50 values of 3.3 and 5.4 μg/ml against A. aegypti and A. albopictus in 24 h, respectively[1][2]. Tectoquinone (2-Methylanthraquinone) is a SARSCoV-2 main protease inhibitor against COVID-19. Tectoquinone exhibits strong mosquito larvicidal activity with the LC50 values of 3.3 and 5.4 μg/ml against A. aegypti and A. albopictus in 24 h, respectively[1][2].

   

1'-Acetoxyeugenol acetate

1-[4-(Acetyloxy)-3-methoxyphenyl]prop-2-en-1-yl acetic acid

C14H16O5 (264.0998)


1-Acetoxyeugenol acetate is found in herbs and spices. 1-Acetoxyeugenol acetate is a constituent of Alpinia galanga (greater galangal). Constituent of Alpinia galanga (greater galangal). 1-Acetoxyeugenol acetate is found in herbs and spices.

   

Elemicin

4-(2-Ethyl-benzoimidazol-1-yl)-4-oxo-butyricacid

C12H16O3 (208.1099)


Elemicin is an olefinic compound. Elemicin is a natural product found in Anemopsis californica, Asarum celsum, and other organisms with data available. Constituent of Elemi oil and Myristica fragrans (nutmeg). Elemicin is found in many foods, some of which are nutmeg, carrot, parsley, and tarragon. Elemicin is found in carrot. Elemicin is a constituent of Elemi oil and Myristica fragrans (nutmeg). Elemicin is an orally active alkenylbenzene widely distributed in many herbs and spices. Elemicin inhibits Stearoyl-CoA Desaturase 1 (SCD1) by metabolic activation. Elemicin has anti-influenza activities, antimicrobial, antioxidant, and antiviral activities. Elemicin and its reactive metabolite of 1′-Hydroxyelemicin can induce hepatotoxicity[1][2][3][4]. Elemicin is a alkenylbenzene widely distributed in many herbs and spices. Elemicin inhibits Stearoyl-CoA Desaturase 1 (SCD1) by metabolic activation. Elemicin is one of the main components in aromatic food and has antimicrobial, antioxidant, and antiviral activities. Elemicin possesses genotoxicity and carcinogenicity[1]. Elemicin is a alkenylbenzene widely distributed in many herbs and spices. Elemicin inhibits Stearoyl-CoA Desaturase 1 (SCD1) by metabolic activation. Elemicin is one of the main components in aromatic food and has antimicrobial, antioxidant, and antiviral activities. Elemicin possesses genotoxicity and carcinogenicity[1].

   

Irisolidone

5,7-Dihydroxy-6,4-dimethoxyisoflavone

C17H14O6 (314.079)


Irisolidone is a major isoflavone found in Pueraria lobata flowers. Irisolidone exhibits potent hepatoprotective activity. Irisolidone shows the high efficacy for volume-regulated anion channels (VRAC) blockade (IC50=9.8 μM)[1][2][3]. Irisolidone is a major isoflavone found in Pueraria lobata flowers. Irisolidone exhibits potent hepatoprotective activity. Irisolidone shows the high efficacy for volume-regulated anion channels (VRAC) blockade (IC50=9.8 μM)[1][2][3].

   

Dieugenol

2-(2-hydroxy-3-methoxy-5-prop-2-enyl-phenyl)-6-methoxy-4-prop-2-enyl-phenol

C20H22O4 (326.1518)


   

Yatein

2(3H)-Furanone, 4-(1,3-benzodioxol-5-ylmethyl)dihydro-3-[(3,4,5-trimethoxyphenyl)methyl]-, (3R-trans)-

C22H24O7 (400.1522)


Dihydroanhydropodorhizol is a member of the class of butan-4-olides carrying 3,4,5-trimethoxybenzyl and (1,3-benzodioxol-5-yl)methyl substituents at positions 3 and 4 respectively. It has a role as a plant metabolite. It is a lignan, a butan-4-olide, a member of methoxybenzenes and a member of benzodioxoles. Yatein is a natural product found in Austrocedrus chilensis, Podolepis canescens, and other organisms with data available. A member of the class of butan-4-olides carrying 3,4,5-trimethoxybenzyl and (1,3-benzodioxol-5-yl)methyl substituents at positions 3 and 4 respectively.

   

2,6-Dimethoxy-4-hydroxyacetophenone

2,6-Dimethoxy-4-hydroxyacetophenone

C10H12O4 (196.0736)


A monohydroxyacetophenone that is acetophenone substituted by methoxy groups at positions 2 and 6 and a hydroxy group at position 4.

   

Biapenem

CLI 86815;L 627;LJC 10627

C15H18N4O4S (350.1049)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DH - Carbapenems D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D013845 - Thienamycins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic Same as: D01057

   

Azidopine

3-{2-[(4-azidophenyl)formamido]ethyl} 5-ethyl 2,6-dimethyl-4-[2-(trifluoromethyl)phenyl]-1,4-dihydropyridine-3,5-dicarboxylic acid

C27H26F3N5O5 (557.1886)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D000345 - Affinity Labels

   

Foscan

3-[7,12,17-tris(3-hydroxyphenyl)-21,22,23,24-tetraazapentacyclo[16.2.1.1³,⁶.1⁸,¹¹.1¹³,¹⁶]tetracosa-1,3,5,7,11(23),12,14,16,18(21),19-decaen-2-yl]phenol

C44H32N4O4 (680.2423)


L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01X - Other antineoplastic agents > L01XD - Sensitizers used in photodynamic/radiation therapy D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents D000970 - Antineoplastic Agents C1420 - Photosensitizing Agent D003879 - Dermatologic Agents Same as: D06066

   

Xamoterol

Xamoterol hemifumarate

C16H25N3O5 (339.1794)


C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists Same as: D06328

   

Candol B

[(1S,4S,5S,9S,10R,13R)-5,9-dimethyl-14-methylidenetetracyclo[11.2.1.0^{1,10}.0^{4,9}]hexadecan-5-yl]methanol

C20H32O (288.2453)


Candol B, also known as 4beta-kaur-16-en-19-ol, belongs to the class of organic compounds known as kaurane diterpenoids. These are diterpene alkaloids with a structure that is based on the kaurane skeleton. Kaurane is a tetracyclic compound that arises by the cyclization of a pimarane precursor followed by rearrangement. It possesses a [3,2,1]-bicyclic ring system with C15-C16 bridge connected to C13, forming the five-membered ring D. Candol B is an extremely weak basic (essentially neutral) compound (based on its pKa). Candol B is found in cereals and cereal products. Candol B is a constituent of barley. Constituent of barley. Candol B is found in cereals and cereal products.

   

ent-Kaur-16-en-19-al

(1S,4S,5R,9S,10R,13R)-5,9-dimethyl-14-methylidenetetracyclo[11.2.1.0^{1,10}.0^{4,9}]hexadecane-5-carbaldehyde

C20H30O (286.2297)


ent-16-Kauren-19-al is found in fruits. ent-16-Kauren-19-al is a constituent of the root of Annona squamosa (sugar apple).

   

2-Pinen-10-ol

{6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl}methanol

C10H16O (152.1201)


2-Pinen-10-ol is found in citrus. 2-Pinen-10-ol is a flavouring ingredient. 2-Pinen-10-ol is present in mandarin peel oil, raspberry, blackberry, strawberry, ginger, hop oil, black tea, peppermint oil, pepper (Piper nigrum), myrtle leaf or berry, summer savoury (Satureja hortensis) and other foodstuffs (±)-Myrtenol is a flavouring ingredient. It is found in mandarin peel oil, raspberry, blackberry, strawberry, ginger, hop oil, black tea, peppermint oil, pepper (Piper nigrum), myrtle leaf or berry, summer savoury (Satureja hortensis) and other foods.

   

3-Amino-2,3-dihydrobenzoic acid

5-Amino-1,3-cyclohexadiene-1-carboxylic acid

C7H9NO2 (139.0633)


D004791 - Enzyme Inhibitors

   

4-Hydroxy-3-nitrosobenzamide

4-Hydroxy-3-nitrosobenzamide

C7H6N2O3 (166.0378)


   

Laudanosoline

(R,S)-Laudanosoline

C17H19NO4 (301.1314)


   

Cyclacillin

4-Thia-1-azabicyclo[3.2.0]heptane-2-carboxylicacid, 6-[[(1-aminocyclohexyl)carbonyl]amino]-3,3-dimethyl-7-oxo-, (2S,5R,6R)-

C15H23N3O4S (341.1409)


Cyclacillin is only found in individuals that have used or taken this drug. It is a cyclohexylamido analog of penicillanic acid. [PubChem]The bactericidal activity of cyclacillin results from the inhibition of cell wall synthesis via affinity for penicillin-binding proteins (PBPs). Cyclacillin is stable in the presence of a variety of b-lactamases, including penicillinases and some cephalosporinases. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic Same as: D01334

   

Disodium phosphate

Phosphoric acid, trisodium salt , dodecahydrate

Na2HPO4 (141.9408)


It is used in foods as a sequestrant, emulsifier, buffering agent, absorbent, pH control agent, protein modifier, source of alkalinity, stabiliser and nutrient supplement. Disodium hydrogen phosphate (Na2HPO4) is a sodium salt of phosphoric acid. It is a white powder that is highly hygroscopic and water soluble. It is therefore used commercially as an anti-caking additive in powdered products. It is also known as disodium hydrogen orthophosphate, sodium hydrogen phosphate or sodium phosphate dibasic. It is commercially available in both the hydrated and anhydrous forms. It is used in foods as a sequestrant, emulsifier, buffering agent, absorbent, pH control agent, protein modifier, source of alkalinity, stabiliser and nutrient supplement C78275 - Agent Affecting Blood or Body Fluid > C29730 - Electrolyte Replacement Agent

   

Naspm

1-Naphthylacetylspermine

C22H34N4O (370.2732)


Naspm (1-Naphthyl acetyl spermine), a synthetic analogue of Joro spider toxin, is a calcium permeable AMPA (CP-AMPA) receptors antagonist.

   

Selfotel

4-(phosphonomethyl)piperidine-2-carboxylic acid

C7H14NO5P (223.061)


D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists C26170 - Protective Agent > C1509 - Neuroprotective Agent Same as: D02410

   

FA 11:1

((1S,2R)-2-Hexylcycloprop-1-yl)acetic acid

C11H20O2 (184.1463)


An undecenoic acid having its double bond in the 10-position. It is derived from castor oil and is used for the treatment of skin problems. D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use C254 - Anti-Infective Agent > C514 - Antifungal Agent Same as: D02159 10-Undecenoic acid is used as a starting agent in the synthesis of Pheromone (11Z)-hexadecenal. 10-Undecenoic acid is used as a starting agent in the synthesis of Pheromone (11Z)-hexadecenal.

   

Bisphenol C

4-[2,2-dichloro-1-(4-hydroxyphenyl)ethenyl]phenol

C14H10Cl2O2 (280.0058)


   

2,2',4,4'-Tetrachlorobiphenyl

2,4-dichloro-1-(2,4-dichlorophenyl)benzene

C12H6Cl4 (289.9224)


2,2',4,4'-tetrachlorobiphenyl is a tetrachlorobiphenyl that is biphenyl in which each of the phenyl groups is substituted at positions 2 and 4 by chlorines. It is a tetrachlorobiphenyl and a dichlorobenzene. D004785 - Environmental Pollutants > D011078 - Polychlorinated Biphenyls

   

2,6-Dichlorobiphenyl

1,3-dichloro-2-phenylbenzene

C12H8Cl2 (222.0003)


D004785 - Environmental Pollutants > D011078 - Polychlorinated Biphenyls

   

(Chloromethyl)oxirane

(RS)-3-Chloro-1,2-epoxypropane

C3H5ClO (92.0029)


(Chloromethyl)oxirane is used for cross-linking dextrose units in food starc It is used for cross-linking dextrose units in food starch.

   

Dihydrogenistein

2,3-Dihydro-5,7-dihydroxy-3-(4-hydroxyphenyl)-4H-1-benzopyran-4-one

C15H12O5 (272.0685)


Dihydrogenistein is a metabolite of the soy isoflavone genistin (the glycoside conjugate of genistein) by intestinal bacteria. Isoflavones are one of the three major classes of phytoestrogens; phytoestrogens are a diverse group of plant-derived compounds that structurally and functionally mimic mammalian estrogen. The isoflavone genistin is one of the most prevalent in soy foods. They are biologically inactive; once ingested, they are cleaved by glucosidases to "aglycones", genistein. Epidemiological studies have associated high soy intake with a lowered risk for certain hormone-dependent disease. Many studies reveal that the incidence of prostate cancer and breast cancer is much lower in Asian people in comparison to people from the West and, and the prevailing contribution to this difference has been attributed to the diet. Soy foods and soy-derived products which contain abundant isoflavones are consumed in large quantities by Asian people. In vitro, isoflavone metabolites have dual functions: they can act as an estrogenic agonist or antagonist depending on the estrogen concentration. (PMID: 17499260, 16965913) [HMDB]. Dihydrogenistein is a biomarker for the consumption of soy beans and other soy products. Dihydrogenistein is a metabolite of the soy isoflavone genistin (the glycoside conjugate of genistein) by intestinal bacteria. Isoflavones are one of the three major classes of phytoestrogens; phytoestrogens are a diverse group of plant-derived compounds that structurally and functionally mimic mammalian estrogen. The isoflavone genistin is one of the most prevalent in soy foods. They are biologically inactive; once ingested, they are cleaved by glucosidases to "aglycones", genistein. Epidemiological studies have associated high soy intake with a lowered risk for certain hormone-dependent disease. Many studies reveal that the incidence of prostate cancer and breast cancer is much lower in Asian people in comparison to people from the West and, and the prevailing contribution to this difference has been attributed to the diet. Soy foods and soy-derived products which contain abundant isoflavones are consumed in large quantities by Asian people. In vitro, isoflavone metabolites have dual functions: they can act as an estrogenic agonist or antagonist depending on the estrogen concentration. (PMID: 17499260, 16965913). Dihydrogenistein is a biomarker for the consumption of soy beans and other soy products.

   

4-Butylphenol

p-Hydroxybutylbenzene

C10H14O (150.1045)


   

Tetramethylscutellarein

5,6,7-Trimethoxy-2-(4-methoxyphenyl)-4H-1-benzopyran-4-one

C19H18O6 (342.1103)


Tetramethylscutellarein, also known as 4,5,6,7-tetramethoxyflavone or 5-methoxysalvigenin, belongs to the class of organic compounds known as 7-O-methylated flavonoids. These are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, tetramethylscutellarein is considered to be a flavonoid lipid molecule. Tetramethylscutellarein is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Outside of the human body, tetramethylscutellarein is found, on average, in the highest concentration within sweet oranges. Tetramethylscutellarein has also been detected, but not quantified, in herbs, spices, tea. This could make tetramethylscutellarein a potential biomarker for the consumption of these foods. Tetramethylscutellarein is isolated from Salvia officinalis (sage) leaves. Isolated from Salvia officinalis (sage) leaves. Tetramethylscutellarein is found in tea, sweet orange, and herbs and spices. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) is a bioactive component of Siam weed extract. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) exhibits anti-inflammatory activity through NF-κB pathway[1]. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) modulats of bacterial agent resistance via efflux pump inhibition[2]. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) can enhance blood coagulation[3]. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) is a bioactive component of Siam weed extract. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) exhibits anti-inflammatory activity through NF-κB pathway[1]. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) modulats of bacterial agent resistance via efflux pump inhibition[2]. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) can enhance blood coagulation[3].

   

(±)-2,4,6-Triphenyl-1-hexene

(3,5-diphenylhex-5-en-1-yl)benzene

C24H24 (312.1878)


Styrene trimer. Present as an impurity in polystyrene food containers and other products - liberated on heating. Styrene trimer. Present as an impurity in polystyrene food containers and other products - liberated on heating

   

Aceteugenol

Phenol, 2-methoxy-4-(2-propen-1-yl)-, 1-acetate

C12H14O3 (206.0943)


Aceteugenol, also known as eugenol acetate, belongs to the class of organic compounds known as phenol esters. These are aromatic compounds containing a benzene ring substituted by a hydroxyl group and an ester group. Aceteugenol is an extremely weak basic (essentially neutral) compound (based on its pKa). Aceteugenol is a sweet-, carnation-, and clove-tasting compound. Outside of the human body, aceteugenol is found, on average, in the highest concentration in a few different foods, such as cloves, Ceylon cinnamons, and sweet bay. Aceteugenol has also been detected, but not quantified in, several different foods, such as nutmegs, herbs and spices, cumins, star anises, and lemon balms. This could make aceteugenol a potential biomarker for the consumption of these foods. Aceteugenol is a flavouring agent found in Caraway, oil of clove (Syzygium aromaticum), cinnamon leaf (Cinnamomum verum), and other essential oils. Flavouring agent. Found in oil of clove (Syzygium aromaticum), cinnamon leaf (Cinnamomum verum) and other essential oils Eugenol acetate (Eugenyl acetate), a major phytochemical constituent of the essential oil exhibits antibacterial, antioxidant, and anti-virulence activities. Eugenol acetate (Eugenyl acetate), a phytochemical in clove essential oil, against clinical isolates of Candida albicans, Candida parapsilosis, Candida tropicalis, and Candida glabrata. Eugenol acetate (Eugenyl acetate), a major phytochemical constituent of the essential oil exhibits antibacterial, antioxidant, and anti-virulence activities. Eugenol acetate (Eugenyl acetate), a phytochemical in clove essential oil, against clinical isolates of Candida albicans, Candida parapsilosis, Candida tropicalis, and Candida glabrata.

   

16alpha-Hydroxytestosterone

16alpha,17beta-Dihydroxy-4-androsten-3-one

C19H28O3 (304.2038)


   

Thiocoraline

N-[6,19-Dihydroxy-20-(3-hydroxyquinoline-2-amido)-2,12,15,25-tetramethyl-11,24-bis[(methylsulphanyl)methyl]-3,10,13,16,23,26-hexaoxo-9,22,28,29-tetrathia-2,5,12,15,18,25-hexaazabicyclo[12.12.4]triaconta-5,18-dien-7-yl]-3-hydroxyquinoline-2-carboxamide

C48H56N10O12S6 (1156.2403)


   

Cis-stilbene oxide

Oxirane, 2,3-diphenyl-,(2R,3S)-rel-

C14H12O (196.0888)


Cis-stilbene oxide is part of the Bile secretion pathway. It is a substrate for: Epoxide hydrolase 1.

   

Staphyloxanthin

2,6,10,15,19,23-hexamethyltetracosa-2E,4E,6E,8E,10E,12E,14E,16E,18E,22-decaenoyl]-6-O-(12-methyltetradecanoyl)-beta-D-glucopyranose

C51H78O8 (818.5696)


A xanthophyll that is beta-D-glucopyranose in which the hydroxy groups at positions 1 and 6 have been acylated by an all-trans-2,6,10,15,19,23-hexamethyltetracosa-2,4,6,8,10,12,14,16,18,22-decaenoyl group and a 12-methyltetradecanoyl group, respectively. Staphyloxanthin is responsible for the characteristic yellow-golden colour which gives the bacterium Staphylococcus aureus its name. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

Lipoyl-AMP

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({[5-(1,2-dithiolan-3-yl)pentanoyl]oxy})phosphinic acid

C18H26N5O8PS2 (535.096)


Lipoyl-amp is part of the Protein modification, and Lipoic acid metabolism pathways. It is a substrate for: Lipoyltransferase 1, mitochondrial.

   
   

alpha-Hydroxy-N-desmethyltamoxifen

(3E)-4-{4-[2-(methylamino)ethoxy]phenyl}-3,4-diphenylbut-3-en-2-ol

C25H27NO2 (373.2042)


alpha-Hydroxy-N-desmethyltamoxifen is a metabolite of tamoxifen. Tamoxifen is an antagonist of the estrogen receptor in breast tissue via its active metabolite, hydroxytamoxifen. In other tissues such as the endometrium, it behaves as an agonist, and thus may be characterized as a mixed agonist/antagonist. Tamoxifen is the usual endocrine therapy for hormone receptor-positive breast cancer in pre-menopausal women, and is also a standard in post-menopausal women although aromatase inhibitors are also frequently used in that setting. (Wikipedia)

   

4-Hydroxyretinoic acid

(2E,4E,6E,8E)-3,7-Dimethyl-9-(2,6,6-trimethyl-3-hydroxy-1-cyclohexen-1-yl)-2,4,6,8-nonatetraenoic acid

C20H28O3 (316.2038)


4-Hydroxyretinoic acid is an NADPH-dependent hydroxylation metabolite of retinoic acid in the microsomes, via the cytochrome P-450 system. Retinoic acid is an activated metabolite of retinol that supports the systemic functions of vitamin A in vivo. (PMID: 1538719, 1932598, 2851384) [HMDB] 4-Hydroxyretinoic acid is an NADPH-dependent hydroxylation metabolite of retinoic acid in the microsomes, via the cytochrome P-450 system. Retinoic acid is an activated metabolite of retinol that supports the systemic functions of vitamin A in vivo. (PMID: 1538719, 1932598, 2851384). D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

Tuberculostearic acid

10R-methyl-octadecanoic acid

C19H38O2 (298.2872)


Tuberculostearic acid is the characteristic fatty acid of acid-fast bacteria of the order Actinomycetales. (PMID 3329256). Tuberculostearic acid (TBSA) is a mycobacterial cell wall constituent that is possible to measure in plasma samples of patients with active tuberculosis. (PMID 14723350). Detection of tuberculostearic acid in cerebrospinal fluid by use of gas chromatography-mass spectrometry has proven to be a very rapid, sensitive, and specific test for tuberculous meningitis. (PMID 8438134). Tuberculostearic acid can also be found in Actinomycetales (PMID: 109465). Tuberculostearic acid is the characteristic fatty acid of acid-fast bacteria of the order Actinomycetales. (PMID 3329256)

   

3,5-DINITROGUAIACOL

3,5-DINITROGUAIACOL

C7H6N2O6 (214.0226)


   

Uncineol

10-epi-.gamma.-Eudesmol

C15H26O (222.1984)


   

Glucoarabin

[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] (1Z)-10-methylsulfinyl-N-sulfooxydecanimidothioate

C17H33NO10S3 (507.1267)


Glucoarabin is a glucosinolic acid and a sulfoxide.

   

5-Nitroguaiacol

2-Methoxy-5-nitrophenol

C7H7NO4 (169.0375)


   

Coixenolide

Coixenolide

C38H70O4 (590.5274)


   

Hydroxystreptomycin

5-Hydroxystreptomycin

C21H39N7O13 (597.2606)


   

Butirosin

butirosin A

C21H41N5O12 (555.2752)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents

   

Citreorosein

1,3,8-trihydroxy-6-(hydroxymethyl)-9,10-dihydroanthracene-9,10-dione

C15H10O6 (286.0477)


Citreorosein is found in green vegetables. Citreorosein is found in roots of Polygonum cuspidatum (Japanese knotweed Found in roots of Polygonum cuspidatum (Japanese knotweed)

   

7alpha-Hydroxypregnenolone

1-[(1S,2R,5S,9S,10S,11S,14S,15S)-5,9-dihydroxy-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-7-en-14-yl]ethan-1-one

C21H32O3 (332.2351)


This compound belongs to the family of Gluco/mineralocorticoids, Progestogins and Derivatives. These are steroids whose structure is based on an hydroxylated prostane moiety. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

4-hydroxymandelic acid

(+/-)-alpha,4-dihydroxy-benzeneacetic acid

C8H8O4 (168.0423)


p-Hydroxymandelic acid is an acidic metabolite of p-octopamine and p-synephrine (p-phenylephrine). It is also a naturally occurring metabolite of tyramine. A specific enantiomer of p-hydroxymandelic aicd ((R)-(-)-p-hydroxymandelic -- also called pisolithin B) has been shown to exhibit antifungal properties. An acidic metabolite of p-octopamine and p-synephrine (p-phenylephrine). It is also a naturally occurring metabolite of tyramine. A specific enantiomer of p-hydroxymandelic aicd ((R)-(-)-p-hydroxymandelic -- also called pisolithin B) has been shown to exhibit antifungal properties. [HMDB] D000890 - Anti-Infective Agents > D000892 - Anti-Infective Agents, Urinary > D008333 - Mandelic Acids p-Hydroxymandelic acid is a valuable aromatic fine chemical and widely used for production of pharmaceuticals and food additives.

   

1,2-Dihydronaphthalene-1,2-diol

1,2-Dihydroxy-1,2-dihydronaphthalene, (trans)-(+-)-isomer

C10H10O2 (162.0681)


This compound belongs to the family of Naphthalenes. These are compounds containing a naphthalene moiety, which consists of two fused benzene rings.

   

D-Gulono-1,4-lactone

5-(1,2-dihydroxyethyl)-3,4-dihydroxyoxolan-2-one

C6H10O6 (178.0477)


Acquisition and generation of the data is financially supported in part by CREST/JST. 1,4-D-Gulonolactone is an endogenous metabolite.

   

D-Valine

2-Amino-3-methylbutanoic acid

C5H11NO2 (117.079)


Flavouring ingredient

   

Lysionotin

4H-1-Benzopyran-4-one, 5,7-dihydroxy-6,8-dimethoxy-2-(4-methoxyphenyl)-

C18H16O7 (344.0896)


Nevadensin is a trimethoxyflavone that is flavone substituted by methoxy groups at positions 6, 8 and 4 and hydroxy groups at positions 5 and 7 respectively. It has a role as a plant metabolite. It is a trimethoxyflavone and a dihydroxyflavone. It is functionally related to a flavone. It is a conjugate acid of a nevadensin-7-olate. Nevadensin is a natural product found in Calanticaria bicolor, Gardenia resinifera, and other organisms with data available. A trimethoxyflavone that is flavone substituted by methoxy groups at positions 6, 8 and 4 and hydroxy groups at positions 5 and 7 respectively. Nevadensin is a naturally occurring selective inhibitor of human carboxylesterase 1 (hCE1) with an IC50 of 2.64 μM. Nevadensin has a variety of pharmacological effects such as anti-mycobacterium tuberculosis activities, antitussive, anti-inflammatory and anti-hypertensive[1][2]. Nevadensin is a naturally occurring selective inhibitor of human carboxylesterase 1 (hCE1) with an IC50 of 2.64 μM. Nevadensin has a variety of pharmacological effects such as anti-mycobacterium tuberculosis activities, antitussive, anti-inflammatory and anti-hypertensive[1][2].

   

Luteolin

(2S,3S,4S,5R,6S)-6-((2-(3,4-Dihydroxyphenyl)-5-hydroxy-4-oxo-4H-chromen-7-yl)oxy)-3,4,5-trihydroxytetrahydro-2H-pyran-2-carboxylic acid

C21H18O12 (462.0798)


Luteolin 7-O-beta-D-glucosiduronic acid is a luteolin glucosiduronic acid consisting of luteolin having a beta-D-glucosiduronic acid residue attached at the 7-position. It has a role as a metabolite. It is a trihydroxyflavone, a glycosyloxyflavone, a monosaccharide derivative and a luteolin O-glucuronoside. It is a conjugate acid of a luteolin 7-O-beta-D-glucosiduronate and a luteolin 7-O-beta-D-glucosiduronate(2-). Luteolin 7-glucuronide is a natural product found in Galeopsis tetrahit, Galeopsis ladanum, and other organisms with data available. A luteolin glucosiduronic acid consisting of luteolin having a beta-D-glucosiduronic acid residue attached at the 7-position. Luteolin 7-O-glucuronide could inhibit Matrix Metalloproteinases (MMP) activities, with IC50s of 17.63, 7.99, 11.42, 12.85, 0.03 μM for MMP-1, MMP-3, MMP-8, MMP-9, MMP-13, respectively. Luteolin 7-O-glucuronide could inhibit Matrix Metalloproteinases (MMP) activities, with IC50s of 17.63, 7.99, 11.42, 12.85, 0.03 μM for MMP-1, MMP-3, MMP-8, MMP-9, MMP-13, respectively.

   

Robinin

5-hydroxy-2-(4-hydroxyphenyl)-7-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-tetrahydropyran-2-yl]oxy-3-[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-[[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-tetrahydropyran-2-yl]oxymethyl]tetrahydropyran-2-yl]oxy-chromen-4-one

C33H40O19 (740.2164)


Robinin is a glycosyloxyflavone that is kaempherol substituted by a 6-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-galactopyranosyl residue at position 3 and a 6-deoxy-alpha-L-mannopyranosyl residue at position 7 via a glycosidic linkage. It has a role as a plant metabolite. It is a glycosyloxyflavone and a dihydroxyflavone. It is functionally related to a kaempferol. Robinin is a natural product found in Aconitum anthora, Astragalus aegobromus, and other organisms with data available. A glycosyloxyflavone that is kaempherol substituted by a 6-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-galactopyranosyl residue at position 3 and a 6-deoxy-alpha-L-mannopyranosyl residue at position 7 via a glycosidic linkage. Robinin is present in?flavonoid?fraction of?Vigna unguiculata?leaf. Robinin inhibits upregulated expression of TLR2 and TLR4. Robinin ameliorates oxidized low density lipoprotein?(Ox-LDL) induced inflammatory insult through TLR4/NF-κB pathway[1]. Robinin is present in?flavonoid?fraction of?Vigna unguiculata?leaf. Robinin inhibits upregulated expression of TLR2 and TLR4. Robinin ameliorates oxidized low density lipoprotein?(Ox-LDL) induced inflammatory insult through TLR4/NF-κB pathway[1].

   

16b-Hydroxyestrone

(1S,10R,11S,13S,15S)-5,13-dihydroxy-15-methyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadeca-2(7),3,5-trien-14-one

C18H22O3 (286.1569)


16b-Hydroxyestrone is an aromatized C18 steroid with a 3-hydroxyl group and a 17-ketone, a major mammalian estrogen. It is converted from androstenedione directly, or from testosterone via estradiol. In humans, it is produced primarily by the cyclic ovaries, placenta, and the adipose tissue of men and postmenopausal women. An aromatized C18 steroid with a 3-hydroxyl group and a 17-ketone, a major mammalian estrogen. It is converted from androstenedione directly, or from testosterone via estradiol. In humans, it is produced primarily by the cyclic ovaries, placenta, and the adipose tissue of men and postmenopausal women. [HMDB] C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

2,4-Diaminobutyric acid

2,4-Diaminobutyric acid monohydrochloride, (+-)-isomer

C4H10N2O2 (118.0742)


2,4-Diaminobutyric acid, also known as 2,4-diaminobutanoate or Dbu, belongs to the class of organic compounds known as alpha amino acids. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). 2,4-Diaminobutyric acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. 2,4-Diaminobutyric acid exists in all living organisms, ranging from bacteria to humans. Outside of the human body, 2,4-Diaminobutyric acid has been detected, but not quantified in cow milk. This could make 2,4-diaminobutyric acid a potential biomarker for the consumption of these foods. 2,4-Diaminobutyric acid is a non-physiological, cationic amino acid analogue that is transported into cells by System A with potent antitumoral activity in vitro against human glioma cells, the result of the pronounced concentrated uptake of DAB in glioma cells to the extent that a cellular lysis could occur due to osmotic reasons. 2,4-Diaminobutyric acid is a non-physiological, cationic amino acid analogue that is transported into cells by System A with potent antitumoral activity in vitro against human glioma cells, the result of the pronounced concentrated uptake of DAB in glioma cells to the extent that a cellular lysis could occur due to osmotic reasons. (PMID: 1561943) [HMDB] L-DABA (L-2,4-Diaminobutyric acid) is a week GABA transaminase inhibitor with an IC50 of larger than 500 μM; exhibits antitumor activity in vivo and in vitro. L-DABA (L-2,4-Diaminobutyric acid) is a week GABA transaminase inhibitor with an IC50 of larger than 500 μM; exhibits antitumor activity in vivo and in vitro.

   

5-Hydroxyflavone

5-Hydroxyflavone

C15H10O3 (238.063)


5-Hydroxyflavone, a flavonoid ligand, shows no cytotoxic activity against MCF-7, FaDU, MDA-MB-435S, U87, RPE-1, and HEK293 cells[1]. 5-Hydroxyflavone, a flavonoid ligand, shows no cytotoxic activity against MCF-7, FaDU, MDA-MB-435S, U87, RPE-1, and HEK293 cells[1].

   

3-O-Caffeoyl-4-O-methylquinic acid

1,3,4-trihydroxy-5-{[(2Z)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}cyclohexane-1-carboxylic acid

C17H20O9 (368.1107)


3-O-Caffeoyl-4-O-methylquinic acid is found in green vegetables. It is a constituent of Phyllostachys edulis (moso bamboo). Constituent of Phyllostachys edulis (moso bamboo). 3-O-Caffeoyl-4-O-methylquinic acid is found in green vegetables. 3-Feruloylquinic acid, a derivative of quinic acid-bound phenolic acid, shows antioxidant activity. 3-Feruloylquinic acid markedly enhances by high photosynthetically active radiation (PAR) and UV irradiances[1][2]. 3-Feruloylquinic acid, a derivative of quinic acid-bound phenolic acid, shows antioxidant activity. 3-Feruloylquinic acid markedly enhances by high photosynthetically active radiation (PAR) and UV irradiances[1][2].

   

Luteolin 7-glucuronide

Luteolin 7-O-glucuronide

C21H18O12 (462.0798)


Luteolin 7-O-glucuronide could inhibit Matrix Metalloproteinases (MMP) activities, with IC50s of 17.63, 7.99, 11.42, 12.85, 0.03 μM for MMP-1, MMP-3, MMP-8, MMP-9, MMP-13, respectively. Luteolin 7-O-glucuronide could inhibit Matrix Metalloproteinases (MMP) activities, with IC50s of 17.63, 7.99, 11.42, 12.85, 0.03 μM for MMP-1, MMP-3, MMP-8, MMP-9, MMP-13, respectively.

   

Aldophosphamide

3-({amino[bis(2-chloroethyl)amino]phosphoryl}oxy)propanal

C7H15Cl2N2O3P (276.0197)


Detoxification of cyclophosphamide is effected, in part, by hepatic class 1 aldehyde dehydrogenase (ALDH-1)-catalyzed oxidation of aldophosphamide, a pivotal aldehyde intermediate, to the nontoxic metabolite, carboxyphosphamide. Detoxification of aldophosphamide may also be effected by enzymes, viz. Thus, NAD-linked oxidation and NADPH-linked reduction of aldophosphamide catalyzed by relevant erythrocyte enzymes were quantified. (PMID: 9394035) Class 1 aldehyde dehydrogenases (ALDH-1) function as drug resistance gene products by catalyzing the irreversible conversion of aldophosphamide, an active metabolite of cyclophosphamide, to an inert compound. (PMID: 9322086) D000970 - Antineoplastic Agents > D018906 - Antineoplastic Agents, Alkylating > D009588 - Nitrogen Mustard Compounds D000970 - Antineoplastic Agents > D018906 - Antineoplastic Agents, Alkylating > D010752 - Phosphoramide Mustards

   

(2E,6E)-2,6-Nonadienal

2-trans,6-trans-Nonadienal

C9H14O (138.1045)


Occurs in beef and mutton tallows and is formed during deep frying of fatand is also present in lingonberry, cowberry, mango, cucumber, cornmint oil, raw lean fish, cooked trassi and cooked shrimp. Flavouring agent. (2E,6E)-2,6-Nonadienal is found in many foods, some of which are animal foods, green vegetables, fishes, and crustaceans. (2E,6E)-2,6-Nonadienal is found in animal foods. (2E,6E)-2,6-Nonadienal occurs in beef and mutton tallows and is formed during deep frying of fat. Also present in lingonberry, cowberry, mango, cucumber, cornmint oil, raw lean fish, cooked trassi and cooked shrimp. (2E,6E)-2,6-Nonadienal is a flavouring agent

   

beta-Farnesene

(6Z)-7,11-dimethyl-3-methylidenedodeca-1,6,10-triene

C15H24 (204.1878)


A mixture with 1,3,6,10-Farnesatetraene JXF60-O has been isolated from many plant sources and is used as a food flavourant (woodgreen flavour). beta-Farnesene is found in sweet basil. (E)-beta-Farnesene is found in anise. (E)-beta-Farnesene is a constituent of hop, camomile and other essential oils (E)-β-Farnesene (trans-β-Farnesene) is a volatile sesquiterpene hydrocarbon which can be found in Phlomis aurea Decne essential oil. (E)-β-Farnesene can be used as a feeding stimulant for the sand fly Lutzomyia longipalpis[1][2]. (E)-β-Farnesene (trans-β-Farnesene) is a volatile sesquiterpene hydrocarbon which can be found in Phlomis aurea Decne essential oil. (E)-β-Farnesene can be used as a feeding stimulant for the sand fly Lutzomyia longipalpis[1][2].

   

DL-Adrenaline

4-[1-hydroxy-2-(methylamino)ethyl]benzene-1,2-diol

C9H13NO3 (183.0895)


Oxidized-adrenal-ferredoxin, also known as Epinephrine racemic or Racepinefrine, is classified as a member of the Catechols. Catechols are compounds containing a 1,2-benzenediol moiety. Oxidized-adrenal-ferredoxin is considered to be soluble (in water) and acidic D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists C - Cardiovascular system > C10 - Lipid modifying agents > C10A - Lipid modifying agents, plain D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D009184 - Mydriatics D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents

   

Deforolimus

4-(2-{1,18-dihydroxy-19,30-dimethoxy-15,17,21,23,29,35-hexamethyl-2,3,10,14,20-pentaoxo-11,36-dioxa-4-azatricyclo[30.3.1.0^{4,9}]hexatriaconta-16,24,26,28-tetraen-12-yl}propyl)-2-methoxycyclohexyl dimethylphosphinate

C53H84NO14P (989.5629)


   

4alpha-Phorbol

1,6,13,14-tetrahydroxy-8-(hydroxymethyl)-4,12,12,15-tetramethyltetracyclo[8.5.0.0²,⁶.0¹¹,¹³]pentadeca-3,8-dien-5-one

C20H28O6 (364.1886)


   

9-Octadecenamide

trans-9,10-Octadecenoamide

C18H35NO (281.2719)


   

Chebulagic acid

2-[13,14,15,18,19,20,31,35,36-nonahydroxy-2,10,23,28,32-pentaoxo-5-(3,4,5-trihydroxybenzoyloxy)-3,6,9,24,27,33-hexaoxaheptacyclo[28.7.1.0⁴,²⁵.0⁷,²⁶.0¹¹,¹⁶.0¹⁷,²².0³⁴,³⁸]octatriaconta-1(37),11,13,15,17,19,21,34(38),35-nonaen-29-yl]acetic acid

C41H30O27 (954.0974)


D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059004 - Topoisomerase I Inhibitors D004791 - Enzyme Inhibitors > D016859 - Lipoxygenase Inhibitors Chebulagic acid is a COX-LOX dual inhibitor isolated from the fruits of Terminalia chebula Retz, on angiogenesis. Chebulagic acid is a M2 serine to asparagine 31 mutation (S31N) inhibitor and influenza antiviral. Chebulagic acid also against SARS-CoV-2 viral replication with an EC50 of 9.76 μM. Chebulagic acid is a COX-LOX dual inhibitor isolated from the fruits of Terminalia chebula Retz, on angiogenesis. Chebulagic acid is a M2 serine to asparagine 31 mutation (S31N) inhibitor and influenza antiviral. Chebulagic acid also against SARS-CoV-2 viral replication with an EC50 of 9.76 μM. Chebulagic acid is a COX-LOX dual inhibitor isolated from the fruits of Terminalia chebula Retz, on angiogenesis. Chebulagic acid is a M2 serine to asparagine 31 mutation (S31N) inhibitor and influenza antiviral. Chebulagic acid also against SARS-CoV-2 viral replication with an EC50 of 9.76 μM.

   

1-(2,4-Dihydroxyphenyl)-3-[4-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyphenyl]prop-2-en-1-one

1-(2,4-Dihydroxyphenyl)-3-[4-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyphenyl]prop-2-en-1-one

C21H22O9 (418.1264)


   

Stilbene oxide

Oxirane, 2,3-diphenyl-,(2R,3S)-rel-

C14H12O (196.0888)


   

Spinosterol

(1R,2S,5S,7S,11R,14R,15R)-14-[(2R,3E,5S)-5-ethyl-6-methylhept-3-en-2-yl]-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-9-en-5-ol

C29H48O (412.3705)


Spinosterol, also known as spinasterol, (3beta,5alpha,22e,24r)-isomer, belongs to stigmastanes and derivatives class of compounds. Those are sterol lipids with a structure based on the stigmastane skeleton, which consists of a cholestane moiety bearing an ethyl group at the carbon atom C24. Thus, spinosterol is considered to be a sterol lipid molecule. Spinosterol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Spinosterol can be found in wild celery, which makes spinosterol a potential biomarker for the consumption of this food product. α-Spinasterol, isolated from Melandrium firmum, has antibacterial activity[1]. α-Spinasterol is a transient receptor potential vanilloid 1 (TRPV1) antagonist, has anti-inflammatory, antidepressant, antioxidant and antinociceptive effects. α-Spinasterol inhibits COX-1 andCOX-2 activities with IC50 values of 16.17 μM and 7.76 μM, respectively[2]. α-Spinasterol, isolated from Melandrium firmum, has antibacterial activity[1]. α-Spinasterol is a transient receptor potential vanilloid 1 (TRPV1) antagonist, has anti-inflammatory, antidepressant, antioxidant and antinociceptive effects. α-Spinasterol inhibits COX-1 andCOX-2 activities with IC50 values of 16.17 μM and 7.76 μM, respectively[2].

   

H-D-Abu-OH

(R)-2-Aminobutanoic acid

C4H9NO2 (103.0633)


[Spectral] D-2-Aminobutyrate (exact mass = 103.06333) and 4-Aminobutanoate (exact mass = 103.06333) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] D-2-Aminobutyrate (exact mass = 103.06333) and L-Cysteine (exact mass = 121.01975) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. D(-)-2-Aminobutyric acid is a substrate of D-amino acid oxidase. D(-)-2-Aminobutyric acid is a substrate of D-amino acid oxidase.

   

Hydroxyphenyllactic acid

2-Hydroxy-3-(4-hydroxyphenyl)propanoic acid

C9H10O4 (182.0579)


Hydroxyphenyllactic acid is an antifungal metabolite.

   

Bellidin

1,3,5,8-Tetrahydroxyxanthone; Desmethylbellidifolin

C13H8O6 (260.0321)


Bellidin is a member of the class of xanthones that is xanthone which is substituted by hydroxy groups at positions 1, 3, 5, and 8. A natural product found particularly in Iris nigricans and Gentiana campestris. It has a role as a metabolite, an EC 3.1.1.7 (acetylcholinesterase) inhibitor, a mutagen, an antioxidant and a radical scavenger. It is a member of xanthones and a tetrol. It is functionally related to a xanthone. 1,3,5,8-Tetrahydroxyxanthone is a natural product found in Gentiana orbicularis, Swertia teres, and other organisms with data available. A member of the class of xanthones that is xanthone which is substituted by hydroxy groups at positions 1, 3, 5, and 8. A natural product found particularly in Iris nigricans and Gentiana campestris.

   

Farrerol

(2S)-2,3-Dihydro-5,7-dihydroxy-2- (4-hydroxyphenyl)-6,8-dimethyl-4H-1-benzopyran-4-one

C17H16O5 (300.0998)


Farrerol is an organic molecular entity. It has a role as a metabolite. (S)-2,3-Dihydro-5,7-dihydroxy-2-(4-hydroxyphenyl)-6,8-dimethyl-4-benzopyrone is a natural product found in Rhododendron spinuliferum, Wikstroemia canescens, and other organisms with data available. Farrerol is a natural product found in Daphne aurantiaca, Rhododendron farrerae, and Rhododendron dauricum with data available. Farrerol is a bioactive constituent of Rhododendron, with broad activities such as anti-oxidative, anti-inflammatory, anti-tumor, neuroprotective and hepatoprotective effects[1][2][3][4][5][6]. Farrerol is a bioactive constituent of Rhododendron, with broad activities such as anti-oxidative, anti-inflammatory, anti-tumor, neuroprotective and hepatoprotective effects[1][2][3][4][5][6].

   

Irisolidone

5,7-Dihydroxy-6-methoxy-3-(4-methoxyphenyl)-4H-1-benzopyran-4-one

C17H14O6 (314.079)


Irisolidone is a member of 4-methoxyisoflavones. Irisolidone is a natural product found in Dalbergia sissoo, Wisteria brachybotrys, and other organisms with data available. Irisolidone is a major isoflavone found in Pueraria lobata flowers. Irisolidone exhibits potent hepatoprotective activity. Irisolidone shows the high efficacy for volume-regulated anion channels (VRAC) blockade (IC50=9.8 μM)[1][2][3]. Irisolidone is a major isoflavone found in Pueraria lobata flowers. Irisolidone exhibits potent hepatoprotective activity. Irisolidone shows the high efficacy for volume-regulated anion channels (VRAC) blockade (IC50=9.8 μM)[1][2][3].

   

ginkgolide A

9H-1,7a-(Epoxymethano)-1H,6aH-cyclopenta(c)furo(2,3-b)furo(3,2:3,4)cyclopenta(1,2-d)furan-5,9,12(4H)-trione, 3-(1,1-dimethylethyl)hexahydro-4,7b-dihydroxy-8-methyl-, (1R-(1alpha,3beta,3aS*,4beta,6aalpha,7aalpha,7balpha,8alpha,10aalpha,11 aS*))-

C20H24O9 (408.142)


Bitter principle from Ginkgo biloba (ginkgo). Ginkgolide A is found in ginkgo nuts and fats and oils. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.715 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.712 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.714 Ginkgolide A is a highly active PAF antagonist cage molecule that is isolated from the leaves of the Ginkgo biloba tree. Shows potential in a wide variety of inflammatory and immunological disorders. ginkgolide-A is a natural product found in Ginkgo biloba and Machilus wangchiana with data available. See also: Ginkgo (part of). Ginkgolide A (BN-52020) is an extract from in Ginkgo biloba and a g-aminobutyric acid (GABA) antagonist. Ginkgolide A (BN-52020) is an extract from in Ginkgo biloba and a g-aminobutyric acid (GABA) antagonist. Ginkgolide A (BN-52020) is an extract from in Ginkgo biloba and a g-aminobutyric acid (GABA) antagonist.

   

anthraglycoside B

1,6-Dihydroxy-3-methyl-8-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)anthracene-9,10-dione

C21H20O10 (432.1056)


Emodin 8-glucoside is a dihydroxyanthraquinone. Emodin-8-glucoside is a natural product found in Rheum palmatum, Rumex patientia, and other organisms with data available. See also: Reynoutria multiflora root (has part). Emodin-1-O-β-D-glucopyranoside, isolated from medicinal plant Polygonum cuspidatum Sieb. & Zucc, is a potent and noncompetitive bacterial neuraminidase (BNA) inhibitor with an IC50 of 0.85 μM[1]. Emodin-1-O-β-D-glucopyranoside, isolated from medicinal plant Polygonum cuspidatum Sieb. & Zucc, is a potent and noncompetitive bacterial neuraminidase (BNA) inhibitor with an IC50 of 0.85 μM[1]. Emodin-8-glucoside is an anthraquinone derivative isolated from Aloe vera, binds to minor groove of DNA[1]. Emodin-8-glucoside is an anthraquinone derivative isolated from Aloe vera, binds to minor groove of DNA[1].

   

Ginkgolide A

9H-1,7a-(Epoxymethano)-1H,6aH-cyclopenta[c]furo[2,3-b]furo[3,2:3,4]cyclopenta[1,2-d]furan-5,9,12(4H)-trione, 3-(1,1-dimethylethyl)hexahydro-4,7b-dihydroxy-8-methyl-, [1R-(1.alpha.,3.beta.,3aS*,4.beta.,6a.alpha.,7a.alpha.,7b.alpha.,8.alpha.,10a.alpha.,11aS*)]-

C20H24O9 (408.142)


9H-1,7a-(Epoxymethano)-1H,6aH-cyclopenta[c]furo[2,3-b]furo[3,2:3,4]cyclopenta[1,2-d]furan-5,9,12(4H)-trione, 3-tert-butylhexahydro-4,7b-dihydroxy-8-methyl- is a diterpene lactone. Ginkgolide A is a natural product found in Ginkgo biloba with data available. Ginkgolide A is found in fats and oils. Ginkgolide A is a bitter principle from Ginkgo biloba (ginkgo). Ginkgolide A (BN-52020) is an extract from in Ginkgo biloba and a g-aminobutyric acid (GABA) antagonist. Ginkgolide A (BN-52020) is an extract from in Ginkgo biloba and a g-aminobutyric acid (GABA) antagonist. Ginkgolide A (BN-52020) is an extract from in Ginkgo biloba and a g-aminobutyric acid (GABA) antagonist.

   

Caffeoylmalic acid

Caffeoylmalic acid

C13H12O8 (296.0532)


   

Asebogenin

1- (2,6-Dihydroxy-4-methoxyphenyl) -3- (4-hydroxyphenyl) -1-propanone

C16H16O5 (288.0998)


A member of the class of dihydrochalcones that is the 4-methyl ether derivative of phloretin.

   

Salsoline

(-)-O7-Methylsalsolinol

C11H15NO2 (193.1103)


D009676 - Noxae > D009498 - Neurotoxins relative retention time with respect to 9-anthracene Carboxylic Acid is 0.159 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.150

   

gamma-Eudesmol

gamma-Eudesmol

C15H26O (222.1984)


A eudesmane sesquiterpenoid in which the eudesmane skeleton carries a hydroxy substituent at C-11 and has a double bond between C-4 and C-5.

   

Isoflavanone

Isoflavanone

C15H12O2 (224.0837)


Isoflavone in which the double bond between positions 2 and 3 has been reduced to a single bond.

   

Emodin 8-glucoside

1-beta-D-Glucopyranosyloxy-3-methyl-6-hydroxy-8-hydroxy-9,10-anthraquinone

C21H20O10 (432.1056)


Emodin-1-O-β-D-glucopyranoside, isolated from medicinal plant Polygonum cuspidatum Sieb. & Zucc, is a potent and noncompetitive bacterial neuraminidase (BNA) inhibitor with an IC50 of 0.85 μM[1]. Emodin-1-O-β-D-glucopyranoside, isolated from medicinal plant Polygonum cuspidatum Sieb. & Zucc, is a potent and noncompetitive bacterial neuraminidase (BNA) inhibitor with an IC50 of 0.85 μM[1]. Emodin-8-glucoside is an anthraquinone derivative isolated from Aloe vera, binds to minor groove of DNA[1]. Emodin-8-glucoside is an anthraquinone derivative isolated from Aloe vera, binds to minor groove of DNA[1].

   

Homoeriodictyol

(2S) -2alpha- (3-Methoxy-4-hydroxyphenyl) -5,7-dihydroxy-2,3-dihydro-4H-1-benzopyran-4-one

C16H14O6 (302.079)


Homoeriodictyol is a trihydroxyflavanone that consists of 3-methoxyflavanone in which the three hydroxy substituents are located at positions 4, 5, and 7. It has a role as a metabolite and a flavouring agent. It is a monomethoxyflavanone, a trihydroxyflavanone, a member of 3-methoxyflavanones and a member of 4-hydroxyflavanones. It is functionally related to an eriodictyol. Homoeriodictyol is a natural product found in Smilax corbularia, Limonium aureum, and other organisms with data available. A trihydroxyflavanone that consists of 3-methoxyflavanone in which the three hydroxy substituents are located at positions 4, 5, and 7. Homoeriodictyol is a flavonoid metabolite of Eriocitrin in plasma and urine. Eriocitrin is a strong antioxidant agent[1]. Homoeriodictyol is a flavonoid metabolite of Eriocitrin in plasma and urine. Eriocitrin is a strong antioxidant agent[1].

   

Prunetin

4H-1-Benzopyran-4-one, 5-hydroxy-3-(4-hydroxyphenyl)-7-methoxy-

C16H12O5 (284.0685)


Prunetin, an O-methylated isoflavone, possesses anti-inflammatory activity. Prunetin is a potent human aldehyde dehydrogenases inhibitor[1][2]. Prunetin, an O-methylated isoflavone, possesses anti-inflammatory activity. Prunetin is a potent human aldehyde dehydrogenases inhibitor[1][2]. Prunetin, an O-methylated isoflavone, possesses anti-inflammatory activity. Prunetin is a potent human aldehyde dehydrogenases inhibitor[1][2].

   

Prunin

(S)-5-Hydroxy-2-(4-hydroxyphenyl)-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)chroman-4-one

C21H22O10 (434.1213)


Naringenin 7-O-beta-D-glucoside is a flavanone 7-O-beta-D-glucoside that is (S)-naringenin substituted by a beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as a metabolite, a hypoglycemic agent, an antilipemic drug and an antibacterial agent. It is a flavanone 7-O-beta-D-glucoside, a dihydroxyflavanone, a monosaccharide derivative, a member of 4-hydroxyflavanones and a (2S)-flavan-4-one. It is functionally related to a (S)-naringenin. Prunin is a natural product found in Prunus mume, Podocarpus nivalis, and other organisms with data available. A flavanone 7-O-beta-D-glucoside that is (S)-naringenin substituted by a beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. Prunin is a potent inhibitor of human enterovirus A71 (HEVA71). Prunin shows strong inhibitory activity against protein tyrosine phosphatase 1B (PTP1B), with an IC50 of 5.5 μM[1][2]. Prunin is a potent inhibitor of human enterovirus A71 (HEVA71). Prunin shows strong inhibitory activity against protein tyrosine phosphatase 1B (PTP1B), with an IC50 of 5.5 μM[1][2].

   

H-D-Abu-OH

D-alpha-Aminobutyric acid

C4H9NO2 (103.0633)


An optically active form of alpha-aminobutyric acid having D-configuration. D(-)-2-Aminobutyric acid is a substrate of D-amino acid oxidase. D(-)-2-Aminobutyric acid is a substrate of D-amino acid oxidase.

   

TRIPHENYLPHOSPHINE OXIDE

TRIPHENYLPHOSPHINE OXIDE

C18H15OP (278.086)


CONFIDENCE standard compound; INTERNAL_ID 825; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8827; ORIGINAL_PRECURSOR_SCAN_NO 8826 CONFIDENCE standard compound; INTERNAL_ID 825; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8840; ORIGINAL_PRECURSOR_SCAN_NO 8839 CONFIDENCE standard compound; INTERNAL_ID 825; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8870; ORIGINAL_PRECURSOR_SCAN_NO 8869 CONFIDENCE standard compound; INTERNAL_ID 825; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8871; ORIGINAL_PRECURSOR_SCAN_NO 8868 CONFIDENCE standard compound; INTERNAL_ID 825; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8916; ORIGINAL_PRECURSOR_SCAN_NO 8915 CONFIDENCE standard compound; INTERNAL_ID 825; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8887; ORIGINAL_PRECURSOR_SCAN_NO 8885 CONFIDENCE standard compound; INTERNAL_ID 2472 CONFIDENCE standard compound; INTERNAL_ID 8813 CONFIDENCE standard compound; INTERNAL_ID 8250 CONFIDENCE standard compound; EAWAG_UCHEM_ID 3587 EAWAG_UCHEM_ID 3587; CONFIDENCE standard compound

   

Neoxanthin

(1R,3S)-6-[(3E,5E,7E,9E,11E,13E,15E,17E)-18-[(1S,4S,6R)-4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]-3,7,12,16-tetramethyl-octadeca-1,3,5,7,9,11,13,15,17-nonaenylidene]-1,5,5-trimethyl-cyclohexane-1,3-diol

C40H56O4 (600.4178)


9-cis-neoxanthin is a neoxanthin in which all of the double bonds have trans geometry except for that at the 9 position, which is cis. It is a 9-cis-epoxycarotenoid and a neoxanthin. Neoxanthin is a natural product found in Hibiscus syriacus, Cladonia rangiferina, and other organisms with data available. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

Lysionotin

4H-1-Benzopyran-4-one, 5,7-dihydroxy-6,8-dimethoxy-2-(4-methoxyphenyl)-

C18H16O7 (344.0896)


Nevadensin is a naturally occurring selective inhibitor of human carboxylesterase 1 (hCE1) with an IC50 of 2.64 μM. Nevadensin has a variety of pharmacological effects such as anti-mycobacterium tuberculosis activities, antitussive, anti-inflammatory and anti-hypertensive[1][2]. Nevadensin is a naturally occurring selective inhibitor of human carboxylesterase 1 (hCE1) with an IC50 of 2.64 μM. Nevadensin has a variety of pharmacological effects such as anti-mycobacterium tuberculosis activities, antitussive, anti-inflammatory and anti-hypertensive[1][2].

   

Norathyriol

9H-Xanthen-9-one, 1,3,6,7-tetrahydroxy-

C13H8O6 (260.0321)


Norathyriol is a member of the class of xanthones that is 9H-xanthen-9-one substituted by hydroxy groups at positions 1, 3, 6 and 7. Isolated from Garcinia mangostana and Maclura pomifera, it exhibits inhibitory activity against protein kinase C. It has a role as an antineoplastic agent, an EC 2.7.11.13 (protein kinase C) inhibitor and a plant metabolite. It is a member of xanthones and a polyphenol. Norathyriol is a natural product found in Hypericum aucheri, Hypericum elegans, and other organisms with data available. A member of the class of xanthones that is 9H-xanthen-9-one substituted by hydroxy groups at positions 1, 3, 6 and 7. Isolated from Garcinia mangostana and Maclura pomifera, it exhibits inhibitory activity against protein kinase C.

   

2-Methylanthraquinone

InChI=1/C15H10O2/c1-9-6-7-12-13(8-9)15(17)11-5-3-2-4-10(11)14(12)16/h2-8H,1H

C15H10O2 (222.0681)


2-methylanthraquinone is an anthraquinone that is 9,10-anthraquinone in which the hydrogen at position 2 is substituted by a methyl group. It is functionally related to a 9,10-anthraquinone. 2-Methylanthraquinone is a natural product found in Clausena heptaphylla, Ophiorrhiza pumila, and other organisms with data available. Tectoquinone (2-Methylanthraquinone) is a SARSCoV-2 main protease inhibitor against COVID-19. Tectoquinone exhibits strong mosquito larvicidal activity with the LC50 values of 3.3 and 5.4 μg/ml against A. aegypti and A. albopictus in 24 h, respectively[1][2]. Tectoquinone (2-Methylanthraquinone) is a SARSCoV-2 main protease inhibitor against COVID-19. Tectoquinone exhibits strong mosquito larvicidal activity with the LC50 values of 3.3 and 5.4 μg/ml against A. aegypti and A. albopictus in 24 h, respectively[1][2].

   

Tetramethylscutellarein

4H-1-Benzopyran-4-one, 5,6, 7-trimethoxy-2-(4-methoxyphenyl)-

C19H18O6 (342.1103)


Tetramethylscutellarein, also known as 4,5,6,7-tetramethoxyflavone or 5-methoxysalvigenin, belongs to the class of organic compounds known as 7-O-methylated flavonoids. These are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, tetramethylscutellarein is considered to be a flavonoid lipid molecule. Tetramethylscutellarein is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Outside of the human body, tetramethylscutellarein is found, on average, in the highest concentration within sweet oranges. Tetramethylscutellarein has also been detected, but not quantified, in herbs, spices, tea. This could make tetramethylscutellarein a potential biomarker for the consumption of these foods. Tetramethylscutellarein is isolated from Salvia officinalis (sage) leaves. 4,5,6,7-tetramethoxyflavone is a tetramethoxyflavone that is the tetra-O-methyl derivative of scutellarein. It has a role as an antimutagen and a plant metabolite. It is functionally related to a scutellarein. 4,5,6,7-Tetramethoxyflavone is a natural product found in Ageratina altissima, Chromolaena odorata, and other organisms with data available. See also: Tangerine peel (part of); Citrus aurantium fruit rind (part of). Isolated from Salvia officinalis (sage) leaves. Tetramethylscutellarein is found in tea, sweet orange, and herbs and spices. A tetramethoxyflavone that is the tetra-O-methyl derivative of scutellarein. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) is a bioactive component of Siam weed extract. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) exhibits anti-inflammatory activity through NF-κB pathway[1]. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) modulats of bacterial agent resistance via efflux pump inhibition[2]. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) can enhance blood coagulation[3]. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) is a bioactive component of Siam weed extract. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) exhibits anti-inflammatory activity through NF-κB pathway[1]. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) modulats of bacterial agent resistance via efflux pump inhibition[2]. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) can enhance blood coagulation[3].

   

Eriodictyolchalcone

2-Propen-1-one, 3-(3,4-dihydroxyphenyl)-1-(2,4,6-trihydroxyphenyl)-, (2E)-

C15H12O6 (288.0634)


2,3,4,4,6-pentahydroxychalcone is a member of the class of chalcones that is chalcone substituted by hydroxy groups at positions 2, 3, 4, 4, and 6. It is functionally related to a chalcone. It is a conjugate acid of a 2,3,4,4,6-pentahydroxychalcone(1-). 2,3,4,4,6-Pentahydroxychalcone is a natural product found in Limonium with data available.

   

Aceteugenol

InChI=1/C12H14O3/c1-4-5-10-6-7-11(15-9(2)13)12(8-10)14-3/h4,6-8H,1,5H2,2-3H

C12H14O3 (206.0943)


Aceteugenol, also known as eugenol acetate, belongs to the class of organic compounds known as phenol esters. These are aromatic compounds containing a benzene ring substituted by a hydroxyl group and an ester group. Aceteugenol is an extremely weak basic (essentially neutral) compound (based on its pKa). Aceteugenol is a sweet-, carnation-, and clove-tasting compound. Outside of the human body, aceteugenol is found, on average, in the highest concentration in a few different foods, such as cloves, Ceylon cinnamons, and sweet bay. Aceteugenol has also been detected, but not quantified in, several different foods, such as nutmegs, herbs and spices, cumins, star anises, and lemon balms. This could make aceteugenol a potential biomarker for the consumption of these foods. Aceteugenol is a flavouring agent found in Caraway, oil of clove (Syzygium aromaticum), cinnamon leaf (Cinnamomum verum), and other essential oils. Acetyleugenol is a member of phenols and a benzoate ester. Acetyleugenol is a natural product found in Myrtus communis, Illicium verum, and other organisms with data available. See also: Clove Oil (part of). Flavouring agent. Found in oil of clove (Syzygium aromaticum), cinnamon leaf (Cinnamomum verum) and other essential oils Eugenol acetate (Eugenyl acetate), a major phytochemical constituent of the essential oil exhibits antibacterial, antioxidant, and anti-virulence activities. Eugenol acetate (Eugenyl acetate), a phytochemical in clove essential oil, against clinical isolates of Candida albicans, Candida parapsilosis, Candida tropicalis, and Candida glabrata. Eugenol acetate (Eugenyl acetate), a major phytochemical constituent of the essential oil exhibits antibacterial, antioxidant, and anti-virulence activities. Eugenol acetate (Eugenyl acetate), a phytochemical in clove essential oil, against clinical isolates of Candida albicans, Candida parapsilosis, Candida tropicalis, and Candida glabrata.

   

nitrazepam

nitrazepam

C15H11N3O3 (281.08)


A 1,4-benzodiazepinone that is 1,3-dihydro-2H-1,4-benzodiazepin-2-one which is substituted at positions 5 and 7 by phenyl and nitro groups, respectively. It is used as a hypnotic for the short-term management of insomnia and for the treatment of epileptic spasms in infants (Wests syndrome). D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CD - Benzodiazepine derivatives D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C1012 - Benzodiazepine D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C28197 - Antianxiety Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants CONFIDENCE standard compound; INTERNAL_ID 1535

   

Fenpropimorph

Pesticide7_Fenpropimorph_C20H33NO_Morpholine, 4-[3-[4-(1,1-dimethylethyl)phenyl]-2-methylpropyl]-2,6-dimethyl-, (2R,6S)-

C20H33NO (303.2562)


D016573 - Agrochemicals D010575 - Pesticides CONFIDENCE standard compound; INTERNAL_ID 4023 CONFIDENCE standard compound; EAWAG_UCHEM_ID 146

   

Terbutylazine

Terbuthylazine

C9H16ClN5 (229.1094)


CONFIDENCE standard compound; EAWAG_UCHEM_ID 284 D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

Clothianidin

Pesticide5_Clothianidin_C6H8ClN5O2S_[C(E)]-N-[(2-Chloro-5-thiazolyl)methyl]-N?-methyl-N?-nitroguanidine

C6H8ClN5O2S (249.0087)


An N-nitro compound consisting of 2-nitroguanidine having a (2-chloro-1,3-thiazol-5-yl)methyl group at position 1 and a methyl group at position 3. D010575 - Pesticides > D007306 - Insecticides > D000073943 - Neonicotinoids D016573 - Agrochemicals CONFIDENCE standard compound; EAWAG_UCHEM_ID 2933

   

Oxyfluorfen

Oxyfluorfen

C15H11ClF3NO4 (361.0329)


CONFIDENCE standard compound; EAWAG_UCHEM_ID 3174

   

3-Indolecarboxylic acid

Indole-3-carboxylic acid_120169

C9H7NO2 (161.0477)


An indole-3-carboxylic acid carrying a carboxy group at position 3. Acquisition and generation of the data is financially supported in part by CREST/JST. IPB_RECORD: 2301; CONFIDENCE confident structure Indole-3-carboxylic acid is a normal urinary indolic tryptophan metabolite and has been found elevated in patients with liver diseases[1][2]. Indole-3-carboxylic acid is a normal urinary indolic tryptophan metabolite and has been found elevated in patients with liver diseases[1][2].

   

undecenoic acid

10c-Undecenoic acid

C11H20O2 (184.1463)


D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use C254 - Anti-Infective Agent > C514 - Antifungal Agent 10-Undecenoic acid is used as a starting agent in the synthesis of Pheromone (11Z)-hexadecenal. 10-Undecenoic acid is used as a starting agent in the synthesis of Pheromone (11Z)-hexadecenal.

   

Valine

poly-l-valine

C5H11NO2 (117.079)


A branched-chain amino acid that consists of glycine in which one of the hydrogens attached to the alpha-carbon is substituted by an isopropyl group. Acquisition and generation of the data is financially supported by the Max-Planck-Society L-Valine (Valine) is a new nonlinear semiorganic material[1]. L-Valine (Valine) is a new nonlinear semiorganic material[1].

   

Diphenoxylate

Diphenoxylate(to be removed)

C30H32N2O2 (452.2464)


A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07D - Antipropulsives > A07DA - Antipropulsives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics C78276 - Agent Affecting Digestive System or Metabolism > C266 - Antidiarrheal Agent D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D005765 - Gastrointestinal Agents > D000930 - Antidiarrheals

   

Morin

4H-1-Benzopyran-4-one, 2-2-(2,4-dihydroxyphenyl)-3,5,7-trihydroxy-

C15H10O7 (302.0427)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents D020011 - Protective Agents > D000975 - Antioxidants Morin, a plant-derived flavonoid, possesses low antioxidant activity. Morin is a fluorescing chelating agent used in aluminum speciation[1][2]. Morin, a plant-derived flavonoid, possesses low antioxidant activity. Morin is a fluorescing chelating agent used in aluminum speciation[1][2].

   

Tryptophol

5-21-03-00061 (Beilstein Handbook Reference)

C10H11NO (161.0841)


An indolyl alcohol that is ethanol substituted by a 1H-indol-3-yl group at position 2. Tryptophol (Indole-3-ethanol) is an endogenous metabolite. Tryptophol (Indole-3-ethanol) is an endogenous metabolite.

   

RGX-202

3-Guanidinopropionic acid

C4H9N3O2 (131.0695)


C274 - Antineoplastic Agent > C177430 - Agent Targeting Cancer Metabolism

   

Hydroxyphenyllactic acid

2-Hydroxy-3-(4-hydroxyphenyl)propanoic acid

C9H10O4 (182.0579)


Hydroxyphenyllactic acid is a tyrosine metabolite. It is carcinogenic. The level of hydroxyphenyllactic acid is elevated in patients with deficiency of the enzyme p-hydroxyphenylpyruvate oxidase (EC 1.14.2.2). (PMID 4720815) [HMDB] Hydroxyphenyllactic acid is an antifungal metabolite.

   

Tricetin

5,7-dihydroxy-2-(3,4,5-trihydroxyphenyl)-4-chromenone

C15H10O7 (302.0427)


   

PIRIMICARB

Pesticide3_Pirimicarb_C11H18N4O2_2-(Dimethylamino)-5,6-dimethyl-4-pyrimidinyl dimethylcarbamate

C11H18N4O2 (238.143)


C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

mevinphos

Pesticide1_Mevinphos Isomer 1*_C7H13O6P_2-Butenoic acid, 3-[(dimethoxyphosphinyl)oxy]-, methyl ester, (2E)-

C7H13O6P (224.045)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals

   

phytolaccosideb

NCGC00384782-01_C36H56O11_2,23-Dihydroxy-29-methoxy-29-oxo-3-(pentopyranosyloxy)olean-12-en-28-oic acid

C36H56O11 (664.3822)


   

CYROMAZINE

Pesticide4_Cyromazine_C6H10N6_Vetrazin

C6H10N6 (166.0967)


D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals CONFIDENCE standard compound; INTERNAL_ID 3021 Cyromazine, the cyclopropyl derivative of melamine, is an insect growth regulator used as an insecticide and acaricide that acts by affecting the nervous system in the larval stages of certain insects.

   

Abietin

(2R,3S,4S,5R,6S)-2-(hydroxymethyl)-6-[4-[(E)-3-hydroxyprop-1-enyl]-2-methoxy-phenoxy]tetrahydropyran-3,4,5-triol

C16H22O8 (342.1315)


Coniferin (Laricin) is a glucoside of coniferyl alcohol. Coniferin inhibits fungal growth and melanization[1]. Coniferin (Laricin) is a glucoside of coniferyl alcohol. Coniferin inhibits fungal growth and melanization[1].

   

DODECANEDIOIC ACID

DODECANEDIOIC ACID

C12H22O4 (230.1518)


An alpha,omega-dicarboxylic acid that is dodecane in which the methyl groups have been oxidised to the corresponding carboxylic acids. Dodecanedioic acid (C12) is a dicarboxylic acid with a metabolic pathway intermediate to those of lipids and carbohydrates.

   

pimelic acid

6-Carboxyhexanoate

C7H12O4 (160.0736)


An alpha,omega-dicarboxylic acid that is pentane with two carboxylic acid groups at positions C-1 and C-5. Pimelic acid is the organic compound and its derivatives are involved in the biosynthesis of the amino acid called lysine. Pimelic acid is the organic compound and its derivatives are involved in the biosynthesis of the amino acid called lysine.

   

Adrenosterone

4-Androstenl-3,11,17-trione

C19H24O3 (300.1725)


A 3-oxo Delta(4)-steroid that is androst-4-ene carrying three oxo-substituents at positions 3, 11 and 17. Adrenosterone ((+)-Adrenosterone) is a competitive hydroxysteroid (11-beta) dehydrogenase 1 (HSD11β1) inhibitor. Adrenosterone is a steroid hormone with weak androgenic effect. Adrenosterone is a dietary supplement that can decrease fat and increase muscle mass. Adrenosterone acts as a suppressor of metastatic progression of human cancer cells[1][2][3].

   

oxymorphone

oxymorphone

C17H19NO4 (301.1314)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids N - Nervous system > N02 - Analgesics > N02A - Opioids > N02AA - Natural opium alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D000700 - Analgesics

   

prazepam

prazepam

C19H17ClN2O (324.1029)


D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents N - Nervous system > N05 - Psycholeptics > N05B - Anxiolytics > N05BA - Benzodiazepine derivatives C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C1012 - Benzodiazepine D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C28197 - Antianxiety Agent

   

10-Hydroxydecanoic acid

10-Hydroxydecanoic acid

C10H20O3 (188.1412)


10-Hydroxydecanoic acid (NSC 15139) is a saturated fatty acid of 10-hydroxy-trans-2-decenoic acid from royal jelly, with anti-inflammatory activity[1].

   

6-Aminopenicillanic acid

6-Aminopenicillanic acid

C8H12N2O3S (216.0569)


A penicillanic acid compound having a (6R)-amino substituent. The active nucleus common to all penicillins; it may be substituted at the 6-amino position to form the semisynthetic penicillins, resulting in a variety of antibacterial and pharmacologic characteristics. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams

   

Lotaustralin

(R)-2-methyl-2-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)butanenitrile

C11H19NO6 (261.1212)


Lotaustralin is a cyanogenic glycoside. Lotaustralin is a natural product found in Osteospermum ecklonis, Lotus arenarius, and other organisms with data available. Lotaustralin is a cyanogenic glucoside isolated from Manihot esculenta [1].

   

triphenylphosphineoxide

TRIPHENYLPHOSPHINE OXIDE

C18H15OP (278.086)


CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 1081

   

protriptyline

protriptyline

C19H21N (263.1674)


N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AA - Non-selective monoamine reuptake inhibitors D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent > C94727 - Tricyclic Antidepressant D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D049990 - Membrane Transport Modulators

   

fenoprofen

calcium(-1) anion; 2-(3-phenoxyphenyl)propanoate

C15H14O3 (242.0943)


M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AE - Propionic acid derivatives D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor D000893 - Anti-Inflammatory Agents D004791 - Enzyme Inhibitors

   

KAEMPFEROL-3-O-RHAMNOSIDE

KAEMPFEROL-3-O-RHAMNOSIDE

C21H20O10 (432.1056)


   

Ginkgolide C

Ginkgolide C, analytical standard

C20H24O11 (440.1319)


Annotation level-1 Ginkgolide C is a flavone isolated from Ginkgo biloba leaves, possessing multiple biological functions, such as decreasing platelet aggregation and ameliorating Alzheimer disease. Ginkgolide C is a flavone isolated from Ginkgo biloba leaves, possessing multiple biological functions, such as decreasing platelet aggregation and ameliorating Alzheimer disease. Ginkgolide C is a flavone isolated from Ginkgo biloba leaves, possessing multiple biological functions, such as decreasing platelet aggregation and ameliorating Alzheimer disease. Ginkgolide C is a flavone isolated from Ginkgo biloba leaves, possessing multiple biological functions, such as decreasing platelet aggregation and ameliorating Alzheimer disease.

   

pyrantel

pyrantel

C11H14N2S (206.0878)


P - Antiparasitic products, insecticides and repellents > P02 - Anthelmintics > P02C - Antinematodal agents > P02CC - Tetrahydropyrimidine derivatives D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents > D009466 - Neuromuscular Blocking Agents D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C250 - Antihelminthic Agent MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; YSAUAVHXTIETRK-AATRIKPKSA-N_STSL_0148_Pyrantel_0031fmol_180418_S2_LC02_MS02_13; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I.

   

Crocin III

(2E,4E,6E,8E,10E,12E,14E)-2,6,11,15-tetramethyl-16-oxo-16-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxyhexadeca-2,4,6,8,10,12,14-heptaenoic acid

C32H44O14 (652.2731)


Beta-D-gentiobiosyl crocetin is a dicarboxylic acid monoester resulting from the formal condensation of one of the carboxylic acid groups of crocetin with the anomeric hydroxy group of beta-D-gentiobiose. It is a dicarboxylic acid monoester, a glycoside and a disaccharide derivative. It is functionally related to a crocetin and a gentiobiose. It is a conjugate acid of a beta-D-gentiobiosyl crocetin(1-). beta-D-gentiobiosyl crocetin is a natural product found in Gardenia jasminoides, Apis cerana, and Crocus sativus with data available. A dicarboxylic acid monoester resulting from the formal condensation of one of the carboxylic acid groups of crocetin with the anomeric hydroxy group of beta-D-gentiobiose.

   

Citreorosein

9,10-Anthracenedione, 1,3,8-trihydroxy-6-(hydroxymethyl)-

C15H10O6 (286.0477)


   

Quinoclamine

2-Amino-3-chloro-1,4-naphthoquinone

C10H6ClNO2 (207.0087)


Precursor ion, [M-H]-, is a 37Cl-isotopolog ion.; The sample was injected by direct infusion.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 19HP8024 to the Mass Spectrometry Society of Japan. The sample was injected by direct infusion.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 19HP8024 to the Mass Spectrometry Society of Japan.

   

2,6-DIHYDROXYBENZOIC ACID

2,6-DIHYDROXYBENZOIC ACID

C7H6O4 (154.0266)


A dihydroxybenzoic acid having the two hydroxy groups at the C-2 and C-6 positions. 2,6-Dihydroxybenzoic acid is a secondary metabolite of salicylic acid which has been hydrolyzed by liver enzymes during phase I metabolism. 2,6-Dihydroxybenzoic acid is a secondary metabolite of salicylic acid which has been hydrolyzed by liver enzymes during phase I metabolism.

   

BENZOYLFORMIC ACID

Phenylglyoxylic acid

C8H6O3 (150.0317)


D000890 - Anti-Infective Agents > D000892 - Anti-Infective Agents, Urinary > D008333 - Mandelic Acids Phenylglyoxylic acid (Benzoylformic acid) is a metabolite of ethylbenzene and styrene (EB/S) and can be used as a biomarker of exposure to EB/S in human[1]. Phenylglyoxylic acid (Benzoylformic acid) is a metabolite of ethylbenzene and styrene (EB/S) and can be used as a biomarker of exposure to EB/S in human[1].

   

Racepinephrine

Alipogene tiparvovec

C9H13NO3 (183.0895)


D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists C - Cardiovascular system > C10 - Lipid modifying agents > C10A - Lipid modifying agents, plain D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D009184 - Mydriatics D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents

   

7,8-Dihydro-L-biopterin

2-amino-6-(1R,2S-dihydroxypropyl)-7,8-dihydro-4(1H)-pteridinone

C9H13N5O3 (239.1018)


7,8-Dihydro-L-biopterin is an oxidation product of tetrahydrobiopterin.

   

ent-Kaurenal

ent-kaur-16-en-19-al

C20H30O (286.2297)


   

Erythrodiol

(3S,4aR,6aR,6bS,8aS,12aS,14aR,14bR)-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-ol

C30H50O2 (442.3811)


Erythrodiol is an olive oil component. Erythrodiol promotes Cholesterol efflux (ChE) by selectively inhibiting the degradation of ABCA1 protein. Erythrodiol is a good candidate to be further explored for therapeutic or preventive application in the context of atherosclerosis[1]. Erythrodiol is an olive oil component. Erythrodiol promotes Cholesterol efflux (ChE) by selectively inhibiting the degradation of ABCA1 protein. Erythrodiol is a good candidate to be further explored for therapeutic or preventive application in the context of atherosclerosis[1].

   

Dihydroneopterin triphosphate

7,8-Dihydroneopterin 3-triphosphate

C9H16N5O13P3 (494.9957)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

benzoate

3,5-Dihydroxybenzoic acid (acd/name 4.0)

C7H6O4 (154.0266)


2,6-Dihydroxybenzoic acid is a secondary metabolite of salicylic acid which has been hydrolyzed by liver enzymes during phase I metabolism. 2,6-Dihydroxybenzoic acid is a secondary metabolite of salicylic acid which has been hydrolyzed by liver enzymes during phase I metabolism. 3,5-Dihydroxybenzoic acid a potential biomarker for the consumption of many food products, including beer, nuts, peanut, and pulses. 3,5-Dihydroxybenzoic acid a potential biomarker for the consumption of many food products, including beer, nuts, peanut, and pulses.

   

FA 7:2;O5

(2R,3S)-2-hydroxybutane-1,2,3-tricarboxylic acid;3-C-carboxy-2,4-dideoxy-2-methyl-D-threo-pentaric acid

C7H10O7 (206.0427)


   

Prostaglandin B1

9-oxo-15S-hydroxy-8(12),13E-prostadienoic acid

C20H32O4 (336.23)


A member of the class of prostaglandins B that is prosta-8(12),13-dien-1-oic acid carrying oxo and hydroxy substituents at positions 9 and 15 respectively (the 13E,15S-stereoisomer).

   

FAL 9:2

(2E,6Z)-2,6-nonadienal;(E,Z)-2,6-nonadienal

C9H14O (138.1045)


   

CoA 5:0

3-methylbutanoyl-coenzyme A;3-methylbutyryl-CoA;3-methylbutyryl-coenzyme A;beta-methylbutanoyl-CoA;beta-methylbutanoyl-coenzyme A;beta-methylbutyryl-CoA;beta-methylbutyryl-coenzyme A;isovaleryl-coenzyme A

C26H44N7O17P3S (851.1727)


   

CoA 4:0

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-2,2-dimethyl-3-{[2-({2-[(2-methylpropanoyl)sulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}propoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C25H42N7O17P3S (837.1571)


   

CoA 10:5;O2

3-phosphoadenosine 5-{3-[(3R)-3-hydroxy-4-({3-[(2-{[(2E)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]sulfanyl}ethyl)amino]-3-oxopropyl}amino)-2,2-dimethyl-4-oxobutyl] dihydrogen diphosphate}

C31H44N7O19P3S (943.1625)


   

dihydrolipoamide

6,8-disulfanyloctanimidic acid

C8H17NOS2 (207.0752)


   

spinasterol

(3S,5S,9R,10S,13R,14R,17R)-17-[(E,1R,4S)-4-ethyl-1,5-dimethyl-hex-2-enyl]-10,13-dimethyl-2,3,4,5,6,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.3705)


α-Spinasterol, isolated from Melandrium firmum, has antibacterial activity[1]. α-Spinasterol is a transient receptor potential vanilloid 1 (TRPV1) antagonist, has anti-inflammatory, antidepressant, antioxidant and antinociceptive effects. α-Spinasterol inhibits COX-1 andCOX-2 activities with IC50 values of 16.17 μM and 7.76 μM, respectively[2]. α-Spinasterol, isolated from Melandrium firmum, has antibacterial activity[1]. α-Spinasterol is a transient receptor potential vanilloid 1 (TRPV1) antagonist, has anti-inflammatory, antidepressant, antioxidant and antinociceptive effects. α-Spinasterol inhibits COX-1 andCOX-2 activities with IC50 values of 16.17 μM and 7.76 μM, respectively[2].

   

ST 26:3;O3

17-heptanoyl-17beta-hydroxyandrost-4-en-3-one

C26H40O3 (400.2977)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D000728 - Androgens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C2360 - Anabolic Steroid

   

Pinocarvone

Pinocarvone

C10H14O (150.1045)


A bridged compound resulting from rearrangement of carvone.

   

alpha-Cubebene

(-)-Alpha-Cubebene

C15H24 (204.1878)


A tricyclic sesquiterpene with formula C15H24, isolated from Hungarian thyme, citrus fruit, chamomile, and several other flowering plants. Constituent of oil of cubeb pepper (Piper cubeba). alpha-Cubebene is found in many foods, some of which are parsley, ginger, nutmeg, and lemon balm.

   

Azepane

Hexamethyleneimine

C6H13N (99.1048)


   

Stilbene oxide

Oxirane, 2,3-diphenyl-,(2R,3S)-rel-

C14H12O (196.0888)


   

D-Galactonic acid, gamma-lactone

D-Galactonic acid, gamma-lactone

C6H10O6 (178.0477)


   

TEMOPORFIN

TEMOPORFIN

C44H32N4O4 (680.2423)


L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01X - Other antineoplastic agents > L01XD - Sensitizers used in photodynamic/radiation therapy D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents D000970 - Antineoplastic Agents C1420 - Photosensitizing Agent D003879 - Dermatologic Agents

   

4-phenolsulfonic acid

4-Hydroxybenzenesulfonic acid

C6H6O4S (173.9987)


   

Cyclacillin

4-Thia-1-azabicyclo[3.2.0]heptane-2-carboxylicacid, 6-[[(1-aminocyclohexyl)carbonyl]amino]-3,3-dimethyl-7-oxo-, (2S,5R,6R)-

C15H23N3O4S (341.1409)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   

Elemicin

Benzene, 1,2,3-trimethoxy-5-(2-propenyl)- (9CI)

C12H16O3 (208.1099)


Elemicin is an orally active alkenylbenzene widely distributed in many herbs and spices. Elemicin inhibits Stearoyl-CoA Desaturase 1 (SCD1) by metabolic activation. Elemicin has anti-influenza activities, antimicrobial, antioxidant, and antiviral activities. Elemicin and its reactive metabolite of 1′-Hydroxyelemicin can induce hepatotoxicity[1][2][3][4]. Elemicin is a alkenylbenzene widely distributed in many herbs and spices. Elemicin inhibits Stearoyl-CoA Desaturase 1 (SCD1) by metabolic activation. Elemicin is one of the main components in aromatic food and has antimicrobial, antioxidant, and antiviral activities. Elemicin possesses genotoxicity and carcinogenicity[1]. Elemicin is a alkenylbenzene widely distributed in many herbs and spices. Elemicin inhibits Stearoyl-CoA Desaturase 1 (SCD1) by metabolic activation. Elemicin is one of the main components in aromatic food and has antimicrobial, antioxidant, and antiviral activities. Elemicin possesses genotoxicity and carcinogenicity[1].

   

446-71-9

4H-1-Benzopyran-4-one, 2,3-dihydro-5,7-dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-, (2S)-

C16H14O6 (302.079)


Homoeriodictyol is a flavonoid metabolite of Eriocitrin in plasma and urine. Eriocitrin is a strong antioxidant agent[1]. Homoeriodictyol is a flavonoid metabolite of Eriocitrin in plasma and urine. Eriocitrin is a strong antioxidant agent[1].

   

Farnesene

1,6,10-Dodecatriene, 7,11-dimethyl-3-methylene-, (6E)-

C15H24 (204.1878)


Isol. (without stereochemical distinction) from oil of Cymbopogon nardus (citronella), Cananga odorata (ylang ylang) and others (E)-β-Farnesene (trans-β-Farnesene) is a volatile sesquiterpene hydrocarbon which can be found in Phlomis aurea Decne essential oil. (E)-β-Farnesene can be used as a feeding stimulant for the sand fly Lutzomyia longipalpis[1][2]. (E)-β-Farnesene (trans-β-Farnesene) is a volatile sesquiterpene hydrocarbon which can be found in Phlomis aurea Decne essential oil. (E)-β-Farnesene can be used as a feeding stimulant for the sand fly Lutzomyia longipalpis[1][2].

   

80605_FLUKA

Bicyclo(3.1.1)hept-2-ene, 2,6,6-trimethyl-, (1theta)-

C10H16 (136.1252)


(1R)-α-Pinene is a volatile monoterpene with antimicrobial activities. (1R)-α-Pinene reduces Bacillus cereus population growth, and exhibits repellent effects[1][2]. (1R)-α-Pinene is a volatile monoterpene with antimicrobial activities. (1R)-α-Pinene reduces Bacillus cereus population growth, and exhibits repellent effects[1][2].

   

Nonox D

InChI=1\C16H13N\c1-2-8-15(9-3-1)17-16-11-10-13-6-4-5-7-14(13)12-16\h1-12,17

C16H13N (219.1048)


   

Terpilene

InChI=1\C10H16\c1-8(2)10-6-4-9(3)5-7-10\h4,6,8H,5,7H2,1-3H

C10H16 (136.1252)


α-Terpinene (Terpilene) is a monoterpene found in the essential oils of a large variety of foods and aromatic plants such as Mentha piperita. α-Terpinene is active against Trypanosoma evansi and has the potential for trypanosomosis treatment. α-Terpinene has antioxidant and antifungal properties[1][2][3][4]. α-Terpinene (Terpilene) is a monoterpene found in the essential oils of a large variety of foods and aromatic plants such as Mentha piperita. α-Terpinene is active against Trypanosoma evansi and has the potential for trypanosomosis treatment. α-Terpinene has antioxidant and antifungal properties[1][2][3][4].

   

Dodecanal

InChI=1\C12H24O\c1-2-3-4-5-6-7-8-9-10-11-12-13\h12H,2-11H2,1H

C12H24O (184.1827)


   

771-50-6

InChI=1\C9H7NO2\c11-9(12)7-5-10-8-4-2-1-3-6(7)8\h1-5,10H,(H,11,12

C9H7NO2 (161.0477)


Indole-3-carboxylic acid is a normal urinary indolic tryptophan metabolite and has been found elevated in patients with liver diseases[1][2]. Indole-3-carboxylic acid is a normal urinary indolic tryptophan metabolite and has been found elevated in patients with liver diseases[1][2].

   

Glucofrangulin

1,6-dihydroxy-3-methyl-8-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]anthracene-9,10-dione

C21H20O10 (432.1056)


Emodin-8-glucoside is an anthraquinone derivative isolated from Aloe vera, binds to minor groove of DNA[1]. Emodin-8-glucoside is an anthraquinone derivative isolated from Aloe vera, binds to minor groove of DNA[1].

   

Senkyunolide A

1(3H)-Isobenzofuranone, 3-butyl-4,5-dihydro-, (S)-

C12H16O2 (192.115)


Senkyunolide A, isolated from Ligusticum chuanxiong Hort, has cytoprotective and antiproliferative activities. Anti-tumor activity[1][2]. Senkyunolide A, isolated from Ligusticum chuanxiong Hort, has cytoprotective and antiproliferative activities. Anti-tumor activity[1][2].

   

Tectochinon

InChI=1\C15H10O2\c1-9-6-7-12-13(8-9)15(17)11-5-3-2-4-10(11)14(12)16\h2-8H,1H

C15H10O2 (222.0681)


Tectoquinone (2-Methylanthraquinone) is a SARSCoV-2 main protease inhibitor against COVID-19. Tectoquinone exhibits strong mosquito larvicidal activity with the LC50 values of 3.3 and 5.4 μg/ml against A. aegypti and A. albopictus in 24 h, respectively[1][2]. Tectoquinone (2-Methylanthraquinone) is a SARSCoV-2 main protease inhibitor against COVID-19. Tectoquinone exhibits strong mosquito larvicidal activity with the LC50 values of 3.3 and 5.4 μg/ml against A. aegypti and A. albopictus in 24 h, respectively[1][2].

   

Streptomycin C

2-[(1S,2R,3R,4S,5R,6R)-2-[[(2R,3R,4R,5S)-3-[[(2S,3S,4S,5R,6S)-4,5-dihydroxy-6-(hydroxymethyl)-3-methylamino-2-tetrahydropyranyl]oxy]-4-formyl-4-hydroxy-5-(hydroxymethyl)-2-tetrahydrofuranyl]oxy]-5-guanidino-3,4,6-trihydroxycyclohexyl]guanidine

C21H39N7O13 (597.2606)


   

Cruex

InChI=1\C11H20O2\c1-2-3-4-5-6-7-8-9-10-11(12)13\h2H,1,3-10H2,(H,12,13

C11H20O2 (184.1463)


D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use C254 - Anti-Infective Agent > C514 - Antifungal Agent 10-Undecenoic acid is used as a starting agent in the synthesis of Pheromone (11Z)-hexadecenal. 10-Undecenoic acid is used as a starting agent in the synthesis of Pheromone (11Z)-hexadecenal.

   

PARALDEHYDE

PARALDEHYDE

C6H12O3 (132.0786)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CC - Aldehydes and derivatives D002491 - Central Nervous System Agents > D000927 - Anticonvulsants

   

SSP-SSP

InChI=1\C6H14S2\c1-3-5-7-8-6-4-2\h3-6H2,1-2H

C6H14S2 (150.0537)


   

Bio1_001201

7-[2-[(E,3S)-3-hydroxyoct-1-enyl]-5-keto-1-cyclopentenyl]enanthic acid

C20H32O4 (336.23)


   

303-07-1

InChI=1\C7H6O4\c8-4-2-1-3-5(9)6(4)7(10)11\h1-3,8-9H,(H,10,11

C7H6O4 (154.0266)


2,6-Dihydroxybenzoic acid is a secondary metabolite of salicylic acid which has been hydrolyzed by liver enzymes during phase I metabolism. 2,6-Dihydroxybenzoic acid is a secondary metabolite of salicylic acid which has been hydrolyzed by liver enzymes during phase I metabolism.

   

Bellidofolin

9H-Xanthen-9-one, 1,5,8-trihydroxy-3-methoxy- (9CI)

C14H10O6 (274.0477)


Bellidifolin is a xanthone isolated from the stems of Swertia punicea, with hepatoprotective, hypoglycemic, anti-oxidation, anti-inflammatory and antitumor activities[1][2][3]. Bellidifolin also acts as a viral protein R (Vpr) inhibitor[4]. Bellidifolin is a xanthone isolated from the stems of Swertia punicea, with hepatoprotective, hypoglycemic, anti-oxidation, anti-inflammatory and antitumor activities[1][2][3]. Bellidifolin also acts as a viral protein R (Vpr) inhibitor[4].

   

557-48-2

InChI=1\C9H14O\c1-2-3-4-5-6-7-8-9-10\h3-4,7-9H,2,5-6H2,1H3\b4-3-,8-7

C9H14O (138.1045)


   

99-94-5

InChI=1\C8H8O2\c1-6-2-4-7(5-3-6)8(9)10\h2-5H,1H3,(H,9,10

C8H8O2 (136.0524)


p-Toluic acid (4-Methylbenzoic acid) is a substituted?benzoic acid?and can be used as an intermediate for the synthesis of para-aminomethylbenzoic acid (PAMBA), p-tolunitrile, etc. p-Toluic acid (4-Methylbenzoic acid) is a substituted?benzoic acid?and can be used as an intermediate for the synthesis of para-aminomethylbenzoic acid (PAMBA), p-tolunitrile, etc.

   

Aceteugenol

InChI=1\C12H14O3\c1-4-5-10-6-7-11(15-9(2)13)12(8-10)14-3\h4,6-8H,1,5H2,2-3H

C12H14O3 (206.0943)


Eugenol acetate (Eugenyl acetate), a major phytochemical constituent of the essential oil exhibits antibacterial, antioxidant, and anti-virulence activities. Eugenol acetate (Eugenyl acetate), a phytochemical in clove essential oil, against clinical isolates of Candida albicans, Candida parapsilosis, Candida tropicalis, and Candida glabrata. Eugenol acetate (Eugenyl acetate), a major phytochemical constituent of the essential oil exhibits antibacterial, antioxidant, and anti-virulence activities. Eugenol acetate (Eugenyl acetate), a phytochemical in clove essential oil, against clinical isolates of Candida albicans, Candida parapsilosis, Candida tropicalis, and Candida glabrata.

   

AI3-02938

InChI=1\C9H10O\c1-8(10)7-9-5-3-2-4-6-9\h2-6H,7H2,1H

C9H10O (134.0732)


   

CHEBI:16741

4-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]benzoic acid

C13H16O8 (300.0845)


   

603-56-5

4H-1-Benzopyran-4-one, 5-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-3,6,7-trimethoxy-

C19H18O8 (374.1002)


Chrysosplenetin is one of the polymethoxylated flavonoids in Artemisia annua L. (Compositae) and other several Chinese herbs. Chrysosplenetin inhibits P-gp activity and reverses the up-regulated P-gp and MDR1 levels induced by artemisinin (ART). Chrysosplenetin significantly augments the rat plasma level and anti-malarial efficacy of ART, partially due to the uncompetitive inhibition effect of Chrysosplenetin on rat CYP3A[1]. Chrysosplenetin is one of the polymethoxylated flavonoids in Artemisia annua L. (Compositae) and other several Chinese herbs. Chrysosplenetin inhibits P-gp activity and reverses the up-regulated P-gp and MDR1 levels induced by artemisinin (ART). Chrysosplenetin significantly augments the rat plasma level and anti-malarial efficacy of ART, partially due to the uncompetitive inhibition effect of Chrysosplenetin on rat CYP3A[1].

   

E160E

2,4,6,8,10,12,14,16-Heptadecaoctaenal, 2,6,11,15-tetramethyl-17-(2,6,6-trimethyl-1-cyclohexen-1-yl)-, (2E,4E,6E,8E,10E,12E,14E,16E)-

C30H40O (416.3079)


D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids β-Apo-8'-carotenal (Apocarotenal), a provitamin A carotenoid, is an inducer of CYPlA1 and CYPlA2 in rat. β-Apo-8'-carotenal is present in many fruits and vegetables[1]. β-Apo-8'-carotenal (Apocarotenal), a provitamin A carotenoid, is an inducer of CYPlA1 and CYPlA2 in rat. β-Apo-8'-carotenal is present in many fruits and vegetables[1].

   

alpha-Santalol

(7R,10Z)-alpha-Santal-10-en-12-ol

C15H24O (220.1827)


Constituent of sandalwood oil. Flavouring agent

   

H-Dab.HBr

L-2,4-Diaminobutyric acid

C4H10N2O2 (118.0742)


A 2,4-diaminobutyric acid that has S-configuration. 2,4-diaminobutyric acid, also known as L-2,4-diaminobutanoate or alpha,gamma-diaminobutyrate, is a member of the class of compounds known as L-alpha-amino acids. L-alpha-amino acids are alpha amino acids which have the L-configuration of the alpha-carbon atom. 2,4-diaminobutyric acid is soluble (in water) and a moderately acidic compound (based on its pKa). 2,4-diaminobutyric acid can be synthesized from butyric acid. 2,4-diaminobutyric acid is also a parent compound for other transformation products, including but not limited to, N(4)-acetyl-L-2,4-diaminobutyric acid, (2S)-2-acetamido-4-aminobutanoic acid, and L-alpha-amino-gamma-oxalylaminobutyric acid. 2,4-diaminobutyric acid can be found in a number of food items such as caraway, chia, atlantic herring, and chayote, which makes 2,4-diaminobutyric acid a potential biomarker for the consumption of these food products. 2,4-diaminobutyric acid can be found primarily in blood and urine. Moreover, 2,4-diaminobutyric acid is found to be associated with alzheimers disease. L-DABA (L-2,4-Diaminobutyric acid) is a week GABA transaminase inhibitor with an IC50 of larger than 500 μM; exhibits antitumor activity in vivo and in vitro. L-DABA (L-2,4-Diaminobutyric acid) is a week GABA transaminase inhibitor with an IC50 of larger than 500 μM; exhibits antitumor activity in vivo and in vitro.

   

Ginkgolid A

(1R,3R,8S,10R,13S,16S,17R)-8-tert-butyl-6,17-dihydroxy-16-methyl-2,4,14,19-tetraoxahexacyclo[8.7.2.01,11.03,7.07,11.013,17]nonadecane-5,15,18-trione

C20H24O9 (408.142)


Ginkgolide A (BN-52020) is an extract from in Ginkgo biloba and a g-aminobutyric acid (GABA) antagonist. Ginkgolide A (BN-52020) is an extract from in Ginkgo biloba and a g-aminobutyric acid (GABA) antagonist. Ginkgolide A (BN-52020) is an extract from in Ginkgo biloba and a g-aminobutyric acid (GABA) antagonist.

   

alpha-Spinasterol

14-[(3E)-5-ethyl-6-methylhept-3-en-2-yl]-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-9-en-5-ol

C29H48O (412.3705)


Constituent of spinach (Spinacia oleracea) leaves, cucumber (Cucumis sativus), alfalfa meal, pumpkin seeds and senega root. alpha-Spinasterol is found in many foods, some of which are bitter gourd, towel gourd, muskmelon, and green vegetables. alpha-Spinasterol is found in alfalfa. alpha-Spinasterol is a constituent of spinach (Spinacia oleracea) leaves, cucumber (Cucumis sativus), alfalfa meal, pumpkin seeds and senega root. α-Spinasterol, isolated from Melandrium firmum, has antibacterial activity[1]. α-Spinasterol is a transient receptor potential vanilloid 1 (TRPV1) antagonist, has anti-inflammatory, antidepressant, antioxidant and antinociceptive effects. α-Spinasterol inhibits COX-1 andCOX-2 activities with IC50 values of 16.17 μM and 7.76 μM, respectively[2]. α-Spinasterol, isolated from Melandrium firmum, has antibacterial activity[1]. α-Spinasterol is a transient receptor potential vanilloid 1 (TRPV1) antagonist, has anti-inflammatory, antidepressant, antioxidant and antinociceptive effects. α-Spinasterol inhibits COX-1 andCOX-2 activities with IC50 values of 16.17 μM and 7.76 μM, respectively[2].

   

42-(Dimethylphosphinate)rapamycin

Ridaforolimus (Deforolimus, MK-8669)

C53H84NO14P (989.5629)


   

Chrysosplenetin

4H-1-Benzopyran-4-one, 5-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-3,6,7-trimethoxy-

C19H18O8 (374.1002)


Chrysosplenetin is a tetramethoxyflavone that is the 3,6,7,3-tetramethyl ether derivative of quercetagetin. It has a role as an antiviral agent and a plant metabolite. It is a tetramethoxyflavone and a dihydroxyflavone. It is functionally related to a quercetagetin. Chrysosplenetin is a natural product found in Haplophyllum myrtifolium, Cleome amblyocarpa, and other organisms with data available. A tetramethoxyflavone that is the 3,6,7,3-tetramethyl ether derivative of quercetagetin. Chrysosplenetin is one of the polymethoxylated flavonoids in Artemisia annua L. (Compositae) and other several Chinese herbs. Chrysosplenetin inhibits P-gp activity and reverses the up-regulated P-gp and MDR1 levels induced by artemisinin (ART). Chrysosplenetin significantly augments the rat plasma level and anti-malarial efficacy of ART, partially due to the uncompetitive inhibition effect of Chrysosplenetin on rat CYP3A[1]. Chrysosplenetin is one of the polymethoxylated flavonoids in Artemisia annua L. (Compositae) and other several Chinese herbs. Chrysosplenetin inhibits P-gp activity and reverses the up-regulated P-gp and MDR1 levels induced by artemisinin (ART). Chrysosplenetin significantly augments the rat plasma level and anti-malarial efficacy of ART, partially due to the uncompetitive inhibition effect of Chrysosplenetin on rat CYP3A[1].

   

Bellidifolin

9H-Xanthen-9-one, 1,5,8-trihydroxy-3-methoxy-

C14H10O6 (274.0477)


Bellidifolin is a member of the xanthone family that is bellidin substituted with a methyl group at O-3. A natural product found particularly in Swertia chirata and Gentianella campestris. It has a role as an EC 3.1.1.7 (acetylcholinesterase) inhibitor, a hypoglycemic agent and a metabolite. It is a member of xanthones and a polyphenol. It is functionally related to a bellidin. Bellidifolin is a natural product found in Gentiana orbicularis, Gentianella amarella, and other organisms with data available. A member of the xanthone family that is bellidin substituted with a methyl group at O-3. A natural product found particularly in Swertia chirata and Gentianella campestris. Bellidifolin is a xanthone isolated from the stems of Swertia punicea, with hepatoprotective, hypoglycemic, anti-oxidation, anti-inflammatory and antitumor activities[1][2][3]. Bellidifolin also acts as a viral protein R (Vpr) inhibitor[4]. Bellidifolin is a xanthone isolated from the stems of Swertia punicea, with hepatoprotective, hypoglycemic, anti-oxidation, anti-inflammatory and antitumor activities[1][2][3]. Bellidifolin also acts as a viral protein R (Vpr) inhibitor[4].

   

Spinasterol

(3S,5S,9R,10S,13R,14R,17R)-17-((2R,5S,E)-5-ethyl-6-methylhept-3-en-2-yl)-10,13-dimethyl-2,3,4,5,6,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.3705)


Alpha-Spinasterol is a steroid. It derives from a hydride of a stigmastane. alpha-Spinasterol is a natural product found in Pandanus utilis, Benincasa hispida, and other organisms with data available. See also: Menyanthes trifoliata leaf (part of). α-Spinasterol, isolated from Melandrium firmum, has antibacterial activity[1]. α-Spinasterol is a transient receptor potential vanilloid 1 (TRPV1) antagonist, has anti-inflammatory, antidepressant, antioxidant and antinociceptive effects. α-Spinasterol inhibits COX-1 andCOX-2 activities with IC50 values of 16.17 μM and 7.76 μM, respectively[2]. α-Spinasterol, isolated from Melandrium firmum, has antibacterial activity[1]. α-Spinasterol is a transient receptor potential vanilloid 1 (TRPV1) antagonist, has anti-inflammatory, antidepressant, antioxidant and antinociceptive effects. α-Spinasterol inhibits COX-1 andCOX-2 activities with IC50 values of 16.17 μM and 7.76 μM, respectively[2].

   

canthinone

1,6-diazatetracyclo[7.6.1.0^{5,16.0^{10,15]hexadeca-3,5(16),6,8,10,12,14-heptaen-2-one

C14H8N2O (220.0637)


Canthin-6-one is an indole alkaloid that is 6H-indolo[3,2,1-de][1,5]naphthyridine substituted by an oxo group at position 6. It has a role as a metabolite and an antimycobacterial drug. It is an indole alkaloid, an organic heterotetracyclic compound and an enone. Canthin-6-one is a natural product found in Zanthoxylum mayu, Zanthoxylum ovalifolium, and other organisms with data available. An indole alkaloid that is 6H-indolo[3,2,1-de][1,5]naphthyridine substituted by an oxo group at position 6. D016573 - Agrochemicals D010575 - Pesticides Canthin-6-one displays a wide range of biological activities, such as antimycobacterial activity[1]. Canthin-6-one displays a wide range of biological activities, such as antimycobacterial activity[1].

   

Picrocrocin

(R)-2,6,6-trimethyl-4-(((2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)cyclohex-1-ene-1-carbaldehyde

C16H26O7 (330.1678)


Picrocrocin is a beta-D-glucoside of beta-cyclocitral; the precursor of safranal. It is the compound most responsible for the bitter taste of saffron. It is functionally related to a beta-cyclocitral. Picrocrocin is a natural product found in Crocus tommasinianus, Crocus sativus, and Crocus vernus with data available. Picrocrocin, an apocarotenoid found in Saffron. Picrocrocin shows anticancer effect. Picrocrocin exhibits growth inhibitory effects against SKMEL-2 human malignant melanoma cells[1]. Picrocrocin, an apocarotenoid found in Saffron. Picrocrocin shows anticancer effect. Picrocrocin exhibits growth inhibitory effects against SKMEL-2 human malignant melanoma cells[1].

   

Apocarotenal

2,4,6,8,10,12,14,16-Heptadecaoctaenal, 2,6,11,15-tetramethyl-17-(2,6,6-trimethyl-1-cyclohexen-1-yl)-, (2E,4E,6E,8E,10E,12E,14E,16E)-

C30H40O (416.3079)


8-apo-beta,psi-caroten-8-al is an apo carotenoid triterpenoid compound arising from oxidative degradation of the beta,beta-carotene skeleton at the 8-position. It is an enal and an apo carotenoid triterpenoid. Apocarotenal is a natural product found in Dracaena draco, Palisota barteri, and other organisms with data available. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids β-Apo-8'-carotenal (Apocarotenal), a provitamin A carotenoid, is an inducer of CYPlA1 and CYPlA2 in rat. β-Apo-8'-carotenal is present in many fruits and vegetables[1]. β-Apo-8'-carotenal (Apocarotenal), a provitamin A carotenoid, is an inducer of CYPlA1 and CYPlA2 in rat. β-Apo-8'-carotenal is present in many fruits and vegetables[1].

   

SULFANILIC ACID

4-Aminobenzenesulfonic acid

C6H7NO3S (173.0147)


An aminobenzenesulfonic acid that is aniline sulfonated at the para-position.

   

MALAOXON

MALAOXON

C10H19O7PS (314.0589)


D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

Arsenic acid

Arsenic acid

AsH3O4 (141.9247)


An arsenic oxoacid comprising one oxo group and three hydroxy groups attached to a central arsenic atom. D010575 - Pesticides > D006540 - Herbicides D009676 - Noxae > D013723 - Teratogens D016573 - Agrochemicals

   

Deethylatrazine

Deethylatrazine

C6H10ClN5 (187.0625)


A chloro-1,3,5-triazine that is 6-chloro-1,3,5-triazine-2,4-diamine in which one of the hydrogens of the amino group is replaced by a propan-2-yl group.

   

Terbuthylazine

Terbuthylazine

C9H16ClN5 (229.1094)


D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

Testosterone Enanthate

Testosterone Enanthate

C26H40O3 (400.2977)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D000728 - Androgens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C2360 - Anabolic Steroid

   

Azinphos-ethyl

Azinphos-ethyl

C12H16N3O3PS2 (345.0371)


C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor

   

MEPHENTERMINE

MEPHENTERMINE

C11H17N (163.1361)


C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides > C01CA - Adrenergic and dopaminergic agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant

   

METOLCARB

METOLCARB

C9H11NO2 (165.079)


C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor

   

hydroxyprogesterone caproate

hydroxyprogesterone caproate

C27H40O4 (428.2926)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D004965 - Estrogen Antagonists D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D011372 - Progestins C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone

   

ACN

2-Amino-3-chloro-1,4-naphthoquinone

C10H6ClNO2 (207.0087)


   

Deisopropylatrazine

Deisopropylatrazine

C5H8ClN5 (173.0468)


A diamino-1,3,5-triazine that is N-ethyl-1,3,5-triazine-2,4-diamine substituted by a chloro group at position 6.

   

Brinzolamide

Brinzolamide

C12H21N3O5S3 (383.0643)


S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01EC - Carbonic anhydrase inhibitors C78283 - Agent Affecting Organs of Special Senses > C29705 - Anti-glaucoma Agent D004791 - Enzyme Inhibitors > D002257 - Carbonic Anhydrase Inhibitors C471 - Enzyme Inhibitor > C29577 - Carbonic Anhydrase Inhibitor

   

4-Chlorobenzoic acid

4-Chlorobenzoic acid

C7H5ClO2 (155.9978)


A monochlorobenzoic acid carrying a chloro substituent at position 4.

   

SULFADOXINE

SULFADOXINE

C12H14N4O4S (310.0736)


D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent D000890 - Anti-Infective Agents > D013424 - Sulfanilamides

   

4-Methylbenzoic acid

4-Methylbenzoic acid

C8H8O2 (136.0524)


p-Toluic acid (4-Methylbenzoic acid) is a substituted?benzoic acid?and can be used as an intermediate for the synthesis of para-aminomethylbenzoic acid (PAMBA), p-tolunitrile, etc. p-Toluic acid (4-Methylbenzoic acid) is a substituted?benzoic acid?and can be used as an intermediate for the synthesis of para-aminomethylbenzoic acid (PAMBA), p-tolunitrile, etc.

   

Cefradine

Cephradine

C16H19N3O4S (349.1096)


A cephalosporin with a methyl substituent at position 3, and a (2R)-2-amino-2-cyclohexa-1,4-dien-1-ylacetamido substituent at position 7, of the cephem skeleton. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DB - First-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   

chlorphenesin

chlorphenesin

C9H11ClO3 (202.0397)


D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D002491 - Central Nervous System Agents

   

Metipranolol

Metipranolol

C17H27NO4 (309.194)


3-(Propan-2-ylamino)propane-1,2-diol in which the hydrogen of the primary hydroxy group is substituted by a 4-acetoxy-2,3,5-trimethylphenoxy group. A non-cardioselective beta-blocker, it is used to lower intra-ocular pressure in the management of open-angle glaucoma. S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01ED - Beta blocking agents C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents Metipranolol is a nonselective and orally active β-adrenergic receptor antagonist. Metipranolol can be used for hypertension and glaucoma research[1][2].

   

Ibutilide

Ibutilide

C20H36N2O3S (384.2447)


C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BD - Antiarrhythmics, class iii C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents C93038 - Cation Channel Blocker

   
   

fema 3377

trans-2,cis-6-nonadienal

C9H14O (138.1045)


   

Cefadroxil

Cefadroxil

C16H17N3O5S (363.0889)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DB - First-generation cephalosporins A cephalosporin bearing methyl and (2R)-2-amino-2-(4-hydroxyphenyl)acetamido groups at positions 3 and 7, respectively, of the cephem skeleton. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   

1,3-Cyclohexanedione

1,3-Cyclohexanedione

C6H8O2 (112.0524)


   

Acetone oxime

Propan-2-one oxime

C3H7NO (73.0528)


   

Propyl disulfide

Dipropyl disulfide

C6H14S2 (150.0537)


An organic disulfide where the alkyl groups specified are propyl. It is a component of the essential oils obtained from Allium.

   

Bekanamycin

Bekanamycin

C18H37N5O10 (483.254)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01G - Aminoglycoside antibacterials C784 - Protein Synthesis Inhibitor > C2363 - Aminoglycoside Antibiotic D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C254 - Anti-Infective Agent > C258 - Antibiotic Bekanamycin (Kanamycin B) is an aminoglycoside antibiotic produced by Streptomyces kanamyceticus, against an array of Gram-positive and Gram-negative bacterial strain[1][2].

   

TRIMETHAPHAN

TRIMETHAPHAN

C22H25N2OS+ (365.1688)


C - Cardiovascular system > C02 - Antihypertensives > C02B - Antiadrenergic agents, ganglion-blocking > C02BA - Sulfonium derivatives C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C66886 - Nicotinic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D005730 - Ganglionic Blockers D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002491 - Central Nervous System Agents

   

Androsta-1,4-diene-3,17-dione

Androsta-1,4-diene-3,17-dione

C19H24O2 (284.1776)


   

16α-Hydroxyestrone

16alpha-hydroxyestrone

C18H22O3 (286.1569)


C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones The 16alpha-hydroxy derivative of estrone; a minor estrogen metabolite.

   

Tazobactam

Tazobactam

C10H12N4O5S (300.0528)


A member of the class of penicillanic acids that is sulbactam in which one of the exocyclic methyl hydrogens is replaced by a 1,2,3-triazol-1-yl group; used (in the form of its sodium salt) in combination with ceftolozane sulfate for treatment of complicated intra-abdominal infections and complicated urinary tract infections. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01C - Beta-lactam antibacterials, penicillins > J01CG - Beta-lactamase inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D065093 - beta-Lactamase Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C2140 - Adjuvant > C183118 - Beta-lactamase Inhibitor D004791 - Enzyme Inhibitors Tazobactam (CL-298741) is a potent β-lactamases inhibitor and penicillin antibiotic. Tazobactam has antibacterial activity. Tazobactam can be used for pneumonia research[1][2].

   

4-Chlorophenylacetic acid

4-Chlorophenylacetic acid

C8H7ClO2 (170.0135)


A monocarboxylic acid that is acetic acid in which one of the methyl hydrogens is substituted by a 4-chlorophenyl group.

   

4-Chlorocatechol

4-Chlorocatechol

C6H5ClO2 (143.9978)


A chlorocatechol that is catechol substituted by a chloro group at position 4.

   

4-CHLOROBIPHENYL

4-CHLOROBIPHENYL

C12H9Cl (188.0393)


   

Fluphenazine decanoate

Fluphenazine decanoate

C32H44F3N3O2S (591.3106)


D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent Fluphenazine decanoate is a dopamine D2 receptor inhibitor, is a long-acting phenothiazine neuroleptic. Fluphenazine can be used for schizophrenia research[1][2][3].

   

Proguanil

Proguanil

C11H16ClN5 (253.1094)


P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01B - Antimalarials > P01BB - Biguanides D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent C471 - Enzyme Inhibitor > C2153 - Dihydrofolate Reductase Inhibitor D007004 - Hypoglycemic Agents > D001645 - Biguanides D009676 - Noxae > D000963 - Antimetabolites

   

Edrophonium

Edrophonium

C10H16NO+ (166.1232)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D020011 - Protective Agents > D000931 - Antidotes V - Various > V04 - Diagnostic agents D004791 - Enzyme Inhibitors

   

Echothiophate

Echothiophate

C9H23NO3PS+ (256.1136)


S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01EB - Parasympathomimetics D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010277 - Parasympathomimetics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D008916 - Miotics C78272 - Agent Affecting Nervous System > C47796 - Cholinergic Agonist D004791 - Enzyme Inhibitors

   

Isovaleryl-CoA

Isovaleryl-CoA

C26H44N7O17P3S (851.1727)


A methylbutanoyl-CoA is the S-isovaleryl derivative of coenzyme A.

   

6-Oxoprostaglandin e1

6-Ketoprostaglandin E1

C20H32O6 (368.2199)


A prostaglandin E that is prostaglandin E1 bearing a keto substituent at the 6-position. D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents

   

4-FLUOROBENZOIC ACID

4-FLUOROBENZOIC ACID

C7H5FO2 (140.0274)


A fluorobenzoic acid carrying a fluoro substituent at position 4.

   

Cinnabarinic acid

Cinnabarinic acid

C14H8N2O6 (300.0382)


Cinnabarinic acid is a specific orthosteric agonist of mGlu4 by interacting with residues of the glutamate binding pocket of mGlu4, has no activity at other mGlu receptors. Cinnabarinic acid is an endogenous metabolite of the kynurenine pathway of tryptophan. Cinnabarinic acid induces cell apoptosis[1].

   

Kyotorphin

Kyotorphin acetate salt

C15H23N5O4 (337.175)


D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D018377 - Neurotransmitter Agents > D018847 - Opioid Peptides D018377 - Neurotransmitter Agents > D004723 - Endorphins Kyotorphin is an endogenou neuroactive dipeptide with analgesic properties. Kyotorphin possesses anti-inflammatory and antimicrobial activity. Kyotorphin levels in cerebro-spinal fluid correlate negatively with the progression of neurodegeneration in Alzheimer's Disease patients[1].

   

4-Hydroxyphenoxyacetic acid

4-Hydroxyphenoxyacetic acid

C8H8O4 (168.0423)


   

Isobutyryl-CoA

Isobutyryl-CoA

C25H42N7O17P3S (837.1571)


A short-chain, methyl-branched fatty acyl-CoA that is the S-isobutyryl derivative of coenzyme A.

   

1-(2,6-Dihydroxy-4-methoxyphenyl)-3-phenylpropan-1-one

1-(2,6-Dihydroxy-4-methoxyphenyl)-3-phenylpropan-1-one

C16H16O4 (272.1049)


   

butirosin A

butirosin A

C21H41N5O12 (555.2752)


A butirosin that consists of neamine in which is substituted at position 2 by a beta-D-xylofuranosyl and at position 4 by an (S)-2-hydroxy-4-aminobutyryl group. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents

   

5-Aminoimidazole ribonucleotide

5-Aminoimidazole ribonucleotide

C8H14N3O7P (295.0569)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

2-Methoxy-5-nitrophenol

2-Methoxy-5-nitrophenol

C7H7NO4 (169.0375)


   

Glu-Glu

Glu-Glu

C10H16N2O7 (276.0957)


A dipeptide composed of two L-glutamic acid units joined by a peptide linkage.

   

N,N-Dimethyladenosine

N6,N6-Dimethyladenosine

C12H17N5O4 (295.128)


N6,N6-Dimethyladenosine is a modified ribonucleoside previously found in rRNA, and also exhibits in mycobacterium bovis Bacille Calmette-Guérin tRNA[1].

   

protoporphyrinogen

Protoporphyrinogen IX

C34H40N4O4 (568.3049)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

D-Fructofuranose

D-Fructofuranose

C6H12O6 (180.0634)


A fructofuranose that has D configuration. D-Fructose (D(-)-Fructose) is a naturally occurring monosaccharide found in many plants. D-Fructose (D(-)-Fructose) is a naturally occurring monosaccharide found in many plants.

   

all-trans-neoxanthin

all-trans-neoxanthin

C40H56O4 (600.4178)


A neoxanthin in which all of the double bonds have trans geometry. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

Formyl-5-hydroxykynurenamine

Formyl-5-hydroxykynurenamine

C10H12N2O3 (208.0848)


A hydroxykynurenamine that is 5-hydroxykynurenamine with the hydrogen on the aryl amine replaced by a formyl group.

   

N-acetyl-2,3-didehydro-2-deoxyneuraminic acid

N-acetyl-2,3-didehydro-2-deoxyneuraminic acid

C11H17NO8 (291.0954)


D004791 - Enzyme Inhibitors

   
   

7alpha-Hydroxypregnenolone

7alpha-Hydroxypregnenolone

C21H32O3 (332.2351)


A 20-oxo steroid that is pregnenolone carrying an additional hydroxy substituent at the 7alpha-position. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

Phenolic steroid

Phenolic steroid

C18H24O (256.1827)


   

4-(beta-D-glucosyloxy)benzoic acid

4-(beta-D-glucosyloxy)benzoic acid

C13H16O8 (300.0845)


A beta-D-glucoside of 4-hydroxybenzoic acid.

   

Phaselic acid

Phaselic acid

C13H12O8 (296.0532)


   

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine N-oxide

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine N-oxide

C12H15NO (189.1154)


   

Miraxanthin-III

Miraxanthin-III

C17H18N2O5 (330.1216)


   

(2S,3S)-2-methylcitric acid

(2S,3S)-2-methylcitric acid

C7H10O7 (206.0427)


The (2S,3S)-diastereomer of 2-methylcitric acid.

   

Disodium phosphate

Disodium hydrogenorthophosphate

Na2HPO4 (141.9408)


C78275 - Agent Affecting Blood or Body Fluid > C29730 - Electrolyte Replacement Agent

   

Dihydromorphine

Dihydromorphine

C17H21NO3 (287.1521)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics

   

Foscan

TEMOPORFIN

C44H32N4O4 (680.2423)


L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01X - Other antineoplastic agents > L01XD - Sensitizers used in photodynamic/radiation therapy D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents D000970 - Antineoplastic Agents C1420 - Photosensitizing Agent D003879 - Dermatologic Agents Same as: D06066

   

Ciclacillin

4-Thia-1-azabicyclo[3.2.0]heptane-2-carboxylicacid, 6-[[(1-aminocyclohexyl)carbonyl]amino]-3,3-dimethyl-7-oxo-, (2S,5R,6R)-

C15H23N3O4S (341.1409)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic Same as: D01334

   

2-Naphthalenesulfonic acid

2-Naphthalenesulfonic acid

C10H8O3S (208.0194)


   

1-Chloro-2,3-epoxypropane

1-Chloro-2,3-epoxypropane

C3H5ClO (92.0029)


   

Acetyl-L-tryptophan

N-Acetyl-L-tryptophan

C13H14N2O3 (246.1004)


A N-acetyl-L-amino acid that is the N-acetyl derivative of L-tryptophan. D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors N-Acetyl-L-tryptophan is an endogenous metabolite.

   

Aminomethylphosphonate

1-Aminomethylphosphonic acid

CH6NO3P (111.0085)


   

Tuberculostearic acid

10-Methyloctadecanoic acid

C19H38O2 (298.2872)


A methyl-branched fatty acid, the structure of which is that of stearic acid carrying a methyl group at C-10.

   

gabaculine

3-Amino-2,3-dihydrobenzoic acid

C7H9NO2 (139.0633)


D004791 - Enzyme Inhibitors

   

Azinphos-methyl

Azinphos-methyl

C10H12N3O3PS2 (317.0058)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D010575 - Pesticides > D056810 - Acaricides D004791 - Enzyme Inhibitors D016573 - Agrochemicals

   

4-Toluenesulfonamide

4-Toluenesulfonamide

C7H9NO2S (171.0354)


C274 - Antineoplastic Agent > C129839 - Apoptotic Pathway-targeting Antineoplastic Agent COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Neozone

2-Phenylaminonaphthalene

C16H13N (219.1048)


   

propazine

propazine

C9H16ClN5 (229.1094)


D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

2,4-DIHYDROXYBENZOPHENONE

2,4-DIHYDROXYBENZOPHENONE

C13H10O3 (214.063)


   

2,6-PCB

2,6-DICHLOROBIPHENYL

C12H8Cl2 (222.0003)


D004785 - Environmental Pollutants > D011078 - Polychlorinated Biphenyls

   

4-Butylphenol

p-Hydroxybutylbenzene

C10H14O (150.1045)


   

Nirvanol

2,4-Imidazolidinedione,5-ethyl-5-phenyl-

C11H12N2O2 (204.0899)


D002491 - Central Nervous System Agents > D000927 - Anticonvulsants

   

2-Methylcitric acid

2-Methylcitric acid

C7H10O7 (206.0427)


2-Methylcitric acid (Methylcitric acid) is an endogenous metabolite in the 2-methylcitric acid cycle. 2-Methylcitric acid accumulates in methylmalonic and propionic acidemias and acts as a marker metabolite. 2-Methylcitric acid markedly inhibits ADP-stimulated and uncoupled respiration in mitochondria supported by glutamate[1]. 2-Methylcitric acid (Methylcitric acid) is an endogenous metabolite in the 2-methylcitric acid cycle. 2-Methylcitric acid accumulates in methylmalonic and propionic acidemias and acts as a marker metabolite. 2-Methylcitric acid markedly inhibits ADP-stimulated and uncoupled respiration in mitochondria supported by glutamate[1]. 2-Methylcitric acid (Methylcitric acid) is an endogenous metabolite in the 2-methylcitric acid cycle. 2-Methylcitric acid accumulates in methylmalonic and propionic acidemias and acts as a marker metabolite. 2-Methylcitric acid markedly inhibits ADP-stimulated and uncoupled respiration in mitochondria supported by glutamate[1].

   

Caryophyllene epoxide

Caryophyllene epoxide

C15H24O (220.1827)


   

3,5-DINITROSALICYLIC ACID

3,5-Dinitro-2-hydroxybenzoic acid

C7H4N2O7 (228.0019)


D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates

   

Bisphenol C

1,1-Dichloro-2,2-bis(4-hydroxyphenyl)ethylene

C14H10Cl2O2 (280.0058)


   

Dihydrogenistein

4,5,7-Trihydroxyisoflavan-4-one

C15H12O5 (272.0685)


A hydroxyisoflavanone comprising isoflavanone carrying three hydroxy substituents at positions 5, 7 and 4.

   

4-Hydroxyretinoic acid

all-trans-4-hydroxyretinoic acid

C20H28O3 (316.2038)


A retinoid that consists of all-trans-retinoic acid bearing a hydroxy substituent at position 4 on the cyclohexenyl ring. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

PCB 47

2,2,4,4-TETRACHLOROBIPHENYL

C12H6Cl4 (289.9224)


D004785 - Environmental Pollutants > D011078 - Polychlorinated Biphenyls

   

2,4,6-Triphenyl-1-hexene

1,5-diphenylhex-5-en-3-ylbenzene

C24H24 (312.1878)


   

Lipoyl-AMP

Lipoyl-AMP

C18H26N5O8PS2 (535.096)


A purine ribonucleoside 5-monophosphate having adenine as the nucleobase and a lipoyl group attached to one of the phosphate OH groups.

   

Azidopine

Azidopine

C27H26F3N5O5 (557.1886)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D000345 - Affinity Labels

   

alpha-Hydroxy-N-desmethyltamoxifen

alpha-Hydroxy-N-desmethyltamoxifen

C25H27NO2 (373.2042)


   

Phenethyl glucosinolate

Phenethyl glucosinolate

C15H21NO9S2 (423.0658)


   

1-Naphthylacetylspermine

1-Naphthylacetylspermine

C22H34N4O (370.2732)


Naspm (1-Naphthyl acetyl spermine), a synthetic analogue of Joro spider toxin, is a calcium permeable AMPA (CP-AMPA) receptors antagonist.

   

(2R,3S)-2-methylcitric acid

(2R,3S)-2-methylcitric acid

C7H10O7 (206.0427)