Bilirubin diglucuronide (BioDeep_00000005951)
human metabolite Endogenous blood metabolite Volatile Flavor Compounds
代谢物信息卡片
化学式: C45H52N4O18 (936.3276452)
中文名称:
谱图信息:
最多检出来源 Homo sapiens(feces) 1.67%
分子结构信息
SMILES: C=CC1=C(C)C(=Cc2[nH]c(Cc3[nH]c(C=C4NC(=O)C(C)=C4C=C)c(C)c3CCC(=O)OC3OC(C(=O)O)C(O)C(O)C3O)c(CCC(=O)OC3OC(C(=O)O)C(O)C(O)C3O)c2C)NC1=O
InChI: InChI=1S/C45H52N4O18/c1-7-20-19(6)40(58)49-27(20)14-25-18(5)23(10-12-31(51)65-45-37(57)33(53)35(55)39(67-45)43(62)63)29(47-25)15-28-22(17(4)24(46-28)13-26-16(3)21(8-2)41(59)48-26)9-11-30(50)64-44-36(56)32(52)34(54)38(66-44)42(60)61/h7-8,13-14,32-39,44-47,52-57H,1-2,9-12,15H2,3-6H3,(H,48,59)(H,49,58)(H,60,61)(H,62,63)/b26-13-,27-14-/t32-,33-,34-,35-,36+,37+,38-,39-,44+,45+/m0/s1
描述信息
Bilirubin diglucuronide is a glucuronidated version of bilirubin, a tetrapyrrole compound produced via heme degradation. Heme is the red pigment in haemoglobin and red blood cells (RBCs). RBCs have a life span of about 120 days. When the RBCs have reached the end of their useful lifespan, the cells are engulfed by macrophages and their constituents recycled or disposed of. Heme is broken down when the heme ring is opened by the enzyme known as heme oxygenase, which is found in the endoplasmic reticulum of the macrophages. The oxidation process produces the linear tetrapyrrole known as biliverdin along with ferric iron (Fe3+), and carbon monoxide (CO). In the next reaction, a second methylene group (located between rings III and IV of the porphyrin ring) is reduced by the enzyme known as biliverdin reductase, producing bilirubin. Bilirubin is significantly less extensively conjugated than biliverdin. This reduction causes a change in the color of the biliverdin molecule from blue-green (vert or verd for green) to yellow-red, which is the color of bilirubin (ruby or rubi for red). In plasma virtually all the bilirubin is tightly bound to plasma proteins, largely albumin, because it is only sparingly soluble in aqueous solutions at physiological pH. In the sinusoids unconjugated bilirubin dissociates from albumin, enters the liver cells across the cell membrane through non-ionic diffusion to the smooth endoplasmatic reticulum. In hepatocytes, bilirubin-UDP-glucuronyltransferase (bilirubin-UGT) adds 2 additional glucuronic acid molecules to bilirubin to produce the more water-soluble version of the molecule known as bilirubin diglucuronide. The bilirubin diglucuronide is transferred rapidly across the canalicular membrane into the bile canaliculi where it is then excreted as bile into the large intestine.
同义名列表
12 个代谢物同义名
(2S,3S,4S,5R,6S)-6-{[3-(2-{[3-(3-{[(2S,3R,4S,5S,6S)-6-carboxy-3,4,5-trihydroxyoxan-2-yl]oxy}-3-oxopropyl)-5-{[(2E)-3-ethenyl-4-methyl-5-oxo-2,5-dihydro-1H-pyrrol-2-ylidene]methyl}-4-methyl-1H-pyrrol-2-yl]methyl}-5-{[(2E)-4-ethenyl-3-methyl-5-oxo-2,5-dihydro-1H-pyrrol-2-ylidene]methyl}-4-methyl-1H-pyrrol-3-yl)propanoyl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid; (2S,3S,4S,5R,6S)-6-[3-[2-[[3-[2-[(2S,3R,4S,5S,6S)-6-carboxy-3,4,5-trihydroxy-oxan-2-yl]oxycarbonylethyl]-5-[(E)-(3-ethenyl-4-methyl-5-oxo-pyrrol-2-ylidene)methyl]-4-methyl-1H-pyrrol-2-yl]methyl]-5-[(E)-(4-ethenyl-3-methyl-5-oxo-pyrrol-2-ylidene)methyl]-4-methyl-1H-pyrrol-3-yl]propanoyloxy]-3,4,5-trihydroxy-oxane-2-carboxylic acid; (2S,3S,4S,5R,6S)-6-[3-[2-[[3-[2-[(2S,3R,4S,5S,6S)-6-carboxy-3,4,5-trihydroxy-oxan-2-yl]oxycarbonylethyl]-5-[(E)-(3-ethenyl-4-methyl-5-oxo-pyrrol-2-ylidene)methyl]-4-methyl-1H-pyrrol-2-yl]methyl]-5-[(E)-(4-ethenyl-3-methyl-5-oxo-pyrrol-2-ylidene)methyl]-4-methyl-1H-pyrrol-3-yl]propanoyloxy]-3,4,5-trihydroxy-oxane-2-carboxylate; Bis(glucosyluronic acid)bilirubin; Bilirubin ixalpha diglucuronide; Bilirubin beta-diglucuronide; Bilirubin ixα diglucuronide; Bilirubin-bisglucuronoside; Bilirubin diglucuronide; Bilirubin glucuronide; FT-0663115; Bilirubin beta-diglucuronide
数据库引用编号
16 个数据库交叉引用编号
- KEGG: C05787
- PubChem: 5280817
- PubChem: 5459911
- PubChem: 5120112
- HMDB: HMDB0003325
- Metlin: METLIN6883
- ChEMBL: CHEMBL1743142
- Wikipedia: Bilirubin diglucuronide
- chemspider: 4444368
- CAS: 17459-92-6
- PMhub: MS000018865
- ChEBI: CHEBI:18392
- PubChem: 8082
- 3DMET: B01895
- NIKKAJI: J345.141K
- KNApSAcK: 18392
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
25 个相关的代谢反应过程信息。
Reactome(6)
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Porphyrin metabolism:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Heme degradation:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Glucuronidation:
BIL + UDP-GlcA ⟶ BMG + UDP
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(19)
- Porphyrin Metabolism:
AH2 + Heme + Oxygen ⟶ A + Biliverdin + Carbon monoxide + Fe2+ + Water
- Acute Intermittent Porphyria:
AH2 + Heme + Oxygen ⟶ A + Biliverdin + Carbon monoxide + Fe2+ + Water
- Porphyria Variegata (PV):
AH2 + Heme + Oxygen ⟶ A + Biliverdin + Carbon monoxide + Fe2+ + Water
- Congenital Erythropoietic Porphyria (CEP) or Gunther Disease:
AH2 + Heme + Oxygen ⟶ A + Biliverdin + Carbon monoxide + Fe2+ + Water
- Hereditary Coproporphyria (HCP):
AH2 + Heme + Oxygen ⟶ A + Biliverdin + Carbon monoxide + Fe2+ + Water
- Hexuronide and Hexuronate Degradation:
Bilirubin diglucuronide + Water ⟶ Benzyl alcohol + D-glucopyranuronate
- Porphyrin Metabolism:
AH2 + Heme + Oxygen ⟶ A + Biliverdin + Carbon monoxide + Fe2+ + Water
- Porphyrin Metabolism:
AH2 + Heme + Oxygen ⟶ A + Biliverdin + Carbon monoxide + Fe2+ + Water
- Acute Intermittent Porphyria:
AH2 + Heme + Oxygen ⟶ A + Biliverdin + Carbon monoxide + Fe2+ + Water
- Congenital Erythropoietic Porphyria (CEP) or Gunther Disease:
AH2 + Heme + Oxygen ⟶ A + Biliverdin + Carbon monoxide + Fe2+ + Water
- Hereditary Coproporphyria (HCP):
AH2 + Heme + Oxygen ⟶ A + Biliverdin + Carbon monoxide + Fe2+ + Water
- Porphyria Variegata (PV):
AH2 + Heme + Oxygen ⟶ A + Biliverdin + Carbon monoxide + Fe2+ + Water
- Porphyrin Metabolism:
AH2 + Heme + Oxygen ⟶ A + Biliverdin + Carbon monoxide + Fe2+ + Water
- Porphyrin Metabolism:
AH2 + Heme + Oxygen ⟶ A + Biliverdin + Carbon monoxide + Fe2+ + Water
- Porphyrin Metabolism:
AH2 + Heme + Oxygen ⟶ A + Biliverdin + Carbon monoxide + Fe2+ + Water
- Acute Intermittent Porphyria:
AH2 + Heme + Oxygen ⟶ A + Biliverdin + Carbon monoxide + Fe2+ + Water
- Congenital Erythropoietic Porphyria (CEP) or Gunther Disease:
AH2 + Heme + Oxygen ⟶ A + Biliverdin + Carbon monoxide + Fe2+ + Water
- Hereditary Coproporphyria (HCP):
AH2 + Heme + Oxygen ⟶ A + Biliverdin + Carbon monoxide + Fe2+ + Water
- Porphyria Variegata (PV):
AH2 + Heme + Oxygen ⟶ A + Biliverdin + Carbon monoxide + Fe2+ + Water
PharmGKB(0)
1 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Sameer Yaseen Al-Abdi. Decreased Glutathione S-transferase Level and Neonatal Hyperbilirubinemia Associated with Glucose-6-phosphate Dehydrogenase Deficiency: A Perspective Review.
American journal of perinatology.
2017 02; 34(3):305-314. doi:
10.1055/s-0036-1585465
. [PMID: 27464020] - György Lengyel, Zsuzsa Veres, Pál Szabó, László Vereczkey, Katalin Jemnitz. Canalicular and sinusoidal disposition of bilirubin mono- and diglucuronides in sandwich-cultured human and rat primary hepatocytes.
Drug metabolism and disposition: the biological fate of chemicals.
2005 Sep; 33(9):1355-60. doi:
10.1124/dmd.105.004481
. [PMID: 15951449] - Koichi Suto, Akira Fuse, Yukio Igarashi, Wataru Kimura. Significance of altered bilirubin subfractions in bile following hepatectomy.
The Journal of surgical research.
2002 Jul; 106(1):62-9. doi:
10.1006/jsre.2002.6437
. [PMID: 12127809] - F Ito, H Ando, Y Watanabe, T Ito. Serum bilirubin fractions in cholestatic pediatric patients: determination with Micronex high-performance liquid chromatography.
Journal of pediatric surgery.
1995 Apr; 30(4):596-9. doi:
10.1016/0022-3468(95)90140-x
. [PMID: 7595843] - Y Adachi, H Kobayashi, M Shouji, M Kitano, Y Okuyama, T Yamamoto. Functional integrity of hepatocyte canalicular membrane transport of taurocholate and bilirubin diglucuronide in Eisai hyperbilirubinuria rats.
Life sciences.
1993; 52(9):777-84. doi:
10.1016/0024-3205(93)90075-e
. [PMID: 8437507] - Y Adachi, A Kambe, M Yamashita, T Yamamoto. Bilirubin diglucuronide as the main source for in vitro formation of delta bilirubin.
Journal of clinical laboratory analysis.
1991; 5(5):331-4. doi:
10.1002/jcla.1860050507
. [PMID: 1941353] - H Saxerholt, V Skar, T Midtvedt. HPLC separation and quantification of bilirubin and its glucuronide conjugates in faeces and intestinal contents of germ-free rats.
Scandinavian journal of clinical and laboratory investigation.
1990 Sep; 50(5):487-95. doi:
10.1080/00365519009089163
. [PMID: 2237261] - W Van Steenbergen, J Fevery. Effects of uridine diphosphate glucuronosyltransferase activity on the maximal secretion rate of bilirubin conjugates in the rat.
Gastroenterology.
1990 Aug; 99(2):488-99. doi:
10.1016/0016-5085(90)91032-2
. [PMID: 2114335] - Y Adachi, H Katoh, I Fuchi, T Yamamoto. Serum bilirubin fractions in healthy subjects and patients with unconjugated hyperbilirubinemia.
Clinical biochemistry.
1990 Jun; 23(3):247-51. doi:
10.1016/0009-9120(90)90705-y
. [PMID: 2372939] - Y Adachi, J Roy-Chowdhury, N Roy-Chowdhury, R Kinne, T Tran, H Kobayashi, I M Arias. Hepatic uptake of bilirubin diglucuronide: analysis by using sinusoidal plasma membrane vesicles.
Journal of biochemistry.
1990 May; 107(5):749-54. doi:
10.1093/oxfordjournals.jbchem.a123120
. [PMID: 2398040] - A Sieg, A Stiehl, K P Heirwegh, J Fevery, R Raedsch, B Kommerell. Similarities in maximal biliary bilirubin output in the normal rat after administration of unconjugated bilirubin or bilirubin diglucuronide.
Hepatology (Baltimore, Md.).
1989 Jul; 10(1):14-20. doi:
10.1002/hep.1840100104
. [PMID: 2737598] - M Yamashita, Y Adachi, A Kambe, T Nanno, S Nagase, T Yamamoto. Serum binding and biliary excretion of bilirubin after bilirubin loading in Nagase analbuminemic rats and heterozygous (Jj) Gunn rats.
The Journal of laboratory and clinical medicine.
1988 Oct; 112(4):443-9. doi:
. [PMID: 3171353]
- J M Crawford, J L Gollan. Hepatocyte cotransport of taurocholate and bilirubin glucuronides: role of microtubules.
The American journal of physiology.
1988 Jul; 255(1 Pt 1):G121-31. doi:
10.1152/ajpgi.1988.255.1.g121
. [PMID: 3389412] - H Yoshida, T Inagaki, M Hirano, T Sugimoto. Analyses of azopigments obtained from the delta fraction of bilirubin from mammalian plasma (mammalian biliprotein).
The Biochemical journal.
1987 Nov; 248(1):79-84. doi:
10.1042/bj2480079
. [PMID: 3435450] - S Tazuma, R T Holzbach. Transport of conjugated bilirubin and other organic anions in bile: relation to biliary lipid structures.
Proceedings of the National Academy of Sciences of the United States of America.
1987 Apr; 84(7):2052-6. doi:
10.1073/pnas.84.7.2052
. [PMID: 3470776] - D J Smith, E R Gordon. Role of the physical state of the hepatic microsomal membrane in the formation of bilirubin diglucuronide.
Journal of hepatology.
1987 Feb; 4(1):1-7. doi:
10.1016/s0168-8278(87)80002-8
. [PMID: 3571927] - D I Whitmer, P E Russell, J C Ziurys, J L Gollan. Hepatic microsomal glucuronidation of bilirubin is modulated by the lipid microenvironment of membrane-bound substrate.
The Journal of biological chemistry.
1986 Jun; 261(16):7170-7. doi:
. [PMID: 3711082]
- W H Peters, P L Jansen. Microsomal UDP-glucuronyltransferase-catalyzed bilirubin diglucuronide formation in human liver.
Journal of hepatology.
1986; 2(2):182-94. doi:
10.1016/s0168-8278(86)80077-0
. [PMID: 3082969] - J Fevery. The bilirubin diglucuronide controversy.
Journal of hepatology.
1985; 1(4):437-42. doi:
10.1016/s0168-8278(85)80781-9
. [PMID: 3932512] - E R Gordon, P J Meier, C A Goresky, J L Boyer. Mechanism and subcellular site of bilirubin diglucuronide formation in rat liver.
The Journal of biological chemistry.
1984 May; 259(9):5500-6. doi:
. [PMID: 6715357]
- M Muraca, N Blanckaert. Liquid-chromatographic assay and identification of mono- and diester conjugates of bilirubin in normal serum.
Clinical chemistry.
1983 Oct; 29(10):1767-71. doi:
NULL
. [PMID: 6616822] - J R Chowdhury, N R Chowdhury. Conjugation and excretion of bilirubin.
Seminars in liver disease.
1983 Feb; 3(1):11-23. doi:
10.1055/s-2008-1040667
. [PMID: 6403990] - J R Chowdhury, N R Chowdhury, U Gärtner, A W Wolkoff, I M Arias. Bilirubin diglucuronide formation in intact rats and in isolated Gunn rat liver.
The Journal of clinical investigation.
1982 Mar; 69(3):595-603. doi:
10.1172/jci110486
. [PMID: 6801091] - A Sieg, G P van Hees, K P Heirwegh. Uridine diphosphate-glucuronic acid-independent conversion of bilirubin monoglucuronides to diglucuronide in presence of plasma membranes from rat liver is nonenzymic.
The Journal of clinical investigation.
1982 Feb; 69(2):347-57. doi:
10.1172/jci110458
. [PMID: 7056852] - A H Neims. The elimination of bilirubin.
Mead Johnson Symposium on Perinatal and Developmental Medicine.
1982; ?(19):9-12. doi:
NULL
. [PMID: 6821468]