Tetramethylscutellarein (BioDeep_00000396697)

 

Secondary id: BioDeep_00000009915, BioDeep_00000270718

human metabolite PANOMIX_OTCML-2023 Endogenous


代谢物信息卡片


4H-1-Benzopyran-4-one, 5,6, 7-trimethoxy-2-(4-methoxyphenyl)-

化学式: C19H18O6 (342.1103)
中文名称: 4',5,6,7-四甲氧基黄酮, 4,5,6,7-四甲氧基黄酮, 黄芩四甲基醚
谱图信息: 最多检出来源 Chinese Herbal Medicine(otcml) 12.34%

分子结构信息

SMILES: c1(c(c(c2c(c1)oc(cc2=O)c1ccc(cc1)OC)OC)OC)OC
InChI: InChI=1S/C19H18O6/c1-21-12-7-5-11(6-8-12)14-9-13(20)17-15(25-14)10-16(22-2)18(23-3)19(17)24-4/h5-10H,1-4H3

描述信息

Tetramethylscutellarein, also known as 4,5,6,7-tetramethoxyflavone or 5-methoxysalvigenin, belongs to the class of organic compounds known as 7-O-methylated flavonoids. These are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, tetramethylscutellarein is considered to be a flavonoid lipid molecule. Tetramethylscutellarein is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Outside of the human body, tetramethylscutellarein is found, on average, in the highest concentration within sweet oranges. Tetramethylscutellarein has also been detected, but not quantified, in herbs, spices, tea. This could make tetramethylscutellarein a potential biomarker for the consumption of these foods. Tetramethylscutellarein is isolated from Salvia officinalis (sage) leaves.
4,5,6,7-tetramethoxyflavone is a tetramethoxyflavone that is the tetra-O-methyl derivative of scutellarein. It has a role as an antimutagen and a plant metabolite. It is functionally related to a scutellarein.
4,5,6,7-Tetramethoxyflavone is a natural product found in Ageratina altissima, Chromolaena odorata, and other organisms with data available.
See also: Tangerine peel (part of); Citrus aurantium fruit rind (part of).
Isolated from Salvia officinalis (sage) leaves. Tetramethylscutellarein is found in tea, sweet orange, and herbs and spices.
A tetramethoxyflavone that is the tetra-O-methyl derivative of scutellarein.
Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) is a bioactive component of Siam weed extract. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) exhibits anti-inflammatory activity through NF-κB pathway[1]. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) modulats of bacterial agent resistance via efflux pump inhibition[2]. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) can enhance blood coagulation[3].
Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) is a bioactive component of Siam weed extract. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) exhibits anti-inflammatory activity through NF-κB pathway[1]. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) modulats of bacterial agent resistance via efflux pump inhibition[2]. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) can enhance blood coagulation[3].

同义名列表

34 个代谢物同义名

4H-1-Benzopyran-4-one, 5,6, 7-trimethoxy-2-(4-methoxyphenyl)-; 4H-1-Benzopyran-4-one, 5,6,7-trimethoxy-2-(4-methoxyphenyl)-; 5,6,7-Trimethoxy-2-(4-methoxyphenyl)-4H-1-benzopyran-4-one; 4H-1-Benzopyran-4-one,6,7-trimethoxy-2-(4-methoxyphenyl)-; 5,6,7-Trimethoxy-2-(4-methoxyphenyl)-4H-chromen-4-one #; 5,6,7-Trimethoxy-2-(4-methoxyphenyl)-4H-chromen-4-one; 5,6,7-trimethoxy-2-(4-methoxyphenyl)chromen-4-one; Scutellarein 5,6,7,4-tetramethyl ether; Flavone, 4,5,6,7-tetramethoxy- (8CI); PECTOLINARIGENIN DIMETHYL ETHER; Scutellarein tetramethyl ether; Flavone, 4,5,6,7-tetramethoxy-; Flavone, 5,6,7,4-tetramethoxy; Scutellarein tetramethylether; 4, 5,6,7-Tetramethoxyflavone; 5,6,7,4’-Tetramethoxyflavone; 4’,5,6,7-Tetramethoxyflavone; 4,5,6,7-tetramethoxy flavone; 4,5,6,7-Tetramethoxy-Flavone; Scutellareintetramethylether; 5,6,7,4-Tetramethoxyflavone; Flavone,5,6,7-tetramethoxy-; 4,5,6,7-tetramethoxyflavone; Tetra-O-methylscutellarein; 4,6,7-Tetramethoxyflavone; Tetramethyl-O-scutellarin; Tetramethylscutellarein; Tetrametlglscutellarein; 5-METHOXYSALVIGENIN; Oprea1_070007; NCI60_004329; ACon1_001966; 4',5,6,7-Tetramethoxyflavone; 4',5,6,7-Tetramethoxyflavone



数据库引用编号

19 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

16 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 9 CAT, CDH1, IL13, MSMP, NFKBIA, PTEN, PTGS2, SNAI1, TFDP3
Peripheral membrane protein 1 PTGS2
Endoplasmic reticulum membrane 1 PTGS2
Nucleus 7 CDH1, NFKBIA, PTEN, SNAI1, SOX9, TFDP3, ZEB1
cytosol 7 CAT, CD44, CDH1, NFKBIA, PTEN, SNAI1, ZEB1
trans-Golgi network 1 CDH1
nucleoplasm 7 CDH1, LGR5, NFKBIA, PTEN, SNAI1, SOX9, ZEB1
Cell membrane 5 CD44, CDH1, DPP4, LGR5, TNF
lamellipodium 2 CDH1, DPP4
Multi-pass membrane protein 2 LGR5, PROM1
cell junction 2 CDH1, DPP4
cell surface 4 CD44, DPP4, PROM1, TNF
glutamatergic synapse 1 CDH1
Golgi apparatus 3 CD44, CDH1, LGR5
lysosomal membrane 2 DPP4, GAA
neuronal cell body 1 TNF
postsynapse 1 CDH1
Lysosome 1 GAA
endosome 1 CDH1
plasma membrane 9 CD44, CDH1, DPP4, GAA, LGR5, NFKBIA, PROM1, PTEN, TNF
Membrane 5 CAT, CD44, CDH1, DPP4, GAA
apical plasma membrane 4 CD44, DPP4, PROM1, PTEN
basolateral plasma membrane 1 CD44
caveola 1 PTGS2
extracellular exosome 6 CAT, CD44, CDH1, DPP4, GAA, PROM1
Lysosome membrane 1 GAA
endoplasmic reticulum 2 PROM1, PTGS2
extracellular space 6 IL10, IL13, IL4, MSMP, PROM1, TNF
lysosomal lumen 1 GAA
perinuclear region of cytoplasm 1 CDH1
adherens junction 1 CDH1
intercellular canaliculus 1 DPP4
mitochondrion 1 CAT
protein-containing complex 3 CAT, PTGS2, SOX9
intracellular membrane-bounded organelle 3 CAT, GAA, SNAI1
Microsome membrane 1 PTGS2
postsynaptic density 1 PTEN
pericentric heterochromatin 1 SNAI1
Single-pass type I membrane protein 2 CD44, CDH1
Secreted 8 CD44, DPP4, GAA, IL10, IL13, IL4, MSMP, PRB1
extracellular region 11 CAT, CD44, CDH1, DPP4, GAA, IL10, IL13, IL4, PRB1, PTEN, TNF
cytoplasmic side of plasma membrane 2 CDH1, PTEN
Single-pass membrane protein 2 CD44, DPP4
mitochondrial matrix 1 CAT
anchoring junction 1 DPP4
transcription regulator complex 2 SOX9, TFDP3
photoreceptor outer segment 1 PROM1
nuclear membrane 1 CDH1
external side of plasma membrane 2 IL13, TNF
actin cytoskeleton 1 CDH1
dendritic spine 1 PTEN
recycling endosome 1 TNF
Single-pass type II membrane protein 2 DPP4, TNF
vesicle 1 PROM1
Apical cell membrane 2 DPP4, PROM1
Membrane raft 2 DPP4, TNF
focal adhesion 3 CAT, CD44, DPP4
Cell junction, adherens junction 1 CDH1
flotillin complex 1 CDH1
Peroxisome 1 CAT
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
Cell projection, dendritic spine 1 PTEN
Nucleus, PML body 1 PTEN
PML body 1 PTEN
lateral plasma membrane 1 CDH1
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
Cell projection, neuron projection 1 PTEN
neuron projection 2 PTEN, PTGS2
cilium 1 PROM1
chromatin 3 SOX9, TFDP3, ZEB1
cell projection 2 CD44, PTEN
phagocytic cup 1 TNF
Cell projection, cilium, photoreceptor outer segment 1 PROM1
Golgi apparatus, trans-Golgi network 1 CDH1
Cell projection, microvillus membrane 1 PROM1
microvillus membrane 1 PROM1
fibrillar center 1 SNAI1
Endomembrane system 1 DPP4
microvillus 2 CD44, PROM1
Cell projection, microvillus 1 CD44
tertiary granule membrane 1 GAA
trans-Golgi network membrane 1 LGR5
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 1 CAT
secretory granule membrane 1 CD44
endoplasmic reticulum lumen 1 PTGS2
endocytic vesicle 1 DPP4
azurophil granule membrane 1 GAA
Schmidt-Lanterman incisure 1 PTEN
anaphase-promoting complex 1 CDH1
endoplasmic reticulum-Golgi intermediate compartment 1 PROM1
[Isoform 2]: Nucleus 1 CDH1
ficolin-1-rich granule membrane 1 GAA
apical junction complex 1 CDH1
photoreceptor outer segment membrane 1 PROM1
prominosome 1 PROM1
Cell junction, desmosome 1 CDH1
desmosome 1 CDH1
catenin complex 1 CDH1
lamellipodium membrane 2 CD44, DPP4
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
catalase complex 1 CAT
macrophage migration inhibitory factor receptor complex 1 CD44
Cell projection, lamellipodium membrane 1 DPP4
Cell projection, invadopodium membrane 1 DPP4
myelin sheath adaxonal region 1 PTEN
autolysosome lumen 1 GAA
[Isoform alpha]: Secreted 1 PTEN
I-kappaB/NF-kappaB complex 1 NFKBIA
[Dipeptidyl peptidase 4 soluble form]: Secreted 1 DPP4
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Angela Bisio, Anna M Schito, Francesca Pedrelli, Ombeline Danton, Jakob K Reinhardt, Giulio Poli, Tiziano Tuccinardi, Thomas Bürgi, Francesco De Riccardis, Mauro Giacomini, Daniela Calzia, Isabella Panfoli, Gian Carlo Schito, Matthias Hamburger, Nunziatina De Tommasi. Antibacterial and ATP Synthesis Modulating Compounds from Salvia tingitana. Journal of natural products. 2020 04; 83(4):1027-1042. doi: 10.1021/acs.jnatprod.9b01024. [PMID: 32182064]
  • Stephen S Nyandoro, Joan J E Munissi, Msim Kombo, Clarence A Mgina, Fangfang Pan, Amra Gruhonjic, Paul Fitzpatrick, Yu Lu, Bin Wang, Kari Rissanen, Máté Erdélyi. Flavonoids from Erythrina schliebenii. Journal of natural products. 2017 02; 80(2):377-383. doi: 10.1021/acs.jnatprod.6b00839. [PMID: 28112509]
  • Yelin Kang, Bong-Gyu Kim, Sunghoon Kim, Youngshim Lee, Youngdae Yoon. Inhibitory potential of flavonoids on PtdIns(3,4,5)P3 binding with the phosphoinositide-dependent kinase 1 pleckstrin homology domain. Bioorganic & medicinal chemistry letters. 2017 02; 27(3):420-426. doi: 10.1016/j.bmcl.2016.12.051. [PMID: 28049590]
  • Elke H Heiss, Thi Van Anh Tran, Kristin Zimmermann, Stefan Schwaiger, Corina Vouk, Barbara Mayerhofer, Clemens Malainer, Atanas G Atanasov, Hermann Stuppner, Verena M Dirsch. Identification of chromomoric acid C-I as an Nrf2 activator in Chromolaena odorata. Journal of natural products. 2014 Mar; 77(3):503-8. doi: 10.1021/np400778m. [PMID: 24476568]
  • Hataichanok Pandith, Xiaobo Zhang, Suchitra Thongpraditchote, Yuvadee Wongkrajang, Wandee Gritsanapan, Seung Joon Baek. Effect of Siam weed extract and its bioactive component scutellarein tetramethyl ether on anti-inflammatory activity through NF-κB pathway. Journal of ethnopharmacology. 2013 May; 147(2):434-41. doi: 10.1016/j.jep.2013.03.033. [PMID: 23535395]
  • Guo-An Zou, Zhi-Heng Su, Hong-Wu Zhang, Yuan Wang, Jun-Shan Yang, Zhong-Mei Zou. Flavonoids from the stems of Croton caudatus Geisel. var. tomentosus Hook. Molecules (Basel, Switzerland). 2010 Feb; 15(3):1097-102. doi: 10.3390/molecules15031097. [PMID: 20335965]
  • Zhenyu Wang, Shiming Li, Stephen Ferguson, Robert Goodnow, Chi-Tang Ho. Validated reversed phase LC method for quantitative analysis of polymethoxyflavones in citrus peel extracts. Journal of separation science. 2008 Jan; 31(1):30-7. doi: 10.1002/jssc.200700331. [PMID: 18095294]
  • Anastasia Karioti, Anastasia Protopappa, Nikolaos Megoulas, Helen Skaltsa. Identification of tyrosinase inhibitors from Marrubium velutinum and Marrubium cylleneum. Bioorganic & medicinal chemistry. 2007 Apr; 15(7):2708-14. doi: 10.1016/j.bmc.2007.01.035. [PMID: 17287127]
  • Shiming Li, Haiqing Yu, Chi-Tang Ho. Nobiletin: efficient and large quantity isolation from orange peel extract. Biomedical chromatography : BMC. 2006 Jan; 20(1):133-8. doi: 10.1002/bmc.540. [PMID: 15999338]
  • S Moro, A M van Rhee, L H Sanders, K A Jacobson. Flavonoid derivatives as adenosine receptor antagonists: a comparison of the hypothetical receptor binding site based on a comparative molecular field analysis model. Journal of medicinal chemistry. 1998 Jan; 41(1):46-52. doi: 10.1021/jm970446z. [PMID: 9438021]
  • T Triratana, R Suwannuraks, W Naengchomnong. Effect of Eupatorium odoratum on blood coagulation. Journal of the Medical Association of Thailand = Chotmaihet thangphaet. 1991 May; 74(5):283-7. doi: . [PMID: 1783877]
  • P Szylman, O S Better, C Chaimowitz, A Rosler. Role of hyperkalemia in the metabolic acidosis of isolated hypoaldosteronism. The New England journal of medicine. 1976 Feb; 294(7):361-5. doi: 10.1056/nejm197602122940703. [PMID: 1674]