Subcellular Location: Endomembrane system

Found 500 associated metabolites.

398 associated genes. ACAP2, ADAM15, ADCY5, ADTRP, AGMO, AGPAT3, AGPAT4, AGPAT5, AIG1, ANKRD13A, ANKRD13B, AP1B1, AP1G1, AP1G2, AP1M1, AP1M2, AP1S2, AP1S3, AP2A2, AP2B1, AP2M1, AP3B1, AP3B2, AP3D1, AP3M2, AP3S2, AP4B1, AP4E1, AP4M1, AP4S1, AP5M1, APLP1, APLP2, AQP8, ARCN1, ARFGAP2, ARHGAP21, ARL6IP1, ARPIN-AP3S2, ASPSCR1, ATP10A, ATP10B, ATP11A, ATP11B, ATP11C, ATP2A1, ATP6V1G2, ATP6V1G2-DDX39B, ATP8A2, ATP8B2, ATP8B4, ATP9A, ATP9B, AVEN, BACE1, BCL2L10, BCL2L11, BCL2L14, BIK, BPNT2, CACFD1, CADPS, CADPS2, CAPN12, CAPN3, CAPNS1, CCDC25, CD1B, CDAN1, CDC42EP1, CDC42EP2, CDC42EP3, CDC42EP4, CDC42EP5, CELSR1, CHID1, CHMP1A, CHP1, CHPT1, CLN3, CLPTM1, CLPTM1L, CLTC, CLTCL1, CNMD, COPB1, COPG1, CTNNB1, CTNS, CYB5D2, DEGS1, DIO1, DIRAS1, DNAJC1, DNM1L, DOCK2, DOCK9, DPAGT1, DPP4, DRAM1, DRAM2, EHD1, ELAPOR1, ELAPOR2, ERC1, ERMP1, ERRFI1, FAAH, FCHO1, FIBP, FIG4, FKBP8, FLOT1, FRS2, GABARAP, GABARAPL2, GALNT1, GALNT13, GALNT14, GALNT15, GALNT3, GALNTL5, GASK1A, GASK1B, GBF1, GCA, GCC1, GDPD5, GGCX, GNPAT, GNPTG, GOLT1B, GOSR1, GOSR2, GRIP1, GSDMA, GSDMB, GSDMD, HACE1, HEPACAM, HEPACAM2, HFE, HRAS, HTT, ICA1, ICA1L, IFT22, IGF2R, ILDR2, ITPR1, ITSN1, JAK1, JAK2, JAK3, JMY, KCNG4, KCNV1, KRAS, LAPTM4A, LAPTM4B, LAPTM5, LARS1, LCLAT1, LDLR, LMAN1, LMAN1L, LMAN2, LMAN2L, LMBR1L, LPGAT1, LRP8, LRPAP1, LSR, LZTR1, M6PR, MAP1LC3A, MAP1LC3B, MAP1LC3B2, MAP1LC3C, MARCHF2, MBTPS2, MCF2L, MEST, MFNG, MFSD1, MFSD8, MINAR1, MMGT1, MOSPD2, MRAS, MS4A3, MTM1, MTMR1, MTMR4, MTMR7, MTOR, NBEA, NCEH1, NENF, NHERF1, NHERF2, NLRP3, NPC1, NPC1L1, NRBP1, NUCB1, PARD3, PARD3B, PDCD1LG2, PDLIM4, PGAP1, PGAP3, PGRMC1, PGRMC2, PIP5K1B, PIP5K1C, PITPNM2, PITPNM3, PJVK, PKD1, PKD1L1, PKD1L2, PKD2, PNLIPRP2, POGLUT1, POGLUT2, POGLUT3, POMK, POMT1, POMT2, PRICKLE1, PRKCD, PSEN2, PTGES2, PTGS1, PTPN1, PTPN2, PTPN5, PTPRR, RAB11FIP1, RAB11FIP5, RAB14, RAB17, RAB18, RAB19, RAB1A, RAB1B, RAB1C, RAB20, RAB21, RAB22A, RAB23, RAB24, RAB28, RAB29, RAB2A, RAB31, RAB32, RAB33B, RAB38, RAB41, RAB43, RAB5A, RAB5B, RAB5C, RAB6A, RAB6B, RAB6C, RAB6D, RABL2A, RABL2B, RABL3, RAC3, RALA, RAP1A, RAP1B, RAP2A, RAP2C, RAPGEF3, RETSAT, RHEB, RHEBL1, RIC8A, RIT1, RIT2, RNASEK, RNF128, RNF139, RNF145, RNF167, RNF34, RNF5, RNFT1, ROCK2, RRAS2, RUFY3, SCAP, SEC23B, SFT2D1, SFT2D2, SFT2D3, SLC17A1, SLC17A3, SLC17A9, SLC22A3, SLC26A9, SLC27A1, SLC2A10, SLC2A12, SLC2A4, SLC35B4, SLC37A3, SLC37A4, SLC50A1, SLC6A4, SLC8A2, SNAP47, SNX10, SNX11, SNX18, SNX27, SPECC1, SPNS1, SPPL2A, SPPL2C, SPPL3, SRD5A3, SRI, SSR4, STAC, STX10, STX11, STX12, STX16, STX17, STX19, STX1A, STX1B, STX2, STX3, STX4, STX5, STX6, STX7, STX8, SUCO, SYP, SYT1, SYTL3, SYVN1, TAAR1, TAPBP, TBC1D24, TBC1D7, TEX28, TEX28P2, TLR7, TLR8, TM6SF1, TMCC1, TMCC2, TMCC3, TMEM106A, TMEM106C, TMEM135, TMEM150C, TMEM199, TMEM230, TMEM41B, TMEM43, TMEM53, TMEM97, TMPRSS3, TMPRSS5, TMX1, TMX4, TNFRSF17, TNK2, TRARG1, TRIM23, TSNARE1, VAC14, VAMP4, VAMP5, VAMP7, VEPH1, VLDLR, VMP1, VPS33A, VPS41, VPS45, VPS4A, VTI1A, VTI1B, WLS, YKT6, ZDHHC12, ZDHHC5

Mukurozidiol

7H-Furo(3,2-g)(1)benzopyran-7-one, 9-(2,3-dihydroxy-3-methylbutoxy)-4-methoxy-, (R)-

C17H18O7 (334.1052)


Constituent of Japanese drug byakusi obtained from Angelica subspecies Also from lemon oil and other Citrus subspecies [DFC]. (R)-Byakangelicin is found in lemon, citrus, and herbs and spices. Byakangelicin is a member of psoralens. Byakangelicin is a natural product found in Murraya koenigii, Triphasia trifolia, and other organisms with data available. (S)-Byakangelicin is found in herbs and spices. (S)-Byakangelicin is a constituent of common rue (Ruta graveolens). D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins (Rac)-Byakangelicin is a racemate of Byakangelicin mainly isolated from the genus Angelica. Byakangelicin is an aldose-reductase inhibitor with an IC50 value of 6.2 μM[1]. (Rac)-Byakangelicin is a racemate of Byakangelicin mainly isolated from the genus Angelica. Byakangelicin is an aldose-reductase inhibitor with an IC50 value of 6.2 μM[1]. Byakangelicin, one of the active compounds found in the roots of Angelica gigas, can serve as a modulator to improve brain accumulation of diverse active compounds (Umb, Cur, and Dox) and enhance therapeutic effects[1]. Byakangelicin is likely to increase the expression of all PXR target genes (such as MDR1) and induce a wide range of agent-agent interactions. Byakangelicin can inhibit the effects of sex hormones, it may increase the catabolism of endogenous hormones[2]. Byakangelicin, one of the active compounds found in the roots of Angelica gigas, can serve as a modulator to improve brain accumulation of diverse active compounds (Umb, Cur, and Dox) and enhance therapeutic effects[1]. Byakangelicin is likely to increase the expression of all PXR target genes (such as MDR1) and induce a wide range of agent-agent interactions. Byakangelicin can inhibit the effects of sex hormones, it may increase the catabolism of endogenous hormones[2].

   

Hypaconitine

(3S,6S,6aS,7R,7aR,8R,9R,10S,11S,11aR,12R,13R,14R)-11a-acetoxy-9,11-dihydroxy-6,10,13-trimethoxy-3-(methoxymethyl)-1-methyltetradecahydro-1H-3,6a,12-(epiethane[1,1,2]triyl)-7,9-methanonaphtho[2,3-b]azocin-8-yl benzoate

C33H45NO10 (615.3043)


Hypaconitine is a diterpenoid. Hypaconitine is a natural product found in Aconitum japonicum, Aconitum firmum, and other organisms with data available. Annotation level-1 Hypaconitine, an active and highly toxic constituent derived from Aconitum species, is widely used to treat rheumatism. IC50 value: Target: In vitro: The present study investigated the metabolism of hypaconitine in vitro using male human liver microsomes. The primary contributors toward HA metabolism were CYP3A4 and 3A5, with secondary contributions by CYP2C19, 2D6 and CYP2E1 [1]. In vivo: Hypaconitine, an active and highly toxic constituent derived from Aconitum species, is widely used to treat rheumatism. IC50 value: Target: In vitro: The present study investigated the metabolism of hypaconitine in vitro using male human liver microsomes. The primary contributors toward HA metabolism were CYP3A4 and 3A5, with secondary contributions by CYP2C19, 2D6 and CYP2E1 [1]. In vivo:

   

Coniferin

(2R,3S,4S,5R,6S)-2-(Hydroxymethyl)-6-(4-((E)-3-hydroxyprop-1-en-1-yl)-2-methoxyphenoxy)tetrahydro-2H-pyran-3,4,5-triol

C16H22O8 (342.1315)


Coniferin (CAS: 531-29-3), also known as abietin or coniferoside, belongs to the class of organic compounds known as phenolic glycosides. These are organic compounds containing a phenolic structure attached to a glycosyl moiety. Some examples of phenolic structures include lignans and flavonoids. Among the sugar units found in natural glycosides are D-glucose, L-fructose, and L-rhamnose. Coniferin is an extremely weak basic (essentially neutral) compound (based on its pKa). Coniferin is a monosaccharide derivative consisting of coniferol attached to a beta-D-glucopyranosyl residue at position 1 via a glycosidic linkage. Coniferin is found in asparagus and has been isolated from Scorzonera hispanica (black salsify). Coniferin is a monosaccharide derivative that is coniferol attached to a beta-D-glucopyranosyl residue at position 1 via a glycosidic linkage. It has a role as a plant metabolite. It is a cinnamyl alcohol beta-D-glucoside, an aromatic ether and a monosaccharide derivative. It is functionally related to a coniferol. Coniferin is a natural product found in Salacia chinensis, Astragalus onobrychis, and other organisms with data available. A monosaccharide derivative that is coniferol attached to a beta-D-glucopyranosyl residue at position 1 via a glycosidic linkage. Isolated from Scorzonera hispanica (scorzonera) Coniferin (Laricin) is a glucoside of coniferyl alcohol. Coniferin inhibits fungal growth and melanization[1]. Coniferin (Laricin) is a glucoside of coniferyl alcohol. Coniferin inhibits fungal growth and melanization[1].

   

Eurycomalactone

(1S,2R,5S,9S,10S,11R,12R,13R,16R)-9,12-dihydroxy-2,6,10,16-tetramethyl-14-oxatetracyclo[11.2.1.02,11.05,10]hexadec-6-ene-3,8,15-trione

C19H24O6 (348.1573)


Eurycomalactone is a steroid lactone. Eurycomalactone is a natural product found in Eurycoma longifolia with data available. Eurycomalactone is an active quassinoid could be isolated from Eurycoma longifolia Jack. Eurycomalactone is a potent NF-κB inhibitor with an IC50 value of 0.5 μM. Eurycomalactone inhibits protein synthesis and depletes cyclin D1. Eurycomalactone enhances radiosensitivity through arrest cell cycle at G2/M phase and delayed DNA double-strand break repair. Eurycomalactone inhibits the activation of AKT/NF-κB signaling, induces apoptosis and enhances chemosensitivity to Cisplatin (HY-17394)[1][2][3].

   

Nervonic acid

(15Z)-tetracos-15-enoic acid

C24H46O2 (366.3498)


Nervonic acid is a long chain unsaturated fatty acid that is enriched in sphingomyelin. It consists of choline, sphingosine, phosphoric acid, and fatty acid. Nervonic acid may enhance the brain functions and prevent demyelination (Chemical Land21). Research shows that there is negative relationship between nervonic acid and obesity-related risk factors (PMID:16394593). Demyelination in adrenoleukodystrophy (ALD) is associated with an accumulation of very long chain saturated fatty acids stemming from a genetic defect in the peroxisomal beta oxidation system responsible for the chain shortening of these fatty acids. Sphingolipids from post mortem ALD brain have decreased levels of nervonic acid, 24:1(n-9), and increased levels of stearic acid, 18:0. (PMID:8072429). (15Z)-tetracosenoic acid is a tetracosenoic acid having a cis-double bond at position 15. It is a conjugate acid of a (15Z)-tetracosenoate. Nervonic acid is a natural product found in Tropaeolum speciosum, Calophyllum inophyllum, and other organisms with data available. Nervonic Acid is a monounsaturated fatty acid with a 24-carbon backbone and the sole double bond originating from the 9th carbon from the methyl end, with this bond in the cis- configuration. See also: Borage Seed Oil (part of). A tetracosenoic acid having a cis-double bond at position 15. Present in fish and rape seed oils Nervonic acid is a monounsaturated fatty acid important in the biosynthesis of myelin. Nervonic acid is a monounsaturated fatty acid important in the biosynthesis of myelin.

   

Maltotetraose

(3R,4R,5S,6R)-5-{[(2R,3R,4R,5S,6R)-5-{[(2R,3R,4R,5S,6R)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-6-(hydroxymethyl)oxane-2,3,4-triol

C24H42O21 (666.2218)


Maltotetraose belongs to the class of organic compounds known as oligosaccharides. These are carbohydrates made up of 3 to 10 monosaccharide units linked to each other through glycosidic bonds. Maltotetraose exists in all living organisms, ranging from bacteria to humans. Outside of the human body, maltotetraose has been detected, but not quantified in several different foods, such as welsh onions, kales, small-leaf lindens, other bread, and romaine lettuces. Maltotetraose is a normal human oligo saccharide present in plasma, but is elevated in cases of Pompe disease (PMID 15886040). Alpha-D-Glcp-(1->4)-alpha-D-Glcp-(1->4)-alpha-D-Glcp-(1->4)-D-Glcp is a maltotetraose tetrasaccharide consisting of three alpha-D-glucopyranose residues and a D-glucopyranose residue joined in sequence by (1->4) glycosidic bonds. Amylotetraose is a natural product found in Streptomyces with data available. Constituent of corn syrup. Product of action of a-amylase on starch. Maltooligosaccharide mixtures are important food additives (sweeteners, gelling agents and viscosity modifiers) D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents Maltotetraose can be used as a substrate for the enzyme-coupled determination of amylase activity in biological fluids. Maltotetraose can be used as a substrate for the enzyme-coupled determination of amylase activity in biological fluids.

   

Jionoside B1

[(2R,3R,4R,5R,6R)-5-hydroxy-6-[2-(3-hydroxy-4-methoxy-phenyl)ethoxy]-2-[[(2R,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]oxymethyl]-4-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-tetrahydropyran-2-yl]oxy-tetrahydropyran-3-yl] (E)-3-(4-hydroxy-3-methoxy-phenyl)prop-2-enoate

C37H50O20 (814.2895)


Jionoside B1 is an oligosaccharide. Jionoside B1 is a natural product found in Lamium purpureum and Rehmannia glutinosa with data available. Jionoside B1 is a phenylpropanoid isolated from herbs of Eriophyton wallichii. Jionoside B1 is a phenylpropanoid isolated from herbs of Eriophyton wallichii.

   

(R)-Citronellal

(R)-(+)-Citronellal, technical grade, 90\\%

C10H18O (154.1358)


(R)-(+)-citronellal is the (3R)-stereoisomer of 3,7-dimethyloct-6-enal (citronellal). It is an enantiomer of a (S)-(-)-citronellal. (R)-(+)-Citronellal is a natural product found in Litsea cubeba, Backhousia citriodora, and other organisms with data available. (R)-Citronellal is found in citrus. (R)-Citronellal is a constituent of citronella oil. Also in citrus, lavender, eucalyptus oils and others. (R)-Citronellal is a flavouring agent Constituent of citronella oiland is) also in citrus, lavender, eucalyptus oils and others. Flavouring agent. (R)-Citronellal is found in lemon balm, citrus, and herbs and spices. The (3R)-stereoisomer of 3,7-dimethyloct-6-enal (citronellal). (R)-(+)-Citronellal, isolated from citrus, lavender and eucalyptus oils, is a monoterpenoid and main component of citronellal oil with a distinct lemon scent. A flavouring agent. Used for insect repellent and antifungal properties[1][2]. (R)-(+)-Citronellal, isolated from citrus, lavender and eucalyptus oils, is a monoterpenoid and main component of citronellal oil with a distinct lemon scent. A flavouring agent. Used for insect repellent and antifungal properties[1][2].

   

(-)-Pinoresinol

4-[(3R,3aS,6R,6aS)-6-(3-methoxy-4-oxidanyl-phenyl)-1,3,3a,4,6,6a-hexahydrofuro[3,4-c]furan-3-yl]-2-methoxy-phenol

C20H22O6 (358.1416)


(-)-pinoresinol is an enantiomer of pinoresinol having (-)-1R,3aS,4R,6aS-configuration. It has a role as a plant metabolite. (-)-Pinoresinol is a natural product found in Dendrobium loddigesii, Forsythia suspensa, and other organisms with data available. An enantiomer of pinoresinol having (-)-1R,3aS,4R,6aS-configuration.

   

Tramiprosate

Acamprosate impurity A, European Pharmacopoeia (EP) Reference Standard

C3H9NO3S (139.0303)


3-aminopropanesulfonic acid is an amino sulfonic acid that is the 3-amino derivative of propanesulfonic acid. It has a role as an algal metabolite, a nootropic agent, an anticonvulsant, a GABA agonist and an anti-inflammatory agent. It is a tautomer of a 3-aminopropanesulfonic acid zwitterion. D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018755 - GABA Agonists D002491 - Central Nervous System Agents > D000927 - Anticonvulsants C26170 - Protective Agent > C1509 - Neuroprotective Agent Tramiprosate (Homotaurine), an orally active and brain-penetrant natural amino acid found in various species of red marine algae. Tramiprosate binds to soluble Aβ and maintains Aβ in a non-fibrillar form. Tramiprosate is also a GABA analog and possess neuroprotection, anticonvulsion and antihypertension effects[1][2][3].

   

Azulene

InChI=1/C10H8/c1-2-5-9-7-4-8-10(9)6-3-1/h1-8

C10H8 (128.0626)


Azulene is a mancude carbobicyclic parent consisting of a cycloheptatriene and cyclopentadiene rings. It has a role as a plant metabolite and a volatile oil component. It is an ortho-fused bicyclic arene, a member of azulenes and a mancude carbobicyclic parent. Azulene is a natural product found in Anthemis cretica, Achillea millefolium, and other organisms with data available. Azulene is one of over 100 different polycyclic aromatic hydrocarbons (PAHs). PAHs are chemicals that are formed during the incomplete burning organic substances, such as fossil fuels. They are usually found as a mixture containing two or more of these compounds. (L10) A mancude carbobicyclic parent consisting of a cycloheptatriene and cyclopentadiene rings. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Same as: D09768 Azulene (Cyclopentacycloheptene) is as an isomer of naphthalene with high anti-HIV activity. Azulene, isolated from the distillation of chamomile oil, is a scaffold in medicinal chemistry[1][2][3]. Azulene (Cyclopentacycloheptene) is as an isomer of naphthalene with high anti-HIV activity. Azulene, isolated from the distillation of chamomile oil, is a scaffold in medicinal chemistry[1][2][3].

   

Vomifoliol

2-Cyclohexen-1-one, 4-hydroxy-4-((1E,3R)-3-hydroxy-1-buten-1-yl)-3,5,5-trimethyl-, (4S)-rel-

C13H20O3 (224.1412)


A fenchane monoterpenoid that is 3,5,5-trimethylcyclohex-2-en-1-one substituted by a hydroxy and a (1E)-3-hydroxybut-1-en-1-yl group at position 4. (6S,9R)-vomifoliol is a (6S)-vomifoliol with a R configuration for the hydroxy group at position 9. It has a role as a phytotoxin and a metabolite. It is an enantiomer of a (6R,9S)-vomifoliol. Vomifoliol is a natural product found in Sida acuta, Macrococculus pomiferus, and other organisms with data available. A (6S)-vomifoliol with a R configuration for the hydroxy group at position 9.

   

DUB OM HTO

(Z)-9-octadecenoic acid, methyl ester;methyl (Z)-9-octadecenoate;methyl cis-9-octadecenoate;methyl-cis-oleate

C19H36O2 (296.2715)


Oleic acid methyl ester is a clear to amber liquid. Insoluble in water. (NTP, 1992) Methyl oleate is a fatty acid methyl ester resulting from the formal condensation of the carboxy group of oleic acid with methanol. It is functionally related to an oleic acid. Methyl oleate is a natural product found in Anchietea pyrifolia, Lepidium meyenii, and other organisms with data available. Methyl oleate is a fatty acid methyl ester (FAME). Methyl oleate substantially improves the antioxidation ability but markedly impaired the antiwear capacity of zinc dialkyldithiophosphate (ZDDP)[1]. Methyl oleate is a fatty acid methyl ester (FAME). Methyl oleate substantially improves the antioxidation ability but markedly impaired the antiwear capacity of zinc dialkyldithiophosphate (ZDDP)[1].

   

Cannabisin F

2-Propenamide, 3-(4-hydroxy-3-methoxyphenyl)-N-[2-(4-hydroxyphenyl)ethyl]-2-[4-[(1E)-3-[[2-(4-hydroxyphenyl)ethyl]amino]-3-oxo-1-propen-1-yl]-2-methoxyphenoxy]-, (2Z)-

C36H36N2O8 (624.2472)


Cannabisin F is a natural product found in Mitrephora tomentosa, Mitrephora thorelii, and Cannabis sativa with data available.

   

Dihydrovaltrate

Butanoic acid, 3-methyl-, 6-(acetyloxy)-4a,5,6,7a-tetrahydro-4-((3-methyl-1-oxobutoxy)methyl)spiro(cyclopenta(c)pyran-7(1H),2-oxiran)-1-yl ester, (1S-(1-alpha,4a-alpha,6-alpha,7-beta,7a-alpha))-

C22H32O8 (424.2097)


Didrovaltratum is an iridoid monoterpenoid. Didrovaltrate is a natural product found in Valeriana pulchella, Fedia cornucopiae, and other organisms with data available. See also: Viburnum opulus bark (has part). Isolated from Valeriana subspecies Dihydrovaltrate is found in tea, fats and oils, and herbs and spices. Dihydrovaltrate is found in fats and oils. Dihydrovaltrate is isolated from Valeriana specie C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic

   

Valencene

NAPHTHALENE, 1,2,3,5,6,7,8,8A-OCTAHYDRO-1,8A-DIMETHYL-7-(1-METHYLETHENYL)-, (1R-(1.ALPHA.,7.BETA.,8A.ALPHA.))-

C15H24 (204.1878)


(+)-valencene is a carbobicyclic compound and sesquiterpene that is 1,2,3,4,4a,5,6,7-octahydronaphthalene which is substituted a prop-1-en-2-yl group at position 3 and by methyl groups at positions 4a and 5 (the 3R,4aS,5R- diastereoisomer). It is a sesquiterpene, a carbobicyclic compound and a polycyclic olefin. Valencene is a natural product found in Xylopia sericea, Helichrysum odoratissimum, and other organisms with data available. Valencene is found in citrus. Valencene is a constituent of orange oil Valencene is a sesquiterpene isolated from Cyperus rotundus, possesses antiallergic, antimelanogenesis, anti-infammatory, and antioxidant activitivies. Valencene inhibits the exaggerated expression of Th2 chemokines and proinflammatory chemokines through blockade of the NF-κB pathway. Valencene is used to flavor foods and drinks[1][2][3].

   

beta-Carotinal

2,4,6,8,10,12,14,16-Heptadecaoctaenal, 2,6,11,15-tetramethyl-17-(2,6,6-trimethyl-1-cyclohexen-1-yl)-, (2E,4E,6E,8E,10E,12E,14E,16E)-

C30H40O (416.3079)


8-apo-beta,psi-caroten-8-al is an apo carotenoid triterpenoid compound arising from oxidative degradation of the beta,beta-carotene skeleton at the 8-position. It is an enal and an apo carotenoid triterpenoid. Apocarotenal is a natural product found in Dracaena draco, Palisota barteri, and other organisms with data available. Constituent of orange peel, spinach, marigolds and egg yolks. Colour additive. beta-Carotinal is found in many foods, some of which are eggs, green vegetables, sweet orange, and citrus. beta-Carotinal is found in citrus. beta-Carotinal is a constituent of orange peel, spinach, marigolds and egg yolks. Colour additive. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids β-Apo-8'-carotenal (Apocarotenal), a provitamin A carotenoid, is an inducer of CYPlA1 and CYPlA2 in rat. β-Apo-8'-carotenal is present in many fruits and vegetables[1]. β-Apo-8'-carotenal (Apocarotenal), a provitamin A carotenoid, is an inducer of CYPlA1 and CYPlA2 in rat. β-Apo-8'-carotenal is present in many fruits and vegetables[1].

   

Marrubiin

2H-Naphtho(1,8-bc)furan-2-one, 6-(2-(3-furanyl)ethyl)decahydro-6-hydroxy-2a,5a,7-trimethyl-, (2aS-(2aalpha,5abeta,6alpha,7alpha,8aalpha,8balpha))-

C20H28O4 (332.1987)


Marrubiin is a gamma-lactone. Marrubiin is a natural product found in Marrubium globosum, Marrubium anisodon, and other organisms with data available. Marrubiin, isolated from Marrubium vulgare, exhibits vasorelaxant and antioedematogenic activity. Marrubiin alleviates diabetic symptoms in animals[1][2][3].

   

Cycloartenol

(3R,6S,11S,12S,15R,16R)-7,7,12,16-tetramethyl-15-[(2R)-6-methylhept-5-en-2-yl]pentacyclo[9.7.0.0^{1,3}.0^{3,8}.0^{12,16}]octadecan-6-ol

C30H50O (426.3861)


Cycloartenol is found in alcoholic beverages. Cycloartenol is a constituent of Artocarpus integrifolia fruits and Solanum tuberosum (potato) Cycloartenol is a sterol precursor in photosynthetic organisms and plants. The biosynthesis of cycloartenol starts from the triterpenoid squalene. Its structure is also related to triterpenoid lanosterol Cycloartenol is a pentacyclic triterpenoid, a 3beta-sterol and a member of phytosterols. It has a role as a plant metabolite. It derives from a hydride of a lanostane. Cycloartenol is a natural product found in Euphorbia nicaeensis, Euphorbia boetica, and other organisms with data available. Constituent of Artocarpus integrifolia fruits and Solanum tuberosum (potato)

   

Eucommiol

1-Cyclopentene-1,2-dimethanol, 4-hydroxy-3-(2-hydroxyethyl)-, (3R,4R)-

C9H16O4 (188.1049)


Eucommiol is an alicyclic compound that is cyclopent-3-en-1-ol carrying additional hydroxymethyl substituents at positions 3 and 4 as well as a 2-hydroxyethyl substituent at position 2 (the 1R,2R-diastereomer). It has a role as a sedative and a plant metabolite. It is a tetrol, a primary allylic alcohol and an alicyclic compound. Eucommiol is a natural product found in Aucuba japonica, Vitex trifolia, and other organisms with data available. An alicyclic compound that is cyclopent-3-en-1-ol carrying additional hydroxymethyl substituents at positions 3 and 4 as well as a 2-hydroxyethyl substituent at position 2 (the 1R,2R-diastereomer).

   

bruceosideA

methyl (1R,2S,3R,6R,8S,9S,13S,14R,15R,16S,17S)-15,16-dihydroxy-9,13-dimethyl-3-(3-methylbut-2-enoyloxy)-4,10-dioxo-11-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-5,18-dioxapentacyclo[12.5.0.01,6.02,17.08,13]nonadec-11-ene-17-carboxylate

C32H42O16 (682.2473)


Bruceoside A is a triterpenoid saponin. Bruceoside A is a natural product found in Brucea javanica with data available.

   

Tiglic acid

alpha,beta-dimethyl acrylic acid; 2-Methyl-2-butenoic acid; (E)-2-methyl-Crotonic acid

C5H8O2 (100.0524)


Tiglic acid is a monocarboxylic unsaturated organic acid. It is found in croton oil and in several other natural products. It has also been isolated from the defensive secretion of certain beetles. Tiglic acid, also known as tiglate or tiglinsaeure, belongs to the class of organic compounds known as methyl-branched fatty acids. These are fatty acids with an acyl chain that has a methyl branch. Usually, they are saturated and contain only one or more methyl group. However, branches other than methyl may be present. Tiglic acid has a double bond between the second and third carbons of the chain. Tiglic acid and angelic acid form a pair of cis-trans isomers. Tiglic acid is a volatile and crystallizable substance with a sweet, warm, spicy odour. It is used in making perfumes and flavoring agents. The salts and esters of tiglic acid are called tiglates. Tiglic acid is a 2-methylbut-2-enoic acid having its double bond in trans-configuration. It has a role as a plant metabolite. It is functionally related to a crotonic acid. Tiglic acid is a natural product found in Aloe africana, Azadirachta indica, and other organisms with data available. See also: Arctium lappa Root (part of); Petasites hybridus root (part of). A branched-chain fatty acid consisting of 2-butenoic acid having a methyl group at position 2. Flavouring ingredient KEIO_ID T016 Tiglic acid is a monocarboxylic unsaturated organic acid found in croton oil and in several other natural products. Tiglic aci has a role as a plant metabolite[1]. Tiglic acid is a monocarboxylic unsaturated organic acid found in croton oil and in several other natural products. Tiglic aci has a role as a plant metabolite[1].

   

Maltotetraose

beta-D-glucopyranosyl-(1->4)-beta-D-glucoopyranosyl-(1->4)-beta-D-glucoopyranosyl-(1->4)-D-glucoopyranose

C24H42O21 (666.2218)


Cellotetraose is a glucotetrose comprised of four D-glucose residues connected by beta(1->4) linkages. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents Maltotetraose can be used as a substrate for the enzyme-coupled determination of amylase activity in biological fluids. Maltotetraose can be used as a substrate for the enzyme-coupled determination of amylase activity in biological fluids.

   

Fenpropimorph

(2R,6S)-4-[(2S)-3-[4-(1,1-Dimethylethyl)phenyl]-2-methylpropyl]-2,6-dimethylmorpholine

C20H33NO (303.2562)


Fenpropimorph (CAS: 67564-91-4) belongs to the class of organic compounds known as phenylpropanes. These are organic compounds containing a phenylpropane moiety. Fenpropimorph is possibly neutral. Fenpropimorph is an agricultural fungicide used against powdery mildews on sugar beets, beans, and leek. Agricultural fungicide used against powdery mildews on sugar beet, beans and leeks CONFIDENCE standard compound; INTERNAL_ID 8406 CONFIDENCE standard compound; INTERNAL_ID 2573 D016573 - Agrochemicals D010575 - Pesticides

   

BAS 490 F

kresoxim-methyl

C18H19NO4 (313.1314)


D010575 - Pesticides > D005659 - Fungicides, Industrial > D000073739 - Strobilurins D016573 - Agrochemicals CONFIDENCE standard compound; EAWAG_UCHEM_ID 154 Kresoxim-methyl (BAS 490 F), a Strobilurin-based fungicide, inhibits the respiration at the complex III (cytochrome bc1 complex). Kresoxim-methyl binds to complex III from yeast with an apparent Kd of 0.07 μM proving a high affinity for this enzyme[1][2].

   

2-Hydroxyphenethylamine

2-amino-1-phenylethan-1-ol

C8H11NO (137.0841)


2-Hydroxyphenethylamine, also known as beta-phenethanolamine or 2-amino-1-phenylethanol, belongs to the class of organic compounds known as aralkylamines. These are alkylamines in which the alkyl group is substituted at one carbon atom by an aromatic hydrocarbyl group. It is the simplest member of the class of phenylethanolamines that is 2-aminoethanol bearing a phenyl substituent at the 1-position. 2-Hydroxyphenethylamine exists in all living organisms, ranging from bacteria to humans. 2-Hydroxyphenethylamine ia an amine found in the brain. It may be modulator of sympathetic functions. Its derivatives are adrenergic agonists and antagonists. Simple amine found in the brain. It may be modulator of sympathetic functions. Its derivatives are adrenergic agonists and antagonists. It is also used in chemical industry. [HMDB] 2-Amino-1-phenylethanol is an analogue of noradrenaline.

   

2,3-Diaminopropionic acid

2,3-Diaminopropionic acid, (DL)-isomer, monohydrochloride

C3H8N2O2 (104.0586)


2,3-Diaminopropionic acid, also known as L-2,3-diaminopropanoate or Dpr, belongs to the class of organic compounds known as l-alpha-amino acids. These are alpha amino acids which have the L-configuration of the alpha-carbon atom. 2,3-Diaminopropionic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. 2,3-Diaminopropionic acid (2,3-diaminopropionate) is a non-proteinogenic amino acid found in certain secondary metabolites, including zwittermicin A and tuberactinomycin.2,3-Diaminopropionate is formed by the pyridoxal phosphate (PLP) mediated amination of serine. 2,3-Diaminopropionic acid exists in all living organisms, ranging from bacteria to humans. 2,3-Diaminopropionic acid is a metabolite of b-oxalyl-L-a,b-diaminopropionic acid a neurotoxic amino acid (ODAP). (PMID 5774501) COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Acetamiprid

Pesticide4_Acetamiprid_C10H11ClN4_(1E)-N-[(6-chloropyridin-3-yl)methyl]-N-cyano-N-methylethanimidamide

C10H11ClN4 (222.0672)


D010575 - Pesticides > D007306 - Insecticides > D000073943 - Neonicotinoids D016573 - Agrochemicals CONFIDENCE standard compound; INTERNAL_ID 2327 CONFIDENCE standard compound; INTERNAL_ID 8448 CONFIDENCE standard compound; EAWAG_UCHEM_ID 2986 Acetamiprid is a neonicotinoid insecticide used worldwide. Acetamiprid is a nicotinic acetylcholine receptor (nAChR) agonist, and is shown to be associated with neuromuscular and reproductive disorders[1][2].

   

Biocytin

(3AS-(3aalpha,4beta,6aalpha))-N(6)-(5-(hexahydro-2-oxo-1H-thieno(3,4-D)imidazol-4-yl)-1-oxopentyl)-L-lysine

C16H28N4O4S (372.1831)


Biocytin is a naturally occurring low molecular weight analog of biotin, and a primary source of this essential metabolite for mammals. Biotinidase acts as a hydrolase by cleaving biocytin and biotinyl-peptides, thereby liberating biotin for reutilization. Mammals cannot synthesize biotin and, therefore, derive the vitamin from dietary sources or from the endogenous turnover of the carboxylases. Free biotin can readily enter the biotin pool, whereas holocarboxylases or other biotin-containing proteins must first be degraded proteolytically to biocytin (biotinyl-e-lysine) or biotinyl-peptides. Biocytin is also an especially versatile marker for neuroanatomical investigations, shown that may have multiple applications, especially for labeling neurons. (PMID: 8930409, 1384763, 2479450) [HMDB] Biocytin is a naturally occurring low molecular weight analog of biotin, and a primary source of this essential metabolite for mammals. Biotinidase acts as a hydrolase by cleaving biocytin and biotinyl-peptides, thereby liberating biotin for reutilization. Mammals cannot synthesize biotin and, therefore, derive the vitamin from dietary sources or from the endogenous turnover of the carboxylases. Free biotin can readily enter the biotin pool, whereas holocarboxylases or other biotin-containing proteins must first be degraded proteolytically to biocytin (biotinyl-e-lysine) or biotinyl-peptides. Biocytin is also an especially versatile marker for neuroanatomical investigations, shown that may have multiple applications, especially for labeling neurons. (PMID:8930409, 1384763, 2479450).

   

Tridemorph

2,6-Dimethyl-N-tridecyl-morpholine

C19H39NO (297.3031)


Systemic eradicant cereal fungicide Tridemorph is a fungicide. It was developed in the 1960s by the German multinational BASF who sell tridemorph under the trade name Calixin. It is used to control the fungus Erysiphe graminis in cereals, Mycosphaerella species in bananas, and Caticum solmonicolor in tea. Tridemorph is applied onto many crops across the world, but very little data on usage and production is in the public domain. In high doses it has been shown to have teratogenic effects. These effect are manifested in edemas, hemorrhages, hematomas, abnormal development of the brain (hydrocephalia), visceral cranium (micrognathia, cleft palate) and genitourinary system (hydronephrosis), in decreased size of pelvic bones, shoulder girdle, front and hind limbs, etc. (PMID 7324433

   

Eprosartan

4-({2-butyl-5-[(1E)-2-carboxy-2-(thiophen-2-ylmethyl)eth-1-en-1-yl]-1H-imidazol-1-yl}methyl)benzoic acid

C23H24N2O4S (424.1457)


Eprosartan is an angiotensin II receptor antagonist used for the treatment of high blood pressure. It acts on the renin-angiotensin system in two ways to decrease total peripheral resistance. First, it blocks the binding of angiotensin II to AT1 receptors in vascular smooth muscle, causing vascular dilatation. Second, it inhibits sympathetic norepinephrine production, further reducing blood pressure. C - Cardiovascular system > C09 - Agents acting on the renin-angiotensin system > C09C - Angiotensin ii receptor blockers (arbs), plain > C09CA - Angiotensin ii receptor blockers (arbs), plain C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C66930 - Angiotensin II Receptor Antagonist D057911 - Angiotensin Receptor Antagonists > D057912 - Angiotensin II Type 2 Receptor Blockers COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 2776 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Eprosartan (SKF-108566J free base) is a selective, competitive, nonpeptid and orally active angiotensin II receptor antagonist, used as an antihypertensive. Eprosartan binds angiotensin II receptor with IC50s of 9.2 nM and 3.9 nM in rat and human adrenal cortical membranes, respectively [1].

   

Sulfathiazole

4-amino-N-(1,3-thiazol-2-yl)benzene-1-sulfonamide

C9H9N3O2S2 (255.0136)


Sulfathiazole is only found in individuals that have used or taken this drug.It is a short-acting sulfa drug. It used to be a common oral and topical antimicrobial until less toxic alternatives were discovered. It is still occasionally used, sometimes in combination with sulfabenzamide and sulfacetamide. CONFIDENCE standard compound; INTERNAL_ID 1024; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2323; ORIGINAL_PRECURSOR_SCAN_NO 2321 CONFIDENCE standard compound; INTERNAL_ID 1024; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2327; ORIGINAL_PRECURSOR_SCAN_NO 2325 CONFIDENCE standard compound; INTERNAL_ID 1024; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7417; ORIGINAL_PRECURSOR_SCAN_NO 7415 CONFIDENCE standard compound; INTERNAL_ID 1024; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2326; ORIGINAL_PRECURSOR_SCAN_NO 2324 CONFIDENCE standard compound; INTERNAL_ID 1024; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2315; ORIGINAL_PRECURSOR_SCAN_NO 2312 CONFIDENCE standard compound; INTERNAL_ID 1024; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7355; ORIGINAL_PRECURSOR_SCAN_NO 7354 CONFIDENCE standard compound; INTERNAL_ID 1024; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7401; ORIGINAL_PRECURSOR_SCAN_NO 7397 CONFIDENCE standard compound; INTERNAL_ID 1024; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7346; ORIGINAL_PRECURSOR_SCAN_NO 7344 CONFIDENCE standard compound; INTERNAL_ID 1024; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2323; ORIGINAL_PRECURSOR_SCAN_NO 2320 CONFIDENCE standard compound; INTERNAL_ID 1024; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2314; ORIGINAL_PRECURSOR_SCAN_NO 2312 CONFIDENCE standard compound; INTERNAL_ID 1024; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7406; ORIGINAL_PRECURSOR_SCAN_NO 7404 CONFIDENCE standard compound; INTERNAL_ID 1024; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7390; ORIGINAL_PRECURSOR_SCAN_NO 7388 D - Dermatologicals > D06 - Antibiotics and chemotherapeutics for dermatological use > D06B - Chemotherapeutics for topical use > D06BA - Sulfonamides J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01E - Sulfonamides and trimethoprim > J01EB - Short-acting sulfonamides C254 - Anti-Infective Agent > C29739 - Sulfonamide Anti-Infective Agent D000890 - Anti-Infective Agents > D013432 - Sulfathiazoles D000890 - Anti-Infective Agents > D013424 - Sulfanilamides CONFIDENCE standard compound; EAWAG_UCHEM_ID 185 CONFIDENCE standard compound; INTERNAL_ID 2360 CONFIDENCE standard compound; INTERNAL_ID 1023 KEIO_ID S079; [MS2] KO009251 KEIO_ID S079

   

Tebufenozide

3,5-Dimethylbenzoic acid 1-(1,1-dimethylethyl)-2-(4-ethylbenzoyl)hydrazide

C22H28N2O2 (352.2151)


CONFIDENCE standard compound; INTERNAL_ID 1270; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4696; ORIGINAL_PRECURSOR_SCAN_NO 4694 CONFIDENCE standard compound; INTERNAL_ID 1270; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4687; ORIGINAL_PRECURSOR_SCAN_NO 4683 CONFIDENCE standard compound; INTERNAL_ID 1270; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9485; ORIGINAL_PRECURSOR_SCAN_NO 9481 CONFIDENCE standard compound; INTERNAL_ID 1270; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4702; ORIGINAL_PRECURSOR_SCAN_NO 4700 CONFIDENCE standard compound; INTERNAL_ID 1270; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4698; ORIGINAL_PRECURSOR_SCAN_NO 4696 CONFIDENCE standard compound; INTERNAL_ID 1270; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9523; ORIGINAL_PRECURSOR_SCAN_NO 9521 CONFIDENCE standard compound; INTERNAL_ID 1270; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9469; ORIGINAL_PRECURSOR_SCAN_NO 9467 CONFIDENCE standard compound; INTERNAL_ID 1270; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4672; ORIGINAL_PRECURSOR_SCAN_NO 4668 CONFIDENCE standard compound; INTERNAL_ID 1270; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9480; ORIGINAL_PRECURSOR_SCAN_NO 9479 CONFIDENCE standard compound; INTERNAL_ID 1270; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4704; ORIGINAL_PRECURSOR_SCAN_NO 4703 CONFIDENCE standard compound; INTERNAL_ID 1270; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9513; ORIGINAL_PRECURSOR_SCAN_NO 9510 CONFIDENCE standard compound; INTERNAL_ID 1270; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9506; ORIGINAL_PRECURSOR_SCAN_NO 9503 D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

1-Methyladenine

1, 9-dihydro-1-Methyl-6H-purin-6-imine

C6H7N5 (149.0701)


1-Methyladenine is the product of reaction between 1-methyladenosine and water which is catalyzed by 1-methyladenosine nucleosidase (EC:3.2.2.13). 1-Methyladenine is a product of alkylation damage in DNA which can be repaired by damage reversal by oxidative demethylation, a reaction requiring ferrous iron and 2-oxoglutarate as cofactor and co-substrate, respectively (PMID:15576352). 1-Methyladenine is found to be associated with adenosine deaminase (ADA) deficiency, which is an inborn error of metabolism. 1-Methyladenine is the product of reaction between 1-methyladenosine and water which is catalyzed by 1-methyladenosine nucleosidase. (EC:3.2.2.13) KEIO_ID M074

   

2'-Deoxyuridine 5'-monophosphate disodium salt

{[(2R,3S,5R)-5-(2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-yl)-3-hydroxyoxolan-2-yl]methoxy}phosphonic acid

C9H13N2O8P (308.041)


Deoxyuridine monophosphate (dUMP), also known as deoxyuridylic acid or deoxyuridylate in its conjugate acid and conjugate base forms, respectively, is a deoxynucleotide. It belongs to the class of organic compounds known as pyrimidine 2-deoxyribonucleoside monophosphates. These are pyrimidine nucleotides with a monophosphate group linked to the ribose moiety lacking a hydroxyl group at position 2. dUMP exists in all living species, ranging from bacteria to humans. Within humans, dUMP participates in a number of enzymatic reactions. In particular, dUMP can be biosynthesized from dCMP through its interaction with the enzyme deoxycytidylate deaminase. In addition, dUMP can be biosynthesized from deoxyuridine; which is mediated by the enzyme thymidine kinase, cytosolic. In humans, dUMP is involved in pyrimidine metabolism. A pyrimidine 2-deoxyribonucleoside 5-monophosphate having uracil as the nucleobase. Outside of the human body, dUMP has been detected, but not quantified in several different foods, such as breadnut tree seeds, sea-buckthornberries, sour cherries, black walnuts, and common oregano. dUMP is formed by the reduction of ribonucleotides to deoxyribonucleotides by ribonucleoside diphosphate reductase [EC 1.17.4.1]. dUMP by the action of by thymidylate synthetase [EC 2.1.1.45] produces dTMP (5,10-Methylene-5,6,7,8-tetrahydrofolate is a cofactor for the reaction). The nuclear form of uracil-DNA glycosylase (UNG2), that its major role is to remove misincorporated dUMP residues (cells deficient in removal of misincorporated dUMP accumulate uracil residues). (PMID 11554311) [HMDB]. dUMP is found in many foods, some of which are ginger, evergreen huckleberry, vanilla, and common walnut. dUMP. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=964-26-1 (retrieved 2024-07-15) (CAS RN: 964-26-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Cinchonidine

(S)-[(2R,5R)-5-ethenyl-1-azabicyclo[2.2.2]octan-2-yl]-quinolin-4-ylmethanol

C19H22N2O (294.1732)


Cinchonine is found in fruits. Cinchonine is an alkaloid from the leaves of Olea europaea Cinchonine is an alkaloidwith molecular formula C19H22N2O used in asymmetric synthesis in organic chemistry. It is a stereoisomer and pseudo-enantiomer of cinchonidine D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents [Raw Data] CB216_Cinchonine_pos_10eV_CB000075.txt [Raw Data] CB216_Cinchonine_pos_30eV_CB000075.txt [Raw Data] CB216_Cinchonine_pos_40eV_CB000075.txt [Raw Data] CB216_Cinchonine_pos_50eV_CB000075.txt [Raw Data] CB216_Cinchonine_pos_20eV_CB000075.txt Alkaloid from the leaves of Olea europaea Cinchonidine (α-Quinidine) is a cinchona alkaloid found in Cinchona officinalis and Gongronema latifolium. A building block used in asymmetric synthesis in organic chemistry. Weak inhibitor of serotonin transporter (SERT) with Kis of 330, 4.2, 36, 196, 15 μM for dSERT, hSERT, hSERT I172M, hSERT S438T, hSERT Y95F, respectively. Antimalarial activities[1]. Cinchonidine (α-Quinidine) is a cinchona alkaloid found in Cinchona officinalis and Gongronema latifolium. A building block used in asymmetric synthesis in organic chemistry. Weak inhibitor of serotonin transporter (SERT) with Kis of 330, 4.2, 36, 196, 15 μM for dSERT, hSERT, hSERT I172M, hSERT S438T, hSERT Y95F, respectively. Antimalarial activities[1]. Cinchonine is a natural compound present in Cinchona bark. Cinchonine activates endoplasmic reticulum stress-induced apoptosis in human liver cancer cells[1]. Cinchonine is a natural compound present in Cinchona bark. Cinchonine activates endoplasmic reticulum stress-induced apoptosis in human liver cancer cells[1].

   

D-Tartaric acid

L-(+)-Tartaric acid

C4H6O6 (150.0164)


DL-Tartaric acid is a non-racemic mixture of L- and D-tartaric acids with antioxidant activities[1][2].

   

Homogentisic acid

2-(2,5-dihydroxyphenyl)acetic acid

C8H8O4 (168.0423)


Homogentisic acid, also known as melanic acid, is an intermediate in the breakdown or catabolism of tyrosine and phenylalanine. It is generated from the compound p-hydroxyphenylpyruvate through the enzyme p-hydroxyphenylpyruvate dehydrogenase. The resulting homogentisic acid is then broken down into 4-maleylacetoacetate via the enzyme homogentisate 1,2-dioxygenase. Homogentisic acid is also found in other organisms. For instance, it can found in Arbutus unedo (strawberry-tree) honey, in the bacterial plant pathogen Xanthomonas campestris as well as in the yeast Yarrowia lipolytica where it is associated with the production of brown pigments. Homogentisic acid can be oxidatively dimerized to form hipposudoric acid, one of the main constituents of the blood sweat of hippopotamuses. When present in sufficiently high levels, homogentisic acid can function as an osteotoxin and a renal toxin. An osteotoxin is a substance that causes damage to bones and/or joints. A renal toxin causes damage to the kidneys. Chronically high levels of homogentisic acid are associated with alkaptonuria (OMIM: 203500), an inborn error of metabolism. Alkaptonuria is a rare inherited genetic disorder in which the body cannot process the amino acids phenylalanine and tyrosine. It is caused by a mutation in the enzyme homogentisate 1,2-dioxygenase (EC 1.13.11.5), which leads to an accumulation of homogentisic acid in the blood and tissues. Homogentisic acid and its oxidized form benzoquinone acetic acid are excreted in the urine, giving it an unusually dark color. The accumulating homogentisic acid (and benzoquinone acetic acid) causes damage to cartilage (ochronosis, leading to osteoarthritis) and heart valves as well as precipitating as kidney stones and stones in other organs. More specifically, homogentisic acid can be converted to benzoquinone acetic acid (BQA), and the resulting BQA can be readily converted to polymers that resemble the dark skin pigment melanin. These polymers are deposited in the collagen, a connective tissue protein, of particular tissues such as cartilage. This process is called ochronosis (as the tissue looks ochre); ochronotic tissue is stiffened and unusually brittle, impairing its normal function and causing damage. Homogentisic acid is the primary precursor of melanin synthesis in Vibrio cholerae. 2-(3,6-dihydroxyphenyl)acetic acid, also known as homogentisic acid or homogentisate, is a member of the class of compounds known as 2(hydroxyphenyl)acetic acids. 2(hydroxyphenyl)acetic acids are phenylacetic acids that carry a hydroxyl group at the 2-position. 2-(3,6-dihydroxyphenyl)acetic acid is slightly soluble (in water) and a weakly acidic compound (based on its pKa). 2-(3,6-dihydroxyphenyl)acetic acid can be found in a number of food items such as gooseberry, angelica, chinese broccoli, and cucumber, which makes 2-(3,6-dihydroxyphenyl)acetic acid a potential biomarker for the consumption of these food products. 2-(3,6-dihydroxyphenyl)acetic acid can be found primarily in blood, feces, and urine, as well as in human cartilage, connective tissue and kidney tissues. In humans, 2-(3,6-dihydroxyphenyl)acetic acid is involved in few metabolic pathways, which include disulfiram action pathway, phenylalanine and tyrosine metabolism, and tyrosine metabolism. 2-(3,6-dihydroxyphenyl)acetic acid is also involved in several metabolic disorders, some of which include dopamine beta-hydroxylase deficiency, tyrosinemia type 3 (TYRO3), alkaptonuria, and tyrosinemia type 2 (or richner-hanhart syndrome). Moreover, 2-(3,6-dihydroxyphenyl)acetic acid is found to be associated with alkaptonuria. 2-(3,6-dihydroxyphenyl)acetic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Apart from treatment of the complications (such as pain relief using NSAIDs and joint replacement for the cartilage damage), vitamin C has been used to reduce the ochronosis and lowering of the homogentisic acid levels may be attempted with a low-protein diet. Recently the drug nitisinone has been found to suppress homogentisic acid production. Nitrisinone inhibits the enzyme, 4-hydroxyphenylpyruvate dioxygenase, responsible for converting tyrosine to homogentisic acid, thereby blocking the production and accumulation of homogentisic acid. Nitisinone treatment has been shown to cause a 95\\\\% reduction in plasma and urinary homogentisic acid (T3DB). Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 118 KEIO_ID H060 Homogentisic acid is a specific metabolite in urine and serum, which is used for diagnosis of alkaptonuria. Homogentisic acid is a specific metabolite in urine and serum, which is used for diagnosis of alkaptonuria.

   

Threonic acid

2,3,4-Trihydroxy-(threo)-butanoic acid

C4H8O5 (136.0372)


Threonic acid, also known as threonate, belongs to the class of organic compounds known as sugar acids and derivatives. Sugar acids and derivatives are compounds containing a saccharide unit which bears a carboxylic acid group. Threonic acid is a sugar acid derived from threose. The L-isomer is a metabolite of ascorbic acid (vitamin C). One study suggested that because L-threonate inhibits DKK1 expression in vitro, it may have potential in the treatment of androgenic alopecia (PMID:21034532). Threonic acid is probably derived from glycated proteins or from degradation of ascorbic acid. It is a normal component in aqueous humour and blood (PMID:10420182). Threonic acid is a substrate of L-threonate 3-dehydrogenase (EC 1.1.1.129) in the ascorbate and aldarate metabolism pathway (KEGG). It has been found to be a microbial metabolite (PMID:20615997). L-threonic acid, also known as L-threonate or L-threonic acid magnesium salt, belongs to sugar acids and derivatives class of compounds. Those are compounds containing a saccharide unit which bears a carboxylic acid group. L-threonic acid is soluble (in water) and a weakly acidic compound (based on its pKa). L-threonic acid can be found in a number of food items such as buffalo currant, yam, purslane, and bayberry, which makes L-threonic acid a potential biomarker for the consumption of these food products. L-threonic acid can be found primarily in blood. Threonic acid is a sugar acid derived from threose. The L-isomer is a metabolite of ascorbic acid (vitamin C). One study suggested that because L-threonate inhibits DKK1 expression in vitro, it may have potential in treatment of androgenic alopecia .

   

Orotidylic acid

3-[(2R,3R,4S,5R)-3,4-dihydroxy-5-[(phosphonooxy)methyl]oxolan-2-yl]-2,6-dioxo-1,2,3,6-tetrahydropyrimidine-4-carboxylic acid

C10H13N2O11P (368.0257)


Orotidylic acid, also known as 5-(dihydrogen phosphate)orotidine or omp, is a member of the class of compounds known as pyrimidine ribonucleoside monophosphates. Pyrimidine ribonucleoside monophosphates are pyrimidine ribobucleotides with monophosphate group linked to the ribose moiety. Orotidylic acid is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Orotidylic acid can be found in a number of food items such as coriander, summer savory, oriental wheat, and sourdough, which makes orotidylic acid a potential biomarker for the consumption of these food products. Orotidylic acid can be found primarily in prostate Tissue, as well as in human prostate tissue. Orotidylic acid exists in all living species, ranging from bacteria to humans. In humans, orotidylic acid is involved in a couple of metabolic pathways, which include glycine and serine metabolism and pyrimidine metabolism. Orotidylic acid is also involved in several metabolic disorders, some of which include dihydropyrimidinase deficiency, dihydropyrimidine dehydrogenase deficiency (DHPD), 3-phosphoglycerate dehydrogenase deficiency, and non ketotic hyperglycinemia. Moreover, orotidylic acid is found to be associated with prostate cancer. Orotidylic acid (OMP), is a pyrimidine nucleotide which is the last intermediate in the biosynthesis of uridine monophosphate. Decarboxylation by Orotidylate decarboxylase affords Uridine 5-phosphate which is the route to Uridine and its derivatives de novo and consequently one of the most important processes in nucleic acid synthesis (Dictionary of Organic Compounds). In humans, the enzyme UMP synthase converts OMP into uridine 5- monophosphate. If UMP synthase is defective, orotic aciduria can result. (Wikipedia). KEIO_ID O015; [MS2] KO009132 KEIO_ID O015

   

fleroxacin

6,8-difluoro-1-(2-fluoroethyl)-7-(4-methylpiperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid

C17H18F3N3O3 (369.13)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials > J01MA - Fluoroquinolones D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic D004791 - Enzyme Inhibitors

   

Thiodiacetic acid

2-[(carboxymethyl)sulfanyl]acetic acid

C4H6O4S (149.9987)


Thiodiacetic acid belongs to the family of Thiodiacetic Acid Derivatives. These are compounds containing a thiodiacetic acid group (or esters/salts thereof) which is made up of two 2-sulfanylacetic (OC(=O)CS) acid moieties sharing their sulfur atom.

   

Disopyramide

alpha-(2-(Diisopropylamino)ethyl)-alpha-phenyl-2-pyridineacetamide

C21H29N3O (339.2311)


A class I anti-arrhythmic agent (one that interferes directly with the depolarization of the cardiac membrane and thus serves as a membrane-stabilizing agent) with a depressant action on the heart similar to that of guanidine. It also possesses some anticholinergic and local anesthetic properties. [PubChem] C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BA - Antiarrhythmics, class ia D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers > D061567 - Voltage-Gated Sodium Channel Blockers C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

Dobutamine

3,4-Dihydroxy-N-[3-(4-hydroxyphenyl)-1-methylpropyl]-beta-phenylethylamine

C18H23NO3 (301.1678)


Dobutamine is only found in individuals that have used or taken this drug. It is a beta-2 agonist catecholamine that has cardiac stimulant action without evoking vasoconstriction or tachycardia. It is proposed as a cardiotonic after myocardial infarction or open heart surgery. [PubChem]Dobutamine directly stimulates beta-1 receptors of the heart to increase myocardial contractility and stroke volume, resulting in increased cardiac output. C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides > C01CA - Adrenergic and dopaminergic agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists C78274 - Agent Affecting Cardiovascular System > C78322 - Cardiotonic Agent D020011 - Protective Agents > D002316 - Cardiotonic Agents D002317 - Cardiovascular Agents KEIO_ID D185; [MS2] KO008933 KEIO_ID D185

   

Fluridone

1-methyl-3-phenyl-5-[3-(trifluoromethyl)phenyl]-1,4-dihydropyridin-4-one

C19H14F3NO (329.1027)


CONFIDENCE standard compound; INTERNAL_ID 704; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8814; ORIGINAL_PRECURSOR_SCAN_NO 8813 CONFIDENCE standard compound; INTERNAL_ID 704; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8806; ORIGINAL_PRECURSOR_SCAN_NO 8805 CONFIDENCE standard compound; INTERNAL_ID 704; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8777; ORIGINAL_PRECURSOR_SCAN_NO 8775 CONFIDENCE standard compound; INTERNAL_ID 704; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8811; ORIGINAL_PRECURSOR_SCAN_NO 8810 CONFIDENCE standard compound; INTERNAL_ID 704; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8752; ORIGINAL_PRECURSOR_SCAN_NO 8747 CONFIDENCE standard compound; INTERNAL_ID 704; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8718; ORIGINAL_PRECURSOR_SCAN_NO 8717 D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

spirodiclofen

Pesticide7_Spirodiclofen_C21H24Cl2O4_Butanoic acid, 2,2-dimethyl-, 3-(2,4-dichlorophenyl)-2-oxo-1-oxaspiro[4.5]dec-3-en-4-yl ester

C21H24Cl2O4 (410.1052)


   

Prilocaine

N-(2-Methylphenyl)-2-(propylamino)propanamide

C13H20N2O (220.1576)


Prilocaine is only found in individuals that have used or taken this drug. It is a local anesthetic that is similar pharmacologically to lidocaine. Currently, it is used most often for infiltration anesthesia in dentistry. (From AMA Drug Evaluations Annual, 1992, p165)Prilocaine acts on sodium channels on the neuronal cell membrane, limiting the spread of seizure activity and reducing seizure propagation. The antiarrhythmic actions are mediated through effects on sodium channels in Purkinje fibers. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics N - Nervous system > N01 - Anesthetics > N01B - Anesthetics, local > N01BB - Amides D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent CONFIDENCE standard compound; EAWAG_UCHEM_ID 3141

   

BRODIFACOUM

BRODIFACOUM

C31H23BrO3 (522.083)


D006401 - Hematologic Agents > D000925 - Anticoagulants > D015110 - 4-Hydroxycoumarins D010575 - Pesticides > D012378 - Rodenticides D016573 - Agrochemicals

   

(+)-Camphor

(+)-Camphor;(+)-bornan-2-one;(+)-camphor;(1R)-(+)-camphor;(R)-(+)-camphor;(R)-camphor

C10H16O (152.1201)


Camphor, also known as (+)-camphor or (+)-bornan-2-one, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. Camphor is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Within the cell, camphor is primarily located in the membrane (predicted from logP). Camphor is a waxy, flammable, white or transparent solid with a strong aroma. It is a terpenoid with the chemical formula C10H16O. It is found in many plants, such as in the wood of the camphor laurel (Cinnamomum camphora), a large evergreen tree found in Asia (particularly in Sumatra and Borneo islands, Indonesia) and also of the unrelated Kapur tree, a tall timber tree from the same region. It also occurs in some other related trees in the laurel family, notably Ocotea usambarensis and in the oil in rosemary leaves (Rosmarinus officinalis). The mint family contains 10 to 20\\\\\\\\% camphor, while camphorweed (Heterotheca) only contains some 5\\\\\\\\%. Camphor can also be synthetically produced from oil of turpentine. It is used for its scent, as an ingredient in cooking (mainly in India), as an embalming fluid, for medicinal purposes, and in religious ceremonies. A major source of camphor in Asia is camphor basil (the parent of African blue basil) (Wikipedia). (R)-camphor is the (R)- enantiomer of camphor. It is an enantiomer of a (S)-camphor. Camphor is a bicyclic monoterpene ketone found widely in plants, especially Cinnamomum camphora. It is used topically as a skin antipruritic and as an anti-infective agent. When ingested, camphor has a rapid onset of toxic effects, and camphorated oil is the product most often responsible for its toxicity. The FDA ruled that camphorated oil could not be marketed in the United States and that no product could contain a concentration higher than 11\\\\\\\\%. It appears in the list of drug products withdrawn or removed from the market for safety or effectiveness. However, camphor can be found in several nonprescription medications at lower concentrations. D-Camphor is a natural product found in Chromolaena odorata, Curcuma amada, and other organisms with data available. See also: Coriander Oil (part of). C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent C - Cardiovascular system > C01 - Cardiac therapy The (R)- enantiomer of camphor. (+)-Camphor is a food additive used medicinally as a preservative. (+)-Camphor is a food additive used medicinally as a preservative. (+)-Camphor is a food additive used medicinally as a preservative. (+)-Camphor is a food additive used medicinally as a preservative. Camphor ((±)-Camphor) is a topical anti-infective and anti-pruritic and internally as a stimulant and carminative. However, Camphor is poisonous when ingested. Antiviral, antitussive, and anticancer activities[1]. Camphor is a TRPV3 agonist[2]. Camphor ((±)-Camphor) is a topical anti-infective and anti-pruritic and internally as a stimulant and carminative. However, Camphor is poisonous when ingested. Antiviral, antitussive, and anticancer activities[1]. Camphor is a TRPV3 agonist[2].

   

Cyclohexanecarboxylic acid

Cyclohexanecarboxylic acid, sodium salt, 11C-labeled

C7H12O2 (128.0837)


Cyclohexanecarboxylic acid is a flavouring ingredien Flavouring ingredient KEIO_ID C180 Cyclohexanecarboxylic acid is a Valproate structural analogue with anticonvulsant action[1].

   

Methyl 2-aminobenzoate

Methyl ester OF O-aminobenzoic acid

C8H9NO2 (151.0633)


Methyl 2-aminobenzoate is found in alcoholic beverages. Methyl 2-aminobenzoate is found in essential oils, including bergamot, orange peel, lemon peel, jasmine, ylang-ylang and neroli. Also present in concord grape, strawberry, star fruit, wines, cocoa, black tea and rice bran. Methyl 2-aminobenzoate is a flavouring agent Found in essential oils, including bergamot, orange peel, lemon peel, jasmine, ylang-ylang and neroliand is also present in concord grape, strawberry, star fruit, wines, cocoa, black tea and rice bran. Flavouring agent.

   

Indole-3-carboxylic acid

1H-Indole-3-carboxylic acid

C9H7NO2 (161.0477)


Indole-3-carboxylic acid, also known as 3-carboxyindole or 3-indolecarboxylate, belongs to the class of organic compounds known as indolecarboxylic acids and derivatives. Indolecarboxylic acids and derivatives are compounds containing a carboxylic acid group (or a derivative thereof) linked to an indole. Naphthylmethylindoles: Any compound containing a 1H-indol-3-yl-(1-naphthyl)methane structure with substitution at the nitrogen atom of the indole ring by an alkyl, haloalkyl, alkenyl, cycloalkylmethyl, cycloalkylethyl, 1-(N-methyl-2-piperidinyl)methyl, or 2-(4-morpholinyl)ethyl group whether or not further substituted in the indole ring to any extent and whether or not substituted in the naphthyl ring to any extent. One example given is JWH-250. Outside of the human body, indole-3-carboxylic acid has been detected, but not quantified in several different foods, such as brassicas, broccoli, pulses, common beets, and barley. This could make indole-3-carboxylic acid a potential biomarker for the consumption of these foods. Notice the pentyl group substituted onto the nitrogen atom of the indole ring. Note that this definition encompasses only those compounds that have OH groups attached to both the phenyl and the cyclohexyl rings, and so does not include compounds such as O-1871 which lacks the cyclohexyl OH group, or compounds such as JWH-337 or JWH-344 which lack the phenolic OH group. Present in plants, e.g. apple (Pyrus malus), garden pea (Pisum sativum) and brassicas Indole-3-carboxylic acid is a normal urinary indolic tryptophan metabolite and has been found elevated in patients with liver diseases[1][2]. Indole-3-carboxylic acid is a normal urinary indolic tryptophan metabolite and has been found elevated in patients with liver diseases[1][2].

   

Metaxalone

5-(3,5-dimethylphenoxymethyl)-1,3-oxazolidin-2-one

C12H15NO3 (221.1052)


Metaxalone (marketed by King Pharmaceuticals under the brand name Skelaxin) is a muscle relaxant used to relax muscles and relieve pain caused by strains, sprains, and other musculoskeletal conditions. Its exact mechanism of action is not known, but it may be due to general central nervous system depression. It is considered to be a moderately strong muscle relaxant, with relatively low incidence of side effects. Skelaxin comes in an 800 mg scored tablet. It previously came in both 400 mg and 800 mg tablets. The 400 mg tablet has been discontinued. Possible side effects include nausea, vomiting, drowsiness and CNS side effects such as dizziness, headache, and irritability. D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents C78281 - Agent Affecting Musculoskeletal System > C29696 - Muscle Relaxant D000890 - Anti-Infective Agents > D023303 - Oxazolidinones CONFIDENCE standard compound; EAWAG_UCHEM_ID 3127

   

Josamycin

(2S,3S,4R,6S)-6-{[(2R,3S,4R,5R,6S)-6-{[(4R,5S,6S,7R,9R,10R,11E,13E,16R)-4-(acetyloxy)-10-hydroxy-5-methoxy-9,16-dimethyl-2-oxo-7-(2-oxoethyl)-1-oxacyclohexadeca-11,13-dien-6-yl]oxy}-4-(dimethylamino)-5-hydroxy-2-methyloxan-3-yl]oxy}-4-hydroxy-2,4-dimethyloxan-3-yl 3-methylbutanoate

C42H69NO15 (827.4667)


Josamycin is only found in individuals that have used or taken this drug. It is a macrolide antibiotic from Streptomyces narbonensis. The drug has antimicrobial activity against a wide spectrum of pathogens. [PubChem]The mechanism of action of macrolides such as Josamycin is via inhibition of bacterial protein biosynthesis by binding reversibly to the subunit 50S of the bacterial ribosome, thereby inhibiting translocation of peptidyl tRNA. This action is mainly bacteriostatic, but can also be bactericidal in high concentrations. Macrolides tend to accumulate within leukocytes, and are therefore actually transported into the site of infection. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01F - Macrolides, lincosamides and streptogramins > J01FA - Macrolides D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C784 - Protein Synthesis Inhibitor > C261 - Macrolide Antibiotic C254 - Anti-Infective Agent > C258 - Antibiotic Same as: D01235 Josamycin (EN-141) is a macrolide antibiotic exhibiting antimicrobial activity against a wide spectrum of pathogens, such as bacteria. The dissociation constant Kd from ribosome for Josamycin is 5.5 nM.

   

aniracetam

1-(4-methoxybenzoyl)pyrrolidin-2-one

C12H13NO3 (219.0895)


N - Nervous system > N06 - Psychoanaleptics > N06B - Psychostimulants, agents used for adhd and nootropics D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D002491 - Central Nervous System Agents > D018697 - Nootropic Agents C26170 - Protective Agent > C1509 - Neuroprotective Agent Same as: D01883 Aniracetam (Ro 13-5057) is an orally active neuroprotective agent, possessing nootropics effects. Aniracetam potentiates the ionotropic quisqualate (iQA) responses in the CA1 region of rat hippocampal slices. Aniracetam also potentiates the excitatory post synaptic potentials (EPSPs) in Schaffer collateral-commissural synapses. Aniracetam can prevents the CO2-induced impairment of acquisition in hypercapnia model rats. Aniracetam can be used to research cerebral dysfunctional disorders[1][2][3][4].

   

Phenylacetone

1-phenylpropan-2-one

C9H10O (134.0732)


Phenylacetone is a DEA Schedule II controlled substance. Substances in the DEA Schedule II have a high potential for abuse which may lead to severe psychological or physical dependence. It is a Immediate precursors substance. Phenylacetone is a propanone that is propan-2-one substituted by a phenyl group at position 1. It is a member of propanones and a methyl ketone. Phenylacetone. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=103-79-7 (retrieved 2024-10-28) (CAS RN: 103-79-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Landomycin

12-[(2,6-dideoxy-3-O-methylhexopyranosyl)oxy]-6-hydroxy-5,7,8,11,13,15-hexamethyl-4,10-dioxo-1,9-dioxaspiro[2.13]hexadec-14-yl 3,4,6-trideoxy-3-(dimethylamino)hexopyranoside

C35H61NO12 (687.4194)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01F - Macrolides, lincosamides and streptogramins > J01FA - Macrolides D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C784 - Protein Synthesis Inhibitor > C261 - Macrolide Antibiotic C254 - Anti-Infective Agent > C258 - Antibiotic KEIO_ID O016; [MS2] KO009136 KEIO_ID O016

   
   

11-Ketoetiocholanolone

(1S,2S,5R,7R,10S,11S,15S)-5-hydroxy-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecane-14,17-dione

C19H28O3 (304.2038)


11-Ketoetiocholanolone is an endogenous anabolic androgenic steroid. The concentration ratio of 11-hydroxyetiocholanolone/11-hydroxyandrosterone is increased in patients with uterine leiomyomas, and it appears to be caused by a decrease in patients metabolite of steroids. The concentration of 11-Ketoetiocholanolone is significantly higher in these patients. There is a relationship between urinary endogenous steroid metabolites and lower urinary tract function related to the residual vol. in uroflowmetry in postmenopausal women. (PMID: 15808004, 14698830, 12728469) [HMDB] 11-Ketoetiocholanolone is an endogenous anabolic androgenic steroid. The concentration ratio of 11-hydroxyetiocholanolone/11-hydroxyandrosterone is increased in patients with uterine leiomyomas, and it appears to be caused by a decrease in patients metabolite of steroids. The concentration of 11-Ketoetiocholanolone is significantly higher in these patients. There is a relationship between urinary endogenous steroid metabolites and lower urinary tract function related to the residual volume in uroflowmetry in postmenopausal women. (PMID: 15808004, 14698830, 12728469). D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

11beta-Hydroxyetiocholanolone

3alpha,11beta-Dihydroxy-5beta-androstane-17-one

C19H30O3 (306.2195)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

Kasugamycin

2-amino-2-[(2R,3S,5S,6R)-5-amino-2-methyl-6-[(2S,3S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyoxan-3-yl]iminoacetic acid

C14H25N3O9 (379.1591)


An amino cyclitol glycoside that is isolated from Streptomyces kasugaensis and exhibits antibiotic and fungicidal properties. Kasugamycin is an amino cyclitol glycoside that is isolated from Streptomyces kasugaensis and exhibits antibiotic and fungicidal properties. It has a role as a bacterial metabolite, a protein synthesis inhibitor and an antifungal agrochemical. It is an amino cyclitol glycoside, an aminoglycoside antibiotic, a monosaccharide derivative, a carboxamidine and an antibiotic fungicide. Kasugamycin has been reported in Streptomyces celluloflavus and Streptomyces kasugaensis. Kasugamycin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=6980-18-3 (retrieved 2024-12-11) (CAS RN: 6980-18-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Promazine

N-Dimethylamino-1-methylethyl thiodiphenylamine

C17H20N2S (284.1347)


Promazine is only found in individuals that have used or taken this drug. It is a phenothiazine with actions similar to chlorpromazine but with less antipsychotic activity. It is primarily used in short-term treatment of disturbed behavior and as an antiemetic. [PubChem]Promazine is an antagonist at types 1, 2, and 4 dopamine receptors, 5-HT receptor types 2A and 2C, muscarinic receptors 1 through 5, alpha(1)-receptors, and histamine H1-receptors. Promazines antipsychotic effect is due to antagonism at dopamine and serotonin type 2 receptors, with greater activity at serotonin 5-HT2 receptors than at dopamine type-2 receptors. This may explain the lack of extrapyramidal effects. Promazine does not appear to block dopamine within the tubero-infundibular tract, explaining the lower incidence of hyperprolactinemia than with typical antipsychotic agents or risperidone. Antagonism at muscarinic receptors, H1-receptors, and alpha(1)-receptors also occurs with promazine. N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AA - Phenothiazines with aliphatic side-chain D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent > C740 - Phenothiazine D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent D005765 - Gastrointestinal Agents > D000932 - Antiemetics

   

Glucosamine 6-phosphate

Phosphoric acid mono-((2R,3S,4R,5R)-5-amino-2,3,4-trihydroxy-6-oxo-hexyl) ester

C6H14NO8P (259.0457)


Glucosamine 6-phosphate (CAS: 3616-42-0) is normally produced in endothelial cells via de novo glucosamine synthesis by the enzyme fructose-6-phosphate amidotransferase and the modulation of this pathway by hyperglycemia and glutamine. Glutamine-fructose-6-phosphate amidotransferase (GFAT) catalyzes the first committed step in the pathway for biosynthesis of hexosamines in mammals.It is a member of the N-terminal nucleophile class of amidotransferases, GFAT transfers the amino group from the L-glutamine amide to D-fructose 6-phosphate, producing glutamic acid and glucosamine 6-phosphate. As glucosamine inhibits endothelial nitric oxide synthesis it has important implications for impaired endothelium-dependent relaxation and vascular dysfunction in diabetes mellitus (PMID:11270676, 11842094). Glucosamine 6-phosphate is normally produced in endothelial cells via the de novo glucosamine synthesis by the enzyme fructose-6-phosphate amidotransferase and the modulation of this pathway by hyperglycemia and glutamine. glutamine-fructose-6-phosphate amidotransferase (GFAT) catalyzes the first committed step in the pathway for biosynthesis of hexosamines in mammals. A member of the N-terminal nucleophile class of amidotransferases, GFAT transfers the amino group from the L-glutamine amide to D-fructose 6-phosphate, producing glutamic acid and glucosamine 6-phosphate. As glucosamine inhibits endothelial nitric oxide synthesis it has important implications for impaired endothelium-dependent relaxation and vascular dysfunction in diabetes mellitus. (PMID 11270676, 11842094) [HMDB] Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID G021; [MS2] KO008968 KEIO_ID G021

   

Isoetharine

4-{1-hydroxy-2-[(propan-2-yl)amino]butyl}benzene-1,2-diol

C13H21NO3 (239.1521)


Isoetharine is only found in individuals that have used or taken this drug. It is a selective adrenergic beta-2 agonist used as fast acting bronchodilator for emphysema, bronchitis and asthma. [PubChem]The pharmacologic effects of isoetharine are attributable to stimulation through beta-adrenergic receptors of intracellular adenyl cyclase, the enzyme that catalyzes the conversion of adenosine triphosphate (ATP) to cyclic AMP. Increased cyclic AMP levels are associated with relaxation of bronchial smooth muscle and inhibition of release of mediators of immediate hypersensitivity from cells, especially from mast cells. R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03C - Adrenergics for systemic use > R03CC - Selective beta-2-adrenoreceptor agonists R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03A - Adrenergics, inhalants > R03AC - Selective beta-2-adrenoreceptor agonists D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents

   

4,4'-Methylenebis(2-chloroaniline)

4-[(4-amino-3-chlorophenyl)methyl]-2-chloroaniline

C13H12Cl2N2 (266.0377)


KEIO_ID M142

   

Sekisanin

8H-[1,3]Dioxolo[6,7][2]benzopyrano[3,4-c]indol-6a(3H)-ol,4,4a,5,6-tetrahydro-3-methoxy-5-methyl-, (3S,4aS,6aS,13bS)-

C18H21NO5 (331.142)


   

Lomefloxacin

(+-)-1-Ethyl-6,8-difluoro-1,4-dihydro-7-(3-methyl-1-piperazinyl)-4-oxo-3-quinolinecarboxylic acid

C17H19F2N3O3 (351.1394)


Lomefloxacin is only found in individuals that have used or taken this drug. It is a fluoroquinolone antibiotic, used to treat bacterial infections including bronchitis and urinary tract infections. It is also used to prevent urinary tract infections prior to surgery.Lomefloxacin is a bactericidal fluoroquinolone agent with activity against a wide range of gram-negative and gram-positive organisms. The bactericidal action of lomefloxacin results from interference with the activity of the bacterial enzymes DNA gyrase and topoisomerase IV, which are needed for the transcription and replication of bacterial DNA. DNA gyrase appears to be the primary quinolone target for gram-negative bacteria. Topoisomerase IV appears to be the preferential target in gram-positive organisms. Interference with these two topoisomerases results in strand breakage of the bacterial chromosome, supercoiling, and resealing. As a result DNA replication and transcription is inhibited. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials > J01MA - Fluoroquinolones D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives > S01AE - Fluoroquinolones D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic D004791 - Enzyme Inhibitors

   

Diguanosine tetraphosphate

{[(2R,3S,4R,5R)-5-(2-amino-6-oxo-6,9-dihydro-1H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({[({[({[(2R,3S,4R,5R)-5-(2-amino-6-oxo-6,9-dihydro-1H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)(hydroxy)phosphoryl]oxy})phosphinic acid

C20H28N10O21P4 (868.0381)


P(1),p(4)-bis(5-guanosyl) tetraphosphate, also known as gp4g or gppppg, is a member of the class of compounds known as (5->5)-dinucleotides (5->5)-dinucleotides are dinucleotides where the two bases are connected via a (5->5)-phosphodiester linkage. P(1),p(4)-bis(5-guanosyl) tetraphosphate is soluble (in water) and an extremely strong acidic compound (based on its pKa). P(1),p(4)-bis(5-guanosyl) tetraphosphate can be found in a number of food items such as allium (onion), pasta, rocket salad (sspecies), and vanilla, which makes p(1),p(4)-bis(5-guanosyl) tetraphosphate a potential biomarker for the consumption of these food products. P(1),p(4)-bis(5-guanosyl) tetraphosphate exists in all living species, ranging from bacteria to humans. In humans, p(1),p(4)-bis(5-guanosyl) tetraphosphate is involved in few metabolic pathways, which include azathioprine action pathway, mercaptopurine action pathway, purine metabolism, and thioguanine action pathway. P(1),p(4)-bis(5-guanosyl) tetraphosphate is also involved in several metabolic disorders, some of which include lesch-nyhan syndrome (LNS), myoadenylate deaminase deficiency, mitochondrial DNA depletion syndrome, and xanthine dehydrogenase deficiency (xanthinuria). Diguanosine tetraphosphate is a diguanosine polyphosphate. Diguanosine polyphosphates (GpnGs) are found in human platelets, among a number of dinucleoside polyphosphates, which vary with respect to the number of phosphate groups and the nucleoside moieties; not only diguanosine polyphosphates (GpnG) are found, but also mixed dinucleoside polyphosphates containing one adenosine and one guanosine moiety (ApnG). The vasoactive nucleotides that can be detected in human plasma contain shorter (n=2-3) and longer (n=4-6) polyphosphate chains. GpnGs have not yet been characterized so far with respect to their effects on kidney vasculature. (PMID: 11159696, 11682456, 11115507).

   

Dimethylglycine

N-Methylsarcosine N,N-dimethyl-glycine

C4H9NO2 (103.0633)


Dimethylglycine (DMG) is an amino acid derivative found in the cells of all plants and animals and can be obtained in the diet in small amounts from grains and meat. The human body produces DMG when metabolizing choline into glycine. Dimethylglycine that is not metabolized in the liver is transported by the circulatory system to body tissue. Dimethylglycine was popular with Russian athletes and cosmonauts owing to its reputed ability to increase endurance and reduce fatigue. DMG is also a byproduct of homocysteine metabolism. Homocysteine and betaine are converted to methionine and N,N-dimethylglycine by betaine-homocysteine methyltransferase. DMG in the urine is a biomarker for the consumption of legumes. It is also a microbial metabolite (PMID: 25901889). Dimethylglycine (DMG) is an amino acid derivative found in the cells of all plants and animals and can be obtained in the diet in small amounts from grains and meat. The human body produces DMG when metabolizing choline into Glycine. Dimethylglycine that is not metabolized in the liver is transported by the circulatory system to body tissue. Dimethylglycine was popular with Russian athletes and cosmonauts owing to its reputed ability to increase endurance and reduce fatigue. DMG is also a byproduct of homocysteine metabolism. Homocysteine and betaine are converted to methionine and N, N-dimethylglycine by betaine-homocysteine methyltransferase. [HMDB]. Dimethylglycine in the urine is a biomarker for the consumption of legumes. N,N-Dimethylglycine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=1118-68-9 (retrieved 2024-07-16) (CAS RN: 1118-68-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). N-Methylsarcosine is an amino acid building block for protein, found in a small amount in the body.

   

4-Methoxybenzaldehyde

4-anisaldehyde, 1,2,3,4,5,6-(14)C6-labeled

C8H8O2 (136.0524)


4-Methoxybenzaldehyde, also known as 4-anisaldehyde or p-formylanisole, belongs to the class of organic compounds known as benzoyl derivatives, with the chemical formula CH3OC6H4CHO. These are organic compounds containing an acyl moiety of benzoic acid with the formula (C6H5CO-). Anisaldehyde is prepared commercially by oxidation of 4-methoxytoluene (p-cresyl methyl ether) using manganese dioxide to convert a methyl group to the aldehyde group. 4-Methoxybenzaldehyde is a sweet, almond, and anise tasting compound. 4-Methoxybenzaldehyde can be found, on average, in the highest concentration within a few different foods, such as cumins, star anises, and fennels. 4-Methoxybenzaldehyde has also been detected, but not quantified, in several different foods, such as cornmints, anises, herbs and spices, tarragons, and tea. The related ortho isomer has a scent of licorice. It is a colorless liquid with a strong aroma. A solution of para-anisaldehyde in acid and ethanol is a useful stain in thin layer chromatography. Different chemical compounds on the plate can give different colors, allowing easy distinction. It is used as an intermediate in the synthesis of other compounds important in pharmaceuticals and perfumery. Found in anise oil, fennel and vanilla. Flavouring ingredient 4-Methoxybenzaldehyde is a naturally occurring fragrant phenolic compound. 4-Methoxybenzaldehyde has been found in many plant species including horseradish, anise, star anise. 4-Methoxybenzaldehyde is a possible neurotoxicant and it has shown effects that include mortality, attractancy, and interference with host seeking [1]. 4-Methoxybenzaldehyde is a naturally occurring fragrant phenolic compound. 4-Methoxybenzaldehyde has been found in many plant species including horseradish, anise, star anise. 4-Methoxybenzaldehyde is a possible neurotoxicant and it has shown effects that include mortality, attractancy, and interference with host seeking [1].

   

L-Threo-3-Phenylserine

(2Rs,3Sr)-2-amino-3-Hydroxy-3-phenylpropanoic acid

C9H11NO3 (181.0739)


Incorporated into the benzoyl moiety of urinary hippuric acid [HMDB] Incorporated into the benzoyl moiety of urinary hippuric acid.

   

6beta-Hydroxytestosterone

(1S,2R,8R,10R,11S,14S,15S)-8,14-dihydroxy-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-6-en-5-one

C19H28O3 (304.2038)


Testosterone is reported to have an acute vasodilating action in vitro, an effect that may impart a favourable haemodynamic response in patients with chronic heart failure.

   

N-Nitroso-pyrrolidine

tetrahydro-N-nitroso-Pyrrole

C4H8N2O (100.0637)


N-Nitroso-pyrrolidine belongs to the class of organic compounds known as pyrrolidines. Pyrrolidines are compounds containing a pyrrolidine ring, which is a five-membered saturated aliphatic heterocycle with one nitrogen atom and four carbon atoms. N-Nitroso-pyrrolidine has been detected, but not quantified, in several different foods, such as green bell peppers, orange bell peppers, pepper (c. annuum), red bell peppers, and yellow bell peppers. This could make N-nitroso-pyrrolidine a potential biomarker for the consumption of these foods. CONFIDENCE standard compound; EAWAG_UCHEM_ID 3450 Found in fried bacon

   

Ophthalmic acid

(2S)-2-amino-4-{[(1S)-1-[(carboxymethyl)carbamoyl]propyl]carbamoyl}butanoic acid

C11H19N3O6 (289.1274)


Ophthalmic acid, also known as ophthalmate, belongs to the class of organic compounds known as oligopeptides. These are organic compounds containing a sequence of between three and ten alpha-amino acids joined by peptide bonds. Ophthalmic acid is a very strong basic compound (based on its pKa). Ophthalmic acid is an L-glutamine derivative in which L-glutamine is substituted by a 1--1-oxobutan-2-yl at the terminal amino nitrogen atom. Ophthalmic acid is an analogue of glutathione isolated from crystalline lens. Ophthalmic acid is an analogue of glutathione isolated from crystalline lens. [HMDB]

   

Oxypurinol

1H,2H,4H,5H,6H-pyrazolo[3,4-d]pyrimidine-4,6-dione

C5H4N4O2 (152.0334)


Oxipurinol is a xanthine oxidase inhibitor. Oxipurinol is potentially used for treatment of congestive heart failure. PMID: 15139781. Oxipurinol is a xanthine oxidase inhibitor. Oxipurinol is potentially used for treatment of congestive heart failure. C471 - Enzyme Inhibitor > C1637 - Xanthine Oxidase Inhibitor D004791 - Enzyme Inhibitors CONFIDENCE standard compound; INTERNAL_ID 864; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 855; ORIGINAL_PRECURSOR_SCAN_NO 853 CONFIDENCE standard compound; INTERNAL_ID 864; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 883; ORIGINAL_PRECURSOR_SCAN_NO 881 CONFIDENCE standard compound; INTERNAL_ID 864; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 893; ORIGINAL_PRECURSOR_SCAN_NO 892 CONFIDENCE standard compound; INTERNAL_ID 864; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 861; ORIGINAL_PRECURSOR_SCAN_NO 860 CONFIDENCE standard compound; INTERNAL_ID 864; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 894; ORIGINAL_PRECURSOR_SCAN_NO 892 Acquisition and generation of the data is financially supported in part by CREST/JST. Oxipurinol (Oxipurinol), the major active metabolite of Allopurinol, is an inhibitor of xanthine oxidase. Oxipurinol can be used to regulate blood urate levels and treat gout[1].

   

4-Chloroaniline

4-Chloroaniline, trifluoroboron salt (1:1)

C6H6ClN (127.0189)


CONFIDENCE standard compound; INTERNAL_ID 1361; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3539; ORIGINAL_PRECURSOR_SCAN_NO 3535 CONFIDENCE standard compound; INTERNAL_ID 1361; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3530; ORIGINAL_PRECURSOR_SCAN_NO 3527 CONFIDENCE standard compound; INTERNAL_ID 1361; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3546; ORIGINAL_PRECURSOR_SCAN_NO 3542 CONFIDENCE standard compound; INTERNAL_ID 1361; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3544; ORIGINAL_PRECURSOR_SCAN_NO 3541 CONFIDENCE standard compound; INTERNAL_ID 4138 CONFIDENCE standard compound; INTERNAL_ID 8258 CONFIDENCE standard compound; INTERNAL_ID 8115

   

Benz[c]acridine

12-Azabenz[a]anthracene

C17H11N (229.0891)


CONFIDENCE standard compound; INTERNAL_ID 8306 CONFIDENCE standard compound; INTERNAL_ID 8119

   

Tetrachlorosalicylanilide

2-Hydroxy-3,4,5,6-tetrachlorobenzanilide

C13H7Cl4NO2 (348.9231)


CONFIDENCE standard compound; INTERNAL_ID 2369 D004791 - Enzyme Inhibitors CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 8640 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 8243

   

1,2-Cyclohexanedione

1,2-CYCLOHEXANEDIONE,ketone form

C6H8O2 (112.0524)


1,2-Cyclohexanedione is a flavour material for foo 1,2-Cyclohexanedione is an endogenous metabolite.

   

2,8-Quinolinediol

8-Hydroxy-2-oxo-1,2-dihydroquinoline

C9H7NO2 (161.0477)


2,8-Quinolinediol, also known as quinoline-2,8-diol or 8-hydroxycarbostyril, belongs to the class of organic compounds known as quinolones and derivatives. Quinolones and derivatives are compounds containing a quinoline moiety that bears a ketone group. 2,8-Quinolinediol has been identified in urine (PMID: 30089834).

   

Cortexolone

1S,2R,10R,11S,14R,15S)-14-hydroxy-14-(2-hydroxyacetyl)-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-6-en-5-one

C21H30O4 (346.2144)


Cortexolone, also known as cortodoxone or 11-deoxycortisol, belongs to the class of organic compounds known as 21-hydroxysteroids. These are steroids carrying a hydroxyl group at the 21-position of the steroid backbone. Thus, cortexolone is considered to be a steroid molecule. Cortexolone is an endogenous glucocorticoid steroid hormone, and a metabolic intermediate in the synthesis of cortisol. It was first described by Tadeusz Reichstein in 1938 and named as Substance S. It has also been referred to as Reichsteins Substance S or Compound S. Cortexolone acts as a glucocorticoid, though it is less potent than cortisol. Cortexolone is synthesized from 17α-hydroxyprogesterone by 21-hydroxylase and is converted to cortisol by 11β-hydroxylase. As a result, the level of cortexolone is often measured in patients to diagnose impaired cortisol synthesis, to identify any enzyme deficiency that may be causing impairment along the pathway to cortisol, and to differentiate adrenal disorders. Cortexolone in mammals has limited biological activity and mainly acts as metabolic intermediate within the glucocorticoid pathway, leading to cortisol. On the other hand, in sea lampreys, cortexolone is the major glucocorticoid, with mineralocorticoid activity. Cortexolone in sea lampreys binds to specific corticosteroid receptors and is involved in intestinal osmoregulation and in sea lamprey at metamorphosis, a process in which they develop seawater tolerance before downstream migration. Cortexolone is the precursor of cortisol. Accumulation of Cortexolone can happen in a defect known as congenital adrenal hyperplasia, which is due to 11-beta-hydroxylase deficiency, resulting in androgen excess, virilization, and hypertension. (PMID: 2022736) C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones Cortodoxone is a glucocorticoid that can be oxidized to cortisone (Hydrocortisone).

   

Fluperlapine

6-fluoro-10-(4-methylpiperazin-1-yl)-9-azatricyclo[9.4.0.0³,⁸]pentadeca-1(15),3(8),4,6,9,11,13-heptaene

C19H20FN3 (309.1641)


D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C66885 - Serotonin Antagonist C78272 - Agent Affecting Nervous System > C66883 - Dopamine Antagonist

   

2-(Methylamino)benzoic acid

N-Methylanthranilic acid, 8ci

C8H9NO2 (151.0633)


2-(Methylamino)benzoic acid is found in citrus. 2-(Methylamino)benzoic acid is isolated from grapefruit peel oi KEIO_ID M127 2-(Methylamino)benzoic acid is the main metabolite of methyl-N-methylanthranilates (MMA) (HY-76705) and is the compound in which the ester group is converted. MMA can be isolated from citrus fruits and has potential analgesic activity. 2-(Methylamino)benzoic acid was used to detect the metabolic levels of MMA in rat liver[1].

   

Rufloxacin

7-fluoro-6-(4-methylpiperazin-1-yl)-10-oxo-4-thia-1-azatricyclo[7.3.1.0⁵,¹³]trideca-5(13),6,8,11-tetraene-11-carboxylic acid

C17H18FN3O3S (363.1053)


Rufloxacin belongs to the family of Phenylpiperazines. These are compounds containing a phenylpiperazine skeleton, which consists of a piperazine bound to a phenyl group. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials > J01MA - Fluoroquinolones D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic D004791 - Enzyme Inhibitors Same as: D02474

   

Tolterodine

2-[(1R)-3-[bis(propan-2-yl)amino]-1-phenylpropyl]-4-methylphenol

C22H31NO (325.2406)


Tolterodine is only found in individuals that have used or taken this drug. It is an antimuscarinic drug that is used to treat urinary incontinence. Tolterodine acts on M2 and M3 subtypes of muscarinic receptors.Both tolterodine and its active metabolite, 5-hydroxymethyltolterodine, act as competitive antagonists at muscarinic receptors. This antagonism results in inhibition of bladder contraction, decrease in detrusor pressure, and an incomplete emptying of the bladder. G - Genito urinary system and sex hormones > G04 - Urologicals > G04B - Urologicals > G04BD - Drugs for urinary frequency and incontinence C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D000089162 - Genitourinary Agents > D064804 - Urological Agents Tolterodine(PNU-200583) is a potent muscarinic receptor antagonists that show selectivity for the urinary bladder over salivary glands in vivo. IC50 Value: Target: mAChR in vitro: Carbachol-induced contractions of isolated guinea pig bladder were effectively inhibited by tolterodine (IC50 14 nM) and 5-HM (IC50 5.7 nM). The IC50 values were in the microM range and the antimuscarinic potency of tolterodine was 27, 200 and 370-485 times higher, respectively, than its potency in blocking histamine receptors, alpha-adrenoceptors and calcium channels. The active metabolite, 5-HM, was >900 times less potent at these sites than at bladder muscarinic receptors [1]. in vivo: Tolterodine was extensively metabolized in vivo [2]. In the passive-avoidance test, tolterodine at 1 or 3 mg/kg had no effect on memory; the latency to cross and percentage of animals crossing were comparable to controls. In contrast, scopolamine induced a memory deficit; the latency to cross was decreased, and the number of animals crossing was increased [3].

   

1-Hydroxy-2-naphthoic acid

1-Hydroxy-2-naphthoic acid, monosodium salt

C11H8O3 (188.0473)


1-Hydroxy-2-naphthoic acid is an endogenous metabolite.

   

3-Methylcatechol

3-methylbenzene-1,2-diol

C7H8O2 (124.0524)


3-methylcatechol, also known as 2,3-dihydroxytoluene or 2,3-toluenediol, is a member of the class of compounds known as catechols. Catechols are compounds containing a 1,2-benzenediol moiety. 3-methylcatechol is soluble (in water) and a very weakly acidic compound (based on its pKa). 3-methylcatechol can be found in arabica coffee, beer, cocoa powder, and coffee, which makes 3-methylcatechol a potential biomarker for the consumption of these food products. 3-methylcatechol is a chemical compound . 3-Methylcatechol is a building block in the chemical synthesis produced by Pseudomonas putida MC2[1]. 3-Methylcatechol is a building block in the chemical synthesis produced by Pseudomonas putida MC2[1].

   

Acetylenedicarboxylic acid

2-Butynedioic acid, potassium salt

C4H2O4 (113.9953)


KEIO_ID A128

   

Isovaline

(S)-2-AMINO-2-METHYLBUTYRIC ACID

C5H11NO2 (117.079)


KEIO_ID A189

   

3,4-Dihydroxyhydrocinnamic acid

3,4-dihydroxyphenylpropionic acid, potassium salt

C9H10O4 (182.0579)


3,4-Dihydroxyhydrocinnamic acid, also known as dihydrocaffeic acid (DHCA), is a metabolite product of the hydrogenation of caffeoylquinic acids, occurring in normal human biofluids, with potent antioxidant properties. DHCA has been detected in human plasma following coffee ingestion (PMID: 15607645) and is increased with some dietary sources, such as after ingestion of phenolic constituents of artichoke leaf extract (PMID: 15693705). Polyphenol-rich foods such as vegetables and fruits have been shown to significantly improve platelet function in ex vivo studies in humans (PMID: 16038718). Its antioxidant activity has been tested to reduce ferric iron in the ferric reducing antioxidant power (FRAP) assay, and it has been suggested that its catechol structure conveys the antioxidant effect in plasma and in erythrocytes (PMID: 11768243). 3,4-Dihydroxyhydrocinnamic acid is a microbial metabolite found in Bifidobacterium, Escherichia, Lactobacillus, and Clostridium (PMID: 28393285). 3,4-Dihydroxyhydrocinnamic acid (or Dihydrocaffeic acid, DHCA) is a metabolite product of the hydrogenation of caffeoylquinic acids, occurring in normal human biofluids, with potent antioxidant properties. DHCA has been detected in human plasma following coffee ingestion (PMID 15607645), and is increased with some dietary sources, such as after ingestion of phenolic constituents of artichoke leaf extract. (PMID 15693705) Polyphenol-rich foods such as vegetables and fruits have been shown to significantly improve platelet function in ex vivo studies in humans. (PMID 16038718) Its antioxidant activity has been tested to reduce ferric iron in the ferric reducing antioxidant power (FRAP) assay, and it has been suggested that its catechol structure convey the antioxidant effect in plasma and in erythrocytes. (PMID 11768243) [HMDB]. 3-(3,4-Dihydroxyphenyl)propanoic acid is found in red beetroot, common beet, and olive. KEIO_ID D047 Dihydrocaffeic acid is a microbial metabolite of flavonoids, reduces phosphorylation of MAPK p38 and prevent UVB-induced skin damage. Antioxidant potential and anti-inflammatory activity[1]. Dihydrocaffeic acid is a microbial metabolite of flavonoids, reduces phosphorylation of MAPK p38 and prevent UVB-induced skin damage. Antioxidant potential and anti-inflammatory activity[1].

   

Proteinase inhibitor E 64

3-[[[(1S)-1-[[[4-[(aminoiminomethyl)amino]butyl]amino]carbonyl]-3-methylbutyl]amino]carbonyl]-(2S,3S)-oxiranecarboxylic acid

C15H27N5O5 (357.2012)


D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D015853 - Cysteine Proteinase Inhibitors D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents KEIO_ID E015; [MS2] KO008950 KEIO_ID E015

   

Serine O-sulfate

L-Serine O-sulfate

C3H7NO6S (184.9994)


KEIO_ID H096

   

4-Hydroxyphenyl-2-propionic acid

4-Hydroxy-α-methylbenzeneacetic acid

C9H10O3 (166.063)


4-Hydroxyphenyl-2-propionic acid belongs to the class of organic compounds known as phenylpropanoic acids. Phenylpropanoic acids are compounds with a structure containing a benzene ring conjugated to a propanoic acid. 4-Hydroxyphenyl-2-propionic acid has been detected in multiple biofluids, such as urine and blood (PMID: 20428313). Within the cell, 4-hydroxyphenyl-2-propionic acid is primarily located in the cytoplasm. A polyphenol metabolite detected in biological fluids [PhenolExplorer] KEIO_ID H099

   

S-Methylthioglycolate

(Methylthio)acetic acid

C3H6O2S (106.0088)


   

Isonicotinamide

Pyridine-4-carboxylic acid amide

C6H6N2O (122.048)


KEIO_ID I051

   

Beta-Leucine

(±)-3-Amino-4-methylpentanoic acid, (±)-3-Amino-4-methylvaleric acid

C6H13NO2 (131.0946)


Beta-leucine is a metabolite that is in the middle of a controversy over its presence in the human body. While there are reports that claim it as a human metabolite, there are others that deny its existence. Two examples:. Circulating levels of beta-leucine are elevated in the cobalamin-deficient state of pernicious anemia. Levels of leucine, on the other hand, are much lower. It is proposed that leucine 2,3-aminomutase, the cobalamin-dependent enzyme that catalyzes the interconversion of leucine and beta-leucine, is the affected enzyme in pernicious anemia and causes these results by preventing the synthesis of leucine from beta-leucine. The synthesis of leucine by human leukocytes and hair roots and by rat liver extracts has been shown to occur when either branched chain fatty acids or valine metabolites are the substances. The synthesis is dependent upon adenosylcobalamin and is inhibited by intrinsic factor (PMID:7430116). Using forms of beta-leucine and leucine that contain several deuterium atoms in place of several hydrogen atoms as internal standards, techniques have been developed which make it possible to detect and quantitate as little as 0.1 mumol/liter of beta-leucine or leucine in human serum and in incubations containing rat liver supernatant. beta-Leucine was not detectable, i.e. less than 0.1 mumol/liter, in any sera from 50 normal human subjects or in any sera from 50 cobalamin-deficient patients. Experiments in which beta-leucine, leucine, isostearic acid, or isocaproic acid were incubated with rat liver supernatant in the presence or absence of adenosylcobalamin or cobalamin-binding protein failed to demonstrate the formation of leucine or beta-leucine or their interconversion under any of the conditions studied. We conclude that beta-leucine is not present in human blood and that the existence of leucine 2,3-aminomutase in mammalian tissues remains to be established (PMID 3356699). Beta-leucine is found to be associated with cobalamin deficiency, which is an inborn error of metabolism. Beta-leucine is a metabolite that is in the middle of a controversy over its presence in the human body. While there are reports that claim it as a human metabolite, there are others that deny its existence. Two examples: Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID L057 3-Amino-4-methylpentanoic acid is a beta amino acid and positional isomer of L-leucine which is naturally produced in humans via the metabolism of L-leucine by the enzyme leucine 2,3-aminomutase.

   

Octylamine

Octylamine hydrochloride

C8H19N (129.1517)


KEIO_ID O007

   

Nebularine

2-(hydroxymethyl)-5-(9H-purin-9-yl)oxolane-3,4-diol

C10H12N4O4 (252.0859)


Nebularine, also known as purine riboside is found in mushrooms. Nebularine can be isolated from the mushroom Clitocybe nebularis (clouded agaric). Nebularine is a nucleoside analog that is used in a variety of enzyme studies. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D000970 - Antineoplastic Agents KEIO_ID P081; [MS2] KO009216 KEIO_ID P081

   

Hexylamine

Hexylamine hydrochloride

C6H15N (101.1204)


Hexylamine is used as a food additive [EAFUS] ("EAFUS: Everything Added to Food in the United States. [http://www.eafus.com/]") Acquisition and generation of the data is financially supported in part by CREST/JST. It is used as a food additive .

   

Xanthylic acid

{[(2R,3S,4R,5R)-5-(2,6-dioxo-2,3,6,9-tetrahydro-1H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}phosphonic acid

C10H13N4O9P (364.042)


Xanthylic acid, also known as xmp or (9-D-ribosylxanthine)-5-phosphate, is a member of the class of compounds known as purine ribonucleoside monophosphates. Purine ribonucleoside monophosphates are nucleotides consisting of a purine base linked to a ribose to which one monophosphate group is attached. Xanthylic acid is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Xanthylic acid can be found in a number of food items such as common grape, black-eyed pea, java plum, and wild rice, which makes xanthylic acid a potential biomarker for the consumption of these food products. Xanthylic acid exists in all living species, ranging from bacteria to humans. In humans, xanthylic acid is involved in several metabolic pathways, some of which include azathioprine action pathway, glutamate metabolism, mercaptopurine action pathway, and purine metabolism. Xanthylic acid is also involved in several metabolic disorders, some of which include purine nucleoside phosphorylase deficiency, succinic semialdehyde dehydrogenase deficiency, xanthine dehydrogenase deficiency (xanthinuria), and molybdenum cofactor deficiency. Xanthosine monophosphate is an intermediate in purine metabolism. It is a ribonucleoside monophosphate. It is formed from IMP via the action of IMP dehydrogenase, and it forms GMP via the action of GMP synthaseand is) also, XMP can be released from XTP by enzyme deoxyribonucleoside triphosphate pyrophosphohydrolase containing (d)XTPase activity . Xanthylic acid is an important metabolic intermediate in the Purine Metabolism, and is a product or substrate of the enzymes Inosine monophosphate dehydrogenase (EC 1.1.1.205), Hypoxanthine phosphoribosyltransferase (EC 2.4.2.8), Xanthine phosphoribosyltransferase (EC 2.4.2.22), 5-Ribonucleotide phosphohydrolase (EC 3.1.3.5), Ap4A hydrolase (EC 3.6.1.17), Nucleoside-triphosphate diphosphatase (EC 3.6.1.19), Phosphoribosylamine-glycine ligase (EC 6.3.4.1), and glutamine amidotransferase (EC 6.3.5.2). (KEGG) Xanthylic acid can also be used in quantitative measurements of the Inosine monophosphate dehydrogenase enzyme activities in purine metabolism. This measurement is important for optimal thiopurine therapy for children with acute lymphoblastic leukaemia (ALL). (PMID: 16725387). Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Pimaric acid

Dextropimaric acid

C20H30O2 (302.2246)


relative retention time with respect to 9-anthracene Carboxylic Acid is 1.561 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.568 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.560

   

7,4'-Dihydroxyflavone

7-Hydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one

C15H10O4 (254.0579)


7,4-dihydroxyflavone, also known as 7-hydroxy-2-(4-hydroxyphenyl)-4h-chromen-4-one, is a member of the class of compounds known as flavones. Flavones are flavonoids with a structure based on the backbone of 2-phenylchromen-4-one (2-phenyl-1-benzopyran-4-one). Thus, 7,4-dihydroxyflavone is considered to be a flavonoid lipid molecule. 7,4-dihydroxyflavone is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 7,4-dihydroxyflavone can be found in alfalfa, broad bean, and fenugreek, which makes 7,4-dihydroxyflavone a potential biomarker for the consumption of these food products. Like many other flavonoids, 4,7-dihydroxyflavone has been found to possess activity at the opioid receptors. Specifically, it acts as an antagonist of the μ-opioid receptor and, with lower affinity, of the κ- and δ-opioid receptors . 7,4'-Dihydroxyflavone (7,4'-DHF) is a flavonoid isolated from Glycyrrhiza uralensis, the eotaxin/CCL11 inhibitor, has the ability to consistently suppress eotaxin production and prevent dexamethasone (Dex)‐paradoxical adverse effects on eotaxin production[1]. 7,4'-Dihydroxyflavone (7,4'-DHF) inhibits MUC5AC gene expression, mucus production and secretion via regulation of NF-κB, STAT6 and HDAC2. 7,4'-Dihydroxyflavone (7,4'-DHF) decreases phorbol 12-myristate 13-acetate (PMA) stimulated NCI-H292 human airway epithelial cell MUC5AC gene expression and mucus production with IC50 value of 1.4 μM[1]. 7,4'-Dihydroxyflavone (7,4'-DHF) is a flavonoid isolated from Glycyrrhiza uralensis, the eotaxin/CCL11 inhibitor, has the ability to consistently suppress eotaxin production and prevent dexamethasone (Dex)‐paradoxical adverse effects on eotaxin production[1]. 7,4'-Dihydroxyflavone (7,4'-DHF) inhibits MUC5AC gene expression, mucus production and secretion via regulation of NF-κB, STAT6 and HDAC2. 7,4'-Dihydroxyflavone (7,4'-DHF) decreases phorbol 12-myristate 13-acetate (PMA) stimulated NCI-H292 human airway epithelial cell MUC5AC gene expression and mucus production with IC50 value of 1.4 μM[1].

   

Scutellarein

6-hydroxyapigenin

C15H10O6 (286.0477)


Scutellarein is a natural flavonoid compound with anti-inflammatory effects. Scutellarein is a natural flavonoid compound with anti-inflammatory effects.

   

Ergonovine

(4R,7R)-N-[(2S)-1-hydroxypropan-2-yl]-6-methyl-6,11-diazatetracyclo[7.6.1.0²,⁷.0¹²,¹⁶]hexadeca-1(16),2,9,12,14-pentaene-4-carboxamide

C19H23N3O2 (325.179)


Ergonovine is only found in individuals that have used or taken this drug. It is an ergot alkaloid with uterine and vascular smooth muscle contractile properties. [PubChem]Ergonovine directly stimulates the uterine muscle to increase force and frequency of contractions. With usual doses, these contractions precede periods of relaxation; with larger doses, basal uterine tone is elevated and these relaxation periods will be decreased. Contraction of the uterine wall around bleeding vessels at the placental site produces hemostasis. Ergonovine also induces cervical contractions. The sensitivity of the uterus to the oxytocic effect is much greater toward the end of pregnancy. The oxytocic actions of ergonovine are greater than its vascular effects. Ergonovine, like other ergot alkaloids, produces arterial vasoconstriction by stimulation of alpha-adrenergic and serotonin receptors and inhibition of endothelial-derived relaxation factor release. It is a less potent vasoconstrictor than ergotamine. As a diagnostic aid (coronary vasospasm), ergonovine causes vasoconstriction of coronary arteries. G - Genito urinary system and sex hormones > G02 - Other gynecologicals > G02A - Uterotonics > G02AB - Ergot alkaloids C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist C78272 - Agent Affecting Nervous System > C66884 - Dopamine Agonist D012102 - Reproductive Control Agents > D010120 - Oxytocics

   

Benzoin

alpha -Hydroxy-alpha -phenylacetophenone

C14H12O2 (212.0837)


(±)-Benzoin is a flavouring ingredient.Benzoin is an organic compound with the formula PhCH(OH)C(O)Ph. It is a hydroxy ketone attached to two phenyl groups. It appears as off-white crystals, with a light camphor-like odor. Benzoin is synthesized from benzaldehyde in the benzoin condensation. It is chiral and it exists as a pair of enantiomers: (R)-benzoin and (S)-benzoin. (Wikipedia C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent Flavouring ingredient Benzoin is a kind of alsamic resin isolated from the styracaceae family. Benzoin can be used as a colour additive used for marking plants[1].

   

Benzyl benzoate

Benzyl benzoate, Pharmaceutical Secondary Standard; Certified Reference Material

C14H12O2 (212.0837)


Benzyl benzoate, also known as benylate or benylic acid, belongs to the class of organic compounds known as benzoic acid esters. These are ester derivatives of benzoic acid. Benzyl benzoate is an extremely weak basic (essentially neutral) compound (based on its pKa). Benzyl benzoate is a faint, sweet, and almond tasting compound. Outside of the human body, benzyl benzoate is found, on average, in the highest concentration within Ceylon cinnamon. Benzyl benzoate has also been detected, but not quantified in, several different foods, such as fennels, garden tomato, annual wild rice, amaranths, and horseradish tree. This could make benzyl benzoate a potential biomarker for the consumption of these foods. Benzyl benzoate is one of the older preparations used to treat scabies. Scabies is a skin infection caused by the mite Sarcoptes scabiei. It is characterized by severe itching (particularly at night), red spots, and may lead to a secondary infection. Benzyl benzoate is lethal to this mite and is therefore useful in the treatment of scabies. It is also used to treat lice infestations of the head and body. Benzyl benzoate is a benzoate ester obtained by the formal condensation of benzoic acid with benzyl alcohol. It has been isolated from the plant species of the genus Polyalthia. It has a role as a scabicide, an acaricide and a plant metabolite. It is a benzyl ester and a benzoate ester. It is functionally related to a benzoic acid. Benzyl benzoate is one of the older preparations used to treat scabies. Scabies is a skin infection caused by the mite sarcoptes scabiei. It is characterised by severe itching (particularly at night), red spots, and may lead to a secondary infection. Benzyl benzoate is lethal to this mite and so is useful in the treatment of scabies. It is also used to treat lice infestation of the head and body. Benzyl benzoate is not the treatment of choice for scabies due to its irritant properties. Benzyl benzoate is a natural product found in Lonicera japonica, Populus tremula, and other organisms with data available. See also: ... View More ... P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03A - Ectoparasiticides, incl. scabicides A benzoate ester obtained by the formal condensation of benzoic acid with benzyl alcohol. It has been isolated from the plant species of the genus Polyalthia. Contained in Peru balsam and Tolu balsam. Isolated from other plants e.g. Jasminum subspecies, ylang-ylang oil. It is used in food flavouring C254 - Anti-Infective Agent > C276 - Antiparasitic Agent D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals Same as: D01138 Benzyl benzoate (Benzoic acid benzyl ester) is a fragrance ingredient in cosmetic products. Benzyl benzoate can be used for the research of Scabies and Demodex-associated inflammatory skin conditions[1][2][3]. Benzyl benzoate (Phenylmethyl benzoate) is an orally active anti-scabies agent, acaricide (EC50= 0.06 g/m2) and fungicide. Benzyl benzoate is an angiotensin II (Ang II) inhibitor with antihypertensive effects. Benzyl benzoate can be used in perfumes, pharmaceuticals and the food industry[1][2][3][4][5]. Benzyl benzoate (Benzoic acid benzyl ester) is a fragrance ingredient in cosmetic products. Benzyl benzoate can be used for the research of Scabies and Demodex-associated inflammatory skin conditions[1][2][3].

   

Artemisin

Artemisin

C15H18O4 (262.1205)


D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides

   

Picein

1-(4-(((2S,3R,4S,5S,6R)-3,4,5-Trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)phenyl)ethanone

C14H18O7 (298.1052)


Picein is a glycoside. Picein is a natural product found in Salix candida, Halocarpus biformis, and other organisms with data available. Picein, isolated from Picrorhiza kurroa, is a naturally occurring antioxidant[1]. Picein, isolated from Picrorhiza kurroa, is a naturally occurring antioxidant[1].

   

Apigenin 7,4'-dimethyl ether

5-hydroxy-7-methoxy-2-(4-methoxyphenyl)-4H-1-benzopyran-4-one

C17H14O5 (298.0841)


Apigenin 7,4-dimethyl ether, also known as apigenin dimethylether or 4,7-dimethylapigenin, belongs to the class of organic compounds known as 7-O-methylated flavonoids. These are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, apigenin 7,4-dimethyl ether is considered to be a flavonoid lipid molecule. Apigenin 7,4-dimethyl ether is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Outside of the human body, apigenin 7,4-dimethyl ether has been detected, but not quantified in, common sages and sweet basils. This could make apigenin 7,4-dimethyl ether a potential biomarker for the consumption of these foods. BioTransformer predicts that apigenin 7,4-dimethyl ether is a product of 4,5,7-trimethoxyflavone metabolism via an O-dealkylation reaction and catalyzed by CYP2C9 and CYP2C19 enzymes (PMID: 30612223). 4-methylgenkwanin, also known as apigenin dimethylether or 4,7-dimethylapigenin, is a member of the class of compounds known as 7-o-methylated flavonoids. 7-o-methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, 4-methylgenkwanin is considered to be a flavonoid lipid molecule. 4-methylgenkwanin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 4-methylgenkwanin can be found in common sage and sweet basil, which makes 4-methylgenkwanin a potential biomarker for the consumption of these food products. The compound 7,4'-Di-O-methylapigenin may be partly responsible for the reported antifungal activity of C. zeyheri, and may serve as a potential source of lead compounds that can be developed as antifungal phytomedicines.And it also showed inhibition of the drug efflux pumps (with IC50 = 51.64 μg/ml). IC50:51.64 μg/ml(Candida albicans drug efflux pumps)[2] In vitro: The isolated 7,4'-Di-O-methylapigenin was further investigated for its inhibitory activity on ABC drug efflux pumps in C. albicans by monitoring an increase in ciprofloxacin, assessing the level of its accumulation, in response to reserpine. There was a higher accumulation of ciprofloxacin in Candida cells in the presence of 7,4'-Di-O-methylapigenin than with reserpine. The compound 7,4'-Di-O-methylapigenine demonstrated the activity in a dose-dependent manner with IC50 value of 51.64 μg/ml. These results support those obtained from synergism assays where by the underlying synergistic antifungal mechanisms could be due to blockage of ABC efflux pumps and increasing the susceptibility of Candida to miconazole.[2] In vivo: In searching for natural products as potential anti-inflammatory agents, 7,4'-Di-O-methylapigenin wasn't evaluated in vivo for its ability to inhibit acute inflammation.[1] The compound 7,4'-Di-O-methylapigenin may be partly responsible for the reported antifungal activity of C. zeyheri, and may serve as a potential source of lead compounds that can be developed as antifungal phytomedicines.And it also showed inhibition of the drug efflux pumps (with IC50 = 51.64 μg/ml). IC50:51.64 μg/ml(Candida albicans drug efflux pumps)[2] In vitro: The isolated 7,4'-Di-O-methylapigenin was further investigated for its inhibitory activity on ABC drug efflux pumps in C. albicans by monitoring an increase in ciprofloxacin, assessing the level of its accumulation, in response to reserpine. There was a higher accumulation of ciprofloxacin in Candida cells in the presence of 7,4'-Di-O-methylapigenin than with reserpine. The compound 7,4'-Di-O-methylapigenine demonstrated the activity in a dose-dependent manner with IC50 value of 51.64 μg/ml. These results support those obtained from synergism assays where by the underlying synergistic antifungal mechanisms could be due to blockage of ABC efflux pumps and increasing the susceptibility of Candida to miconazole.[2] In vivo: In searching for natural products as potential anti-inflammatory agents, 7,4'-Di-O-methylapigenin wasn't evaluated in vivo for its ability to inhibit acute inflammation.[1]

   

1-Methylguanidine

1-Methylguanidine hydrochloride

C2H7N3 (73.064)


Methylguanidine (MG) is a guanidine in which one of the amino hydrogens of guanidine itself is substituted by a methyl group. Methylguanidine is a guanidine compound deriving from protein catabolism. It is also a product of putrefaction. Methylguanidine has a role as a metabolite, an EC 1.14.13.39 (nitric oxide synthase) inhibitor and as a uremic toxin. It has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID:22626821). It accumulates in renal failure, however it also exhibits anti-inflammatory effects. Methylguanidine is synthesized from creatinine concomitant with the synthesis of hydrogen peroxide from endogenous substrates in peroxisomes. Recent evidence suggests that methylguanidine significantly inhibits iNOS activity and TNF- release. This means that methylguandine can attenuate the degree of inflammation and tissue damage associated with endotoxic shock. Methylguanidine (MG) is a guanidine compound deriving from protein catabolism. It is also a product of putrefaction. Methylguanidine is a suspected uraemic toxin that accumulates in renal failure, however it also exhibits anti-inflammatory effects. Methylguanidine is synthesized from creatinine concomitant with the synthesis of hydrogen peroxide from endogenous substrates in peroxisomes. Recent evidence suggests that methylguanidine significantly inhibits iNOS activity and TNF- release. This means that methylguandine can attenuate the degree of inflammation and tissue damage associated with endotoxic shock. Methylguanidine is found in loquat and apple. Methylguanidine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=471-29-4 (retrieved 2024-07-16) (CAS RN: 471-29-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Adenosine 3',5'-diphosphate

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}phosphonic acid

C10H15N5O10P2 (427.0294)


Adenosine-3-5-diphosphate, also known as 3-phosphoadenylate or pap, is a member of the class of compounds known as purine ribonucleoside 3,5-bisphosphates. Purine ribonucleoside 3,5-bisphosphates are purine ribobucleotides with one phosphate group attached to 3 and 5 hydroxyl groups of the ribose moiety. Adenosine-3-5-diphosphate is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). Adenosine-3-5-diphosphate can be found in a number of food items such as beech nut, canola, chickpea, and red algae, which makes adenosine-3-5-diphosphate a potential biomarker for the consumption of these food products. Adenosine-3-5-diphosphate can be found primarily in cellular cytoplasm, as well as in human brain and liver tissues. Adenosine-3-5-diphosphate exists in all living species, ranging from bacteria to humans. In humans, adenosine-3-5-diphosphate is involved in several metabolic pathways, some of which include acetaminophen metabolism pathway, tamoxifen action pathway, androgen and estrogen metabolism, and metachromatic leukodystrophy (MLD). Adenosine-3-5-diphosphate is also involved in several metabolic disorders, some of which include gaucher disease, krabbe disease, fabry disease, and 17-beta hydroxysteroid dehydrogenase III deficiency. Adenosine 3, 5-diphosphate or PAP is a nucleotide that is closely related to ADP. It has two phosphate groups attached to the 5 and 3 positions of the pentose sugar ribose (instead of pyrophosphoric acid at the 5 position, as found in ADP), and the nucleobase adenine. PAP is converted to PAPS by Sulfotransferase and then back to PAP after the sulfotransferase reaction. Sulfotransferase (STs) catalyze the transfer reaction of the sulfate group from the ubiquitous donor 3-phosphoadenosine 5-phosphosulfate (PAPS) to an acceptor group of numerous substrates. This reaction, often referred to as sulfuryl transfer, sulfation, or sulfonation, is widely observed from bacteria to humans and plays a key role in various biological processes such as cell communication, growth and development, and defense. PAP also appears to a role in bipolar depression. Phosphatases converting 3-phosphoadenosine 5-phosphate (PAP) into adenosine 5-phosphate are of fundamental importance in living cells as the accumulation of PAP is toxic to several cellular systems. These enzymes are lithium-sensitive and we have characterized a human PAP phosphatase as a potential target of lithium therapy.

   

Hexylglutathione

2-Amino-5-((1-((carboxymethyl)amino)-3-(hexylthio)-1-oxopropan-2-yl)amino)-5-oxopentanoic acid

C16H29N3O6S (391.1777)


D004791 - Enzyme Inhibitors

   

1-O-Acetyllycorine

Lycorine, 1-O-acetyl-

C18H19NO5 (329.1263)


   

Nantenine

O-Methyl domesticine

C20H21NO4 (339.1471)


A natural product found in Corydalis cava and Nandina domestica. Annotation level-1

   

11beta-OHA4

11β-hydroxyandrost-4-ene-3,17-dione

C19H26O3 (302.1882)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones CONFIDENCE standard compound; INTERNAL_ID 2829 11-Beta-hydroxyandrostenedione (4-Androsten-11β-ol-3,17-dione) is a steroid mainly found in the the adrenal origin (11β-hydroxylase is present in adrenal tissue, but absent in ovarian tissue). 11-Beta-hydroxyandrostenedione is a 11β-hydroxysteroid dehydrogenase (11βHSD) isozymes inhibitor. As 4-androstenedione increases, measuring plasma 11-Beta-hydroxyandrostenedione can distinguish the adrenal or ovarian origin of hyperandrogenism[1][2].

   

8,9-DiHETrE

(±)8,9-dihydroxy-5Z,11Z,14Z-eicosatrienoic acid

C20H34O4 (338.2457)


8,9-DiHETrE is a Cytochrome P450 (P450) eicosanoid. Eicosanoids generated from arachidonic acid (AA) metabolism by cytochrome P450 (P450) enzymes are important autocrine and paracrine factors that have diverse biological functions. P450 eicosanoids are involved in the regulation of vascular tone, renal tubular transport, cardiac contractility, cellular proliferation, and inflammation. P450converts AA to 8,9- dihydroxyeicosatrienoic acid. This enzymatic pathway was first described in liver; however, it is now clear that AA can be metabolized by P450 in many tissues including the pituitary gland, eye, kidney, adrenal gland, and blood vessels. (PMID: 17431031, 11700990) [HMDB] 8,9-DiHETrE is a Cytochrome P450 (P450) eicosanoid. Eicosanoids generated from arachidonic acid (AA) metabolism by cytochrome P450 (P450) enzymes are important autocrine and paracrine factors that have diverse biological functions. P450 eicosanoids are involved in the regulation of vascular tone, renal tubular transport, cardiac contractility, cellular proliferation, and inflammation. P450converts AA to 8,9- dihydroxyeicosatrienoic acid. This enzymatic pathway was first described in liver; however, it is now clear that AA can be metabolized by P450 in many tissues including the pituitary gland, eye, kidney, adrenal gland, and blood vessels. (PMID: 17431031, 11700990).

   

2,3-dihydroxyisovalerate

2,3-dihydroxy-3-methylbutanoic acid

C5H10O4 (134.0579)


   

3-Methyl-2-butenal

β,β-Dimethylacrylic aldehyde

C5H8O (84.0575)


3-Methyl-2-butenal, also known as senecialdehyde or 3,3-dimethylacrolein, belongs to the class of organic compounds known as enals. These are alpha,beta-unsaturated aldehydes of the general formula RC=C-CH=O in which the aldehydic C=O function is conjugated to a C=C triple bond at the alpha,beta position. 3-methyl-2-butenal has been detected, but not quantified, in several different foods, such as common oregano, beechnuts, oval-leaf huckleberries, tea leaf willows, and red rice. This could make 3-methyl-2-butenal a potential biomarker for the consumption of these foods. 3-Methyl-2-butenal is a derivative of acrolein that is an alpha, beta-unsaturated carbonyl metabolite. It can be formed endogenously during lipid peroxidation or after oxidative stress, and is considered to play an important role in human carcinogenesis. The endogenously formed acroleins are a constant source of DNA damage, can lead to mutation, and can also induce tumours in humans (PMID:8319634). 3-Methyl-2-butenal, which is an unsaturated aldehyde bearing substitution at the alkene terminus, is a poor inactivator of the enzymes protein tyrosine phosphatases (PTPs). The inactivation of PTPs can yield profound biological consequences arising from the disruption of cellular signalling pathways (PMID:17655273). Present in blackberry, grape brandy, cocoa, currants, baked potato, tea, costmary and white bread. Flavouring ingredient

   

alpha-Copaene

TRICYCLO(4.4.0.02,7)DEC-3-ENE, 1,3-DIMETHYL-8-(1-METHYLETHYL)-, (1R,2S,6S,7S,8S)-

C15H24 (204.1878)


alpha-Copaene, also known as aglaiene, belongs to the class of organic compounds known as sesquiterpenoids. These are terpenes with three consecutive isoprene units. alpha-Copaene is possibly neutral. alpha-Copaene is a spice and woody tasting compound that can be found in several food items such as lime, mandarin orange (clementine, tangerine), safflower, and summer savoury, which makes alpha-copaene a potential biomarker for the consumption of these food products. alpha-Copaene can be found in feces and saliva. Alpha-copaene, also known as copaene, is a member of the class of compounds known as sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units. Alpha-copaene is a spice and woody tasting compound and can be found in a number of food items such as lime, mandarin orange (clementine, tangerine), safflower, and summer savory, which makes alpha-copaene a potential biomarker for the consumption of these food products. Alpha-copaene can be found primarily in feces and saliva. 8-Isopropyl-1,3-dimethyltricyclo(4.4.0.02,7)dec-3-ene is a natural product found in Pinus sylvestris var. hamata, Asarum gusk, and other organisms with data available.

   

Camphene

3,3-Dimethyl-2-methylidenebicyclo[2.2.1]heptane

C10H16 (136.1252)


Camphene, also known as 2,2-dimethyl-3-methylenebicyclo[2.2.1]heptane or 2,2-dimethyl-3-methylenenorbornane, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. Monoterpenoids are terpenes that contain 10 carbon atoms and are comprised of two isoprene units. The biosynthesis of monoterpenes is known to occur mainly through the methyl-erythritol-phosphate (MEP) pathway in plastids (PMID:7640522 ). Geranyl diphosphate (GPP) is a key intermediate in the biosynthesis of cyclic monoterpenes. GPP undergoes several cyclization reactions to yield a diverse number of cyclic arrangements. Camphene is nearly insoluble in water but very soluble in common organic solvents. It volatilizes readily at room temperature and has a pungent smell. It exists as a flammable, white solid that has a minty, citrus, eucalyptus odor. It is produced industrially by catalytic isomerization of the more common alpha-pinene. Camphene is used in the preparation of fragrances and in food additives for flavouring. In the mid-19th century it was used as a fuel for lamps, but this was limited by its explosiveness. Camphene exists in all eukaryotes, ranging from yeast to plants to humans. Camphene can be found in a number of food items such as dill, carrots, caraway, hyssop, lemon, orange, nutmeg seed, parsley, sage, thyme, turmeric and fennel, which makes camphene a potential biomarker for the consumption of these food products. It is a minor constituent of many essential oils such as turpentine, cypress oil, camphor oil, citronella oil, neroli, ginger oil, and valerian. Camphene is one of several monoterpenes that are found in cannabis plants (PMID:6991645 ). Camphene, also known as 2,2-dimethyl-3-methylenebicyclo[2.2.1]heptane or 2,2-dimethyl-3-methylenenorbornane, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. Camphene is a camphor, fir needle, and herbal tasting compound and can be found in a number of food items such as cardamom, yellow bell pepper, common thyme, and coriander, which makes camphene a potential biomarker for the consumption of these food products. Camphene can be found primarily in feces and saliva. Camphene exists in all eukaryotes, ranging from yeast to humans. Camphene is a bicyclic monoterpene. It is nearly insoluble in water, but very soluble in common organic solvents. It volatilizes readily at room temperature and has a pungent smell. It is a minor constituent of many essential oils such as turpentine, cypress oil, camphor oil, citronella oil, neroli, ginger oil, and valerian. It is produced industrially by catalytic isomerization of the more common alpha-pinene. Camphene is used in the preparation of fragrances and as a food additive for flavoring. Its mid-19th century use as a fuel for lamps was limited by its explosiveness .

   

Caffeoylmalic acid

2-{[(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}butanedioic acid

C13H12O8 (296.0532)


Isolated from leaves of French bean (Phaseolus vulgaris) and from Trifolium pratense (red clover). L-Malic acid caffeate is found in many foods, some of which are yellow wax bean, herbs and spices, tea, and pulses. Caffeoylmalic acid is found in common bean. Caffeoylmalic acid is isolated from leaves of French bean (Phaseolus vulgaris) and from Trifolium pratense (red clover

   

Corynebactin

3,7,11-Tris[2-(2,3-dihydroxybenzoylamino)acetylamino]-4,8,12-trimethyl-1,5,9-trioxacyclododecane-2,6,10-trione

C39H42N6O18 (882.2555)


A crown compound that is enterobactin in which the pro-R hydrogens at positions 2, 6 and 10 of the trilactone backbone are replaced by methyl groups, and in which a glycine spacer separates the trilactone backbone from each of the catecholamide arms. It is the endogenous siderophore of Bacillus subtilis, used for the acquisition of iron.

   

Homophenylalanine

L-Homophenylalanine

C10H13NO2 (179.0946)


   

isochorismate

(5S,6S)-5-[(1-carboxyeth-1-en-1-yl)oxy]-6-hydroxycyclohexa-1,3-diene-1-carboxylic acid

C10H10O6 (226.0477)


Isochorismate, also known as isochorismic acid, belongs to beta hydroxy acids and derivatives class of compounds. Those are compounds containing a carboxylic acid substituted with a hydroxyl group on the C3 carbon atom. Isochorismate is soluble (in water) and a weakly acidic compound (based on its pKa). Isochorismate can be found in a number of food items such as cucurbita (gourd), cherry tomato, chinese chestnut, and chinese water chestnut, which makes isochorismate a potential biomarker for the consumption of these food products. Isochorismate may be a unique E.coli metabolite.

   

L-Formylkynurenine

(2S)-2-azaniumyl-4-(2-formamidophenyl)-4-oxobutanoate

C11H12N2O4 (236.0797)


This compound belongs to the family of Butyrophenones. These are compounds containing 1-phenylbutan-1-one moiety.

   

Cinnamoyl-CoA

4-({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-3,3-dimethyl-N-{2-[(2-{[(2E)-3-phenylprop-2-enoyl]sulphanyl}ethyl)-C-hydroxycarbonimidoyl]ethyl}butanimidic acid

C30H42N7O17P3S (897.1571)


Cinnamoyl-coa is a member of the class of compounds known as 2-enoyl coas. 2-enoyl coas are organic compounds containing a coenzyme A substructure linked to a 2-enoyl chain. Cinnamoyl-coa is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). Cinnamoyl-coa can be found in sorghum, which makes cinnamoyl-coa a potential biomarker for the consumption of this food product. Cinnamoyl-Coenzyme A is an intermediate in the phenylpropanoids metabolic pathway .

   

CYCLOHEXANOL

CYCLOHEXANOL

C6H12O (100.0888)


Cyclohexanol, also known as hexahydrophenol or hexalin, is a member of the class of compounds known as cyclohexanols. Cyclohexanols are compounds containing an alcohol group attached to a cyclohexane ring. Cyclohexanol is soluble (in water) and an extremely weak acidic compound (based on its pKa). Cyclohexanol is a camphor, menthol, and phenol tasting compound found in garden tomato (variety), okra, and sweet basil, which makes cyclohexanol a potential biomarker for the consumption of these food products. Cyclohexanol is a non-carcinogenic (not listed by IARC) potentially toxic compound. Cyclohexanol is the organic compound with the formula (CH2)5CHOH. The molecule is related to cyclohexane ring by replacement of one hydrogen atom by a hydroxyl group. This compound exists as a deliquescent colorless solid with a camphor-like odor, which, when very pure, melts near room temperature. Billions of kilograms are produced annually, mainly as a precursor to nylon .

   

Tosyllysine Chloromethyl Ketone

N-(7-amino-1-chloro-2-oxoheptan-3-yl)-4-methylbenzenesulfonamide

C14H21ClN2O3S (332.0961)


D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D015842 - Serine Proteinase Inhibitors D009676 - Noxae > D000477 - Alkylating Agents > D000590 - Amino Acid Chloromethyl Ketones D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors

   

Ribitol 5-phosphate

D-Ribitol-5-phosphate

C5H13O8P (232.0348)


   

Inositol 1,3,4-trisphosphate

(2,3,5-Trihydroxy-4,6-diphosphonooxycyclohexyl) dihydrogen phosphate

C6H15O15P3 (419.9624)


Inositol 1,3,4-trisphosphate (CAS: 98102-63-7), also known as Ins(1,3,4)P3 or I3S, belongs to the class of organic compounds known as inositol phosphates. Inositol phosphates are compounds containing a phosphate group attached to an inositol (or cyclohexanehexol) moiety. Within humans, inositol 1,3,4-trisphosphate participates in several enzymatic reactions. In particular, inositol 1,3,4-trisphosphate can be converted into 1D-myo-inositol 1,3,4,6-tetrakisphosphate through the action of the enzyme inositol-tetrakisphosphate 1-kinase. In addition, inositol 1,3,4-trisphosphate can be converted into inositol 1,3,4,5-tetraphosphate through its interaction with the enzyme inositol-tetrakisphosphate 1-kinase. In humans, inositol 1,3,4-trisphosphate is involved in inositol metabolism. Inositol 1,3,4-trisphosphate is a specific regulator of cellular signalling. A specific regulator of cellular signaling [HMDB]

   

2,6-dioxo-6-phenylhexa-3-enoate

2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid

C12H10O4 (218.0579)


   

Hydrogen selenide

Hydrogen selenide, 75Se-labeled

H2Se (81.9322)


Hydrogen selenide is a metabolite of selenium which could have potential antiangiogenic effect in the chemoprevention of cancer. The hydrogen selenide is a key intermediate in the selenium methylation metabolism of inorganic and organic selenium compounds. Accumulation of the hydrogen selenide resulting from inhibition of the selenium methylation metabolism, detoxification metabolic pathway of selenium, is found in animals following repeated administration of a toxic dose of selenocystine. The excess of the hydrogen selenide produced by inhibition of the selenium methylation metabolism contributes to the hepatotoxicity caused by selenocystine. (PMID: 9414580, 11799926) [HMDB] Hydrogen selenide is a metabolite of selenium which could have potential antiangiogenic effect in the chemoprevention of cancer. The hydrogen selenide is a key intermediate in the selenium methylation metabolism of inorganic and organic selenium compounds. Accumulation of the hydrogen selenide resulting from inhibition of the selenium methylation metabolism, detoxification metabolic pathway of selenium, is found in animals following repeated administration of a toxic dose of selenocystine. The excess of the hydrogen selenide produced by inhibition of the selenium methylation metabolism contributes to the hepatotoxicity caused by selenocystine. (PMID: 9414580, 11799926).

   

Decyl alcohol

N-Decyl alcohol, magnesium salt

C10H22O (158.1671)


1-Decanol, or decyl alcohol, is a straight chain fatty alcohol with ten carbon atoms and the molecular formula CH3(CH2)9OH. It is a colorless viscous liquid that is insoluble in water. 1-Decanol has a strong odour. Decanol is used in the manufacture of plasticizers, lubricants, surfactants and solvents. Decanol causes a high irritability to skin and eyes, when splashed into the eyes it can cause permanent damage. Also inhalation and ingestion can be harmful, it can also function as a narcotic. It is also harmful to the environment. Isolated from plant sources, e.g. citrus oils, apple, coriander, babaco fruit (Carica pentagonia), wines, scallop and other foods

   

Nopaline

N-[(1S)-4-carbamimidamido-1-carboxybutyl]-D-glutamic acid

C11H20N4O6 (304.1383)


   

Triacetic acid

3,5-Dioxo-hexanoic acid

C6H8O4 (144.0423)


   

Ethanethioic acid

Thioacetic acid, potassium salt

C2H4OS (75.9983)


Ethanethioic acid is used as a food additive [EAFUS] ("EAFUS: Everything Added to Food in the United States. [http://www.eafus.com/]")

   

Aspulvinone E

(5Z)-4-Hydroxy-3-(4-hydroxyphenyl)-5-[(4-hydroxyphenyl)methylene]-2(5H)-furanone

C17H12O5 (296.0685)


A 4-hydroxy-5-(4-hydroxybenzylidene)-3-(4-hydroxyphenyl)furan-2(5H)-one in which the double bond adopts a Z-configuration. It is a marine metabolite isolated from the fungus Aspergillus terreus and exhibits antiviral activity.

   

Prostanoic acid

7-(2-octylcyclopentyl)heptanoic acid

C20H38O2 (310.2872)


A carbocyclic fatty acid composed of heptanoic acid having a (1S,2S)-2-octylcyclopentyl substituent at position 7.

   

Udp-glucosamine

UDP-D-GALACTOSAMINE DISODIUM SALT

C15H25N3O16P2 (565.071)


   

2-Cyclohexen-1-one

2-Cyclohexen-1-one, 18O-labeled

C6H8O (96.0575)


Flavouring compound [Flavornet]

   

Glutaconyl-CoA

(3E)-5-[(2-{3-[(2R)-3-[({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)methyl]-2-hydroxy-3-methylbutanamido]propanamido}ethyl)sulfanyl]-5-oxopent-3-enoic acid

C26H40N7O19P3S (879.1312)


Glutaconyl-CoA (CAS: 6712-05-6), also known as 4-carboxybut-2-enoyl-CoA, belongs to the class of organic compounds known as 2-enoyl CoAs. These are organic compounds containing a coenzyme A substructure linked to a 2-enoyl chain. Thus, glutaconyl-CoA is considered to be a fatty ester lipid molecule. Glutaconyl-CoA is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Glutaconyl-CoA is a substrate for glutaryl-CoA dehydrogenase. Glutaconyl-CoA is a substrate for Glutaryl-CoA dehydrogenase (mitochondrial). [HMDB]

   

3-Chloroalanine

3-Chloro-D-alanine

C3H6ClNO2 (123.0087)


   

2-Deoxy-L-arabinose

(2S,4R,5S)-tetrahydropyran-2,4,5-triol

C5H10O4 (134.0579)


   

Z-Gly-Pro-Leu-Gly-Pro

N-[(Phenylmethoxy)carbonyl]glycyl-L-prolyl-L-leucylglycyl-L-proline

C28H39N5O8 (573.2798)


   

9-O-Acetylneuraminic acid

O-Acetylneuraminic acid; O-Acetylated sialic acid

C11H19NO9 (309.106)


The acetate ester of the primary hydroxy group of neuraminic acid.

   

N-Acetyl-9-O-acetylneuraminic acid

(2S,4S,5R,6R)-6-[(1R,2R)-3-(acetyloxy)-1,2-dihydroxypropyl]-5-acetamido-2,4-dihydroxyoxane-2-carboxylic acid

C13H21NO10 (351.1165)


N-Acetyl-9-O-acetylneuraminic acid (alternatively 9-O-acetyl-N-acetylneuraminic acid) is an O acetylated sialic acid identified in human colon by using high-pressure liquid chromatography and gas-liquid chromatography/mass spectrometry (PMID 3623000). It also has been suggested that 9-O-acetyl-N-acetylneuraminic acid is an essential component of the cell surface receptor of influenza C virus (PMID 3700379). 9-O-acetyl-N-acetylneuraminic acid is an O acetylated sialic acid identified in human colon by using high-pressure liquid chromatography and gas-liquid chromatography/mass spectrometry. (PMID 3623000) It also has been suggested that 9-O-acetyl-N-acetylneuraminic acid is an essential component of the cell surface receptor of influenza C virus. (PMID 3700379) [HMDB]

   

Muconolactone

4-Carboxymethyl-4-hydroxyisocrotonolactone

C6H6O4 (142.0266)


   

1,8-diazacyclotetradecane-2,9-dione

1,8-diazacyclotetradecane-2,9-dione

C12H22N2O2 (226.1681)


   

boc-dl-leucine

N(alpha)-t-Butoxycarbonyl-L-leucine

C11H21NO4 (231.1471)


   

Guanosine 3'-diphosphate 5'-triphosphate

{[hydroxy({[(2R,3S,4R,5R)-4-hydroxy-2-({[hydroxy({[hydroxy(phosphonooxy)phosphoryl]oxy})phosphoryl]oxy}methyl)-5-(6-hydroxy-2-imino-3,9-dihydro-2H-purin-9-yl)oxolan-3-yl]oxy})phosphoryl]oxy}phosphonic acid

C10H18N5O20P5 (682.9233)


This compound belongs to the family of Purine Ribonucleoside Triphosphates. These are purine ribobucleotides with triphosphate group linked to the ribose moiety.

   

Histidylleucine

(2S)-2-[(2S)-2-amino-3-(1H-imidazol-4-yl)propanamido]-4-methylpentanoic acid

C12H20N4O3 (268.1535)


Histidylleucine is a dipeptide composed of histidine and leucine. It is an incomplete breakdown product of protein digestion or protein catabolism. Dipeptides are organic compounds containing a sequence of exactly two alpha-amino acids joined by a peptide bond. Some dipeptides are known to have physiological or cell-signalling effects although most are simply short-lived intermediates on their way to specific amino acid degradation pathways following further proteolysis.

   

2-(a-Hydroxyethyl)thiamine diphosphate

3-[(4-amino-2-methylpyrimidin-5-yl)methyl]-5-(2-{[hydroxy(phosphonooxy)phosphoryl]oxy}ethyl)-2-(1-hydroxyethyl)-4-methyl-1,3-thiazol-3-ium

C14H23N4O8P2S+ (469.0712)


2-Hydroxyethyl-ThPP is involved in Glycolysis, Gluconeogenesis, Alanine and aspartate matabolism, Valine, Leucine and isoleucine biosynthesis, Pyruvate metabolism, and Butanoate metabolism [Kegg: c05125] [HMDB] 2-Hydroxyethyl-ThPP is involved in Glycolysis, Gluconeogenesis, Alanine and aspartate matabolism, Valine, Leucine and isoleucine biosynthesis, Pyruvate metabolism, and Butanoate metabolism [Kegg: c05125].

   

Hydroxyacetone

Hydroxymethyl methyl ketone

C3H6O2 (74.0368)


Hydroxyacetone, also known as acetol or acetone alcohol, belongs to the class of organic compounds known as alpha-hydroxy ketones. These are organic compounds containing a carboxylic acid, and an amine group attached to the alpha carbon atom, relative to the C=O group. Hydroxyacetone exists in all living organisms, ranging from bacteria to humans. Hydroxyacetone is a sweet, caramel, and ethereal tasting compound. hydroxyacetone has been detected, but not quantified in several different foods, such as bog bilberries, cardoons, amaranths, black salsifies, and komatsuna. This could make hydroxyacetone a potential biomarker for the consumption of these foods. Hydroxyacetone is an intermediate in glycine, serine, and threonine metabolism. Present in beer, tobacco and honey Hydroxyacetone is an endogenous metabolite. Hydroxyacetone is an endogenous metabolite.

   

Hexanoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-2-({[({[(3R)-3-[(2-{[2-(hexanoylsulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]-3-hydroxy-2,2-dimethylpropoxy](hydroxy)phosphoryl}oxy)(hydroxy)phosphoryl]oxy}methyl)-4-hydroxyoxolan-3-yl]oxy}phosphonic acid

C27H46N7O17P3S (865.1884)


Hexanoyl-CoA, also known as hexanoyl-coenzyme A or caproyl-CoA, is a medium-chain fatty acyl-CoA having hexanoyl as the acyl group. Hexanoyl-CoA is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). Within the cell, hexanoyl-CoA is primarily located in the membrane (predicted from logP). It can also be found in the extracellular space. Hexanoyl-CoA exists in all living organisms, ranging from bacteria to humans. In humans, hexanoyl-CoA is involved in the biosynthesis and oxidation of fatty acids as well as in ceramide formation. Hexanoyl-CoA is also involved in few metabolic disorders, such as fatty acid elongation in mitochondria, mitochondrial beta-oxidation of medium chain saturated fatty acids, and mitochondrial beta-oxidation of short chain saturated fatty acids. Fatty acid coenzyme A derivative that can be involved in the biosynthesis and oxidation of fatty acids as well as in ceramide formation. [HMDB]

   

Cholest-5-ene

(1S,2R,10S,11S,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-7-ene

C27H46 (370.3599)


Cholestenes are derivatives of cholestanes which have a double bond. One of the most significant cholestenes is cholecalciferol. If there are two double bonds, the molecule is known as a "cholestadienes". Examples include fusidic acid, lanosterol, and stigmasterol.--Wikipedia. Cholestenes are derivatives of cholestanes which have a double bond. One of the most significant cholestenes is cholecalciferol.

   

Zymosterol intermediate 2

(2S,5S,7S,11R,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylhept-5-en-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-1(10)-en-5-ol

C27H44O (384.3392)


Zymosterol, also known as 5alpha-cholesta-8,24-dien-3beta-ol or delta8,24-cholestadien-3beta-ol, belongs to cholesterols and derivatives class of compounds. Those are compounds containing a 3-hydroxylated cholestane core. Thus, zymosterol is considered to be a sterol lipid molecule. Zymosterol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Zymosterol can be synthesized from 5alpha-cholestane. Zymosterol is also a parent compound for other transformation products, including but not limited to, 4beta-methylzymosterol-4alpha-carboxylic acid, 3-dehydro-4-methylzymosterol, and zymosterol intermediate 1b. Zymosterol can be found in a number of food items such as squashberry, hard wheat, salmonberry, and loquat, which makes zymosterol a potential biomarker for the consumption of these food products. Zymosterol exists in all eukaryotes, ranging from yeast to humans. In humans, zymosterol is involved in several metabolic pathways, some of which include zoledronate action pathway, alendronate action pathway, pravastatin action pathway, and atorvastatin action pathway. Zymosterol is also involved in several metabolic disorders, some of which include cholesteryl ester storage disease, lysosomal acid lipase deficiency (wolman disease), smith-lemli-opitz syndrome (SLOS), and chondrodysplasia punctata II, X linked dominant (CDPX2). Zymosterol is an intermediate in cholesterol biosynthesis. Disregarding some intermediate compounds (e.g. 4-4-dimethylzymosterol) lanosterol can be considered a precursor of zymosterol in the cholesterol synthesis pathway. The conversion of zymosterol into cholesterol happens in the endoplasmic reticulum. Zymosterol accumulates quickly in the plasma membrane coming from the cytosol. The movement of zymosterol across the cytosol is more than twice as fast as the movement of cholesterol itself . Zymosterol is the precursor of cholesterol and is found in the plasma membrane. zymosterol circulates within the cells. The structural features of zymosterol provided optimal substrate acceptability. In human fibroblasts, zymosterol is converted to cholesterol solely in the rough ER. Little or no zymosterol or cholesterol accumulates in the rough ER in vivo. Newly synthesized zymosterol moves to the plasma membrane without a detectable lag and with a half-time of 9 min, about twice as fast as cholesterol. The pool of radiolabeled zymosterol in the plasma membrane turns over rapidly, faster than does intracellular cholesterol. Thus, plasma membrane zymosterol is not stagnant. [3H]Zymosterol pulsed into intact cells is initially found in the plasma membrane. (PMID: 1939176). COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

3-CHLOROCATECHOL

3-Chloro-1,2-benzenediol

C6H5ClO2 (143.9978)


D004791 - Enzyme Inhibitors

   

Vitamin A2 aldehyde

(2E,4E,6E,8E)-3,7-dimethyl-9-(2,6,6-trimethylcyclohexa-1,3-dien-1-yl)nona-2,4,6,8-tetraenal

C20H26O (282.1984)


Vitamin A2 aldehyde is found in fishes. Vitamin A2 aldehyde is a constituent fish of liver oils D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Constituent fish of liver oils. Vitamin A2 aldehyde is found in fishes.

   

12-Keto-leukotriene B4

(5S,6Z,8E,10E,14Z)-5-Hydroxy-12-oxoeicosa-6,8,10,14-tetraenoic acid

C20H30O4 (334.2144)


12-Keto-leukotriene B4 is formed when leukotriene B4 (LTB4) is metabolized by beta-oxidation. LTB4 is the major metabolite in neutrophil polymorphonuclear leukocytes. Leukotrienes are metabolites of arachidonic acid derived from the action of 5-LO (5-lipoxygenase). The immediate product of 5-LO is LTA4 (leukotriene A4), which is enzymatically converted into either LTB4 (leukotriene B4) by LTA4 hydrolase or LTC4 (leukotriene C4) by LTC4 synthase. The regulation of leukotriene production occurs at various levels, including expression of 5-LO, translocation of 5-LO to the perinuclear region and phosphorylation to either enhance or inhibit the activity of 5-LO. Biologically active LTB4 is metabolized by w-oxidation carried out by specific cytochrome P450s (CYP4F) followed by beta-oxidation from the w-carboxy position and after CoA ester formation. (PMID: 8632343, 9667737)Leukotrienes are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. 12-Keto-leukotriene B4 is formed when leukotriene B4 (LTB4) is metabolized by beta-oxidation. LTB4 is the major metabolite in neutrophil polymorphonuclear leukocytes. Leukotrienes are metabolites of arachidonic acid derived from the action of 5-LO (5-lipoxygenase). The immediate product of 5-LO is LTA4 (leukotriene A4), which is enzymatically converted into either LTB4 (leukotriene B4) by LTA4 hydrolase or LTC4 (leukotriene C4) by LTC4 synthase. The regulation of leukotriene production occurs at various levels, including expression of 5-LO, translocation of 5-LO to the perinuclear region and phosphorylation to either enhance or inhibit the activity of 5-LO. Biologically active LTB4 is metabolized by w-oxidation carried out by specific cytochrome P450s (CYP4F) followed by beta-oxidation from the w-carboxy position and after CoA ester formation. (PMID: 8632343, 9667737)

   

2-Hydroxy-6-keto-2,4-heptadienoate

2-Hydroxy-6-oxo-2,4-heptadienoic acid

C7H8O4 (156.0423)


   

Diplopterol

29,29-dimethyl-21,30-dinorgammaceran-29-ol

C30H52O (428.4018)


   

4,4'-Diaminodibutylamine

N-(4-Aminobutyl)-1,4-butanediamine, 9ci

C8H21N3 (159.1735)


4,4-Diaminodibutylamine is found in cereals and cereal products. 4,4-Diaminodibutylamine is a constituent of the famine food Santalum album (sandalwood). 4,4-Diaminodibutylamine is a flavouring Constituent of the famine food Santalum album (sandalwood). Flavouring. 4,4-Diaminodibutylamine is found in soy bean and cereals and cereal products.

   

2-Hydroxyethylphosphonate

(2-Hydroxyethyl)phosphonic acid

C2H7O4P (126.0082)


   

Prostaglandin F3a

(5Z)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S,5Z)-3-hydroxyocta-1,5-dien-1-yl]cyclopentyl]hept-5-enoic acid

C20H32O5 (352.225)


Prostaglandin F3alpha (PGF3a) is a prostanoid. Prostanoids is a term that collectively describes prostaglandins, prostacyclines and thromboxanes. Prostanoids are a subclass of the lipid mediator group known as eicosanoids. They derive from C-20 polyunsaturated fatty acids, mainly dihomo-gamma-linoleic (20:3n-6), arachidonic (20:4n-6), and eicosapentaenoic (20:5n-3) acids, through the action of cyclooxygenases-1 and -2 (COX-1 and COX-2). The reaction product of COX is the unstable endoperoxide prostaglandin H (PGH) that is further transformed into the individual prostanoids by a series of specific prostanoid synthases. Prostanoids are local-acting mediators formed and inactivated within the same or neighbouring cells prior to their release into circulation as inactive metabolites (15-keto- and 13,14-dihydroketo metabolites). Non-enzymatic peroxidation of arachidonic acid and other fatty acids in vivo can result in prostaglandin-like substances isomeric to the COX-derived prostaglandins that are termed isoprostanes. Prostanoids take part in many physiological and pathophysiological processes in practically every organ, tissue and cell, including the vascular, renal, gastrointestinal and reproductive systems. Their activities are mediated through prostanoid-specific receptors and intracellular signalling pathways, whilst their biosynthesis and action are blocked by nonsteroidal antiinflammatory drugs (NSAID). Isoprostanes are considered to be reliable markers of oxidant stress status and have been linked to inflammation, ischaemia-reperfusion, diabetes, cardiovascular disease, reproductive disorders and diabetes. (PMID: 16986207)Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. Prostaglandin F3alpha (PGF3a) is a prostanoid. Prostanoids is a term that collectively describes prostaglandins, prostacyclines and thromboxanes. Prostanoids are a subclass of the lipid mediator group known as eicosanoids. They derive from C-20 polyunsaturated fatty acids, mainly dihomo-gamma-linoleic (20:3n-6), arachidonic (20:4n-6), and eicosapentaenoic (20:5n-3) acids, through the action of cyclooxygenases-1 and -2 (COX-1 and COX-2). The reaction product of COX is the unstable endoperoxide prostaglandin H (PGH) that is further transformed into the individual prostanoids by a series of specific prostanoid synthases. Prostanoids are local-acting mediators formed and inactivated within the same or neighbouring cells prior to their release into circulation as inactive metabolites (15-keto- and 13,14-dihydroketo metabolites). Non-enzymatic peroxidation of arachidonic acid and other fatty acids in vivo can result in prostaglandin-like substances isomeric to the COX-derived prostaglandins that are termed isoprostanes. Prostanoids take part in many physiological and pathophysiological processes in practically every organ, tissue and cell, including the vascular, renal, gastrointestinal and reproductive systems. Their activities are mediated through prostanoid-specific receptors and intracellular signalling pathways, whilst their biosynthesis and action are blocked by nonsteroidal antiinflammatory drugs (NSAID). Isoprostanes are considered to be reliable markers of oxidant stress status and have been linked to inflammation, ischaemia-reperfusion, diabetes, cardiovascular disease, reproductive disorders and diabetes. (PMID: 16986207)

   

Tetracenomycin

Tetracenomycin C

C23H20O11 (472.1006)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents

   

Clorazepate

7-Chloro-2,3-dihydro-2,2-dihydroxy-5-phenyl-1H-1,4-benzodiazepine-3-carboxylic acid

C16H11ClN2O3 (314.0458)


Clorazepate is only found in individuals that have used or taken this drug. It is a water-soluble benzodiazepine derivative effective in the treatment of anxiety. It has also muscle relaxant and anticonvulsant actions. [PubChem]Benzodiazepines bind nonspecifically to benzodiazepine receptors BNZ1, which mediates sleep, and BNZ2, which affects affects muscle relaxation, anticonvulsant activity, motor coordination, and memory. As benzodiazepine receptors are thought to be coupled to gamma-aminobutyric acid-A (GABAA) receptors, this enhances the effects of GABA by increasing GABA affinity for the GABA receptor. Binding of the inhibitory neurotransmitter GABA to the site opens the chloride channel, resulting in a hyperpolarized cell membrane that prevents further excitation of the cell. D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C1012 - Benzodiazepine D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C28197 - Antianxiety Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants

   

Diphenidol

SmithKline beecham brand OF diphenidol hydrochloride

C21H27NO (309.2093)


Diphenidol is only found in individuals that have used or taken this drug. It is an antiemetic agent used in the treatment of vomiting and vertigo. Diphenidol overdose may result in serious toxicity in children.The mechanism by which diphenidol exerts its antiemetic and antivertigo effects is not precisely known. It is thought to diminish vestibular stimulation and depress labyrinthine function and as an antimuscarinic agent. An action on the medullary chemoreceptive trigger zone may also be involved in the antiemetic effect. Diphenidol has no significant sedative, tranquilizing, or antihistaminic action. It has a weak peripheral anticholinergic effect. D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent D005765 - Gastrointestinal Agents > D000932 - Antiemetics D002491 - Central Nervous System Agents

   

Glutarimide

Glutarimide calcium salt

C5H7NO2 (113.0477)


D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors

   

Diacetylmonoxime

3-hydroxyiminobutan-2-one

C4H7NO2 (101.0477)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002801 - Cholinesterase Reactivators D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D002863 - Chromogenic Compounds D004793 - Enzyme Reactivators D004791 - Enzyme Inhibitors D004396 - Coloring Agents

   

Lysergic acid

6-Methyl-9,10-didehydroergoline-8-carboxylic acid

C16H16N2O2 (268.1212)


An ergoline alkaloid comprising 6-methylergoline having additional unsaturation at the 9,10-position and a carboxy group at the 8-position.

   

Thiamylal

Dihydro-5-(1-methylbutyl)-5-(2-propenyl)-2-thioxo-4,6(1H,5H)-pyrimidinedione

C12H18N2O2S (254.1089)


Thiamylal is only found in individuals that have used or taken this drug. It is a barbiturate that is administered intravenously for the production of complete anesthesia of short duration, for the induction of general anesthesia, or for inducing a hypnotic state. (From Martindale, The Extra Pharmacopoeia, 30th ed, p919)Thiamylal binds at a distinct binding site associated with a Cl- ionopore at the GABAA receptor, increasing the duration of time for which the Cl- ionopore is open. The post-synaptic inhibitory effect of GABA in the thalamus is, therefore, prolonged. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C67084 - Barbiturate D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent

   

Dyclonine

1-(4-butoxyphenyl)-3-(piperidin-1-yl)propan-1-one

C18H27NO2 (289.2042)


Dyclonine is only found in individuals that have used or taken this drug. It is an oral anaesthetic found in Sucrets, an over the counter throat lozenge. It is also found in some varieties of the Cepacol sore throat spray.Dyclonine blocks both the initiation and conduction of nerve impulses by decreasing the neuronal membranes permeability to sodium ions. This reversibly stabilizes the membrane and inhibits depolarization, resulting in the failure of a propagated action potential and subsequent conduction blockade. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics R - Respiratory system > R02 - Throat preparations > R02A - Throat preparations > R02AD - Anesthetics, local D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents N - Nervous system > N01 - Anesthetics > N01B - Anesthetics, local C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent

   

Levomethadyl Acetate

(1S,4S)-4-(Dimethylamino)-1-ethyl-2,2-diphenylpentyl acetic acid

C23H31NO2 (353.2355)


Levomethadyl Acetate is only found in individuals that have used or taken this drug. It is a narcotic analgesic with a long onset and duration of action. It is used mainly in the treatment of narcotic dependence. [PubChem]Opiate receptors (Mu, Kappa, Delta) are coupled with G-protein receptors and function as both positive and negative regulators of synaptic transmission via G-proteins that activate effector proteins. Binding of the opiate stimulates the exchange of GTP for GDP on the G-protein complex. As the effector system is adenylate cyclase and cAMP located at the inner surface of the plasma membrane, opioids decrease intracellular cAMP by inhibiting adenylate cyclase. Subsequently, the release of nociceptive neurotransmitters such as substance P, GABA, dopamine, acetylcholine and noradrenaline is inhibited. Opioids also inhibit the release of vasopressin, somatostatin, insulin and glucagon. Levomethadyl acetate effectively opens calcium-dependent inwardly rectifying potassium channels (OP1 receptor agonist), resulting in hyperpolarization and reduced neuronal excitability. N - Nervous system > N07 - Other nervous system drugs > N07B - Drugs used in addictive disorders > N07BC - Drugs used in opioid dependence D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D000700 - Analgesics

   

grams iodine

Potassium triiodide

I3K (419.6771)


D006401 - Hematologic Agents > D003029 - Coagulants > D006490 - Hemostatics D009676 - Noxae > D007509 - Irritants D004396 - Coloring Agents

   

Tiludronate

{[(4-chlorophenyl)sulfanyl](phosphono)methyl}phosphonic acid

C7H9ClO6P2S (317.9284)


Tiludronate is only found in individuals that have used or taken this drug. It is a bisphosphonate characterized by a (4-chlorophenylthio) group on the carbon atom of the basic P-C-P structure common to all bisphosphonates.The bisphosphonate group binds strongly to the bone mineral, hydroxyapatite. This explains the specific pharmacological action of these compounds on mineralized tissues, especially bone. In vitro studies indicate that tiludronate acts primarily on bone through a mechanism that involves inhibition of osteoclastic activity with a probable reduction in the enzymatic and transport processes that lead to resorption of the mineralized matrix. Bone resorption occurs following recruitment, activation, and polarization of osteoclasts. Tiludronate appears to inhibit osteoclasts by at least two mechanisms: disruption of the cytoskeletal ring structure, possibly by inhibition of protein-tyrosine-phosphatase, thus leading to detachment of osteoclasts from the bone surface and the inhibition of the osteoclastic proton pump. M - Musculo-skeletal system > M05 - Drugs for treatment of bone diseases > M05B - Drugs affecting bone structure and mineralization > M05BA - Bisphosphonates C78281 - Agent Affecting Musculoskeletal System > C67439 - Bone Resorption Inhibitor D050071 - Bone Density Conservation Agents > D004164 - Diphosphonates

   

Hentriacontane

N-Hentriacontane

C31H64 (436.5008)


Hentriacontane is found in black elderberry. Hentriacontane, also called untriacontane, is a solid, long-chain alkane hydrocarbon with the structural formula CH3(CH2)29CH3. It is found in a variety of plants, including peas (pisum sativum), gum arabic (acacia senegal) and others, and also comprises about 8-9\\% of beeswax. It has 10,660,307,791 constitutional isomers Hentriacontane, also called untriacontane, is a solid, long-chain alkane hydrocarbon with the structural formula CH3(CH2)29CH3. It is found in a variety of plants, including peas (pisum sativum), gum arabic (acacia senegal) and others, and also comprises about 8-9\\% of beeswax. It has 10,660,307,791 constitutional isomers.

   

Thial-1-Propene-1-thiol S-oxide

Thial-1-Propene-1-thiol S-oxide

C3H6OS (90.0139)


Lachrymatory factor of onion (Allium cepa). Thial-1-Propene-1-thiol S-oxide is found in garden onion and onion-family vegetables. Thial-1-Propene-1-thiol S-oxide is found in garden onion. Lachrymatory factor of onion (Allium cepa).

   

Miserotoxin

ZINC01531158

C9H17NO8 (267.0954)


A beta-D-glucoside having 3-nitropropyl as the anomeric alkyl group.

   

Albafuran A

4-[(2E)-3,7-dimethylocta-2,6-dien-1-yl]-5-(6-hydroxy-1-benzofuran-2-yl)benzene-1,3-diol

C24H26O4 (378.1831)


Albafuran A is found in fruits. Albafuran A is a constituent of white mulberry (Morus alba) Constituent of white mulberry (Morus alba). Albafuran A is found in fruits.

   

Antioside

3beta-(6-deoxy-alpha-L-mannopyranosyloxy)-5,12beta,14-trihydroxy-5beta-card-20(22)-enolide

C29H44O10 (552.2934)


   

Daphnetoxin

Orthobenzoic acid, cyclic 7,8,10a-ester with 5,6-epoxy-4,5,6,6a,7,8,9,10,10a,10b-decahydro-3a,4,7,8,10a-pentahydroxy-5-(hydroxymethyl)-8-isopropenyl-2,10-dimethylbenz(e)azulen-3(3ah)-one

C27H30O8 (482.1941)


A daphnane-type orthoester diterpene with potential cholesterol-lowering activity, found exclusively in plants of the family Thymelaeaceae.

   

Gniditrin

Daphne factor P1

C37H42O10 (646.2778)


   

Neocembrene

1,5,9-Cyclotetradecatriene, 1,5,9-trimethyl-12-(1-methylethenyl)-

C20H32 (272.2504)


   

Calanolide

Calanolide A

C22H26O5 (370.178)


D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D044966 - Anti-Retroviral Agents

   

Arbusculin A

[3aS-(3aalpha,5abeta,9alpha,9aalpha,9bbeta)]-Decahydro-9-hydroxy-5a,9-dimethyl-3-methylenenaphtho[1,2-b]furan-2(3H)-one

C15H22O3 (250.1569)


A sesquiterpene lactone isolated from Saussureae Radix and has been shown to exhibit inhibitory activity against melanogenesis.

   

DivK1c_000746

alpha-Cyclocostunolide

C15H20O2 (232.1463)


   

beta-cyclocostunolide

[3aR-(3aalpha,5aalpha,9abeta,9balpha)]-Decahydro-5a-methyl-3,9-bis(methylene)naphtho[1,2-b]furan-2(3H)-one

C15H20O2 (232.1463)


   

Multistatin

Multistatin

C20H22O6 (358.1416)


   

alpha-Cedrene

(-)-alpha-cedrene;(1S,2R,5S,7S)-2,6,6,8-tetramethyltricyclo[5.3.1.0(1,5)]undec-8-ene;[3R-(3alpha,3abeta,7beta,8aalpha)]-2,3,4,7,8,8a-hexahydro-3,6,8,8-tetramethyl-1H-3a,7-methanoazulene

C15H24 (204.1878)


Alpha-cedrene, also known as (-)-α-cedrene or beta-cedrene, is a member of the class of compounds known as cedrane and isocedrane sesquiterpenoids. Cedrane and isocedrane sesquiterpenoids are sesquiternoids with a structure based on the cedrane or the isocedrane skeleton. Cedrane is a tricyclic molecules a 3,6,8,8-tetramethyl-1H-3a,7-methano-azulene moiety. Isocedrane is a rearranged cedrane arising from the migration of methyl group moved from the 6-position to the 4-position. Thus, alpha-cedrene is considered to be an isoprenoid lipid molecule. Alpha-cedrene is a sweet, cedar, and fresh tasting compound and can be found in a number of food items such as tarragon, peppermint, wild celery, and common sage, which makes alpha-cedrene a potential biomarker for the consumption of these food products. Alpha-cedrene can be found primarily in urine. alpha-Cedrene alpha-Cedrene is one of the two isomers of cedrene. Cedrene is a sesquiterpene found in the essential oil of cedar. There are two isomers of cedrene, (-)-alpha-cedrene and (+)-beta-cedrene, which differ in the position of a double bond (Wikipedia) (-)-Cedrene (α-cedrene) is a sesquiterpene constituent of cedarwood oils, with anti-leukemic, antimicrobial and anti-obesity activities[1]. (-)-Cedrene (α-cedrene) is a sesquiterpene constituent of cedarwood oils, with anti-leukemic, antimicrobial and anti-obesity activities[1]. (-)-Cedrene (α-cedrene) is a sesquiterpene constituent of cedarwood oils, with anti-leukemic, antimicrobial and anti-obesity activities[1]. (-)-Cedrene (α-cedrene) is a sesquiterpene constituent of cedarwood oils, with anti-leukemic, antimicrobial and anti-obesity activities[1].

   
   

Datiscetin

3,5,7-Trihydroxy-2- (2-hydroxyphenyl) -4H-1-benzopyran-4-one

C15H10O6 (286.0477)


   

Belladine

Belladine

C19H25NO3 (315.1834)


A phenethylamine alkaloid that is N-methyl-4-methoxyphenylethylamine carrying an additional N-(3,4-dimethoxybenzyl) substituent.

   

Patuletin

2-(3,4-Dihydroxyphenyl)-3,5,7-trihydroxy-6-methoxy-4H-1-benzopyran-4-one, 9ci

C16H12O8 (332.0532)


Pigment from flowers of French marigold Tagetes patula. Patuletin is found in german camomile, herbs and spices, and spinach. Patuletin is found in german camomile. Patuletin is a pigment from flowers of French marigold Tagetes patul D004791 - Enzyme Inhibitors

   

Rose oxide (cis)

(2S,3R,4S,5S,6R)-2-{3-hydroxy-5-[(e)-2-(3-hydroxy-4-methoxyphenyl)ethenyl]phenoxy}-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C21H24O9 (420.142)


Rhapontin (Rhaponiticin), a component of rhubarb (Rheum officinale Baill), induces apoptosis resulting in suppression of proliferation of human stomach cancer KATO III cells[1]. Rhapontin (Rhaponiticin), a component of rhubarb (Rheum officinale Baill), induces apoptosis resulting in suppression of proliferation of human stomach cancer KATO III cells[1].

   

Otonecine

1H-Pyrrolizinium, 2,3,5,7a-tetrahydro-1,7a-dihydroxy-7-(hydroxymethyl)-4-methyl-, (1R-(1alpha,4beta,7abeta))-

C9H15NO3 (185.1052)


   

Ramentaceone

1,4-Naphthalenedione,5-hydroxy-7-methyl-

C11H8O3 (188.0473)


   

Sophoraisoflavanone A

Sophoraisoflavanone A

C21H22O6 (370.1416)


A hydroxyisoflavanone that is isoflavanone substituted by hydroxy groups at positions 5, 7 and 4, a methoxy substituent at position 2 and a prenyl group at position 3.

   

Withasomnine

Withasomnine

C12H12N2 (184.1)


   

piceol

InChI=1\C8H8O2\c1-6(9)7-2-4-8(10)5-3-7\h2-5,10H,1H

C8H8O2 (136.0524)


INTERNAL_ID 214; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3089; ORIGINAL_PRECURSOR_SCAN_NO 3087 CONFIDENCE standard compound; INTERNAL_ID 214; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3087; ORIGINAL_PRECURSOR_SCAN_NO 3084 CONFIDENCE standard compound; INTERNAL_ID 214; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3098; ORIGINAL_PRECURSOR_SCAN_NO 3095 CONFIDENCE standard compound; INTERNAL_ID 214; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3092; ORIGINAL_PRECURSOR_SCAN_NO 3090 CONFIDENCE standard compound; INTERNAL_ID 214; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3089; ORIGINAL_PRECURSOR_SCAN_NO 3087 CONFIDENCE standard compound; INTERNAL_ID 214; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3095; ORIGINAL_PRECURSOR_SCAN_NO 3093 INTERNAL_ID 214; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3092; ORIGINAL_PRECURSOR_SCAN_NO 3090 CONFIDENCE standard compound; INTERNAL_ID 214; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3160; ORIGINAL_PRECURSOR_SCAN_NO 3158 4-Hydroxyacetophenone (P-hydroxyacetophenone) is a key hepatoprotective and choleretic compound in Artemisia capillaris and A. morrisonensis, also has an anti-hepatitis B virus effect and anti-inflammatory effect[1]. 4-Hydroxyacetophenone (P-hydroxyacetophenone) is a key hepatoprotective and choleretic compound in Artemisia capillaris and A. morrisonensis, also has an anti-hepatitis B virus effect and anti-inflammatory effect[1].

   
   

3,4-Methylenedioxybenzaldehyde

3,4-Dihydroxybenzaldehyde methylene ketal

C8H6O3 (150.0317)


3,4-Methylenedioxybenzaldehyde is found in highbush blueberry. 3,4-Methylenedioxybenzaldehyde is a flavouring agent used in cherry and vanilla flavour Flavouring agent used in cherry and vanilla flavours. 3,4-Methylenedioxybenzaldehyde is found in pepper (spice), highbush blueberry, and vanilla.

   

1,2-Dibromoethane

alpha,Omega-dibromoethane

C2H4Br2 (185.868)


1,2-Dibromoethane, also known as ethylene dibromide or DBE, belongs to the class of organic compounds known as organobromides. Organobromides are compounds containing a chemical bond between a carbon atom and a bromine atom. 1,2-Dibromoethane is possibly neutral. Trace amounts of 1,2-dibromoethane occur naturally in the ocean, where it is formed probably by algae and kelp. 1,2-Dibromoethane is formally rated as a probable carcinogen (by IARC 2A) and is also a potentially toxic compound. Breathing high levels may cause depression and collapse. 1,2-Dibromoethane is rapidly absorbed by ingestion, inhalation, and dermal routes, then distributed mainly to the kidneys, liver, and spleen. It can be metabolized by either the cytochrome P-450 system or the glutathione S-transferase system. These metabolites may be further broken down and excreted in the urine. The metabolite 2-bromoacetaldehyde produces liver damage by binding to cellular proteins. Long term exposure can result in liver, kidney, and reproductive system damage. 1,2-Dibromoethane is also known to have adverse effects on the brain. S-(2-bromoethyl)glutathione, another metabolite, exerts genotoxic and carcinogenic effects by binding to DNA.

   

Thiolactomycin

(5R)-4-hydroxy-3,5-dimethyl-5-[(1E)-2-methylbuta-1,3-dienyl]thiophen-2-one

C11H14O2S (210.0714)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents

   

2,4-Dinitrophenylhydrazine

2,4-Dinitro-3,5,6-trideuterophenylhydrazine

C6H6N4O4 (198.0389)


   

Mikamycin A

Virginiamycin Complex

C28H35N3O7 (525.2475)


C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C259 - Antineoplastic Antibiotic D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D025361 - Streptogramins Virginiamycin M1 (Pristinamycin IIA; Ostreogrycin A), produced by?Streptomyces virginiae, is an polyunsaturated macrocyclic lactone antibiotic and acts as a component of Virginiamycin (HY-112665)[1]. Virginiamycin M1 alone is against Staphylococcus aureus with a MIC of 0.25 μg/mL. The combination of Virginiamycin M1 and Virginiamycin S1 (HY-N6680) is 0.125 μg/mL (MIC Value), which can improve the bactericidal effect 1-30 times[2].

   

Soraphen A

(1S,2S,3E,5R,6S,11S,14S,16R,17S,18S)-15,17-dihydroxy-5,6,16-trimethoxy-2,14,18-trimethyl-11-phenyl-12,19-dioxabicyclo[13.3.1]nonadec-3-en-13-one

C29H44O8 (520.3036)


A macrolide and an agent highly effective against plant-pathogenic fungi. It was extensively researched for agricultural use until it was discovered to be a teratogen.

   

Sulfobromophthalein

Sulfobromophthalein

C20H10Br4O10S2 (789.6449)


V - Various > V04 - Diagnostic agents > V04C - Other diagnostic agents > V04CE - Tests for liver functional capacity D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D010635 - Phenolphthaleins D004396 - Coloring Agents Same as: D08548

   

Grepafloxacin

(+--)-1-Cyclopropyl-6-fluoro-1,4-dihydro-5-methyl-7-(3-methyl-1-piperazinyl)-4-oxo-3-quinolinecarboxylic acid monohydrochloride

C19H22FN3O3 (359.1645)


Grepafloxacin hydrochloride (Raxar®, Glaxo Wellcome) is an oral broad-spectrum quinoline antibacterial agent used to treat bacterial infections. Grepafloxacin was withdrawn in the United States due to its side effect of lengthening the QT interval on the electrocardiogram, leading to cardiac events and sudden death. [Wikipedia] J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials > J01MA - Fluoroquinolones D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic D004791 - Enzyme Inhibitors ATC code: J01MA11

   

N-Methylformamide

N-Monomethylformamide

C2H5NO (59.0371)


N-Methylformamide (NMF) is one of the two major urinary biomarkers of exposure to N,N-Dimethylformamide (DMF), a compound widely used in industries because of its extensive miscibility with water and solvents. Metabolism of NMF results in the formation of N-methylcarbamoyl adducts at the N-terminal valine and lysine in blood protein globin. (PMID: 17254560, 17254560, 16289959) [HMDB] N-Methylformamide (NMF) is one of the two major urinary biomarkers of exposure to N,N-Dimethylformamide (DMF), a compound widely used in industries because of its extensive miscibility with water and solvents. Metabolism of NMF results in the formation of N-methylcarbamoyl adducts at the N-terminal valine and lysine in blood protein globin. (PMID: 17254560, 17254560, 16289959). C274 - Antineoplastic Agent > C2122 - Cell Differentiating Agent > C1934 - Differentiation Inducer C274 - Antineoplastic Agent > C798 - Radiosensitizing Agent D011838 - Radiation-Sensitizing Agents D000970 - Antineoplastic Agents

   

Practolol

N-[4-[(2S)-2-hydroxy-3-(propan-2-ylamino)propoxy]phenyl]acetamide

C14H22N2O3 (266.163)


Practolol is only found in individuals that have used or taken this drug. It is a beta-adrenergic antagonist that has been used in the emergency treatment of cardiac arrhythmias. [PubChem]Like other beta-adrenergic antagonists, practolol competes with adrenergic neurotransmitters such as catecholamines for binding at sympathetic receptor sites. Like propranolol and timolol, practolol binds at beta(1)-adrenergic receptors in the heart and vascular smooth muscle, inhibiting the effects of the catecholamines epinephrine and norepinephrine and decreasing heart rate, cardiac output, and systolic and diastolic blood pressure. C - Cardiovascular system > C07 - Beta blocking agents > C07A - Beta blocking agents > C07AB - Beta blocking agents, selective C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents Same as: D05587 Practolol is a potent and selective β1-adrenergic receptor antagonist. Practolol can be used for the research of cardiac arrhythmias[1][2][3].

   

Levonordefrin

4-(2-amino-1-Hydroxypropyl)-1,2-benzenediol hydrochloride, (r*,r*)-(+,-)-isomer

C9H13NO3 (183.0895)


Levonordefrin is only found in individuals that have used or taken this drug. It acts as a topical nasal decongestant and vasoconstrictor, most often used in dentistry.It is designed to mimic the molecular shape of adrenaline. It binds to alpha-adrenergic receptors in the nasal mucosa. Here it can, therefore, cause vasoconstriction C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents Same as: D02388 Levonordefrin, a common alternative to levoepinephrine as a vasoconstrictor in dental local anesthetic preparations, is usually used in fivefold higher concentrations. Levonordefrin is generally considered equivalent to epinephrine[1].

   

Etorphine

6,14-Ethenomorphinan-7-methanol, 4,5-epoxy-3-hydroxy-6-methoxy-alpha,17-dimethyl-alpha-propyl-, (5alpha,7alpha(R))-

C25H33NO4 (411.2409)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D000700 - Analgesics Same as: D07937

   

Methymycin

Methymycin

C25H43NO7 (469.3039)


A twelve-membered macrolide antibiotic that is biosynthesised by Streptomyces venezuelae.

   

Crinine

1,2-Didehydrocrinan-3-ol

C16H17NO3 (271.1208)


   

Powellin

7-Methoxy-1,2-didehydrocrinan-3-ol, (3.alpha.)-

C17H19NO4 (301.1314)


   

Cyclacillin

4-Thia-1-azabicyclo[3.2.0]heptane-2-carboxylicacid, 6-[[(1-aminocyclohexyl)carbonyl]amino]-3,3-dimethyl-7-oxo-, (2S,5R,6R)-

C15H23N3O4S (341.1409)


Cyclacillin is only found in individuals that have used or taken this drug. It is a cyclohexylamido analog of penicillanic acid. [PubChem]The bactericidal activity of cyclacillin results from the inhibition of cell wall synthesis via affinity for penicillin-binding proteins (PBPs). Cyclacillin is stable in the presence of a variety of b-lactamases, including penicillinases and some cephalosporinases. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic Same as: D01334

   

Lynestrenol

19-norpregn-4-en-20-yn-17alpha-ol

C20H28O (284.214)


G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03A - Hormonal contraceptives for systemic use > G03AC - Progestogens G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03D - Progestogens > G03DC - Estren derivatives C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents Same as: D01580

   

Selfotel

4-(phosphonomethyl)piperidine-2-carboxylic acid

C7H14NO5P (223.061)


D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists C26170 - Protective Agent > C1509 - Neuroprotective Agent Same as: D02410

   

FOH 8:0;O

(R)-(+)-1,2-EPOXYHEXANE

C8H18O2 (146.1307)


   

Dimethylstilbestrol

(E)-4,4-(1,2-Dimethyl-1,2-ethenediyl)bisphenol

C16H16O2 (240.115)


   

1,2-Dichlorobenzene

Ortho-dichlorobenzene

C6H4Cl2 (145.969)


D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

alpha-Methylstyrene

1-Methyl-1-phenylethylene

C9H10 (118.0782)


alpha-Methylstyrene belongs to the family of Phenylpropenes. These are compounds containing a phenylpropene moeity, which consists of a propene substituent bound to a phenyl group.

   

Isopropylbenzene

Benzene, (1-methylethyl)-, oxidized, sulfurized by-products

C9H12 (120.0939)


Isopropylbenzene, also known as 2-phenylpropane or benzene, isopropyl, belongs to the class of organic compounds known as cumenes. These are aromatic compounds containing a prop-2-ylbenzene moiety. Isopropylbenzene is found, on average, in the highest concentration within ceylon cinnamons and gingers. Isopropylbenzene has also been detected, but not quantified, in several different foods, such as celery stalks, cumins , herbs and spices, and sweet cherries. Isopropylbenzene is formally rated as a possible carcinogen (by IARC 2B) and is also a potentially toxic compound. Isopropylbenzene is a component of petroleum destillates. Petroleum distillate poisoning may cause nausea, vomiting, cough, pulmonary irritation progressing to pulmonary edema, bloody sputum, and bronchial pneumonia. Petroleum distillates are also irritating to the skin. Petroleum distillates are aspiration hazards and may cause pulmonary damage, central nervous system depression, and cardiac effects such as cardiac arrhythmias. They may also affect the blood, immune system, liver, and kidney. At high amounts, central nervous system depression may also occur, with symptoms such as weakness, dizziness, slow and shallow respiration, unconsciousness, and convulsions. Gastric lavage, emesis, and the administration of activated charcoal should be avoided, as vomiting increases the risk of aspiration. Treatment is mainly symptomatic and supportive. Volatile hydrocarbons are absorbed mainly through the lungs, and may also enter the body after ingestion via aspiration. Trace constituent of ginger oil (Zingiber officinale)

   

Benzo[e]pyrene

pentacyclo[10.6.2.0^{2,7}.0^{8,20}.0^{15,19}]icosa-1(18),2,4,6,8,10,12(20),13,15(19),16-decaene

C20H12 (252.0939)


   

Silux

2-Hydroxy-3-{4-[2-(4-{2-hydroxy-3-[(2-methylprop-2-enoyl)oxy]propoxy}phenyl)propan-2-yl]phenoxy}propyl 2-methylprop-2-enoic acid

C29H36O8 (512.241)


D001697 - Biomedical and Dental Materials > D003764 - Dental Materials

   

Fluprednisolone

Pregna-1,4-diene-3,20-dione, 6-fluoro-11,17,21-trihydroxy-, (6.alpha.,11.beta.)-

C21H27FO5 (378.1842)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D005938 - Glucocorticoids C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D000893 - Anti-Inflammatory Agents Same as: D04227

   

2-chloro-4-biphenylol

2-Chloro-4-hydroxybiphenyl

C12H9ClO (204.0342)


CONFIDENCE standard compound; INTERNAL_ID 1048; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5119; ORIGINAL_PRECURSOR_SCAN_NO 5116 CONFIDENCE standard compound; INTERNAL_ID 1048; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5104; ORIGINAL_PRECURSOR_SCAN_NO 5103 CONFIDENCE standard compound; INTERNAL_ID 1048; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5184; ORIGINAL_PRECURSOR_SCAN_NO 5183 CONFIDENCE standard compound; INTERNAL_ID 1048; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5105; ORIGINAL_PRECURSOR_SCAN_NO 5101 CONFIDENCE standard compound; INTERNAL_ID 1048; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5089; ORIGINAL_PRECURSOR_SCAN_NO 5088 CONFIDENCE standard compound; INTERNAL_ID 1048; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5081; ORIGINAL_PRECURSOR_SCAN_NO 5079

   

5,6-DHET

(8Z,11Z,14Z)-5,6-Dihydroxyeicosa-8,11,14-trienoic acid

C20H34O4 (338.2457)


5,6-DHET is an epoxide intermediate in the oxygenation of arachidonic acid by hepatic monooxygenases pathway. 5,6-DHET is the hydrolysis metabolite of cis-5(6)Epoxy-cis-8,11,14-eicosatrienoic acid by epoxide hydrolases. Many drugs, chemicals, and endogenous compounds are oxygenated in mammalian tissues and in some instances reactive and potentially toxic or carcinogenic epoxides are formed. Naturally occurring olefins may also be oxygenated by mammalian enzymes. The most well known are lipoxygenases and microsomal cytochrome P-450-linked monooxygenases. The epoxides may be chemically labile or may be enzymatically hydrolyzed. When arene or olefinic epoxides are formed by microsomal P-450-linked monooxygenases, they are often rapidly converted to less reactive trans-diols through the action of microsomal epoxide hydrolases. (PMID: 6801052, 6548162) [HMDB] 5,6-DHET is an epoxide intermediate in the oxygenation of arachidonic acid by hepatic monooxygenases pathway. 5,6-DHET is the hydrolysis metabolite of cis-5(6)Epoxy-cis-8,11,14-eicosatrienoic acid by epoxide hydrolases. Many drugs, chemicals, and endogenous compounds are oxygenated in mammalian tissues and in some instances reactive and potentially toxic or carcinogenic epoxides are formed. Naturally occurring olefins may also be oxygenated by mammalian enzymes. The most well known are lipoxygenases and microsomal cytochrome P-450-linked monooxygenases. The epoxides may be chemically labile or may be enzymatically hydrolyzed. When arene or olefinic epoxides are formed by microsomal P-450-linked monooxygenases, they are often rapidly converted to less reactive trans-diols through the action of microsomal epoxide hydrolases. (PMID: 6801052, 6548162).

   

15H-11,12-EETA

(5Z,8Z)-10-{3-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxiran-2-yl}deca-5,8-dienoic acid

C20H32O4 (336.23)


15H-11,12-EETA is an epoxyeicosatrienoic acid (EET). The role of EETs in regulation of the cerebral circulation has become more important, since it was realized that EETs are produced in another specialized cell type of the brain, the astrocytes. It has become evident that EETs released from astrocytes may mediate cerebral functional hyperemia. Molecular and pharmacological evidence hve shown that neurotransmitter release and spillover onto astrocytes can generate EETs. Since these EETs may reach the vasculature via astrocyte foot-processes, they have the same potential as their endothelial counterparts to hyperpolarize and dilate cerebral vessels. P450 enzymes contain heme in their catalytic domain and nitric oxide (NO) appears to bind to these heme moieties and block formation of P450 products, including EETs. Thus, there appears to be crosstalk between P450 enzymes and NO/NO synthase. The role of fatty acid metabolites and cerebral blood flow becomes even more complex in light of data demonstrating that cyclooxygenase products can act as substrates for P450 enzymes. (PMID: 17494091, 17468203, 17434916, 17406062, 17361113, 15581597, 11413051, 10519554, 11893556) [HMDB] 15H-11,12-EETA is an epoxyeicosatrienoic acid (EET). The role of EETs in regulation of the cerebral circulation has become more important, since it was realized that EETs are produced in another specialized cell type of the brain, the astrocytes. It has become evident that EETs released from astrocytes may mediate cerebral functional hyperemia. Molecular and pharmacological evidence hve shown that neurotransmitter release and spillover onto astrocytes can generate EETs. Since these EETs may reach the vasculature via astrocyte foot-processes, they have the same potential as their endothelial counterparts to hyperpolarize and dilate cerebral vessels. P450 enzymes contain heme in their catalytic domain and nitric oxide (NO) appears to bind to these heme moieties and block formation of P450 products, including EETs. Thus, there appears to be crosstalk between P450 enzymes and NO/NO synthase. The role of fatty acid metabolites and cerebral blood flow becomes even more complex in light of data demonstrating that cyclooxygenase products can act as substrates for P450 enzymes. (PMID: 17494091, 17468203, 17434916, 17406062, 17361113, 15581597, 11413051, 10519554, 11893556).

   

11,14,15-THETA

(5Z,8Z,12E)-11,14,15-Trihydroxyeicosa-5,8,12-trienoic acid

C20H34O5 (354.2406)


11,14,15-trihydroxyeicosatrienoic acid (11,14,15-THETA) is a metabolite of the 15-lipoxygenase (15-LO) pathway of arachidonic acid (AA). Increased amounts of 11,14,15-THETA are synthesized in subacute hypoxia. Prolonged exposure to reduced PO2 activates 15-LO in small pulmonary arteries (PA); activation of 15-LO is associated with translocation of the enzyme from the cytosol to membrane. 11,14,15-THETA is an endothelium-derived relaxing factor. (PMID: 12690037, 9812980, 15388505, 14622984) [HMDB] 11,14,15-trihydroxyeicosatrienoic acid (11,14,15-THETA) is a metabolite of the 15-lipoxygenase (15-LO) pathway of arachidonic acid (AA). Increased amounts of 11,14,15-THETA are synthesized in subacute hypoxia. Prolonged exposure to reduced PO2 activates 15-LO in small pulmonary arteries (PA); activation of 15-LO is associated with translocation of the enzyme from the cytosol to membrane. 11,14,15-THETA is an endothelium-derived relaxing factor. (PMID: 12690037, 9812980, 15388505, 14622984).

   

8(R)-Hydroperoxylinoleic acid

(9Z,12Z)-(8R)-8-Hydroperoxyoctadeca-9,12-dienoic acid

C18H32O4 (312.23)


8(R)-hydroperoxylinoleic acid (8(R)-EPODE) is an oxidized product of linoleic acid. Oxidized lipids such as 8(R)-HPODE can decrease cellular proteoglycan metabolism in endothelial monolayers and alter mRNA levels of major specific proteoglycans in a concentration-dependent manner. This may have implications in lipid-mediated disruption of endothelial barrier function and atherosclerosis. (PMID: 8645361, 9507987).

   

Fexaramine

3-[3-[[cyclohexyl(oxo)methyl]-[[4-[4-(dimethylamino)phenyl]phenyl]methyl]amino]phenyl]-2-propenoic acid methyl ester

C32H36N2O3 (496.2726)


   

1-Pyrroline

3,4-Dihydro-2H-pyrrole

C4H7N (69.0578)


Pyrrolines, also known under the name dihydropyrroles, are three different heterocyclic organic chemical compounds which differ in the position of the double bond. Pyrrolines are formally derived from the aromate pyrrole by hydrogenation. 1-Pyrroline is a cyclic imine while 2-pyrroline and 3-pyrroline are cyclic amines. Present in clam and squid. Flavouring agent for fish products and other foods. 3,4-Dihydro-2H-pyrrole is found in many foods, some of which are garden onion (variety), breadnut tree seed, chinese bayberry, and kiwi.

   

Complestatin

Chloropeptin II

C61H45Cl6N7O15 (1325.1105)


A heterodetic cyclic peptide consisting of N-acylated trytophan, 3,5-dichloro-4-hydroxyphenylglycine, 4-hydroxyphenylglycine, 3,5-dichloro-4-hydroxyphenylglycyl, tyrosine and 4-hydroxyphenylglycine residues joined in sequence and in which the side-chain of the central 4-hydroxyphenylglycine residue is attached to the side-chain of the tryptophan via a C3-C6 bond and to the side-chain of the tyrosine via an ether bond from C5. It is isolated from the culture broth of Streptomyces and has anti-HIV-1 activity.

   

Zwittermicin A

4,8-diamino-N-[1-amino-3-(carbamoylamino)-1-oxopropan-2-yl]-2,3,5,7,9-pentahydroxynonanamide

C13H28N6O8 (396.1969)


The (+)-enantiomer of zwittermicin A. It is a water-soluble natural antibiotic from the fermentation of the soil-borne bacterium Bacillus cereus and shows significant activity against phytopathogenic fungi.

   

Septacidin

N-({[2-(1,2-dihydroxyethyl)-4,5-dihydroxy-6-[(9H-purin-6-yl)amino]oxan-3-yl]-C-hydroxycarbonimidoyl}methyl)-14-methylpentadecanimidate

C30H51N7O7 (621.385)


   

(5Z,8Z,11Z,14Z,17Z)-Icosapentaenoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-3-{[2-({2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoylsulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}-2,2-dimethylpropoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C41H64N7O17P3S (1051.3292)


This compound belongs to the family of Acyl CoAs. These are organic compounds contaning a coenzyme A substructure linked to another moeity through an ester bond.

   

2,6-Dibromophenol

2,6-Dibromo-phenol

C6H4Br2O (249.8629)


2,6-Dibromophenol is found in crustaceans. 2,6-Dibromophenol is an important flavour component of marine fish, molluses and crustacean 2,6-Dibromophenol is an endogenous metabolite.

   

Dimethylurea

N,N-Dimethyl-urea

C3H8N2O (88.0637)


Dimethylurea (DMU) (IUPAC systematic name: 1,3-Dimethylurea ) is a urea derivative and used as an intermediate in organic synthesis. It is a colorless crystalline powder with little toxicity.

   

Lignocericyl coenzyme A

(2R)-4-({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-3,3-dimethyl-N-(2-{[2-(tetracosanoylsulfanyl)ethyl]-C-hydroxycarbonimidoyl}ethyl)butanimidic acid

C45H82N7O17P3S (1117.4701)


This compound belongs to the family of Acyl CoAs. These are organic compounds contaning a coenzyme A substructure linked to another moeity through an ester bond.

   

alpha-Hydroxytamoxifen

(3E)-4-{4-[2-(dimethylamino)ethoxy]phenyl}-3,4-diphenylbut-3-en-2-ol

C26H29NO2 (387.2198)


alpha-Hydroxytamoxifen is a metabolite of tamoxifen. Tamoxifen is an antagonist of the estrogen receptor in breast tissue via its active metabolite, hydroxytamoxifen. In other tissues such as the endometrium, it behaves as an agonist, and thus may be characterized as a mixed agonist/antagonist. Tamoxifen is the usual endocrine therapy for hormone receptor-positive breast cancer in pre-menopausal women, and is also a standard in post-menopausal women although aromatase inhibitors are also frequently used in that setting. (Wikipedia)

   

Endoxifen

4-[(1Z)-1-{4-[2-(methylamino)ethoxy]phenyl}-2-phenylbut-1-en-1-yl]phenol

C25H27NO2 (373.2042)


Endoxifen (EDX) is a key active metabolite of tamoxifen (TAM) with higher affinity and specificity to estrogen receptors that also inhibits aromatase activity. (PMID: 23274567) Tamoxifen is an antagonist of the estrogen receptor in breast tissue via its active metabolite, hydroxytamoxifen. In other tissues such as the endometrium, it behaves as an agonist, and thus may be characterized as a mixed agonist/antagonist. Tamoxifen is the usual endocrine therapy for hormone receptor-positive breast cancer in pre-menopausal women, and is also a standard in post-menopausal women although aromatase inhibitors are also frequently used in that setting. (Wikipedia) The pharmacological activity of Tamoxifen is dependent on its conversion to its active metabolite, endoxifen, by CYP2D6. (PMID: 23711794) Tamoxifen is a largely inactive pro-drug, requiring metabolism into its most important metabolite endoxifen. Since the cytochrome P450 (CYP) 2D6 enzyme is primarily involved in this metabolism, genetic polymorphisms of this enzyme, but also drug-induced CYP2D6 inhibition can result in considerably reduced endoxifen formation and as a consequence may affect the efficacy of tamoxifen treatment. (PMID: 23760858)

   

Isovaltrate

Isovaltrate

C22H30O8 (422.1941)


   

Gonyautoxin I

{4-[(carbamoyloxy)methyl]-5,10,10-trihydroxy-2,6-diimino-decahydropyrrolo[1,2-c]purin-9-yl}oxidanesulfonic acid

C10H17N7O9S (411.0808)


Gonyautoxin I is found in mollusks. Gonyautoxin I is produced by Gonyaulax and Protogonyaulax species and isolated from shellfish. Neurotoxin, causal agent, with Saxitoxin, of shellfish poisoning. From Gonyaulax and Protogonyaulax subspecies Gonyautoxin IV is found in mollusks. D009676 - Noxae > D011042 - Poisons > D008978 - Mollusk Venoms D009676 - Noxae > D011042 - Poisons > D008387 - Marine Toxins D009676 - Noxae > D011042 - Poisons > D014688 - Venoms

   

Brevetoxin B

Brevetoxin2(PbTx-2)

C50H70O14 (894.4765)


D009676 - Noxae > D011042 - Poisons > D008387 - Marine Toxins

   

Homomethionine

(2S)-2-Amino-5-(methylsulfanyl)pentanoic acid

C6H13NO2S (163.0667)


Homomethionine (CAS: 6094-76-4) belongs to the class of organic compounds known as alpha-amino acids. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Homomethionine is possibly neutral. Homomethionine has been detected, but not quantified in, several different foods, such as lima beans, red huckleberries, catjang pea, Chinese chestnuts, and pepper (C. annuum). This could make homomethionine a potential biomarker for the consumption of these foods. Homomethionine is found in brassicas and is isolated from cabbage and horseradish. Isolated from cabbage and horseradish. L-2-Amino-5-(methylthio)pentanoic acid is found in many foods, some of which are pepper (c. frutescens), vanilla, cauliflower, and pineappple sage.

   

Kuraridinol

(2E) -1- [ 2,4-Dihydroxy-3- [ 5-hydroxy-5-methyl-2- (1-methylethenyl) hexyl ] -6-methoxyphenyl ] -3- (2,4-dihydroxyphenyl) -2-propen-1-one

C26H32O7 (456.2148)


A member of the class of chalcones that is trans-chalcone substituted by hydroxy groups at positions 2, 4, 2 and 4, a methoxy group at position 6 and a 5-hydroxy-5-methyl-2-(prop-1-en-2-yl)hexyl group at position 3 respectively.

   

Multifloein B

Multifloein B

C27H30O15 (594.1585)


   

Atractylodinol

(2E,8E)-9-(Furan-2-yl)nona-2,8-dien-4,6-diyn-1-ol

C13H10O2 (198.0681)


   

Acetylatractylodinol

Acetylatractylodinol

C15H12O3 (240.0786)


Acetylatractylodinol, isolated from Atractylodes lancea, possesses antioxidant activity[1]. Acetylatractylodinol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. Acetylatractylodinol, isolated from Atractylodes lancea, possesses antioxidant activity[1]. Acetylatractylodinol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups.

   

2-(2-Aminoethyl)thiazole

2-(2-Aminoethyl)thiazole dihydrochloride

C5H8N2S (128.0408)


D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D017442 - Histamine Agonists

   

2-Methylhistamine

2-(2-methyl-1H-imidazol-5-yl)ethan-1-amine

C6H11N3 (125.0953)


   

Imetit

{[2-(1H-imidazol-5-yl)ethyl]sulfanyl}methanimidamide

C6H10N4S (170.0626)


D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D017442 - Histamine Agonists

   

Cysteinyldopa

5-S-Cysteinyl-DOPA

C12H16N2O6S (316.0729)


   

D-Valine

2-Amino-3-methylbutanoic acid

C5H11NO2 (117.079)


Flavouring ingredient

   

inositol 1,3,4,5,6-pentakisphosphate

{[3-hydroxy-2,4,5,6-tetrakis(phosphonooxy)cyclohexyl]oxy}phosphonic acid

C6H17O21P5 (579.895)


   

DL-Benzoin

benzoin compound tincture

C14H12O2 (212.0837)


C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent Benzoin is a kind of alsamic resin isolated from the styracaceae family. Benzoin can be used as a colour additive used for marking plants[1].

   

4\\%27,7-Dihydroxyflavone

4H-1-Benzopyran-4-one, 7-hydroxy-2-(4-hydroxyphenyl)-

C15H10O4 (254.0579)


4,7-dihydroxyflavone is a dihydroxyflavone in which the two hydroxy substituents are located at positions 4 and 7. It has a role as a metabolite. 7,4-Dihydroxyflavone is a natural product found in Dracaena cinnabari, Thermopsis macrophylla, and other organisms with data available. See also: Glycyrrhiza uralensis Root (part of); Glycyrrhiza inflata root (part of). A dihydroxyflavone in which the two hydroxy substituents are located at positions 4 and 7. 7,4'-Dihydroxyflavone (7,4'-DHF) is a flavonoid isolated from Glycyrrhiza uralensis, the eotaxin/CCL11 inhibitor, has the ability to consistently suppress eotaxin production and prevent dexamethasone (Dex)‐paradoxical adverse effects on eotaxin production[1]. 7,4'-Dihydroxyflavone (7,4'-DHF) inhibits MUC5AC gene expression, mucus production and secretion via regulation of NF-κB, STAT6 and HDAC2. 7,4'-Dihydroxyflavone (7,4'-DHF) decreases phorbol 12-myristate 13-acetate (PMA) stimulated NCI-H292 human airway epithelial cell MUC5AC gene expression and mucus production with IC50 value of 1.4 μM[1]. 7,4'-Dihydroxyflavone (7,4'-DHF) is a flavonoid isolated from Glycyrrhiza uralensis, the eotaxin/CCL11 inhibitor, has the ability to consistently suppress eotaxin production and prevent dexamethasone (Dex)‐paradoxical adverse effects on eotaxin production[1]. 7,4'-Dihydroxyflavone (7,4'-DHF) inhibits MUC5AC gene expression, mucus production and secretion via regulation of NF-κB, STAT6 and HDAC2. 7,4'-Dihydroxyflavone (7,4'-DHF) decreases phorbol 12-myristate 13-acetate (PMA) stimulated NCI-H292 human airway epithelial cell MUC5AC gene expression and mucus production with IC50 value of 1.4 μM[1].

   

Erythronic acid

(R*,r*)-2,3,4-trihydroxy-butanoic acid

C4H8O5 (136.0372)


Erythronic acid is a sugar component of aqueous humour (eye). It may be derived from glycated proteins or from degradation of ascorbic acid. Erythronic acid is a normal organic acid present in a healthy adult and pediatric population. It has been found in urine, plasma, CSF, and synovial fluid (PMID: 14708889, 8087979, 8376520, 10420182). Erythronic acid is formed when N-acetyl-D-glucosamine (GlcNAc) is oxidized. GlcNAc is a constituent of hyaluronic acid (HA), a polysaccharide consisting of alternating units of glucuronic acid and GlcNAc, present as an aqueous solution in synovial fluid. In the synovial fluid of patients suffering from rheumatoid arthritis, HA is thought to be degraded either by radicals generated by Fenton chemistry (Fe2+/H2O2) or by NaOCl generated by myeloperoxidase (PMID: 10614067). Erythronic acid is a sugar component of aqueous humour (eye). It may be derived from glycated proteins or from degradation of ascorbic acid. Erythronic acid is a normal organic acid present in a healthy adult and pediatric population. It has been found in urine, plasma, CSF and synovial fluid. (PMID: 14708889, 8087979, 8376520, 10420182) Erythronic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=13752-84-6 (retrieved 2024-07-10) (CAS RN: 13752-84-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Timnodonyl CoA

(2R)-4-({[({[(2R,3R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-N-[2-({2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoylsulphanyl]ethyl}-C-hydroxycarbonimidoyl)ethyl]-3,3-dimethylbutanimidic acid

C41H64N7O17P3S (1051.3292)


Timnodonyl coenzyme A is an intermediate in the biosynthesis of fatty acids. Timnodonyl CoA is produced from linolenyl- CoA.

   

Methadyl Acetate

(3R,6R)-3-Acetoxy-6-dimethylamino-4,4-diphenylheptane

C23H31NO2 (353.2355)


Methadyl Acetate is only found in individuals that have used or taken this drug. It is a narcotic analgesic with a long onset and duration of action. It is used mainly in the treatment of narcotic dependence. [PubChem]Methadyl Acetate is primarily a mu-type opioid receptor agonist. It functions similarily to methadone. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D000700 - Analgesics

   

(+)-Lysergic acid

6-methyl-6,11-diazatetracyclo[7.6.1.0²,⁷.0¹²,¹⁶]hexadeca-1(16),2,9,12,14-pentaene-4-carboxylic acid

C16H16N2O2 (268.1212)


   

Etorphine

19-(2-hydroxypentan-2-yl)-15-methoxy-3-methyl-13-oxa-3-azahexacyclo[13.2.2.1^{2,8}.0^{1,6}.0^{6,14}.0^{7,12}]icosa-7,9,11,16-tetraen-11-ol

C25H33NO4 (411.2409)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics

   

Monensin

4-[2-(5-ethyl-5-{5-[6-hydroxy-6-(hydroxymethyl)-3,5-dimethyloxan-2-yl]-3-methyloxolan-2-yl}oxolan-2-yl)-9-hydroxy-2,8-dimethyl-1,6-dioxaspiro[4.5]decan-7-yl]-3-methoxy-2-methylpentanoic acid

C36H62O11 (670.4292)


D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D004791 - Enzyme Inhibitors > D014475 - Uncoupling Agents D007476 - Ionophores > D061209 - Proton Ionophores D007476 - Ionophores > D061210 - Sodium Ionophores D049990 - Membrane Transport Modulators

   

3-Chloro-D-alanine

3-Chloroalanine hydrochloride, (DL-ala)-isomer

C3H6ClNO2 (123.0087)


   

2-Amino-3-hydroxy-3-phenylpropanoic acid

(2Rs,3Sr)-2-amino-3-Hydroxy-3-phenylpropanoic acid

C9H11NO3 (181.0739)


   

2,3,4-Trihydroxybutanoic acid

2,3,4-trihydroxybutanoic acid

C4H8O5 (136.0372)


   

3-Amino-4-methylpentanoic acid

3-Amino-4-methylpentanoic acid

C6H13NO2 (131.0946)


3-Amino-4-methylpentanoic acid is a beta amino acid and positional isomer of L-leucine which is naturally produced in humans via the metabolism of L-leucine by the enzyme leucine 2,3-aminomutase.

   

Methyl alpha-D-galactopyranoside

2-(Hydroxymethyl)-6-methoxytetrahydro-2H-pyran-3,4,5-triol

C7H14O6 (194.079)


Present in Medicago sativa (alfalfa). Methyl beta-D-glucopyranoside is found in cereals and cereal products.

   

2-[6-Fluoro-2-methyl-3-[(4-methylsulfinylphenyl)methylidene]-1-indenyl]acetic acid

2-{5-fluoro-1-[(4-methanesulfinylphenyl)methylidene]-2-methyl-1H-inden-3-yl}acetic acid

C20H17FO3S (356.0882)


   

4-(Phosphonomethyl)piperidine-2-carboxylic acid

4-(Phosphonomethyl)-2-piperidinecarboxylic acid

C7H14NO5P (223.061)


   

8-Prenylnaringenin

5,7-dihydroxy-2-(4-hydroxyphenyl)-8-(3-methylbut-2-en-1-yl)-3,4-dihydro-2H-1-benzopyran-4-one

C20H20O5 (340.1311)


(s)-4,5,7-trihydroxy-8-prenylflavanone is a member of the class of compounds known as 8-prenylated flavanones. 8-prenylated flavanones are flavanones that features a C5-isoprenoid substituent at the 8-position. Thus, (s)-4,5,7-trihydroxy-8-prenylflavanone is considered to be a flavonoid lipid molecule (s)-4,5,7-trihydroxy-8-prenylflavanone is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (s)-4,5,7-trihydroxy-8-prenylflavanone can be found in beer, which makes (s)-4,5,7-trihydroxy-8-prenylflavanone a potential biomarker for the consumption of this food product.

   

9Z,12E-Octadecadienoic acid

Linoleic acid, potassium salt, (Z,Z)-isomer

C18H32O2 (280.2402)


   

Acetamiprid

(1E)-N-((6-Chloro-3-pyridinyl)methyl)-n-cyano-N-methylethanimidamide

C10H11ClN4 (222.0672)


D010575 - Pesticides > D007306 - Insecticides > D000073943 - Neonicotinoids D016573 - Agrochemicals Acetamiprid is a neonicotinoid insecticide used worldwide. Acetamiprid is a nicotinic acetylcholine receptor (nAChR) agonist, and is shown to be associated with neuromuscular and reproductive disorders[1][2].

   

Artemisin

4-hydroxy-3,5a,9-trimethyl-2H,3H,3aH,4H,5H,5aH,8H,9bH-naphtho[1,2-b]furan-2,8-dione

C15H18O4 (262.1205)


D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides

   

Cyclosporin A

30-ethyl-33-(1-hydroxy-2-methylhex-4-en-1-yl)-1,4,7,10,12,15,19,25,28-nonamethyl-6,9,18,24-tetrakis(2-methylpropyl)-3,21-bis(propan-2-yl)-1,4,7,10,13,16,19,22,25,28,31-undecaazacyclotritriacontan-2,5,8,11,14,17,20,23,26,29,32-undecone

C62H111N11O12 (1201.8413)


   

Histidinyl-Leucine

2-{[2-amino-1-hydroxy-3-(1H-imidazol-5-yl)propylidene]amino}-4-methylpentanoate

C12H20N4O3 (268.1535)


   

Oleoyl coenzyme A

4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-3,3-dimethyl-N-(2-{[2-(octadec-9-enoylsulphanyl)ethyl]-C-hydroxycarbonimidoyl}ethyl)butanimidic acid

C39H68N7O17P3S (1031.3605)


   

Cedarwood oil terpenes

2,6,6,8-tetramethyltricyclo[5.3.1.0¹,⁵]undec-8-ene

C15H24 (204.1878)


It is used as a food additive . (-)-Cedrene (α-cedrene) is a sesquiterpene constituent of cedarwood oils, with anti-leukemic, antimicrobial and anti-obesity activities[1]. (-)-Cedrene (α-cedrene) is a sesquiterpene constituent of cedarwood oils, with anti-leukemic, antimicrobial and anti-obesity activities[1]. (-)-Cedrene (α-cedrene) is a sesquiterpene constituent of cedarwood oils, with anti-leukemic, antimicrobial and anti-obesity activities[1]. (-)-Cedrene (α-cedrene) is a sesquiterpene constituent of cedarwood oils, with anti-leukemic, antimicrobial and anti-obesity activities[1].

   

6-Octadecenoic acid

petroselinic acid, sodium salt, (Z)-isomer

C18H34O2 (282.2559)


Isolated from volatiles of Coriandrum sativum (coriander), Anethum sowa (Indian dill), Cuminum cyminum (cumin), Daucus carota (carrot), Nigella sativa (black cumin), Apium graveolens (celery), Pimpinella anisum (anise) and Petroselinum sativum (parsley) [CCD]. 6-Octadecenoic acid is found in dill. Minor constituent of plant oils. Constituent of milk fat and from porcine parasites Oesophagostomum dentatum and Oesophagostomum quadrispinulatum [CCD]. Petroselaidic acid is found in fats and oils.

   

Maltotetraose

Maltotetraose

C24H42O21 (666.2218)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents Maltotetraose can be used as a substrate for the enzyme-coupled determination of amylase activity in biological fluids. Maltotetraose can be used as a substrate for the enzyme-coupled determination of amylase activity in biological fluids.

   

Scutellarein

(2S)-2,3-dihydro-5,6,7-trihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one

C15H10O6 (286.0477)


Scutellarein is flavone substituted with hydroxy groups at C-4, -5, -6 and -7. It has a role as a metabolite. It is functionally related to an apigenin. It is a conjugate acid of a scutellarein(1-). Scutellarein is a natural product found in Scoparia dulcis, Artemisia douglasiana, and other organisms with data available. Flavone substituted with hydroxy groups at C-4, -5, -6 and -7. Scutellarein, also known as 6-hydroxyapigenin or 4,5,6,7-tetrahydroxyflavanone, is a member of the class of compounds known as flavones. Flavones are flavonoids with a structure based on the backbone of 2-phenylchromen-4-one (2-phenyl-1-benzopyran-4-one). Thus, scutellarein is considered to be a flavonoid lipid molecule. Scutellarein is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Scutellarein can be synthesized from apigenin. Scutellarein is also a parent compound for other transformation products, including but not limited to, scutellarin, 4,6-dihydroxy-5,7-dimethoxyflavone, and 6-hydroxy-4,5,7-trimethoxyflavone. Scutellarein is a bitter tasting compound found in mexican oregano and sweet orange, which makes scutellarein a potential biomarker for the consumption of these food products. Scutellarein is a flavone that can be found in Scutellaria lateriflora and other members of the genus Scutellaria, as well as the fern Asplenium belangeri . Scutellarein is a natural flavonoid compound with anti-inflammatory effects. Scutellarein is a natural flavonoid compound with anti-inflammatory effects.

   

Apigenin 7,4'-dimethyl ether

4H-1-Benzopyran-4-one, 5-hydroxy-7-methoxy-2-(4-methoxyphenyl)-

C17H14O5 (298.0841)


Apigenin 7,4-dimethyl ether, also known as apigenin dimethylether or 4,7-dimethylapigenin, belongs to the class of organic compounds known as 7-O-methylated flavonoids. These are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, apigenin 7,4-dimethyl ether is considered to be a flavonoid lipid molecule. Apigenin 7,4-dimethyl ether is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Outside of the human body, apigenin 7,4-dimethyl ether has been detected, but not quantified in, common sages and sweet basils. This could make apigenin 7,4-dimethyl ether a potential biomarker for the consumption of these foods. BioTransformer predicts that apigenin 7,4-dimethyl ether is a product of 4,5,7-trimethoxyflavone metabolism via an O-dealkylation reaction and catalyzed by CYP2C9 and CYP2C19 enzymes (PMID: 30612223). 4-methylgenkwanin, also known as apigenin dimethylether or 4,7-dimethylapigenin, is a member of the class of compounds known as 7-o-methylated flavonoids. 7-o-methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, 4-methylgenkwanin is considered to be a flavonoid lipid molecule. 4-methylgenkwanin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 4-methylgenkwanin can be found in common sage and sweet basil, which makes 4-methylgenkwanin a potential biomarker for the consumption of these food products. Apigenin 7,4-dimethyl ether is a dimethoxyflavone that is the 7,4-dimethyl ether derivative of apigenin. It has a role as a plant metabolite. It is a dimethoxyflavone and a monohydroxyflavone. It is functionally related to an apigenin. Apigenin 7,4-dimethyl ether is a natural product found in Teucrium polium, Calea jamaicensis, and other organisms with data available. A dimethoxyflavone that is the 7,4-dimethyl ether derivative of apigenin. The compound 7,4'-Di-O-methylapigenin may be partly responsible for the reported antifungal activity of C. zeyheri, and may serve as a potential source of lead compounds that can be developed as antifungal phytomedicines.And it also showed inhibition of the drug efflux pumps (with IC50 = 51.64 μg/ml). IC50:51.64 μg/ml(Candida albicans drug efflux pumps)[2] In vitro: The isolated 7,4'-Di-O-methylapigenin was further investigated for its inhibitory activity on ABC drug efflux pumps in C. albicans by monitoring an increase in ciprofloxacin, assessing the level of its accumulation, in response to reserpine. There was a higher accumulation of ciprofloxacin in Candida cells in the presence of 7,4'-Di-O-methylapigenin than with reserpine. The compound 7,4'-Di-O-methylapigenine demonstrated the activity in a dose-dependent manner with IC50 value of 51.64 μg/ml. These results support those obtained from synergism assays where by the underlying synergistic antifungal mechanisms could be due to blockage of ABC efflux pumps and increasing the susceptibility of Candida to miconazole.[2] In vivo: In searching for natural products as potential anti-inflammatory agents, 7,4'-Di-O-methylapigenin wasn't evaluated in vivo for its ability to inhibit acute inflammation.[1] The compound 7,4'-Di-O-methylapigenin may be partly responsible for the reported antifungal activity of C. zeyheri, and may serve as a potential source of lead compounds that can be developed as antifungal phytomedicines.And it also showed inhibition of the drug efflux pumps (with IC50 = 51.64 μg/ml). IC50:51.64 μg/ml(Candida albicans drug efflux pumps)[2] In vitro: The isolated 7,4'-Di-O-methylapigenin was further investigated for its inhibitory activity on ABC drug efflux pumps in C. albicans by monitoring an increase in ciprofloxacin, assessing the level of its accumulation, in response to reserpine. There was a higher accumulation of ciprofloxacin in Candida cells in the presence of 7,4'-Di-O-methylapigenin than with reserpine. The compound 7,4'-Di-O-methylapigenine demonstrated the activity in a dose-dependent manner with IC50 value of 51.64 μg/ml. These results support those obtained from synergism assays where by the underlying synergistic antifungal mechanisms could be due to blockage of ABC efflux pumps and increasing the susceptibility of Candida to miconazole.[2] In vivo: In searching for natural products as potential anti-inflammatory agents, 7,4'-Di-O-methylapigenin wasn't evaluated in vivo for its ability to inhibit acute inflammation.[1]

   

Rhaponticin

(2S,3R,4S,5S,6R)-2-[3-hydroxy-5-[(E)-2-(3-hydroxy-4-methoxy-phenyl)vinyl]phenoxy]-6-(hydroxymethyl)tetrahydropyran-3,4,5-triol

C21H24O9 (420.142)


Trans-rhaponticin is a rhaponticin in which the double bond adopts a trans-configuration. It possesses a range of pharmacological activities including antitumour, antiinflammatory, antilipemic and neuroprotective activities. It has a role as an anti-inflammatory agent, a plant metabolite, a neuroprotective agent, an EC 2.3.1.85 (fatty acid synthase) inhibitor, an antineoplastic agent, an apoptosis inducer, an angiogenesis inhibitor, a hypoglycemic agent, an anti-allergic agent and an antilipemic drug. Rhapontin is a natural product found in Rheum compactum, Rheum hotaoense, and other organisms with data available. A rhaponticin in which the double bond adopts a trans-configuration. It possesses a range of pharmacological activities including antitumour, antiinflammatory, antilipemic and neuroprotective activities. Rhapontin (Rhaponiticin), a component of rhubarb (Rheum officinale Baill), induces apoptosis resulting in suppression of proliferation of human stomach cancer KATO III cells[1]. Rhapontin (Rhaponiticin), a component of rhubarb (Rheum officinale Baill), induces apoptosis resulting in suppression of proliferation of human stomach cancer KATO III cells[1].

   

4-Methoxybenzaldehyde

p-Anisaldehyde, United States Pharmacopeia (USP) Reference Standard

C8H8O2 (136.0524)


4-Methoxybenzaldehyde, also known as 4-anisaldehyde or p-formylanisole, belongs to the class of organic compounds known as benzoyl derivatives, with the chemical formula CH3OC6H4CHO. These are organic compounds containing an acyl moiety of benzoic acid with the formula (C6H5CO-). Anisaldehyde is prepared commercially by oxidation of 4-methoxytoluene (p-cresyl methyl ether) using manganese dioxide to convert a methyl group to the aldehyde group. 4-Methoxybenzaldehyde is a sweet, almond, and anise tasting compound. 4-Methoxybenzaldehyde can be found, on average, in the highest concentration within a few different foods, such as cumins, star anises, and fennels. 4-Methoxybenzaldehyde has also been detected, but not quantified, in several different foods, such as cornmints, anises, herbs and spices, tarragons, and tea. The related ortho isomer has a scent of licorice. It is a colorless liquid with a strong aroma. A solution of para-anisaldehyde in acid and ethanol is a useful stain in thin layer chromatography. Different chemical compounds on the plate can give different colors, allowing easy distinction. It is used as an intermediate in the synthesis of other compounds important in pharmaceuticals and perfumery. P-methoxybenzaldehyde is a member of the class of benzaldehydes consisting of benzaldehyde itself carrying a methoxy substituent at position 4. It has a role as an insect repellent, a human urinary metabolite, a plant metabolite and a bacterial metabolite. 4-Methoxybenzaldehyde is a natural product found in Vanilla pompona, Solidago odora, and other organisms with data available. See also: Anise Oil (part of). Found in anise oil, fennel and vanilla. Flavouring ingredient 4-Methoxybenzaldehyde is a naturally occurring fragrant phenolic compound. 4-Methoxybenzaldehyde has been found in many plant species including horseradish, anise, star anise. 4-Methoxybenzaldehyde is a possible neurotoxicant and it has shown effects that include mortality, attractancy, and interference with host seeking [1]. 4-Methoxybenzaldehyde is a naturally occurring fragrant phenolic compound. 4-Methoxybenzaldehyde has been found in many plant species including horseradish, anise, star anise. 4-Methoxybenzaldehyde is a possible neurotoxicant and it has shown effects that include mortality, attractancy, and interference with host seeking [1].

   

Tiglic acid

4-02-00-01552 (Beilstein Handbook Reference)

C5H8O2 (100.0524)


A 2-methylbut-2-enoic acid having its double bond in trans-configuration. Tiglic acid is a monocarboxylic unsaturated organic acid found in croton oil and in several other natural products. Tiglic aci has a role as a plant metabolite[1]. Tiglic acid is a monocarboxylic unsaturated organic acid found in croton oil and in several other natural products. Tiglic aci has a role as a plant metabolite[1].

   

4,7-Dihydroxyflavone

7,4-dihydroxyflavone 7-O-glucoside

C15H10O4 (254.0579)


7,4'-Dihydroxyflavone (7,4'-DHF) is a flavonoid isolated from Glycyrrhiza uralensis, the eotaxin/CCL11 inhibitor, has the ability to consistently suppress eotaxin production and prevent dexamethasone (Dex)‐paradoxical adverse effects on eotaxin production[1]. 7,4'-Dihydroxyflavone (7,4'-DHF) inhibits MUC5AC gene expression, mucus production and secretion via regulation of NF-κB, STAT6 and HDAC2. 7,4'-Dihydroxyflavone (7,4'-DHF) decreases phorbol 12-myristate 13-acetate (PMA) stimulated NCI-H292 human airway epithelial cell MUC5AC gene expression and mucus production with IC50 value of 1.4 μM[1]. 7,4'-Dihydroxyflavone (7,4'-DHF) is a flavonoid isolated from Glycyrrhiza uralensis, the eotaxin/CCL11 inhibitor, has the ability to consistently suppress eotaxin production and prevent dexamethasone (Dex)‐paradoxical adverse effects on eotaxin production[1]. 7,4'-Dihydroxyflavone (7,4'-DHF) inhibits MUC5AC gene expression, mucus production and secretion via regulation of NF-κB, STAT6 and HDAC2. 7,4'-Dihydroxyflavone (7,4'-DHF) decreases phorbol 12-myristate 13-acetate (PMA) stimulated NCI-H292 human airway epithelial cell MUC5AC gene expression and mucus production with IC50 value of 1.4 μM[1].

   

multiflorin B

2- (4-Hydroxyphenyl) -3- (4-O-beta-D-glucopyranosyl-alpha-L-rhamnopyranosyloxy) -5,7-dihydroxy-4H-1-benzopyran-4-one

C27H30O15 (594.1585)


A glycosyloxyflavone that is kaempferol substituted by a 6-deoxy-4-O-beta-D-glucopyranosyl-alpha-L-mannopyranosyl residue at position 3 via a glycosidic linkage.

   

Patuletin

2- (3,4-Dihydroxyphenyl) -3,5,7-trihydroxy-6-methoxy-4H-1-benzopyran-4-one

C16H12O8 (332.0532)


A trimethoxyflavone that is quercetagetin methylated at position 6. D004791 - Enzyme Inhibitors

   

Tetracosanoyl-CoA

{[(2R,4S,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-2,2-dimethyl-3-[(2-{[2-(tetracosanoylsulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]propoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C45H82N7O17P3S (1117.4701)


Tetracosanoyl-CoA is an intermediate in the biosynthesis of unsaturated fatty acids. Tetracosanoyl-CoA is converted from Palmitoyl-CoA in multiple steps. It is then converted to lignoceric acid via a thiol-ester hydrolase (E 3.1.2.-). [HMDB] Tetracosanoyl-CoA is an intermediate in the biosynthesis of unsaturated fatty acids. Tetracosanoyl-CoA is converted from Palmitoyl-CoA in multiple steps. It is then converted to lignoceric acid via a thiol-ester hydrolase (E 3.1.2.-).

   

tellimagrandin I

tellimagrandin I

C34H26O22 (786.0916)


   

ophthalmic acid

L-gamma-Glutamyl-L-alpha-aminobutyrylglycine

C11H19N3O6 (289.1274)


A L-glutamine derivative that is L-glutamine substituted by a 1-[(carboxymethyl)amino]-1-oxobutan-2-yl at the terminal amino nitrogen atom. MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; JCMUOFQHZLPHQP-BQBZGAKWSA-N_STSL_0170_Ophthalmic acid_0500fmol_180425_S2_LC02_MS02_88; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I.

   

2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid

2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid

C12H10O4 (218.0579)


   

alpha-Cedrene

(-)-alpha-cedrene;(1S,2R,5S,7S)-2,6,6,8-tetramethyltricyclo[5.3.1.0(1,5)]undec-8-ene;[3R-(3alpha,3abeta,7beta,8aalpha)]-2,3,4,7,8,8a-hexahydro-3,6,8,8-tetramethyl-1H-3a,7-methanoazulene

C15H24 (204.1878)


Alpha-cedrene, also known as (-)-α-cedrene or beta-cedrene, is a member of the class of compounds known as cedrane and isocedrane sesquiterpenoids. Cedrane and isocedrane sesquiterpenoids are sesquiternoids with a structure based on the cedrane or the isocedrane skeleton. Cedrane is a tricyclic molecules a 3,6,8,8-tetramethyl-1H-3a,7-methano-azulene moiety. Isocedrane is a rearranged cedrane arising from the migration of methyl group moved from the 6-position to the 4-position. Thus, alpha-cedrene is considered to be an isoprenoid lipid molecule. Alpha-cedrene is a sweet, cedar, and fresh tasting compound and can be found in a number of food items such as tarragon, peppermint, wild celery, and common sage, which makes alpha-cedrene a potential biomarker for the consumption of these food products. Alpha-cedrene can be found primarily in urine. Cedr-8-ene is a sesquiterpene that is cedrane which has a double bond between positions 8 and 9. It has a role as a human urinary metabolite and a volatile oil component. It is a sesquiterpene, a bridged compound, a polycyclic olefin and a carbotricyclic compound. It derives from a hydride of a cedrane. alpha-Cedrene is a natural product found in Aloysia gratissima, Widdringtonia whytei, and other organisms with data available. alpha-Cedrene alpha-Cedrene is one of the two isomers of cedrene. Cedrene is a sesquiterpene found in the essential oil of cedar. There are two isomers of cedrene, (-)-alpha-cedrene and (+)-beta-cedrene, which differ in the position of a double bond (Wikipedia) A sesquiterpene that is cedrane which has a double bond between positions 8 and 9. (-)-Cedrene (α-cedrene) is a sesquiterpene constituent of cedarwood oils, with anti-leukemic, antimicrobial and anti-obesity activities[1]. (-)-Cedrene (α-cedrene) is a sesquiterpene constituent of cedarwood oils, with anti-leukemic, antimicrobial and anti-obesity activities[1]. (-)-Cedrene (α-cedrene) is a sesquiterpene constituent of cedarwood oils, with anti-leukemic, antimicrobial and anti-obesity activities[1]. (-)-Cedrene (α-cedrene) is a sesquiterpene constituent of cedarwood oils, with anti-leukemic, antimicrobial and anti-obesity activities[1].

   

Mukurozidiol

7H-Furo[3,2-g][1]benzopyran-7-one, 9-(2,3-dihydroxy-3-methylbutoxy)-4-methoxy-

C17H18O7 (334.1052)


Constituent of Japanese drug byakusi obtained from Angelica subspecies Also from lemon oil and other Citrus subspecies [DFC]. (R)-Byakangelicin is found in lemon, citrus, and herbs and spices. Mukurozidiol is a member of psoralens. (Rac)-Byakangelicin is a natural product found in Ruta graveolens, Angelica, and other organisms with data available. (S)-Byakangelicin is found in herbs and spices. (S)-Byakangelicin is a constituent of common rue (Ruta graveolens). D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins (Rac)-Byakangelicin is a racemate of Byakangelicin mainly isolated from the genus Angelica. Byakangelicin is an aldose-reductase inhibitor with an IC50 value of 6.2 μM[1]. (Rac)-Byakangelicin is a racemate of Byakangelicin mainly isolated from the genus Angelica. Byakangelicin is an aldose-reductase inhibitor with an IC50 value of 6.2 μM[1]. Byakangelicin, one of the active compounds found in the roots of Angelica gigas, can serve as a modulator to improve brain accumulation of diverse active compounds (Umb, Cur, and Dox) and enhance therapeutic effects[1]. Byakangelicin is likely to increase the expression of all PXR target genes (such as MDR1) and induce a wide range of agent-agent interactions. Byakangelicin can inhibit the effects of sex hormones, it may increase the catabolism of endogenous hormones[2]. Byakangelicin, one of the active compounds found in the roots of Angelica gigas, can serve as a modulator to improve brain accumulation of diverse active compounds (Umb, Cur, and Dox) and enhance therapeutic effects[1]. Byakangelicin is likely to increase the expression of all PXR target genes (such as MDR1) and induce a wide range of agent-agent interactions. Byakangelicin can inhibit the effects of sex hormones, it may increase the catabolism of endogenous hormones[2].

   

3,4-Dihydroxyhydrocinnamic acid

InChI=1/C9H10O4/c10-7-3-1-6(5-8(7)11)2-4-9(12)13/h1,3,5,10-11H,2,4H2,(H,12,13

C9H10O4 (182.0579)


3,4-Dihydroxyhydrocinnamic acid, also known as dihydrocaffeic acid (DHCA), is a metabolite product of the hydrogenation of caffeoylquinic acids, occurring in normal human biofluids, with potent antioxidant properties. DHCA has been detected in human plasma following coffee ingestion (PMID: 15607645) and is increased with some dietary sources, such as after ingestion of phenolic constituents of artichoke leaf extract (PMID: 15693705). Polyphenol-rich foods such as vegetables and fruits have been shown to significantly improve platelet function in ex vivo studies in humans (PMID: 16038718). Its antioxidant activity has been tested to reduce ferric iron in the ferric reducing antioxidant power (FRAP) assay, and it has been suggested that its catechol structure conveys the antioxidant effect in plasma and in erythrocytes (PMID: 11768243). 3,4-Dihydroxyhydrocinnamic acid is a microbial metabolite found in Bifidobacterium, Escherichia, Lactobacillus, and Clostridium (PMID: 28393285). 3,4-Dihydroxyhydrocinnamic acid (or Dihydrocaffeic acid, DHCA) is a metabolite product of the hydrogenation of caffeoylquinic acids, occurring in normal human biofluids, with potent antioxidant properties. DHCA has been detected in human plasma following coffee ingestion (PMID 15607645), and is increased with some dietary sources, such as after ingestion of phenolic constituents of artichoke leaf extract. (PMID 15693705) Polyphenol-rich foods such as vegetables and fruits have been shown to significantly improve platelet function in ex vivo studies in humans. (PMID 16038718) Its antioxidant activity has been tested to reduce ferric iron in the ferric reducing antioxidant power (FRAP) assay, and it has been suggested that its catechol structure convey the antioxidant effect in plasma and in erythrocytes. (PMID 11768243) [HMDB]. 3-(3,4-Dihydroxyphenyl)propanoic acid is found in red beetroot, common beet, and olive. 3-(3,4-dihydroxyphenyl)propanoic acid is a monocarboxylic acid that is 3-phenylpropionic acid substituted by hydroxy groups at positions 3 and 4. Also known as dihydrocaffeic acid, it is a metabolite of caffeic acid and exhibits antioxidant activity. It has a role as an antioxidant and a human xenobiotic metabolite. It is functionally related to a 3-phenylpropionic acid. It is a conjugate acid of a 3-(3,4-dihydroxyphenyl)propanoate. 3-(3,4-Dihydroxyphenyl)propionic acid is a natural product found in Liatris elegans, Polyscias murrayi, and other organisms with data available. Dihydrocaffeic acid is a microbial metabolite of flavonoids, reduces phosphorylation of MAPK p38 and prevent UVB-induced skin damage. Antioxidant potential and anti-inflammatory activity[1]. Dihydrocaffeic acid is a microbial metabolite of flavonoids, reduces phosphorylation of MAPK p38 and prevent UVB-induced skin damage. Antioxidant potential and anti-inflammatory activity[1].

   

Piceol

4-Hydroxyacetophenone (Acetaminophen Impurity E), Pharmaceutical Secondary Standards; Certified Reference Material

C8H8O2 (136.0524)


4-hydroxyacetophenone is a monohydroxyacetophenone carrying a hydroxy substituent at position 4. It has a role as a plant metabolite, a fungal metabolite and a mouse metabolite. 4-Hydroxyacetophenone is a natural product found in Ficus erecta var. beecheyana, Artemisia ordosica, and other organisms with data available. A monohydroxyacetophenone carrying a hydroxy substituent at position 4. 4-Hydroxyacetophenone (P-hydroxyacetophenone) is a key hepatoprotective and choleretic compound in Artemisia capillaris and A. morrisonensis, also has an anti-hepatitis B virus effect and anti-inflammatory effect[1]. 4-Hydroxyacetophenone (P-hydroxyacetophenone) is a key hepatoprotective and choleretic compound in Artemisia capillaris and A. morrisonensis, also has an anti-hepatitis B virus effect and anti-inflammatory effect[1].

   

4-Methoxybenzaldehyde

p-Anisaldehyde, United States Pharmacopeia (USP) Reference Standard

C8H8O2 (136.0524)


4-Methoxybenzaldehyde, also known as 4-anisaldehyde or p-formylanisole, belongs to the class of organic compounds known as benzoyl derivatives, with the chemical formula CH3OC6H4CHO. These are organic compounds containing an acyl moiety of benzoic acid with the formula (C6H5CO-). Anisaldehyde is prepared commercially by oxidation of 4-methoxytoluene (p-cresyl methyl ether) using manganese dioxide to convert a methyl group to the aldehyde group. 4-Methoxybenzaldehyde is a sweet, almond, and anise tasting compound. 4-Methoxybenzaldehyde can be found, on average, in the highest concentration within a few different foods, such as cumins, star anises, and fennels. 4-Methoxybenzaldehyde has also been detected, but not quantified, in several different foods, such as cornmints, anises, herbs and spices, tarragons, and tea. The related ortho isomer has a scent of licorice. It is a colorless liquid with a strong aroma. A solution of para-anisaldehyde in acid and ethanol is a useful stain in thin layer chromatography. Different chemical compounds on the plate can give different colors, allowing easy distinction. It is used as an intermediate in the synthesis of other compounds important in pharmaceuticals and perfumery. P-methoxybenzaldehyde is a member of the class of benzaldehydes consisting of benzaldehyde itself carrying a methoxy substituent at position 4. It has a role as an insect repellent, a human urinary metabolite, a plant metabolite and a bacterial metabolite. 4-Methoxybenzaldehyde is a natural product found in Vanilla pompona, Solidago odora, and other organisms with data available. See also: Anise Oil (part of). Found in anise oil, fennel and vanilla. Flavouring ingredient 4-Methoxybenzaldehyde is a naturally occurring fragrant phenolic compound. 4-Methoxybenzaldehyde has been found in many plant species including horseradish, anise, star anise. 4-Methoxybenzaldehyde is a possible neurotoxicant and it has shown effects that include mortality, attractancy, and interference with host seeking [1]. 4-Methoxybenzaldehyde is a naturally occurring fragrant phenolic compound. 4-Methoxybenzaldehyde has been found in many plant species including horseradish, anise, star anise. 4-Methoxybenzaldehyde is a possible neurotoxicant and it has shown effects that include mortality, attractancy, and interference with host seeking [1].

   

Tebufenozide

Pesticide4_Tebufenozide_C22H28N2O2_Benzoic acid, 3,5-dimethyl-, 1-(1,1-dimethylethyl)-2-(4-ethylbenzoyl)hydrazide

C22H28N2O2 (352.2151)


D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals CONFIDENCE standard compound; EAWAG_UCHEM_ID 2952 EAWAG_UCHEM_ID 2952; CONFIDENCE standard compound

   

3-Indolecarboxylic acid

Indole-3-carboxylic acid_120169

C9H7NO2 (161.0477)


An indole-3-carboxylic acid carrying a carboxy group at position 3. Acquisition and generation of the data is financially supported in part by CREST/JST. IPB_RECORD: 2301; CONFIDENCE confident structure Indole-3-carboxylic acid is a normal urinary indolic tryptophan metabolite and has been found elevated in patients with liver diseases[1][2]. Indole-3-carboxylic acid is a normal urinary indolic tryptophan metabolite and has been found elevated in patients with liver diseases[1][2].

   

Cinchonine

(R)-alpha-[(8R)-8-Vinyl-1-azabicyclo[2.2.2]octane-2-yl]-4-quinolinemethanol

C19H22N2O (294.1732)


Cinchonan in which a hydrogen at position 9 is substituted by hydroxy (S configuration). It occurs in the bark of most varieties of Cinchona shrubs, and is frequently used for directing chirality in asymmetric synthesis. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents Origin: Plant; Formula(Parent): C19H22N2O; Bottle Name:Cinchonine; PRIME Parent Name:Cinchonine; PRIME in-house No.:V0325; SubCategory_DNP: Alkaloids derived from anthranilic acid, Quinoline alkaloids Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.610 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 2401; CONFIDENCE confident structure Cinchonine is a natural compound present in Cinchona bark. Cinchonine activates endoplasmic reticulum stress-induced apoptosis in human liver cancer cells[1]. Cinchonine is a natural compound present in Cinchona bark. Cinchonine activates endoplasmic reticulum stress-induced apoptosis in human liver cancer cells[1].

   

Valine

poly-l-valine

C5H11NO2 (117.079)


A branched-chain amino acid that consists of glycine in which one of the hydrogens attached to the alpha-carbon is substituted by an isopropyl group. Acquisition and generation of the data is financially supported by the Max-Planck-Society L-Valine (Valine) is a new nonlinear semiorganic material[1]. L-Valine (Valine) is a new nonlinear semiorganic material[1].

   

alpha-Ergocryptine

alpha-Ergocryptine

C32H41N5O5 (575.3108)


Ergotaman bearing hydroxy, isopropyl, and 2-methylpropyl groups at the 12, 2 and 5 positions, respectively, and oxo groups at positions 3, 6, and 18. It is a natural ergot alkaloid. Ergocryptine discussed in the literature prior to 1967, when beta-ergocryptine was separated from alpha-ergocryptine, is now referred to as alpha-ergocryptine. D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018491 - Dopamine Agonists relative retention time with respect to 9-anthracene Carboxylic Acid is 1.085 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.083 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.081 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.080

   

Ergocornine

Ergocorninine

C31H39N5O5 (561.2951)


Ergotaman bearing a hydroxy group at the 12 position, isopropyl groups at the 2 and 5alpha positions, and oxo groups at positions 3, 6, and 18. It is a natural ergot alkaloid. CONFIDENCE Reference Standard (Level 1) relative retention time with respect to 9-anthracene Carboxylic Acid is 1.024 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.021 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.019 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.017

   

Ergonovine

Ergometrine

C19H23N3O2 (325.179)


A monocarboxylic acid amide that is lysergamide in which one of the hydrogens attached to the amide nitrogen is substituted by a 1-hydroxypropan-2-yl group (S-configuration). An ergot alkaloid that has a particularly powerful action on the uterus, its maleate (and formerly tartrate) salt is used in the active management of the third stage of labour, and to prevent or treat postpartum of postabortal haemorrhage caused by uterine atony: by maintaining uterine contraction and tone, blood vessels in the uterine wall are compressed and blood flow reduced. G - Genito urinary system and sex hormones > G02 - Other gynecologicals > G02A - Uterotonics > G02AB - Ergot alkaloids C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist C78272 - Agent Affecting Nervous System > C66884 - Dopamine Agonist D012102 - Reproductive Control Agents > D010120 - Oxytocics CONFIDENCE Claviceps purpurea sclerotia relative retention time with respect to 9-anthracene Carboxylic Acid is 0.382 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.380 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.373 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.375

   

Josamycin

Leucomycin a3

C42H69NO15 (827.4667)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01F - Macrolides, lincosamides and streptogramins > J01FA - Macrolides A macrolide antibiotic produced by certain strains of Streptomyces narbonensis var. josamyceticus. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C784 - Protein Synthesis Inhibitor > C261 - Macrolide Antibiotic C254 - Anti-Infective Agent > C258 - Antibiotic Same as: D01235 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.133 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.131 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.130 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.135 Josamycin (EN-141) is a macrolide antibiotic exhibiting antimicrobial activity against a wide spectrum of pathogens, such as bacteria. The dissociation constant Kd from ribosome for Josamycin is 5.5 nM.

   

aniracetam

aniracetam

C12H13NO3 (219.0895)


N - Nervous system > N06 - Psychoanaleptics > N06B - Psychostimulants, agents used for adhd and nootropics D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D002491 - Central Nervous System Agents > D018697 - Nootropic Agents C26170 - Protective Agent > C1509 - Neuroprotective Agent Same as: D01883 Aniracetam (Ro 13-5057) is an orally active neuroprotective agent, possessing nootropics effects. Aniracetam potentiates the ionotropic quisqualate (iQA) responses in the CA1 region of rat hippocampal slices. Aniracetam also potentiates the excitatory post synaptic potentials (EPSPs) in Schaffer collateral-commissural synapses. Aniracetam can prevents the CO2-induced impairment of acquisition in hypercapnia model rats. Aniracetam can be used to research cerebral dysfunctional disorders[1][2][3][4].

   

prilocaine

prilocaine

C13H20N2O (220.1576)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics N - Nervous system > N01 - Anesthetics > N01B - Anesthetics, local > N01BB - Amides D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent

   

fleroxacin

Fleroxacin (Quinodis)

C17H18F3N3O3 (369.13)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials > J01MA - Fluoroquinolones D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic D004791 - Enzyme Inhibitors

   

sulfathiazole

sulfathiazole

C9H9N3O2S2 (255.0136)


D - Dermatologicals > D06 - Antibiotics and chemotherapeutics for dermatological use > D06B - Chemotherapeutics for topical use > D06BA - Sulfonamides J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01E - Sulfonamides and trimethoprim > J01EB - Short-acting sulfonamides C254 - Anti-Infective Agent > C29739 - Sulfonamide Anti-Infective Agent D000890 - Anti-Infective Agents > D013432 - Sulfathiazoles D000890 - Anti-Infective Agents > D013424 - Sulfanilamides

   

METHYLGUANIDINE

N-methylguanidine

C2H7N3 (73.064)


A guanidine in which one of the amino hydrogens of guanidine itself is substituted by a methyl group.

   

D-glucosamine 6-phosphate

D-glucosamine 6-phosphate

C6H14NO8P (259.0457)


   

Hexylamine

1-Hexanamine

C6H15N (101.1204)


A 6-carbon primary aliphatic amine.

   

N,N-dimethylglycine

N,N-Dimethylglycine hydrochloride

C4H9NO2 (103.0633)


An N-methylglycine that is glycine carrying two N-methyl substituents. N-Methylsarcosine is an amino acid building block for protein, found in a small amount in the body.

   

Oxipurinol

1H-Pyrazolo[3,4-d]pyrimidine-4,6(2H,5H)-dione

C5H4N4O2 (152.0334)


C471 - Enzyme Inhibitor > C1637 - Xanthine Oxidase Inhibitor D004791 - Enzyme Inhibitors Oxipurinol (Oxipurinol), the major active metabolite of Allopurinol, is an inhibitor of xanthine oxidase. Oxipurinol can be used to regulate blood urate levels and treat gout[1].

   

3-Methylxanthine

3-Methylxanthine

C6H6N4O2 (166.0491)


MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; GMSNIKWWOQHZGF-UHFFFAOYSA-N_STSL_0034_3-Methylxanthine_0500fmol_180410_S2_LC02_MS02_57; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. 3-Methylxanthine, a xanthine derivative, is a cyclic guanosine monophosphate (GMP) inhibitor, with an IC50 of 920 μM on guinea-pig isolated trachealis muscle. 3-Methylxanthine, a xanthine derivative, is a cyclic guanosine monophosphate (GMP) inhibitor, with an IC50 of 920 μM on guinea-pig isolated trachealis muscle.

   

Homogentisic acid

Homogentisic acid

C8H8O4 (168.0423)


A dihydroxyphenylacetic acid having the two hydroxy substituents at the 2- and 5-positions. Homogentisic acid is a specific metabolite in urine and serum, which is used for diagnosis of alkaptonuria. Homogentisic acid is a specific metabolite in urine and serum, which is used for diagnosis of alkaptonuria.

   

ergocryptine

12-hydroxy-2-(1-methylethyl)-5alpha-(2-methylpropyl)ergotaman-3,6,18-trione

C32H41N5O5 (575.3108)


D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018491 - Dopamine Agonists CONFIDENCE Claviceps purpurea sclerotia

   

Abietin

(2R,3S,4S,5R,6S)-2-(hydroxymethyl)-6-[4-[(E)-3-hydroxyprop-1-enyl]-2-methoxy-phenoxy]tetrahydropyran-3,4,5-triol

C16H22O8 (342.1315)


Coniferin (Laricin) is a glucoside of coniferyl alcohol. Coniferin inhibits fungal growth and melanization[1]. Coniferin (Laricin) is a glucoside of coniferyl alcohol. Coniferin inhibits fungal growth and melanization[1].

   

phenylethanolamine

2-Amino-1-phenylethanol

C8H11NO (137.0841)


The simplest member of the class of phenylethanolamines that is 2-aminoethanol bearing a phenyl substituent at the 1-position. The parent of the phenylethanolamine class. 2-Amino-1-phenylethanol is an analogue of noradrenaline.

   

1,2-CYCLOHEXANEDIONE

1,2-CYCLOHEXANEDIONE

C6H8O2 (112.0524)


1,2-Cyclohexanedione is an endogenous metabolite.

   

2,8-Quinolinediol

2,8-Dihydroxyquinoline

C9H7NO2 (161.0477)


   

Cortodoxone

"17A,21-DIHYDROXY-4-PREGNENE-3,20-DIONE"

C21H30O4 (346.2144)


C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones Cortodoxone is a glucocorticoid that can be oxidized to cortisone (Hydrocortisone).

   

FLUPERLAPINE

FLUPERLAPINE

C19H20FN3 (309.1641)


D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C66885 - Serotonin Antagonist C78272 - Agent Affecting Nervous System > C66883 - Dopamine Antagonist

   

N-Methylanthranilic acid

N-Methylanthranilic acid

C8H9NO2 (151.0633)


An aromatic amino acid that is anthranilic acid in which one of the hydrogens attached to the nitrogen is substituted by a methyl group. 2-(Methylamino)benzoic acid is the main metabolite of methyl-N-methylanthranilates (MMA) (HY-76705) and is the compound in which the ester group is converted. MMA can be isolated from citrus fruits and has potential analgesic activity. 2-(Methylamino)benzoic acid was used to detect the metabolic levels of MMA in rat liver[1].

   

Rufloxacin

Rufloxacin

C17H18FN3O3S (363.1053)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials > J01MA - Fluoroquinolones D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic D004791 - Enzyme Inhibitors Same as: D02474

   

Tolterodine

Tolterodine-L-tartrate

C22H31NO (325.2406)


G - Genito urinary system and sex hormones > G04 - Urologicals > G04B - Urologicals > G04BD - Drugs for urinary frequency and incontinence C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D000089162 - Genitourinary Agents > D064804 - Urological Agents Tolterodine(PNU-200583) is a potent muscarinic receptor antagonists that show selectivity for the urinary bladder over salivary glands in vivo. IC50 Value: Target: mAChR in vitro: Carbachol-induced contractions of isolated guinea pig bladder were effectively inhibited by tolterodine (IC50 14 nM) and 5-HM (IC50 5.7 nM). The IC50 values were in the microM range and the antimuscarinic potency of tolterodine was 27, 200 and 370-485 times higher, respectively, than its potency in blocking histamine receptors, alpha-adrenoceptors and calcium channels. The active metabolite, 5-HM, was >900 times less potent at these sites than at bladder muscarinic receptors [1]. in vivo: Tolterodine was extensively metabolized in vivo [2]. In the passive-avoidance test, tolterodine at 1 or 3 mg/kg had no effect on memory; the latency to cross and percentage of animals crossing were comparable to controls. In contrast, scopolamine induced a memory deficit; the latency to cross was decreased, and the number of animals crossing was increased [3].

   

3-methylcatechol

3-methylcatechol

C7H8O2 (124.0524)


A methylcatechol carrying a methyl substituent at position 3. It is a xenobiotic metabolite produced by some bacteria capable of degrading nitroaromatic compounds present in pesticide-contaminated soil samples. 3-Methylcatechol is a building block in the chemical synthesis produced by Pseudomonas putida MC2[1]. 3-Methylcatechol is a building block in the chemical synthesis produced by Pseudomonas putida MC2[1].

   

2-Deoxyuridine 5-monophosphate

2-Deoxyuridine 5-monophosphate

C9H13N2O8P (308.041)


   

Benzyl Benzoate

Benzyl Benzoate

C14H12O2 (212.0837)


P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03A - Ectoparasiticides, incl. scabicides C254 - Anti-Infective Agent > C276 - Antiparasitic Agent D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals Benzyl benzoate (Benzoic acid benzyl ester) is a fragrance ingredient in cosmetic products. Benzyl benzoate can be used for the research of Scabies and Demodex-associated inflammatory skin conditions[1][2][3]. Benzyl benzoate (Phenylmethyl benzoate) is an orally active anti-scabies agent, acaricide (EC50= 0.06 g/m2) and fungicide. Benzyl benzoate is an angiotensin II (Ang II) inhibitor with antihypertensive effects. Benzyl benzoate can be used in perfumes, pharmaceuticals and the food industry[1][2][3][4][5]. Benzyl benzoate (Benzoic acid benzyl ester) is a fragrance ingredient in cosmetic products. Benzyl benzoate can be used for the research of Scabies and Demodex-associated inflammatory skin conditions[1][2][3].

   

oleandomycin

(3S,5R,6S,7R,8R,11R,12S,13R,14S,15S)-6-hydroxy-5,7,8,11,13,15-hexamethyl-4,10-dioxo-14-{[3,4,6-trideoxy-3-(dimethylamino)-beta-D-xylo-hexopyranosyl]oxy}-1,9-dioxaspiro[2.13]hexadec-12-yl 2,6-dideoxy-3-O-methyl-alpha-L-arabino-hexopyranoside

C35H61NO12 (687.4194)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01F - Macrolides, lincosamides and streptogramins > J01FA - Macrolides D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C784 - Protein Synthesis Inhibitor > C261 - Macrolide Antibiotic C254 - Anti-Infective Agent > C258 - Antibiotic

   

L-2,3-Diaminopropionic acid

L-2,3-Diaminopropionic acid

C3H8N2O2 (104.0586)


COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Tridemorph

2,6-Dimethyl-4-tridecylmorpholine

C19H39NO (297.3031)


   

disopyramide

disopyramide

C21H29N3O (339.2311)


C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BA - Antiarrhythmics, class ia D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers > D061567 - Voltage-Gated Sodium Channel Blockers C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

Azulene

Azulene

C10H8 (128.0626)


One micro litter of the liquid sample was dropped in a 10 mL glass vial. The vial was placed under the DART ion source.; Direct analysis in real time (DART) is a method of atmospheric pressure chemical ionization (APCI). Protons, H+, generated by glow discharge ionization of the He gas in the ionization chamber, DART-SVP (IonSense Inc., MA, USA), were major reactant ions for the chemical ionization of samples.; The interface introducing the product ions to the mass spectrometer was Vapur Interface (AMR. Inc., Tokyo, Japan). The pressure in the interface was 710 Torr (96.3 kPa).; 1 mg of azulene was placed on glass capillary. The capillary was placed in the gas flow that ran from the ion source.; Azulene was purchased from TCI A0634.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 16HP2005 to the Mass Spectrometry Society of Japan. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Azulene (Cyclopentacycloheptene) is as an isomer of naphthalene with high anti-HIV activity. Azulene, isolated from the distillation of chamomile oil, is a scaffold in medicinal chemistry[1][2][3]. Azulene (Cyclopentacycloheptene) is as an isomer of naphthalene with high anti-HIV activity. Azulene, isolated from the distillation of chamomile oil, is a scaffold in medicinal chemistry[1][2][3].

   

Alcapton

InChI=1\C8H8O4\c9-6-1-2-7(10)5(3-6)4-8(11)12\h1-3,9-10H,4H2,(H,11,12

C8H8O4 (168.0423)


Homogentisic acid is a specific metabolite in urine and serum, which is used for diagnosis of alkaptonuria. Homogentisic acid is a specific metabolite in urine and serum, which is used for diagnosis of alkaptonuria.

   

THIOACETIC ACID

THIOACETIC ACID

C2H4OS (75.9983)


   

2-carboxy-1-naphthol

1-Hydroxy-2-naphthoic acid

C11H8O3 (188.0473)


A naphthoic acid with the carboxy group at position 2 and carrying a hydroxy substituent at the 1-position. It is a xenobiotic metabolite produced by the biodegradation of phenanthrene by microorganisms. 1-Hydroxy-2-naphthoic acid is an endogenous metabolite.

   

4-heptenoic acid

γ-heptenoic acid

C7H12O2 (128.0837)


   

Petroselaidic acid

trans-6-octadecenoic acid

C18H34O2 (282.2559)


The trans-isomer of octadec-6-enoic acid, a long-chain fatty acid.

   

Diguanosine tetraphosphate

Diguanosine tetraphosphate

C20H28N10O21P4 (868.0381)


   

Rhapontin

Rhapontin

C21H24O9 (420.142)


Rhapontin is a member of the class of compounds known as stilbene glycosides. Stilbene glycosides are compounds structurally characterized by the presence of a carbohydrate moiety glycosidically linked to the stilbene skeleton. Rhapontin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Rhapontin can be found in garden rhubarb, which makes rhapontin a potential biomarker for the consumption of this food product. Rhapontin has beneficial effects on diabetic mice, and in vitro results suggest it may be relevant to Alzheimers disease with an action on beta amyloid . Rhapontin (Rhaponiticin), a component of rhubarb (Rheum officinale Baill), induces apoptosis resulting in suppression of proliferation of human stomach cancer KATO III cells[1]. Rhapontin (Rhaponiticin), a component of rhubarb (Rheum officinale Baill), induces apoptosis resulting in suppression of proliferation of human stomach cancer KATO III cells[1].

   
   

benzoate

3,5-Dihydroxybenzoic acid (acd/name 4.0)

C7H6O4 (154.0266)


2,6-Dihydroxybenzoic acid is a secondary metabolite of salicylic acid which has been hydrolyzed by liver enzymes during phase I metabolism. 2,6-Dihydroxybenzoic acid is a secondary metabolite of salicylic acid which has been hydrolyzed by liver enzymes during phase I metabolism. 3,5-Dihydroxybenzoic acid a potential biomarker for the consumption of many food products, including beer, nuts, peanut, and pulses. 3,5-Dihydroxybenzoic acid a potential biomarker for the consumption of many food products, including beer, nuts, peanut, and pulses.

   

Methadyl acetate

Acetilmetadol [inn-spanish];Acetylmethadol;Acetylmethadolum [inn-latin];Betamethadol

C23H31NO2 (353.2355)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D000700 - Analgesics

   

Carbomethoxyaniline

Methyl ester OF O-aminobenzoic acid

C8H9NO2 (151.0633)


   

&beta

2-(Hydroxymethyl)-6-methoxytetrahydro-2H-pyran-3,4,5-triol

C7H14O6 (194.079)


   

Topanel

Crotonaldehyde, stabilized [UN1143] [Poison]

C4H6O (70.0419)


   

PGF3alpha

9S,11R,15S-trihydroxy-5Z,13E,17Z-prostatrienoic acid

C20H32O5 (352.225)


   

5,6-DHET

(8Z,11Z,14Z)-5,6-Dihydroxyeicosa-8,11,14-trienoic acid

C20H34O4 (338.2457)


A DHET obtained by formal dihydroxylation across the 5,6-double bond of arachidonic acid.

   

8,9-DHET

(5Z,11Z,14Z)-8,9-Dihydroxyeicosa-5,11,14-trienoic acid

C20H34O4 (338.2457)


   

decanol

Alcohols, C8-10

C10H22O (158.1671)


   

CoA 9:5

3-phenylacryloyl-CoA;3-phenylacryloyl-coenzyme A;3-phenylprop-2-enoyl-coenzyme A;benzylideneacetyl-CoA;benzylideneacetyl-coenzyme A;beta-phenylacryloyl-CoA;beta-phenylacryloyl-coenzyme A;cinnamoyl-coenzyme A

C30H42N7O17P3S (897.1571)


   

CoA 20:5

(5Z,8Z,11Z,14Z,17Z)-eicosapentaenoyl-CoA;(5Z,8Z,11Z,14Z,17Z)-icosapentaenoyl-CoA;20:5(n-3);5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl-CoA;CoA(20:5(5Z,8Z,11Z,14Z,17Z));all-cis-5,8,11,14,17-eicosapentaenoyl-CoA;all-cis-5,8,11,14,17-icosapentaenoyl-CoA

C41H64N7O17P3S (1051.3292)


An unsaturated fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of (5Z,8Z,11Z,14Z,17Z)-icosapentaenoic acid. It is a member of n-3 PUFA and by-product of alpha-linolenic acid metabolism.

   

HENTRIACONTANE

HENTRIACONTANE

C31H64 (436.5008)


   

Zymosterol

5alpha-cholesta-8,24-dien-3beta-ol

C27H44O (384.3392)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

ST 27:1

Cholest-5-ene

C27H46 (370.3599)


   

Androstenediol

Androst-5-ene-3beta,17beta-diol

C19H30O2 (290.2246)


A 3beta-hydroxy-Delta(5)-steroid that is 3beta-hydroxyandrost-5-ene carrying an additional hydroxy group at position 17beta. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D045930 - Anabolic Agents C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C2360 - Anabolic Steroid

   

Sophoraflavanone B

Sophoraflavanone B

C20H20O5 (340.1311)


   

4-CHLOROANILINE

1-Amino-4-chlorobenzene

C6H6ClN (127.0189)


   

1-Methyladenine

1-Methyladenine

C6H7N5 (149.0701)


Adenine substituted with a methyl group at position N-1.

   

Virginiamycin M1

Pristinamycin IIA

C28H35N3O7 (525.2475)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D025361 - Streptogramins C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C259 - Antineoplastic Antibiotic Virginiamycin M1 (Pristinamycin IIA; Ostreogrycin A), produced by?Streptomyces virginiae, is an polyunsaturated macrocyclic lactone antibiotic and acts as a component of Virginiamycin (HY-112665)[1]. Virginiamycin M1 alone is against Staphylococcus aureus with a MIC of 0.25 μg/mL. The combination of Virginiamycin M1 and Virginiamycin S1 (HY-N6680) is 0.125 μg/mL (MIC Value), which can improve the bactericidal effect 1-30 times[2].

   

practolol

practolol

C14H22N2O3 (266.163)


C - Cardiovascular system > C07 - Beta blocking agents > C07A - Beta blocking agents > C07AB - Beta blocking agents, selective C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents Same as: D05587 Practolol is a potent and selective β1-adrenergic receptor antagonist. Practolol can be used for the research of cardiac arrhythmias[1][2][3].

   

Levonordefrin

alpha-Methylnoradrenaline

C9H13NO3 (183.0895)


C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents Same as: D02388 Levonordefrin, a common alternative to levoepinephrine as a vasoconstrictor in dental local anesthetic preparations, is usually used in fivefold higher concentrations. Levonordefrin is generally considered equivalent to epinephrine[1].

   

Cyclacillin

4-Thia-1-azabicyclo[3.2.0]heptane-2-carboxylicacid, 6-[[(1-aminocyclohexyl)carbonyl]amino]-3,3-dimethyl-7-oxo-, (2S,5R,6R)-

C15H23N3O4S (341.1409)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   

azulen

InChI=1\C10H8\c1-2-5-9-7-4-8-10(9)6-3-1\h1-8

C10H8 (128.0626)


D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Azulene (Cyclopentacycloheptene) is as an isomer of naphthalene with high anti-HIV activity. Azulene, isolated from the distillation of chamomile oil, is a scaffold in medicinal chemistry[1][2][3]. Azulene (Cyclopentacycloheptene) is as an isomer of naphthalene with high anti-HIV activity. Azulene, isolated from the distillation of chamomile oil, is a scaffold in medicinal chemistry[1][2][3].

   

LS-631

InChI=1\C8H6O3\c9-4-6-1-2-7-8(3-6)11-5-10-7\h1-4H,5H

C8H6O3 (150.0317)


   

771-50-6

InChI=1\C9H7NO2\c11-9(12)7-5-10-8-4-2-1-3-6(7)8\h1-5,10H,(H,11,12

C9H7NO2 (161.0477)


Indole-3-carboxylic acid is a normal urinary indolic tryptophan metabolite and has been found elevated in patients with liver diseases[1][2]. Indole-3-carboxylic acid is a normal urinary indolic tryptophan metabolite and has been found elevated in patients with liver diseases[1][2].

   

LS-2049

Isopropenylbenzene [UN2303] [Flammable liquid]

C9H10 (118.0782)


   

Flavonoid

4H-1-Benzopyran-4-one, 5,6,7-trihydroxy-2-(4-hydroxyphenyl)-

C15H10O6 (286.0477)


Scutellarein is a natural flavonoid compound with anti-inflammatory effects. Scutellarein is a natural flavonoid compound with anti-inflammatory effects.

   

Obepin

InChI=1\C8H8O2\c1-10-8-4-2-7(6-9)3-5-8\h2-6H,1H

C8H8O2 (136.0524)


4-Methoxybenzaldehyde is a naturally occurring fragrant phenolic compound. 4-Methoxybenzaldehyde has been found in many plant species including horseradish, anise, star anise. 4-Methoxybenzaldehyde is a possible neurotoxicant and it has shown effects that include mortality, attractancy, and interference with host seeking [1]. 4-Methoxybenzaldehyde is a naturally occurring fragrant phenolic compound. 4-Methoxybenzaldehyde has been found in many plant species including horseradish, anise, star anise. 4-Methoxybenzaldehyde is a possible neurotoxicant and it has shown effects that include mortality, attractancy, and interference with host seeking [1].

   

Scabide

InChI=1\C14H12O2\c15-14(13-9-5-2-6-10-13)16-11-12-7-3-1-4-8-12\h1-10H,11H

C14H12O2 (212.0837)


P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03A - Ectoparasiticides, incl. scabicides C254 - Anti-Infective Agent > C276 - Antiparasitic Agent D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals Benzyl benzoate (Benzoic acid benzyl ester) is a fragrance ingredient in cosmetic products. Benzyl benzoate can be used for the research of Scabies and Demodex-associated inflammatory skin conditions[1][2][3]. Benzyl benzoate (Phenylmethyl benzoate) is an orally active anti-scabies agent, acaricide (EC50= 0.06 g/m2) and fungicide. Benzyl benzoate is an angiotensin II (Ang II) inhibitor with antihypertensive effects. Benzyl benzoate can be used in perfumes, pharmaceuticals and the food industry[1][2][3][4][5]. Benzyl benzoate (Benzoic acid benzyl ester) is a fragrance ingredient in cosmetic products. Benzyl benzoate can be used for the research of Scabies and Demodex-associated inflammatory skin conditions[1][2][3].

   

HYKOP

InChI=1\C9H10O4\c10-7-3-1-6(5-8(7)11)2-4-9(12)13\h1,3,5,10-11H,2,4H2,(H,12,13

C9H10O4 (182.0579)


Dihydrocaffeic acid is a microbial metabolite of flavonoids, reduces phosphorylation of MAPK p38 and prevent UVB-induced skin damage. Antioxidant potential and anti-inflammatory activity[1]. Dihydrocaffeic acid is a microbial metabolite of flavonoids, reduces phosphorylation of MAPK p38 and prevent UVB-induced skin damage. Antioxidant potential and anti-inflammatory activity[1].

   

Prenal

InChI=1\C5H8O\c1-5(2)3-4-6\h3-4H,1-2H

C5H8O (84.0575)


   

AIDS-071717

4H-1-Benzopyran-4-one, 5-hydroxy-7-methoxy-2-(4-methoxyphenyl)- (9CI)

C17H14O5 (298.0841)


The compound 7,4'-Di-O-methylapigenin may be partly responsible for the reported antifungal activity of C. zeyheri, and may serve as a potential source of lead compounds that can be developed as antifungal phytomedicines.And it also showed inhibition of the drug efflux pumps (with IC50 = 51.64 μg/ml). IC50:51.64 μg/ml(Candida albicans drug efflux pumps)[2] In vitro: The isolated 7,4'-Di-O-methylapigenin was further investigated for its inhibitory activity on ABC drug efflux pumps in C. albicans by monitoring an increase in ciprofloxacin, assessing the level of its accumulation, in response to reserpine. There was a higher accumulation of ciprofloxacin in Candida cells in the presence of 7,4'-Di-O-methylapigenin than with reserpine. The compound 7,4'-Di-O-methylapigenine demonstrated the activity in a dose-dependent manner with IC50 value of 51.64 μg/ml. These results support those obtained from synergism assays where by the underlying synergistic antifungal mechanisms could be due to blockage of ABC efflux pumps and increasing the susceptibility of Candida to miconazole.[2] In vivo: In searching for natural products as potential anti-inflammatory agents, 7,4'-Di-O-methylapigenin wasn't evaluated in vivo for its ability to inhibit acute inflammation.[1] The compound 7,4'-Di-O-methylapigenin may be partly responsible for the reported antifungal activity of C. zeyheri, and may serve as a potential source of lead compounds that can be developed as antifungal phytomedicines.And it also showed inhibition of the drug efflux pumps (with IC50 = 51.64 μg/ml). IC50:51.64 μg/ml(Candida albicans drug efflux pumps)[2] In vitro: The isolated 7,4'-Di-O-methylapigenin was further investigated for its inhibitory activity on ABC drug efflux pumps in C. albicans by monitoring an increase in ciprofloxacin, assessing the level of its accumulation, in response to reserpine. There was a higher accumulation of ciprofloxacin in Candida cells in the presence of 7,4'-Di-O-methylapigenin than with reserpine. The compound 7,4'-Di-O-methylapigenine demonstrated the activity in a dose-dependent manner with IC50 value of 51.64 μg/ml. These results support those obtained from synergism assays where by the underlying synergistic antifungal mechanisms could be due to blockage of ABC efflux pumps and increasing the susceptibility of Candida to miconazole.[2] In vivo: In searching for natural products as potential anti-inflammatory agents, 7,4'-Di-O-methylapigenin wasn't evaluated in vivo for its ability to inhibit acute inflammation.[1]

   

Hentriacontan

N-Hentriacontane

C31H64 (436.5008)


   

Antak

InChI=1\C10H22O\c1-2-3-4-5-6-7-8-9-10-11\h11H,2-10H2,1H

C10H22O (158.1671)


   

2196-14-7

4H-1-Benzopyran-4-one, 7-hydroxy-2-(4-hydroxyphenyl)-

C15H10O4 (254.0579)


7,4'-Dihydroxyflavone (7,4'-DHF) is a flavonoid isolated from Glycyrrhiza uralensis, the eotaxin/CCL11 inhibitor, has the ability to consistently suppress eotaxin production and prevent dexamethasone (Dex)‐paradoxical adverse effects on eotaxin production[1]. 7,4'-Dihydroxyflavone (7,4'-DHF) inhibits MUC5AC gene expression, mucus production and secretion via regulation of NF-κB, STAT6 and HDAC2. 7,4'-Dihydroxyflavone (7,4'-DHF) decreases phorbol 12-myristate 13-acetate (PMA) stimulated NCI-H292 human airway epithelial cell MUC5AC gene expression and mucus production with IC50 value of 1.4 μM[1]. 7,4'-Dihydroxyflavone (7,4'-DHF) is a flavonoid isolated from Glycyrrhiza uralensis, the eotaxin/CCL11 inhibitor, has the ability to consistently suppress eotaxin production and prevent dexamethasone (Dex)‐paradoxical adverse effects on eotaxin production[1]. 7,4'-Dihydroxyflavone (7,4'-DHF) inhibits MUC5AC gene expression, mucus production and secretion via regulation of NF-κB, STAT6 and HDAC2. 7,4'-Dihydroxyflavone (7,4'-DHF) decreases phorbol 12-myristate 13-acetate (PMA) stimulated NCI-H292 human airway epithelial cell MUC5AC gene expression and mucus production with IC50 value of 1.4 μM[1].

   

Albafuran A

4-[(2E)-3,7-dimethylocta-2,6-dienyl]-5-(6-hydroxy-1-benzofuran-2-yl)benzene-1,3-diol

C24H26O4 (378.1831)


A member of the class of 1-benzofurans that is 1-benzofuran substituted by a hydroxy group at position 6 and a 2-[(2E)-3,7-dimethylocta-2,6-dien-1-yl]-3,5-dihydroxyphenyl group at position 2.

   

LS-775

InChI=1\C8H9NO2\c1-11-8(10)6-4-2-3-5-7(6)9\h2-5H,9H2,1H

C8H9NO2 (151.0633)


   

Acetol

4-01-00-03977 (Beilstein Handbook Reference)

C3H6O2 (74.0368)


A propanone that is acetone in which one of the methyl hydrogens is replaced by a hydroxy group. Hydroxyacetone is an endogenous metabolite. Hydroxyacetone is an endogenous metabolite.

   

Marmesine

7H-Furo[3,2g][1]-benzopyran-7-one, (-2,3-dihydro-2-(1-hydroxy-1-hydroxymethylethyl)-, (R)

C14H14O4 (246.0892)


Nodakenetin, isolated from Angelica decursiva, possesses antioxidant anti-inflammatory activities. Nodakenetin has the potential to be an antiarthritic and nerve tonic[1][2]. Nodakenetin, isolated from Angelica decursiva, possesses antioxidant anti-inflammatory activities. Nodakenetin has the potential to be an antiarthritic and nerve tonic[1][2].

   

CHEBI:299

6-Octenal, 3,7-dimethyl-, (theta)-

C10H18O (154.1358)


(R)-(+)-Citronellal, isolated from citrus, lavender and eucalyptus oils, is a monoterpenoid and main component of citronellal oil with a distinct lemon scent. A flavouring agent. Used for insect repellent and antifungal properties[1][2]. (R)-(+)-Citronellal, isolated from citrus, lavender and eucalyptus oils, is a monoterpenoid and main component of citronellal oil with a distinct lemon scent. A flavouring agent. Used for insect repellent and antifungal properties[1][2].

   

AI3-05924

4-14-00-01015 (Beilstein Handbook Reference)

C8H9NO2 (151.0633)


2-(Methylamino)benzoic acid is the main metabolite of methyl-N-methylanthranilates (MMA) (HY-76705) and is the compound in which the ester group is converted. MMA can be isolated from citrus fruits and has potential analgesic activity. 2-(Methylamino)benzoic acid was used to detect the metabolic levels of MMA in rat liver[1].

   

multiflorin

3-[[(2S,3R,4S,5R,6S)-3,4-dihydroxy-6-methyl-5-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-2-tetrahydropyranyl]oxy]-5,7-dihydroxy-2-(4-hydroxyphenyl)-4-chromenone

C27H30O15 (594.1585)


   

Byakangelicin

7H-Furo(3,2-g)(1)benzopyran-7-one, 9-(2,3-dihydroxy-3-methylbutoxy)-4-methoxy-, (R)-

C17H18O7 (334.1052)


Byakangelicin is a member of psoralens. Byakangelicin is a natural product found in Murraya koenigii, Triphasia trifolia, and other organisms with data available. D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins (Rac)-Byakangelicin is a racemate of Byakangelicin mainly isolated from the genus Angelica. Byakangelicin is an aldose-reductase inhibitor with an IC50 value of 6.2 μM[1]. (Rac)-Byakangelicin is a racemate of Byakangelicin mainly isolated from the genus Angelica. Byakangelicin is an aldose-reductase inhibitor with an IC50 value of 6.2 μM[1]. Byakangelicin, one of the active compounds found in the roots of Angelica gigas, can serve as a modulator to improve brain accumulation of diverse active compounds (Umb, Cur, and Dox) and enhance therapeutic effects[1]. Byakangelicin is likely to increase the expression of all PXR target genes (such as MDR1) and induce a wide range of agent-agent interactions. Byakangelicin can inhibit the effects of sex hormones, it may increase the catabolism of endogenous hormones[2]. Byakangelicin, one of the active compounds found in the roots of Angelica gigas, can serve as a modulator to improve brain accumulation of diverse active compounds (Umb, Cur, and Dox) and enhance therapeutic effects[1]. Byakangelicin is likely to increase the expression of all PXR target genes (such as MDR1) and induce a wide range of agent-agent interactions. Byakangelicin can inhibit the effects of sex hormones, it may increase the catabolism of endogenous hormones[2].

   

NaPst

Benzene, (1-methylethyl)-, oxidized, sulfurized by-products

C9H12 (120.0939)


   

303-07-1

InChI=1\C7H6O4\c8-4-2-1-3-5(9)6(4)7(10)11\h1-3,8-9H,(H,10,11

C7H6O4 (154.0266)


2,6-Dihydroxybenzoic acid is a secondary metabolite of salicylic acid which has been hydrolyzed by liver enzymes during phase I metabolism. 2,6-Dihydroxybenzoic acid is a secondary metabolite of salicylic acid which has been hydrolyzed by liver enzymes during phase I metabolism.

   

Zymostrol

(3S,5S,10S,13R,14R,17R)-10,13-dimethyl-17-[(2R)-6-methylhept-5-en-2-yl]-2,3,4,5,6,7,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C27H44O (384.3392)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

cyclohexenone

4-07-00-00124 (Beilstein Handbook Reference)

C6H8O (96.0575)


   

CPD-111

InChI=1\C7H8O2\c1-5-3-2-4-6(8)7(5)9\h2-4,8-9H,1H

C7H8O2 (124.0524)


3-Methylcatechol is a building block in the chemical synthesis produced by Pseudomonas putida MC2[1]. 3-Methylcatechol is a building block in the chemical synthesis produced by Pseudomonas putida MC2[1].

   

AI3-02938

InChI=1\C9H10O\c1-8(10)7-9-5-3-2-4-6-9\h2-6H,7H2,1H

C9H10O (134.0732)


   

CH3COSH

Thioacetic acid [UN2436] [Flammable liquid]

C2H4OS (75.9983)


   

E160E

2,4,6,8,10,12,14,16-Heptadecaoctaenal, 2,6,11,15-tetramethyl-17-(2,6,6-trimethyl-1-cyclohexen-1-yl)-, (2E,4E,6E,8E,10E,12E,14E,16E)-

C30H40O (416.3079)


D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids β-Apo-8'-carotenal (Apocarotenal), a provitamin A carotenoid, is an inducer of CYPlA1 and CYPlA2 in rat. β-Apo-8'-carotenal is present in many fruits and vegetables[1]. β-Apo-8'-carotenal (Apocarotenal), a provitamin A carotenoid, is an inducer of CYPlA1 and CYPlA2 in rat. β-Apo-8'-carotenal is present in many fruits and vegetables[1].

   

Valencene

NAPHTHALENE, 1,2,3,5,6,7,8,8A-OCTAHYDRO-1,8A-DIMETHYL-7-(1-METHYLETHENYL)-, (1R-(1.ALPHA.,7.BETA.,8A.ALPHA.))-

C15H24 (204.1878)


(+)-valencene is a carbobicyclic compound and sesquiterpene that is 1,2,3,4,4a,5,6,7-octahydronaphthalene which is substituted a prop-1-en-2-yl group at position 3 and by methyl groups at positions 4a and 5 (the 3R,4aS,5R- diastereoisomer). It is a sesquiterpene, a carbobicyclic compound and a polycyclic olefin. Valencene is a natural product found in Xylopia sericea, Helichrysum odoratissimum, and other organisms with data available. Constituent of orange oil. Valencene is found in many foods, some of which are citrus, common oregano, rosemary, and sweet orange. Valencene is a sesquiterpene isolated from Cyperus rotundus, possesses antiallergic, antimelanogenesis, anti-infammatory, and antioxidant activitivies. Valencene inhibits the exaggerated expression of Th2 chemokines and proinflammatory chemokines through blockade of the NF-κB pathway. Valencene is used to flavor foods and drinks[1][2][3].

   

(+)-Zwittermicin A

(+)-Zwittermicin A

C13H28N6O8 (396.1969)


   

Diacetyl monoxime

3-(hydroxyimino)butan-2-one

C4H7NO2 (101.0477)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002801 - Cholinesterase Reactivators D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D002863 - Chromogenic Compounds D004793 - Enzyme Reactivators D004791 - Enzyme Inhibitors D004396 - Coloring Agents

   

Homotaurine

Acamprosate impurity A, European Pharmacopoeia (EP) Reference Standard

C3H9NO3S (139.0303)


3-aminopropanesulfonic acid is an amino sulfonic acid that is the 3-amino derivative of propanesulfonic acid. It has a role as an algal metabolite, a nootropic agent, an anticonvulsant, a GABA agonist and an anti-inflammatory agent. It is a tautomer of a 3-aminopropanesulfonic acid zwitterion. D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018755 - GABA Agonists An amino sulfonic acid that is the 3-amino derivative of propanesulfonic acid. D002491 - Central Nervous System Agents > D000927 - Anticonvulsants C26170 - Protective Agent > C1509 - Neuroprotective Agent Tramiprosate (Homotaurine), an orally active and brain-penetrant natural amino acid found in various species of red marine algae. Tramiprosate binds to soluble Aβ and maintains Aβ in a non-fibrillar form. Tramiprosate is also a GABA analog and possess neuroprotection, anticonvulsion and antihypertension effects[1][2][3].

   

Didrovaltrat

Butanoic acid, 3-methyl-, 6-(acetyloxy)-4a,5,6,7a-tetrahydro-4-((3-methyl-1-oxobutoxy)methyl)spiro(cyclopenta(c)pyran-7(1H),2-oxiran)-1-yl ester, (1S-(1-alpha,4a-alpha,6-alpha,7-beta,7a-alpha))-

C22H32O8 (424.2097)


Didrovaltratum is an iridoid monoterpenoid. Didrovaltrate is a natural product found in Valeriana pulchella, Fedia cornucopiae, and other organisms with data available. See also: Viburnum opulus bark (has part). C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic

   

Apocarotenal

2,4,6,8,10,12,14,16-Heptadecaoctaenal, 2,6,11,15-tetramethyl-17-(2,6,6-trimethyl-1-cyclohexen-1-yl)-, (2E,4E,6E,8E,10E,12E,14E,16E)-

C30H40O (416.3079)


8-apo-beta,psi-caroten-8-al is an apo carotenoid triterpenoid compound arising from oxidative degradation of the beta,beta-carotene skeleton at the 8-position. It is an enal and an apo carotenoid triterpenoid. Apocarotenal is a natural product found in Dracaena draco, Palisota barteri, and other organisms with data available. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids β-Apo-8'-carotenal (Apocarotenal), a provitamin A carotenoid, is an inducer of CYPlA1 and CYPlA2 in rat. β-Apo-8'-carotenal is present in many fruits and vegetables[1]. β-Apo-8'-carotenal (Apocarotenal), a provitamin A carotenoid, is an inducer of CYPlA1 and CYPlA2 in rat. β-Apo-8'-carotenal is present in many fruits and vegetables[1].

   

cellotetrose

beta-D-glucopyranosyl-(1->4)-beta-D-glucoopyranosyl-(1->4)-beta-D-glucoopyranosyl-(1->4)-D-glucoopyranose

C24H42O21 (666.2218)


Cellotetraose is a glucotetrose comprised of four D-glucose residues connected by beta(1->4) linkages.

   

METHYL ANTHRANILATE

Methyl 2-aminobenzoate

C8H9NO2 (151.0633)


A benzoate ester that is the methyl ester of anthranilic acid.

   

(+)-Camphene

(+)-Camphene

C10H16 (136.1252)


A monoterpene with a bicyclic skeleton that is bicyclo[2.2.1]heptane substituted by geminal methyl groups at position 2 and a methylidene group at position 3. It is a widespread natural product found in many essential oils.

   

METAXALONE

METAXALONE

C12H15NO3 (221.1052)


D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents C78281 - Agent Affecting Musculoskeletal System > C29696 - Muscle Relaxant D000890 - Anti-Infective Agents > D023303 - Oxazolidinones

   

CYCLOHEXANECARBOXYLIC ACID

CYCLOHEXANECARBOXYLIC ACID

C7H12O2 (128.0837)


Cyclohexanecarboxylic acid is a Valproate structural analogue with anticonvulsant action[1].

   

3-Methyl-2-butenal

3-Methyl-2-butenal

C5H8O (84.0575)


   

Crotonaldehyde

Crotonaldehyde

C4H6O (70.0419)


   

trihexyphenidyl

Trihexylphenedyl

C20H31NO (301.2406)


D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents N - Nervous system > N04 - Anti-parkinson drugs > N04A - Anticholinergic agents > N04AA - Tertiary amines C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists C78272 - Agent Affecting Nervous System > C38149 - Antiparkinsonian Agent

   

N-Nitrosopyrrolidine

N-Nitrosopyrrolidine

C4H8N2O (100.0637)


   

Eprosartan

Eprosartan

C23H24N2O4S (424.1457)


C - Cardiovascular system > C09 - Agents acting on the renin-angiotensin system > C09C - Angiotensin ii receptor blockers (arbs), plain > C09CA - Angiotensin ii receptor blockers (arbs), plain C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C66930 - Angiotensin II Receptor Antagonist D057911 - Angiotensin Receptor Antagonists > D057912 - Angiotensin II Type 2 Receptor Blockers COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Eprosartan (SKF-108566J free base) is a selective, competitive, nonpeptid and orally active angiotensin II receptor antagonist, used as an antihypertensive. Eprosartan binds angiotensin II receptor with IC50s of 9.2 nM and 3.9 nM in rat and human adrenal cortical membranes, respectively [1].

   

Acethydrazide

Acethydrazide

C2H6N2O (74.048)


D009676 - Noxae > D002273 - Carcinogens

   

promazine

promazine

C17H20N2S (284.1347)


N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AA - Phenothiazines with aliphatic side-chain D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent > C740 - Phenothiazine D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent D005765 - Gastrointestinal Agents > D000932 - Antiemetics

   

FLURIDONE

FLURIDONE

C19H14F3NO (329.1027)


D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

mesotartaric acid

mesotartaric acid

C4H6O6 (150.0164)


DL-Tartaric acid is a non-racemic mixture of L- and D-tartaric acids with antioxidant activities[1][2].

   

lomefloxacin

lomefloxacin

C17H19F2N3O3 (351.1394)


A fluoroquinolone antibiotic, used (generally as the hydrochloride salt) to treat bacterial infections including bronchitis and urinary tract infections. It is also used to prevent urinary tract infections prior to surgery. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials > J01MA - Fluoroquinolones D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives > S01AE - Fluoroquinolones D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic D004791 - Enzyme Inhibitors

   

Octylamine

Octylamine

C8H19N (129.1517)


   

dyclonine

dyclonine

C18H27NO2 (289.2042)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics R - Respiratory system > R02 - Throat preparations > R02A - Throat preparations > R02AD - Anesthetics, local D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents N - Nervous system > N01 - Anesthetics > N01B - Anesthetics, local C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent

   

thiamylal

thiamylal

C12H18N2O2S (254.1089)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C67084 - Barbiturate D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent

   

isoetarine

isoetharine

C13H21NO3 (239.1521)


R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03C - Adrenergics for systemic use > R03CC - Selective beta-2-adrenoreceptor agonists R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03A - Adrenergics, inhalants > R03AC - Selective beta-2-adrenoreceptor agonists D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents

   

Difenidol

DIPHENIDOL

C21H27NO (309.2093)


D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent D005765 - Gastrointestinal Agents > D000932 - Antiemetics D002491 - Central Nervous System Agents

   

Clorazepic acid

Clorazepic acid

C16H11ClN2O3 (314.0458)


D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C1012 - Benzodiazepine D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C28197 - Antianxiety Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants

   

Levacetylmethadol

Levomethadyl Acetate

C23H31NO2 (353.2355)


N - Nervous system > N07 - Other nervous system drugs > N07B - Drugs used in addictive disorders > N07BC - Drugs used in opioid dependence D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D000700 - Analgesics

   

L-Threonic acid

L-Threonic acid

C4H8O5 (136.0372)


The L-enantiomer of threonic acid.

   

11beta-Hydroxyandrostenedione

11-Beta-hydroxyandrostenedione

C19H26O3 (302.1882)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones 11-Beta-hydroxyandrostenedione (4-Androsten-11β-ol-3,17-dione) is a steroid mainly found in the the adrenal origin (11β-hydroxylase is present in adrenal tissue, but absent in ovarian tissue). 11-Beta-hydroxyandrostenedione is a 11β-hydroxysteroid dehydrogenase (11βHSD) isozymes inhibitor. As 4-androstenedione increases, measuring plasma 11-Beta-hydroxyandrostenedione can distinguish the adrenal or ovarian origin of hyperandrogenism[1][2].

   

Isonicotinamide

Isonicotinamide

C6H6N2O (122.048)


   

Glutarimide

Glutarimide

C5H7NO2 (113.0477)


D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors

   

Tiludronic Acid

Tiludronic Acid

C7H9ClO6P2S (317.9284)


M - Musculo-skeletal system > M05 - Drugs for treatment of bone diseases > M05B - Drugs affecting bone structure and mineralization > M05BA - Bisphosphonates C78281 - Agent Affecting Musculoskeletal System > C67439 - Bone Resorption Inhibitor D050071 - Bone Density Conservation Agents > D004164 - Diphosphonates

   

D-Alanyl-D-alanine

D-Alanyl-D-alanine

C6H12N2O3 (160.0848)


A dipeptide comprising D-alanine with a D-alanyl residue attached to the alpha-nitrogen. It is a component of bacterial peptidoglycan and forms an important target for development of antibacterial drugs . D-Ala-D-Ala constitutes the terminus of the peptide part of the peptidoglycan monomer unit and is involved in the transpeptidation reaction as the substrate. D-Ala-D-Ala is catalyzed by D-Alanine-D-Alanine ligase. D-Ala-D-Ala is a bacterial endogenous metabolite[1][2].

   

Calanolide A

Calanolide A

C22H26O5 (370.178)


D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D044966 - Anti-Retroviral Agents

   

Methyl β-D-galactopyranoside

Methyl beta-D-galactopyranoside

C7H14O6 (194.079)


Methyl β-D-Galactopyranoside is an endogenous metabolite.

   

Cholest-5-ene

Cholest-5-ene

C27H46 (370.3599)


   

2-HYDROXYETHYL PHOSPHONIC ACID

(2-Hydroxyethyl)phosphonic acid

C2H7O4P (126.0082)


   

Orotidine-5-monophosphate

Orotidine-5-monophosphate

C10H13N2O11P (368.0257)


   

L-Homophenylalanine

L-Homophenylalanine

C10H13NO2 (179.0946)


A non-proteinogenic L-alpha-amino acid that is an analogue of L-phenylalanine having a 2-phenylethyl rather than a benzyl side-chain.

   

2-Butynedioic acid

Acetylenedicarboxylic acid

C4H2O4 (113.9953)


   

s-Hexylglutathione

s-Hexylglutathione

C16H29N3O6S (391.1777)


D004791 - Enzyme Inhibitors

   

2-(4-hydroxyphenyl)propanoic acid

2-(4-hydroxyphenyl)propanoic acid

C9H10O3 (166.063)


   

Hexanoyl-CoA

Hexanoyl-coenzyme A

C27H46N7O17P3S (865.1884)


A medium-chain fatty acyl-CoA having hexanoyl as the S-acyl group.

   

Prostaglandin F3α

Prostaglandin F3alpha

C20H32O5 (352.225)


   

3-Dehydroretinal

3-Dehydroretinal

C20H26O (282.1984)


D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

2,3-dihydroxy-3-methylbutanoic acid

2,3-dihydroxy-3-methylbutanoic acid

C5H10O4 (134.0579)


   

5-xanthylic acid

Xanthosine-5-monophosphate

C10H13N4O9P (364.042)


A purine ribonucleoside 5-monophosphate having xanthine as the nucleobase. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Adenosine-3-5-diphosphate

Adenosine-3-5-diphosphate

C10H15N5O10P2 (427.0294)


   

Inositol 1,3,4-trisphosphate

1D-Myo-inositol 1,3,4-trisphosphate

C6H15O15P3 (419.9624)


   

(METHYLTHIO)ACETICACID

(Methylthio)acetic acid

C3H6O2S (106.0088)


A sulfur-containing carboxylic consisting of thioglycolic acid carrying an S-methyl substituent.

   

Boc-Leu-OH.H2O

N-(tert-Butoxycarbonyl)-L-leucine

C11H21NO4 (231.1471)


   

sym-homospermidine

sym-homospermidine

C8H21N3 (159.1735)


   

2-(2-Aminoethyl)thiazole

2-Thiazol-2-yl-ethylamine

C5H8N2S (128.0408)


D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D017442 - Histamine Agonists

   

e-64

e-64

C15H27N5O5 (357.2012)


D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D015853 - Cysteine Proteinase Inhibitors D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents

   

Isochorismic acid

Isochorismic acid

C10H10O6 (226.0477)


   

1-sulfinylpropane

Propanethial S-oxide, (1Z)-

C3H6OS (90.0139)


   

12-Oxo-ltb4

12-Oxo-ltb4

C20H30O4 (334.2144)


   

imetit

imetit

C6H10N4S (170.0626)


D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D017442 - Histamine Agonists

   

L-Homomethionine

L-Homomethionine

C6H13NO2S (163.0667)


   

Guanosine pentaphosphate

Guanosine pentaphosphate

C10H18N5O20P5 (682.9233)


   

2-Methylhistamine

2-Methylhistamine

C6H11N3 (125.0953)


An aralkylamino compound that is histamine bearing a methyl substituent at the 2 position on the ring.

   

L-Serine O-sulfate

L-Serine O-sulfate

C3H7NO6S (184.9994)


A non-proteinogenic L-alpha-amino acid that is the O-sulfo derivative of L-serine.

   

Cinnamoyl-CoA

(E)-cinnamoyl-CoA

C30H42N7O17P3S (897.1571)


An acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of cinnamic acid.

   

Histidylleucine

Histidylleucine

C12H20N4O3 (268.1535)


   

alpha-Cyclocostunolide

alpha-Cyclocostunolide

C15H20O2 (232.1463)


   

Uralsaponin A

Uralsaponin A

C42H62O16 (822.4038)


Glycyrrhizic acid is a triterpenoid saponinl, acting as a direct HMGB1 antagonist, with anti-tumor, anti-diabetic activities. Glycyrrhizic acid is a triterpenoid saponinl, acting as a direct HMGB1 antagonist, with anti-tumor, anti-diabetic activities.

   

beta-cyclocostunolide

beta-cyclocostunolide

C15H20O2 (232.1463)


   

2-(alpha-Hydroxyethyl)thiamine diphosphate

2-(alpha-Hydroxyethyl)thiamine diphosphate

C14H23N4O8P2S+ (469.0712)


   

Triacetate

Triacetate

C6H8O4 (144.0423)


   

(+)-Lysergic acid

6-Methyl-9,10-didehydroergoline-8-carboxylic acid

C16H16N2O2 (268.1212)


   

D-Ribitol-5-phosphate

D-Ribitol-5-phosphate

C5H13O8P (232.0348)


   

Phaselic acid

Phaselic acid

C13H12O8 (296.0532)


   
   

(2S,4R,5S)-tetrahydropyran-2,4,5-triol

(2S,4R,5S)-tetrahydropyran-2,4,5-triol

C5H10O4 (134.0579)


   

dichlorobenzene

1,2-DICHLOROBENZENE

C6H4Cl2 (145.969)


A dichlorobenzene carrying chloro substituents at positions 1 and 2. D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

Grepafloxacin

Grepafloxacin

C19H22FN3O3 (359.1645)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials > J01MA - Fluoroquinolones D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic D004791 - Enzyme Inhibitors ATC code: J01MA11

   

Ciclacillin

4-Thia-1-azabicyclo[3.2.0]heptane-2-carboxylicacid, 6-[[(1-aminocyclohexyl)carbonyl]amino]-3,3-dimethyl-7-oxo-, (2S,5R,6R)-

C15H23N3O4S (341.1409)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic Same as: D01334

   

METHYL BETA-D-GLUCOPYRANOSIDE

METHYL β-D-GLUCOPYRANOSIDE HEMIHYDRATE

C7H14O6 (194.079)


   

Ethylene dibromide

Ethylene dibromide

C2H4Br2 (185.868)


A bromoalkane that is ethane carrying bromo substituents at positions 1 and 2. It is produced by marine algae.

   

Isopropylbenzene

Isopropylbenzene

C9H12 (120.0939)


   

PIPERONAL

PIPERONAL

C8H6O3 (150.0317)


An arenecarbaldehyde that is 1,3-benzodioxole substituted by a formyl substituent at position 5. It has been isolated from Piper nigrum.

   

1,3-DIMETHYLUREA

1,3-DIMETHYLUREA

C3H8N2O (88.0637)


   

1-Pyrroline

3,4-Dihydro-2H-pyrrole

C4H7N (69.0578)


   

2,4-Dinitrophenylhydrazine

2,4-Dinitrophenylhydrazine

C6H6N4O4 (198.0389)


   

CoA 24:0

C24:0-CoA;C24:0-coenzyme A;Lignoceroyl-coa;Lignoceroyl-coenzyme A;Tetracosanoyl-CoA;tetracosanoyl-coenzyme A

C45H82N7O17P3S (1117.4701)


A very long-chain fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of tetracosanoic (lignoceric) acid. It is an intermediate in the biosynthesis of unsaturated fatty acids.

   

8R-HpODE

(9Z,12Z)-(8R)-8-Hydroperoxyoctadeca-9,12-dienoic acid

C18H32O4 (312.23)


The 8(R)-isomer of HPODE.

   

N-METHYLFORMAMIDE

N-METHYLFORMAMIDE

C2H5NO (59.0371)


C274 - Antineoplastic Agent > C2122 - Cell Differentiating Agent > C1934 - Differentiation Inducer C274 - Antineoplastic Agent > C798 - Radiosensitizing Agent D011838 - Radiation-Sensitizing Agents D000970 - Antineoplastic Agents

   

2-Phenylpropene

1-Methyl-1-phenylethylene

C9H10 (118.0782)


   

Methylenebis(chloroaniline)

4,4-methylene-bis-(2-chloroaniline)

C13H12Cl2N2 (266.0377)


   

1,2-Benzpyrene

1,2-Benzpyrene

C20H12 (252.0939)


   

Neozone

2-Phenylaminonaphthalene

C16H13N (219.1048)


   

thiodiacetic acid

Thiodiglycolic acid

C4H6O4S (149.9987)


   

2,6-DIBROMOPHENOL

2,6-DIBROMOPHENOL

C6H4Br2O (249.8629)


A dibromophenol that is phenol in which both of the hydrogens that are ortho to the phenolic hydroxy group have been replaced by bromines. 2,6-Dibromophenol is an endogenous metabolite.

   

Silux

2,2-Bis[4-(2-hydroxy-3-methacryloxypropoxy)phenyl]propane

C29H36O8 (512.241)


D001697 - Biomedical and Dental Materials > D003764 - Dental Materials

   

Endoxifen

4-Hydroxy-N-desmethyltamoxifen

C25H27NO2 (373.2042)


   

cedrene

Cedarwood oil terpenes fraction

C15H24 (204.1878)


(-)-Cedrene (α-cedrene) is a sesquiterpene constituent of cedarwood oils, with anti-leukemic, antimicrobial and anti-obesity activities[1]. (-)-Cedrene (α-cedrene) is a sesquiterpene constituent of cedarwood oils, with anti-leukemic, antimicrobial and anti-obesity activities[1]. (-)-Cedrene (α-cedrene) is a sesquiterpene constituent of cedarwood oils, with anti-leukemic, antimicrobial and anti-obesity activities[1]. (-)-Cedrene (α-cedrene) is a sesquiterpene constituent of cedarwood oils, with anti-leukemic, antimicrobial and anti-obesity activities[1].

   

(R)-2-(8,8-dimethyl-2,3,4,8-tetrahydropyrano[2,3-f]chromen-3-yl)-5-methoxyphenol

(R)-2-(8,8-dimethyl-2,3,4,8-tetrahydropyrano[2,3-f]chromen-3-yl)-5-methoxyphenol

C21H22O4 (338.1518)


   

11-Oxo etiocholanolone

3alpha-hydroxy-5beta-androstane-11,17-dione

C19H28O3 (304.2038)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

15H-11,12-EETA

(5Z,8Z,13E)-(15S)-11,12-Epoxy-15-hydroxyeicosa-5,8,13-trienoic acid

C20H32O4 (336.23)


   

11,14,15-THETA

(5Z,8Z,12E)-11,14,15-Trihydroxyeicosa-5,8,12-trienoic acid

C20H34O5 (354.2406)


   

alpha-Hydroxytamoxifen

alpha-Hydroxytamoxifen

C26H29NO2 (387.2198)


   
   

N-Acetyl-9-O-acetylneuraminic acid

N-Acetyl-9-O-acetylneuraminic acid

C13H21NO10 (351.1165)


   

4,8-diamino-N-[1-amino-3-(carbamoylamino)-1-oxopropan-2-yl]-2,3,5,7,9-pentahydroxynonanamide

4,8-diamino-N-[1-amino-3-(carbamoylamino)-1-oxopropan-2-yl]-2,3,5,7,9-pentahydroxynonanamide

C13H28N6O8 (396.1969)


   

2-Hydroxy-6-oxo-2,4-heptadienoic acid

2-Hydroxy-6-oxo-2,4-heptadienoic acid

C7H8O4 (156.0423)


An alpha,beta-unsaturated monocarboxylic acid that is 2,4-heptadienoic acid substituted by hydroxy and oxo groups at positions 2 and 6 respectively.