Prostaglandin F3a (BioDeep_00000006167)

 

Secondary id: BioDeep_00000629543, BioDeep_00001868787

human metabolite Endogenous


代谢物信息卡片


(5Z)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S,5Z)-3-hydroxyocta-1,5-dien-1-yl]cyclopentyl]hept-5-enoic acid

化学式: C20H32O5 (352.225)
中文名称: 前列腺素F2Alpha
谱图信息: 最多检出来源 Viridiplantae(plant) 9.7%

分子结构信息

SMILES: CCC=CCC(C=CC1C(CC(C1CC=CCCCC(=O)O)O)O)O
InChI: InChI=1S/C20H32O5/c1-2-3-6-9-15(21)12-13-17-16(18(22)14-19(17)23)10-7-4-5-8-11-20(24)25/h3-4,6-7,12-13,15-19,21-23H,2,5,8-11,14H2,1H3,(H,24,25)/b6-3-,7-4-,13-12+/t15-,16+,17+,18-,19+/m0/s1

描述信息

Prostaglandin F3alpha (PGF3a) is a prostanoid. Prostanoids is a term that collectively describes prostaglandins, prostacyclines and thromboxanes. Prostanoids are a subclass of the lipid mediator group known as eicosanoids. They derive from C-20 polyunsaturated fatty acids, mainly dihomo-gamma-linoleic (20:3n-6), arachidonic (20:4n-6), and eicosapentaenoic (20:5n-3) acids, through the action of cyclooxygenases-1 and -2 (COX-1 and COX-2). The reaction product of COX is the unstable endoperoxide prostaglandin H (PGH) that is further transformed into the individual prostanoids by a series of specific prostanoid synthases. Prostanoids are local-acting mediators formed and inactivated within the same or neighbouring cells prior to their release into circulation as inactive metabolites (15-keto- and 13,14-dihydroketo metabolites). Non-enzymatic peroxidation of arachidonic acid and other fatty acids in vivo can result in prostaglandin-like substances isomeric to the COX-derived prostaglandins that are termed isoprostanes. Prostanoids take part in many physiological and pathophysiological processes in practically every organ, tissue and cell, including the vascular, renal, gastrointestinal and reproductive systems. Their activities are mediated through prostanoid-specific receptors and intracellular signalling pathways, whilst their biosynthesis and action are blocked by nonsteroidal antiinflammatory drugs (NSAID). Isoprostanes are considered to be reliable markers of oxidant stress status and have been linked to inflammation, ischaemia-reperfusion, diabetes, cardiovascular disease, reproductive disorders and diabetes. (PMID: 16986207)Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways.
Prostaglandin F3alpha (PGF3a) is a prostanoid. Prostanoids is a term that collectively describes prostaglandins, prostacyclines and thromboxanes. Prostanoids are a subclass of the lipid mediator group known as eicosanoids. They derive from C-20 polyunsaturated fatty acids, mainly dihomo-gamma-linoleic (20:3n-6), arachidonic (20:4n-6), and eicosapentaenoic (20:5n-3) acids, through the action of cyclooxygenases-1 and -2 (COX-1 and COX-2). The reaction product of COX is the unstable endoperoxide prostaglandin H (PGH) that is further transformed into the individual prostanoids by a series of specific prostanoid synthases. Prostanoids are local-acting mediators formed and inactivated within the same or neighbouring cells prior to their release into circulation as inactive metabolites (15-keto- and 13,14-dihydroketo metabolites). Non-enzymatic peroxidation of arachidonic acid and other fatty acids in vivo can result in prostaglandin-like substances isomeric to the COX-derived prostaglandins that are termed isoprostanes. Prostanoids take part in many physiological and pathophysiological processes in practically every organ, tissue and cell, including the vascular, renal, gastrointestinal and reproductive systems. Their activities are mediated through prostanoid-specific receptors and intracellular signalling pathways, whilst their biosynthesis and action are blocked by nonsteroidal antiinflammatory drugs (NSAID). Isoprostanes are considered to be reliable markers of oxidant stress status and have been linked to inflammation, ischaemia-reperfusion, diabetes, cardiovascular disease, reproductive disorders and diabetes. (PMID: 16986207)

同义名列表

19 个代谢物同义名

(5Z)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S,5Z)-3-hydroxyocta-1,5-dien-1-yl]cyclopentyl]hept-5-enoic acid; (5Z,9alpha,11alpha,13E,15S,17Z)-9,11,15-Trihydroxy-prosta-5,13,17-trien-1-Oic acid; (5Z,9alpha,11alpha,13E,15S,17Z)-9,11,15-Trihydroxy-prosta-5,13,17-trien-1-Oate; (5Z,13E,15S,17Z)-9alpha,11alpha,15-Trihydroxyprosta-5,13,17-trien-1-Oic acid; (5Z,13E,15S,17Z)-9alpha,11alpha,15-Trihydroxyprosta-5,13,17-trien-1-Oate; 9α,11α,15S-trihydroxy-prosta-5Z,13E,17Z-trien-1-oic acid; 9S,11R,15S-trihydroxy-5Z,13E,17Z-prostatrienoic acid; 9S,11R,15S-Trihydroxy-5Z,13E,17Z-prostatrienoate; 8-iso Prostaglandin F3alpha; Prostaglandin F3α Prostaglandin F3 alpha; Prostaglandin F3alpha; prostaglandin F3 α; Prostaglandin F3a; Prostaglandin F3α; PGF3α PGF3alpha; PGF3Α; PGF3a



数据库引用编号

14 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 10 AHR, CD36, CYP1A1, KAT5, PLA2G12A, PLA2G4A, PPARG, PTGFR, PTGS1, PTGS2
Peripheral membrane protein 5 CYP1A1, CYP1B1, GORASP1, PTGS1, PTGS2
Endoplasmic reticulum membrane 6 CYP1A1, CYP1B1, PLA2G4A, PTGIS, PTGS1, PTGS2
Nucleus 5 AHR, KAT5, PLA2G4A, PPARG, PTGIS
cytosol 4 AHR, KAT5, PLA2G4A, PPARG
phagocytic vesicle 1 CD36
nucleoplasm 4 AHR, KAT5, OLR1, PPARG
RNA polymerase II transcription regulator complex 1 PPARG
Cell membrane 5 CD36, CYSLTR2, OLR1, PTGFR, TBXA2R
Lipid-anchor 1 OLR1
Cytoplasmic side 1 GORASP1
Multi-pass membrane protein 5 ABCC4, CD36, CYSLTR2, PTGFR, TBXA2R
Golgi apparatus membrane 2 GORASP1, PLA2G4A
cell surface 1 CD36
Golgi apparatus 5 ABCC4, CD36, GORASP1, PLA2G4A, PTGS1
Golgi membrane 2 GORASP1, PLA2G4A
mitochondrial inner membrane 2 CYP1A1, PLA2G4A
acrosomal vesicle 1 TBXA2R
plasma membrane 8 ABCC4, CD36, CYSLTR2, F2, MSR1, OLR1, PTGFR, TBXA2R
Membrane 5 ABCC4, CD36, CYP1B1, MSR1, OLR1
apical plasma membrane 2 ABCC4, CD36
basolateral plasma membrane 1 ABCC4
caveola 3 CD36, PTGIS, PTGS2
extracellular exosome 2 F2, PTGS1
endoplasmic reticulum 3 PLA2G4A, PTGIS, PTGS2
extracellular space 3 CD36, F2, PTGIS
perinuclear region of cytoplasm 2 KAT5, PPARG
mitochondrion 2 CYP1A1, CYP1B1
protein-containing complex 2 AHR, PTGS2
intracellular membrane-bounded organelle 7 CYP1A1, CYP1B1, KAT5, OLR1, PLA2G4A, PPARG, PTGS1
Microsome membrane 4 CYP1A1, CYP1B1, PTGS1, PTGS2
Secreted 3 F2, OLR1, PLA2G12A
extracellular region 4 F2, OLR1, PLA2G12A, PTGFR
Single-pass membrane protein 1 PTGIS
transcription regulator complex 2 AHR, KAT5
photoreceptor outer segment 1 PTGS1
external side of plasma membrane 1 CD36
low-density lipoprotein particle 1 MSR1
nucleolus 2 ABCC4, KAT5
Single-pass type II membrane protein 2 MSR1, OLR1
Apical cell membrane 2 ABCC4, CD36
Cytoplasm, perinuclear region 1 KAT5
Mitochondrion inner membrane 1 CYP1A1
Membrane raft 2 CD36, OLR1
cis-Golgi network 1 GORASP1
collagen trimer 2 CD36, MSR1
collagen-containing extracellular matrix 1 F2
nuclear speck 1 TBXA2R
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
receptor complex 3 CD36, OLR1, PPARG
neuron projection 2 PTGS1, PTGS2
chromatin 3 AHR, KAT5, PPARG
cell periphery 1 CD36
Chromosome 1 KAT5
brush border membrane 1 CD36
Nucleus, nucleolus 1 KAT5
blood microparticle 1 F2
NuA4 histone acetyltransferase complex 1 KAT5
Basolateral cell membrane 1 ABCC4
site of double-strand break 1 KAT5
Cytoplasm, cytoskeleton, spindle pole 1 KAT5
nuclear envelope 1 PLA2G4A
Endomembrane system 1 PTGS1
Chromosome, centromere, kinetochore 1 KAT5
aryl hydrocarbon receptor complex 1 AHR
specific granule membrane 2 CD36, OLR1
tertiary granule membrane 1 OLR1
platelet dense granule membrane 1 ABCC4
Golgi lumen 1 F2
endoplasmic reticulum lumen 2 F2, PTGS2
kinetochore 1 KAT5
endocytic vesicle membrane 2 CD36, MSR1
mitotic spindle pole 1 KAT5
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 GORASP1
Golgi apparatus, cis-Golgi network membrane 1 GORASP1
histone acetyltransferase complex 1 KAT5
external side of apical plasma membrane 1 ABCC4
nucleosome 1 KAT5
Swr1 complex 1 KAT5
platelet alpha granule membrane 1 CD36
nuclear aryl hydrocarbon receptor complex 1 AHR
cytosolic aryl hydrocarbon receptor complex 1 AHR
piccolo histone acetyltransferase complex 1 KAT5


文献列表

  • Lina Qi, Nannan Guo, Quanwei Wei, Pengjin Jin, Wei Wang, Dagan Mao. The involvement of NR4A1 and NR4A2 in the regulation of the luteal function in rats. Acta histochemica. 2018 Nov; 120(8):713-719. doi: 10.1016/j.acthis.2018.07.007. [PMID: 30097186]
  • Joanna Gdula-Argasińska, Jacek Czepiel, Justyna Totoń-Żurańska, Paweł Wołkow, Tadeusz Librowski, Anna Czapkiewicz, William Perucki, Michał Woźniakiewicz, Aneta Woźniakiewicz. n-3 Fatty acids regulate the inflammatory-state related genes in the lung epithelial cells exposed to polycyclic aromatic hydrocarbons. Pharmacological reports : PR. 2016 Apr; 68(2):319-28. doi: 10.1016/j.pharep.2015.09.001. [PMID: 26922534]
  • Nobuaki Tanaka, Hiroaki Yamaguchi, Nariyasu Mano. Transport of eicosapentaenoic acid-derived PGE₃, PGF(3α), and TXB₃ by ABCC4. PloS one. 2014; 9(10):e109270. doi: 10.1371/journal.pone.0109270. [PMID: 25275481]
  • Jan A Mennigen, Wudu E Lado, Jake M Zamora, Paula Duarte-Guterman, Valérie S Langlois, Chris D Metcalfe, John P Chang, Thomas W Moon, Vance L Trudeau. Waterborne fluoxetine disrupts the reproductive axis in sexually mature male goldfish, Carassius auratus. Aquatic toxicology (Amsterdam, Netherlands). 2010 Nov; 100(4):354-64. doi: 10.1016/j.aquatox.2010.08.016. [PMID: 20864192]
  • M M Sailaja Devi, Undurti Narasimha Das. Effect of prostaglandins against alloxan-induced cytotoxicity to insulin secreting insulinoma RIN cells in vitro. Prostaglandins, leukotrienes, and essential fatty acids. 2004 Nov; 71(5):309-18. doi: 10.1016/j.plefa.2004.04.006. [PMID: 15380818]
  • J Nourooz-Zadeh, B Halliwell, E E Anggård. Evidence for the formation of F3-isoprostanes during peroxidation of eicosapentaenoic acid. Biochemical and biophysical research communications. 1997 Jul; 236(2):467-72. doi: 10.1006/bbrc.1997.6869. [PMID: 9240462]
  • S Fischer, C von Schacky, H Schweer. Prostaglandins E3 and F3 alpha are excreted in human urine after ingestion of n - 3 polyunsaturated fatty acids. Biochimica et biophysica acta. 1988 Dec; 963(3):501-8. doi: 10.1016/0005-2760(88)90318-9. [PMID: 3196747]