Nopaline (BioDeep_00000004737)

   

natural product


代谢物信息卡片


N-[(1S)-4-carbamimidamido-1-carboxybutyl]-D-glutamic acid

化学式: C11H20N4O6 (304.1383)
中文名称:
谱图信息: 最多检出来源 Homo sapiens(lipidsearch) 24.41%

分子结构信息

SMILES: C(CC(C(=O)O)NC(CCC(=O)O)C(=O)O)CN=C(N)N
InChI: InChI=1S/C11H20N4O6/c12-11(13)14-5-1-2-6(9(18)19)15-7(10(20)21)3-4-8(16)17/h6-7,15H,1-5H2,(H,16,17)(H,18,19)(H,20,21)(H4,12,13,14)/t6-,7+/m0/s1



数据库引用编号

15 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 7 ARG1, GLI3, GLUL, NOCT, PKN2, SERPINB1, SKP1
Endoplasmic reticulum membrane 4 LMAN2L, PLD1, SERINC1, TRAM2
Nucleus 9 ARG1, DNASE1, GLI3, GLUL, MIXL1, NOCT, PKN2, SKP1, SSBP1
cytosol 5 ARG1, GLI3, GLUL, PKN2, SKP1
nuclear body 1 PKN2
centrosome 2 PKN2, SKP1
nucleoplasm 5 GLI3, MIXL1, NOCT, PKN2, SKP1
Cell membrane 4 GLUL, SERINC3, TRAC, TRB
Lipid-anchor 2 GLUL, PLD1
Cytoplasmic side 1 PLD1
Cleavage furrow 1 PKN2
lamellipodium 1 PKN2
Cytoplasmic granule 1 ARG1
Multi-pass membrane protein 4 RHO, SERINC1, SERINC3, TRAM2
Golgi apparatus membrane 2 PLD1, SERINC3
cell junction 1 PKN2
cell surface 1 TRB
Golgi apparatus 4 LMAN2L, PLD1, RHO, SERPINA1
Golgi membrane 4 LMAN2L, PLD1, RHO, SERINC3
lysosomal membrane 1 PLD1
mitochondrial inner membrane 1 OTC
Cytoplasm, cytosol 1 GLUL
endosome 1 PLD1
plasma membrane 8 GLUL, PKN2, PLD1, RHO, SERINC1, SERINC3, TRAC, TRB
Membrane 10 LMAN2L, PKN2, PLD1, RHO, SERINC1, SERINC3, SERPINB1, TRAC, TRAM2, TRB
apical plasma membrane 1 PLD1
extracellular exosome 5 DNASE1, GLUL, SERPINA1, SERPINB1, SSBP1
endoplasmic reticulum 2 GLUL, SERPINA1
extracellular space 3 ARG1, SERPINA1, SERPINB1
perinuclear region of cytoplasm 4 NOCT, PKN2, PLD1, SERINC3
mitochondrion 4 GLUL, NOCT, OTC, SSBP1
protein-containing complex 1 PKN2
intracellular membrane-bounded organelle 3 GLI3, PLD1, SERPINA1
Single-pass type I membrane protein 1 LMAN2L
Secreted 2 DNASE1, SERPINB1
extracellular region 4 ARG1, DNASE1, SERPINA1, SERPINB1
Single-pass membrane protein 1 LMAN2L
Mitochondrion matrix 1 OTC
mitochondrial matrix 2 OTC, SSBP1
ciliary membrane 1 RHO
photoreceptor inner segment 1 RHO
photoreceptor outer segment 1 RHO
nucleolus 1 GLI3
midbody 1 PKN2
P-body 1 NOCT
Early endosome 1 SERPINB1
cell-cell junction 1 RHO
COPII-coated ER to Golgi transport vesicle 2 LMAN2L, SERPINA1
Cell projection, lamellipodium 1 PKN2
Cytoplasm, perinuclear region 3 NOCT, PLD1, SERINC3
Cytoplasm, cytoskeleton 1 PKN2
mitochondrial nucleoid 1 SSBP1
collagen-containing extracellular matrix 2 SERPINA1, SERPINB1
axoneme 1 GLI3
ciliary tip 1 GLI3
nuclear speck 1 GLI3
ciliary base 1 GLI3
cilium 1 GLI3
chromatin 1 MIXL1
Late endosome membrane 1 PLD1
cytoplasmic ribonucleoprotein granule 1 SERPINB1
Cell projection, cilium, photoreceptor outer segment 1 RHO
sperm midpiece 1 RHO
nuclear envelope 1 DNASE1
Nucleus envelope 1 DNASE1
Endomembrane system 1 LMAN2L
specific granule membrane 1 PLD1
tertiary granule membrane 1 PLD1
Golgi-associated vesicle membrane 1 RHO
cell body 1 GLUL
intermediate filament cytoskeleton 1 PKN2
Microsome 1 GLUL
ficolin-1-rich granule lumen 1 SERPINA1
secretory granule lumen 1 SERPINB1
endoplasmic reticulum lumen 1 SERPINA1
transcription repressor complex 1 GLI3
PcG protein complex 1 SKP1
platelet alpha granule lumen 1 SERPINA1
Photoreceptor inner segment membrane 1 RHO
specific granule lumen 1 ARG1
endocytic vesicle 1 PLD1
azurophil granule lumen 1 ARG1
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 SERPINA1
endoplasmic reticulum-Golgi intermediate compartment 1 LMAN2L
apical junction complex 1 PKN2
photoreceptor outer segment membrane 1 RHO
sperm head plasma membrane 1 RHO
zymogen granule 1 DNASE1
glial cell projection 1 GLUL
photoreceptor disc membrane 1 RHO
cholinergic synapse 1 PLD1
T cell receptor complex 1 TRB
alpha-beta T cell receptor complex 2 TRAC, TRB
rod photoreceptor outer segment 1 RHO
GLI-SUFU complex 1 GLI3
SCF ubiquitin ligase complex 1 SKP1
Cytolytic granule 1 SERPINB1
Mitochondrion matrix, mitochondrion nucleoid 1 SSBP1
Cul7-RING ubiquitin ligase complex 1 SKP1


文献列表

  • Rosa Padilla, Vincent Gaillard, Thao Nhi Le, Floriant Bellvert, David Chapulliot, Xavier Nesme, Yves Dessaux, Ludovic Vial, Céline Lavire, Isabelle Kerzaon. Development and validation of a UHPLC-ESI-QTOF mass spectrometry method to analyze opines, plant biomarkers of crown gall or hairy root diseases. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2021 Jan; 1162(?):122458. doi: 10.1016/j.jchromb.2020.122458. [PMID: 33383499]
  • Shuai Shao, G Paul H van Heusden, Paul J J Hooykaas. Complete Sequence of Succinamopine Ti-Plasmid pTiEU6 Reveals Its Evolutionary Relatedness with Nopaline-Type Ti-Plasmids. Genome biology and evolution. 2019 09; 11(9):2480-2491. doi: 10.1093/gbe/evz173. [PMID: 31386108]
  • Nemanja Kuzmanović, Joanna Puławska. Evolutionary Relatedness and Classification of Tumor-Inducing and Opine-Catabolic Plasmids in Three Rhizobium rhizogenes Strains Isolated from the Same Crown Gall Tumor. Genome biology and evolution. 2019 06; 11(6):1525-1540. doi: 10.1093/gbe/evz091. [PMID: 31028704]
  • Almudena González-Mula, Julien Lang, Catherine Grandclément, Delphine Naquin, Mohammed Ahmar, Laurent Soulère, Yves Queneau, Yves Dessaux, Denis Faure. Lifestyle of the biotroph Agrobacterium tumefaciens in the ecological niche constructed on its host plant. The New phytologist. 2018 07; 219(1):350-362. doi: 10.1111/nph.15164. [PMID: 29701262]
  • Armelle Vigouroux, Abbas El Sahili, Julien Lang, Magali Aumont-Nicaise, Yves Dessaux, Denis Faure, Solange Moréra. Structural basis for high specificity of octopine binding in the plant pathogen Agrobacterium tumefaciens. Scientific reports. 2017 12; 7(1):18033. doi: 10.1038/s41598-017-18243-8. [PMID: 29269740]
  • Julien Lang, Armelle Vigouroux, Abbas El Sahili, Anthony Kwasiborski, Magali Aumont-Nicaise, Yves Dessaux, Jacqui Anne Shykoff, Solange Moréra, Denis Faure. Fitness costs restrict niche expansion by generalist niche-constructing pathogens. The ISME journal. 2017 02; 11(2):374-385. doi: 10.1038/ismej.2016.137. [PMID: 27801902]
  • Benoît Lacroix, Vitaly Citovsky. Nopaline-type Ti plasmid of Agrobacterium encodes a VirF-like functional F-box protein. Scientific reports. 2015 Nov; 5(?):16610. doi: 10.1038/srep16610. [PMID: 26586289]
  • Seiya Watanabe, Rui Sueda, Fumiyasu Fukumori, Yasuo Watanabe. Characterization of Flavin-Containing Opine Dehydrogenase from Bacteria. PloS one. 2015; 10(9):e0138434. doi: 10.1371/journal.pone.0138434. [PMID: 26382958]
  • Julien Lang, Armelle Vigouroux, Sara Planamente, Abbas El Sahili, Pauline Blin, Magali Aumont-Nicaise, Yves Dessaux, Solange Moréra, Denis Faure. Agrobacterium uses a unique ligand-binding mode for trapping opines and acquiring a competitive advantage in the niche construction on plant host. PLoS pathogens. 2014 Oct; 10(10):e1004444. doi: 10.1371/journal.ppat.1004444. [PMID: 25299655]
  • Julien Lang, Sara Planamente, Samuel Mondy, Yves Dessaux, Solange Moréra, Denis Faure. Concerted transfer of the virulence Ti plasmid and companion At plasmid in the Agrobacterium tumefaciens-induced plant tumour. Molecular microbiology. 2013 Dec; 90(6):1178-89. doi: 10.1111/mmi.12423. [PMID: 24118167]
  • Zhao-Fen Han, David M Hunter, Susan Sibbald, Ji-Shu Zhang, Lining Tian. Biological activity of the tzs gene of nopaline Agrobacterium tumefaciens GV3101 in plant regeneration and genetic transformation. Molecular plant-microbe interactions : MPMI. 2013 Nov; 26(11):1359-65. doi: 10.1094/mpmi-04-13-0106-r. [PMID: 24088018]
  • Han Ming Gan, Teong Han Chew, André O Hudson, Michael A Savka. Genome sequence of Novosphingobium sp. strain Rr 2-17, a nopaline crown gall-associated bacterium isolated from Vitis vinifera L. grapevine. Journal of bacteriology. 2012 Sep; 194(18):5137-8. doi: 10.1128/jb.01159-12. [PMID: 22933764]
  • John Zupan, Cheryl A Hackworth, Julieta Aguilar, Doyle Ward, Patricia Zambryski. VirB1* promotes T-pilus formation in the vir-Type IV secretion system of Agrobacterium tumefaciens. Journal of bacteriology. 2007 Sep; 189(18):6551-63. doi: 10.1128/jb.00480-07. [PMID: 17631630]
  • Rosalia Deeken, Julia C Engelmann, Marina Efetova, Tina Czirjak, Tobias Müller, Werner M Kaiser, Olaf Tietz, Markus Krischke, Martin J Mueller, Klaus Palme, Thomas Dandekar, Rainer Hedrich. An integrated view of gene expression and solute profiles of Arabidopsis tumors: a genome-wide approach. The Plant cell. 2006 Dec; 18(12):3617-34. doi: 10.1105/tpc.106.044743. [PMID: 17172353]
  • P M Oger, H Mansouri, X Nesme, Y Dessaux. Engineering root exudation of Lotus toward the production of two novel carbon compounds leads to the selection of distinct microbial populations in the rhizosphere. Microbial ecology. 2004 Jan; 47(1):96-103. doi: 10.1007/s00248-003-2012-9. [PMID: 15259274]
  • Hounayda Mansouri, Annik Petit, Phil Oger, Yves Dessaux. Engineered rhizosphere: the trophic bias generated by opine-producing plants is independent of the opine type, the soil origin, and the plant species. Applied and environmental microbiology. 2002 May; 68(5):2562-6. doi: 10.1128/aem.68.5.2562-2566.2002. [PMID: 11976135]
  • A Krishnamohan, V Balaji, K Veluthambi. Efficient vir gene induction in Agrobacterium tumefaciens requires virA, virG, and vir box from the same Ti plasmid. Journal of bacteriology. 2001 Jul; 183(13):4079-89. doi: 10.1128/jb.183.13.4079-4089.2001. [PMID: 11395473]
  • Y Hattori, K Iwata, K Suzuki, M Uraji, N Ohta, A Katoh, K Yoshida. Sequence characterization of the vir region of a nopaline type Ti plasmid, pTi-SAKURA. Genes & genetic systems. 2001 Apr; 76(2):121-30. doi: 10.1266/ggs.76.121. [PMID: 11434457]
  • K Moriguchi, Y Maeda, M Satou, N S Hardayani, M Kataoka, N Tanaka, K Yoshida. The complete nucleotide sequence of a plant root-inducing (Ri) plasmid indicates its chimeric structure and evolutionary relationship between tumor-inducing (Ti) and symbiotic (Sym) plasmids in Rhizobiaceae. Journal of molecular biology. 2001 Mar; 307(3):771-84. doi: 10.1006/jmbi.2001.4488. [PMID: 11273700]
  • H T Lei, J J Song, J J Qi, Y L Zhang, J S Yang, Z G Guo. [Genetic transformation of hairy roots in Trichosanthes kirilowii Maxim. by Ti and Ri plasmids]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2001 Mar; 26(3):162-5. doi: ". [PMID: 12525033]
  • P Oger, H Mansouri, Y Dessaux. Effect of crop rotation and soil cover on alteration of the soil microflora generated by the culture of transgenic plants producing opines. Molecular ecology. 2000 Jul; 9(7):881-90. doi: 10.1046/j.1365-294x.2000.00940.x. [PMID: 10886651]
  • H Schmidt-Eisenlohr, N Domke, C Angerer, G Wanner, P C Zambryski, C Baron. Vir proteins stabilize VirB5 and mediate its association with the T pilus of Agrobacterium tumefaciens. Journal of bacteriology. 1999 Dec; 181(24):7485-92. doi: 10.1128/jb.181.24.7485-7492.1999. [PMID: 10601205]
  • S Pionnat, H Keller, D Héricher, A Bettachini, Y Dessaux, X Nesme, C Poncet. Ti plasmids from Agrobacterium characterize rootstock clones that initiated a spread of crown gall disease in Mediterranean countries. Applied and environmental microbiology. 1999 Sep; 65(9):4197-206. doi: 10.1128/aem.65.9.4197-4206.1999. [PMID: 10473434]
  • Y Kim, G An. Characterization of a hexamer motif and b element of the nopaline synthase (nos) promoter. Molecules and cells. 1997 Feb; 7(1):84-9. doi: ". [PMID: 9085270]
  • S K Farrand, I Hwang, D M Cook. The tra region of the nopaline-type Ti plasmid is a chimera with elements related to the transfer systems of RSF1010, RP4, and F. Journal of bacteriology. 1996 Jul; 178(14):4233-47. doi: 10.1128/jb.178.14.4233-4247.1996. [PMID: 8763953]
  • D Kreusch, J von Lintig, J Schröder. Ti plasmid-encoded octopine and nopaline catabolism in Agrobacterium: specificities of the LysR-type regulators OccR and NocR, and protein-induced DNA bending. Molecular & general genetics : MGG. 1995 Nov; 249(1):102-10. doi: 10.1007/bf00290241. [PMID: 8552026]
  • S Q Pan, S Jin, M I Boulton, M Hawes, M P Gordon, E W Nester. An Agrobacterium virulence factor encoded by a Ti plasmid gene or a chromosomal gene is required for T-DNA transfer into plants. Molecular microbiology. 1995 Jul; 17(2):259-69. doi: 10.1111/j.1365-2958.1995.mmi_17020259.x. [PMID: 7494475]
  • F Marincs, D W White. Divergent transcription and a remote operator play a role in control of expression of a nopaline catabolism promoter in Agrobacterium tumefaciens. The Journal of biological chemistry. 1995 May; 270(21):12339-42. doi: 10.1074/jbc.270.21.12339. [PMID: 7759474]
  • Y Zhang, J Song, B Zhao, H Liu. Crown gall culture and production of tanshinone in Salvia miltiorrhiza. Chinese journal of biotechnology. 1995; 11(2):137-41. doi: ". [PMID: 8562850]
  • H Bouzar, W S Chilton, X Nesme, Y Dessaux, V Vaudequin, A Petit, J B Jones, N C Hodge. A new Agrobacterium strain isolated from aerial tumors on Ficus benjamina L. Applied and environmental microbiology. 1995 Jan; 61(1):65-73. doi: 10.1128/aem.61.1.65-73.1995. [PMID: 7887626]
  • E Mansur, C Lacorte, W R Krul. Peanut transformation. Methods in molecular biology (Clifton, N.J.). 1995; 44(?):87-100. doi: 10.1385/0-89603-302-3:87. [PMID: 7581687]
  • P P Chee, J L Slightom. Transformation of soybean (Glycine max) via Agrobacterium tumefaciens and analysis of transformed plants. Methods in molecular biology (Clifton, N.J.). 1995; 44(?):101-19. doi: 10.1385/0-89603-302-3:101. [PMID: 7581657]
  • P Dion, C Bélanger, D Xu, M Mohammadi. Effect of acetosyringone on growth and oncogenic potential of Agrobacterium tumefaciens. Methods in molecular biology (Clifton, N.J.). 1995; 44(?):37-45. doi: 10.1385/0-89603-302-3:37. [PMID: 7581680]
  • L Otten, P De Ruffray. Agrobacterium vitis nopaline Ti plasmid pTiAB4: relationship to other Ti plasmids and T-DNA structure. Molecular & general genetics : MGG. 1994 Nov; 245(4):493-505. doi: 10.1007/bf00302262. [PMID: 7808399]
  • F Marincs, D W White. The NocR repressor-activator protein regulates expression of the nocB and nocR genes of Agrobacterium tumefaciens. Molecular & general genetics : MGG. 1994 Aug; 244(4):367-73. doi: 10.1007/bf00286688. [PMID: 8078462]
  • H Zanker, G Lurz, U Langridge, P Langridge, D Kreusch, J Schröder. Octopine and nopaline oxidases from Ti plasmids of Agrobacterium tumefaciens: molecular analysis, relationship, and functional characterization. Journal of bacteriology. 1994 Aug; 176(15):4511-7. doi: 10.1128/jb.176.15.4511-4517.1994. [PMID: 8045881]
  • J von Lintig, D Kreusch, J Schröder. Opine-regulated promoters and LysR-type regulators in the nopaline (noc) and octopine (occ) catabolic regions of Ti plasmids of Agrobacterium tumefaciens. Journal of bacteriology. 1994 Jan; 176(2):495-503. doi: 10.1128/jb.176.2.495-503.1994. [PMID: 8288543]
  • F Marincs, D W White. Nopaline causes a conformational change in the NocR regulatory protein-nocR promoter complex of Agrobacterium tumefaciens Ti plasmid pTiT37. Molecular & general genetics : MGG. 1993 Oct; 241(1-2):65-72. doi: 10.1007/bf00280202. [PMID: 8232213]
  • A J Regensburg-Tuïnk, P J Hooykaas. Transgenic N. glauca plants expressing bacterial virulence gene virF are converted into hosts for nopaline strains of A. tumefaciens. Nature. 1993 May; 363(6424):69-71. doi: 10.1038/363069a0. [PMID: 8479538]
  • C E Shurvinton, L Hodges, W Ream. A nuclear localization signal and the C-terminal omega sequence in the Agrobacterium tumefaciens VirD2 endonuclease are important for tumor formation. Proceedings of the National Academy of Sciences of the United States of America. 1992 Dec; 89(24):11837-41. doi: 10.1073/pnas.89.24.11837. [PMID: 1465407]
  • C N Liu, X Q Li, S B Gelvin. Multiple copies of virG enhance the transient transformation of celery, carrot and rice tissues by Agrobacterium tumefaciens. Plant molecular biology. 1992 Dec; 20(6):1071-87. doi: 10.1007/bf00028894. [PMID: 1463842]
  • J von Lintig, H Zanker, J Schröder. Positive regulators of opine-inducible promoters in the nopaline and octopine catabolism regions of Ti plasmids. Molecular plant-microbe interactions : MPMI. 1991 Jul; 4(4):370-8. doi: 10.1094/mpmi-4-370. [PMID: 1799698]
  • H Wabiko, M Kagaya, H Sano. Polymorphism of Nopaline-type T-DNAs from Agrobacterium tumefaciens. Plasmid. 1991 Jan; 25(1):3-15. doi: 10.1016/0147-619x(91)90002-e. [PMID: 1674610]
  • T R Steck, T S Lin, C I Kado. VirD2 gene product from the nopaline plasmid pTiC58 has at least two activities required for virulence. Nucleic acids research. 1990 Dec; 18(23):6953-8. doi: 10.1093/nar/18.23.6953. [PMID: 2263456]
  • K Shirasu, P Morel, C I Kado. Characterization of the virB operon of an Agrobacterium tumefaciens Ti plasmid: nucleotide sequence and protein analysis. Molecular microbiology. 1990 Jul; 4(7):1153-63. doi: 10.1111/j.1365-2958.1990.tb00690.x. [PMID: 2233252]
  • G A Kuldau, G De Vos, J Owen, G McCaffrey, P Zambryski. The virB operon of Agrobacterium tumefaciens pTiC58 encodes 11 open reading frames. Molecular & general genetics : MGG. 1990 Apr; 221(2):256-66. doi: 10.1007/bf00261729. [PMID: 2370849]
  • B G Clare, A Kerr, D A Jones. Characteristics of the nopaline catabolic plasmid in Agrobacterium strains K84 and K1026 used for biological control of crown gall disease. Plasmid. 1990 Mar; 23(2):126-37. doi: 10.1016/0147-619x(90)90031-7. [PMID: 2194227]
  • L S Melchers, M J Maroney, A den Dulk-Ras, D V Thompson, H A van Vuuren, R A Schilperoort, P J Hooykaas. Octopine and nopaline strains of Agrobacterium tumefaciens differ in virulence; molecular characterization of the virF locus. Plant molecular biology. 1990 Feb; 14(2):249-59. doi: 10.1007/bf00018565. [PMID: 2101693]
  • P Morel, B S Powell, P M Rogowsky, C I Kado. Characterization of the virA virulence gene of the nopaline plasmid, pTiC58, of Agrobacterium tumefaciens. Molecular microbiology. 1989 Sep; 3(9):1237-46. doi: 10.1111/j.1365-2958.1989.tb00274.x. [PMID: 2796735]
  • T R Steck, T J Close, C I Kado. High levels of double-stranded transferred DNA (T-DNA) processing from an intact nopaline Ti plasmid. Proceedings of the National Academy of Sciences of the United States of America. 1989 Apr; 86(7):2133-7. doi: 10.1073/pnas.86.7.2133. [PMID: 2928322]
  • U Schindler, N Sans, J Schröder. Ornithine cyclodeaminase from octopine Ti plasmid Ach5: identification, DNA sequence, enzyme properties, and comparison with gene and enzyme from nopaline Ti plasmid C58. Journal of bacteriology. 1989 Feb; 171(2):847-54. doi: 10.1128/jb.171.2.847-854.1989. [PMID: 2644238]
  • R C Tait, C I Kado. Regulation of the virC and virD promoters of pTiC58 by the ros chromosomal mutation of Agrobacterium tumefaciens. Molecular microbiology. 1988 May; 2(3):385-92. doi: 10.1111/j.1365-2958.1988.tb00043.x. [PMID: 2840554]
  • N Sans, U Schindler, J Schröder. Ornithine cyclodeaminase from Ti plasmid C58: DNA sequence, enzyme properties and regulation of activity by arginine. European journal of biochemistry. 1988 Apr; 173(1):123-30. doi: 10.1111/j.1432-1033.1988.tb13975.x. [PMID: 3281832]
  • N Sans, G Schröder, J Schröder. The Noc region of Ti plasmid C58 codes for arginase and ornithine cyclodeaminase. European journal of biochemistry. 1987 Aug; 167(1):81-7. doi: 10.1111/j.1432-1033.1987.tb13306.x. [PMID: 3040404]
  • T Hirooka, P M Rogowsky, C I Kado. Characterization of the virE locus of Agrobacterium tumefaciens plasmid pTiC58. Journal of bacteriology. 1987 Apr; 169(4):1529-36. doi: 10.1128/jb.169.4.1529-1536.1987. [PMID: 3549694]
  • N S Yang, S G Platt, P Christou. Detection of opines by colorimetric assay. Analytical biochemistry. 1987 Feb; 160(2):342-5. doi: 10.1016/0003-2697(87)90057-1. [PMID: 3578760]
  • E E Hood, G L Helmer, R T Fraley, M D Chilton. The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. Journal of bacteriology. 1986 Dec; 168(3):1291-301. doi: 10.1128/jb.168.3.1291-1301.1986. [PMID: 3782037]
  • M F Yanofsky, E W Nester. Molecular characterization of a host-range-determining locus from Agrobacterium tumefaciens. Journal of bacteriology. 1986 Oct; 168(1):244-50. doi: 10.1128/jb.168.1.244-250.1986. [PMID: 3759904]
  • L Le Goff, M Beljanski. The in vitro effects of opines and other compounds on DNAs originating from bacteria, and from healthy and tumorous plant tissues. Experimental cell biology. 1985; 53(6):335-50. doi: 10.1159/000163331. [PMID: 3935498]
  • K Furukawa, K Hasunuma, S Hatanaka, T Hayashi. Detection of tumor-inducing plasmid DNA sequence in Agrobacterium tumefaciens by DNA-DNA hybridization. Radioisotopes. 1984 Aug; 33(8):543-6. doi: 10.3769/radioisotopes.33.8_543. [PMID: 6505307]
  • N Ito, M Ikeda. [Optimization of liquid scintillation counting by using multichannel pulse-height analyzer]. Radioisotopes. 1984 Aug; 33(8):539-42. doi: 10.3769/radioisotopes.33.8_539. [PMID: 6505306]
  • P J Hooykaas, M Hofker, H den Dulk-Ras, R A Schilperoort. A comparison of virulence determinants in an octopine Ti plasmid, a nopaline Ti plasmid, and an Ri plasmid by complementation analysis of Agrobacterium tumefaciens mutants. Plasmid. 1984 May; 11(3):195-205. doi: 10.1016/0147-619x(84)90026-x. [PMID: 6087390]
  • K Lahners, M C Byrne, M D Chilton. T-DNA fragments of hairy root plasmid pRi8196 are distantly related to octopine and nopaline Ti plasmid T-DNA. Plasmid. 1984 Mar; 11(2):130-40. doi: 10.1016/0147-619x(84)90018-0. [PMID: 6328555]
  • L Willmitzer, P Dhaese, P H Schreier, W Schmalenbach, M Van Montagu, J Schell. Size, location and polarity of T-DNA-encoded transcripts in nopaline crown gall tumors; common transcripts in octopine and nopaline tumors. Cell. 1983 Apr; 32(4):1045-56. doi: 10.1016/0092-8674(83)90289-1. [PMID: 6301679]
  • H Joos, D Inzé, A Caplan, M Sormann, M Van Montagu, J Schell. Genetic analysis of T-DNA transcripts in nopaline crown galls. Cell. 1983 Apr; 32(4):1057-67. doi: 10.1016/0092-8674(83)90290-8. [PMID: 6839358]
  • C L Schardl, C I Kado. A functional map of the nopaline catabolism genes on the Ti plasmid of Agrobacterium tumefaciens C58. Molecular & general genetics : MGG. 1983; 191(1):10-6. doi: 10.1007/bf00330882. [PMID: 6577260]
  • R K Prakash, R A Schilperoort. Relationship between Nif plasmids of fast-growing Rhizobium species and Ti plasmids of Agrobacterium tumefaciens. Journal of bacteriology. 1982 Mar; 149(3):1129-34. doi: 10.1128/jb.149.3.1129-1134.1982. [PMID: 7061382]
  • M W Bevan, M D Chilton. Multiple transcripts of T-DNA detected in nopaline crown gall tumors. Journal of molecular and applied genetics. 1982; 1(6):539-46. doi: . [PMID: 7153688]
  • G J Wullems, L Molendijk, G Ooms, R A Schilperoort. Retention of tumor markers in F1 progeny plants from in vitro induced octopine and nopaline tumor tissues. Cell. 1981 Jun; 24(3):719-27. doi: 10.1016/0092-8674(81)90098-2. [PMID: 7249079]
  • J Leemans, C Shaw, R Deblaere, H De Greve, J P Hernalsteens, M Maes, M Van Montagu, J Schell. Site-specific mutagenesis of Agrobacterium Ti plasmids and transfer of genes to plant cells. Journal of molecular and applied genetics. 1981; 1(2):149-64. doi: ". [PMID: 7050279]
  • E W Nester, T Kosuge. Plasmids specifying plant hyperplasias. Annual review of microbiology. 1981; 35(?):531-65. doi: 10.1146/annurev.mi.35.100181.002531. [PMID: 7027906]
  • M Van Montagu, M Holsters, P Zambryski, J P Hernalsteens, A Depicker, M De Beuckeleer, G Engler, M Lemmers, L Willmitzer, J Schell. The interaction of Agrobacterium Ti-plasmid DNA and plant cells. Proceedings of the Royal Society of London. Series B, Biological sciences. 1980 Nov; 210(1180):351-65. doi: 10.1098/rspb.1980.0139. [PMID: 6109298]
  • P J Hooykaas, H den Dulk-Ras, G Ooms, R A Schilperoort. Interactions between octopine and nopaline plasmids in Agrobacterium tumefaciens. Journal of bacteriology. 1980 Sep; 143(3):1295-306. doi: 10.1128/jb.143.3.1295-1306.1980. [PMID: 7410319]
  • A B Poglazov, N N Shchukin. [Ti plasmids of Agrobacterium tumefaciens and their role in the formation of plant tumors]. Molekuliarnaia biologiia. 1980 Jul; 14(4):725-33. doi: ". [PMID: 7421799]
  • F F White, E W Nester. Hairy root: plasmid encodes virulence traits in Agrobacterium rhizogenes. Journal of bacteriology. 1980 Mar; 141(3):1134-41. doi: 10.1128/jb.141.3.1134-1141.1980. [PMID: 6245060]
  • L A Otten, R A Schilperoort. A rapid micro scale method for the detection of lysopine and nopaline dehydrogenase activities. Biochimica et biophysica acta. 1978 Dec; 527(2):497-500. doi: 10.1016/0005-2744(78)90363-7. [PMID: 31918]
  • R E Jensen, W T Zdybak, K Yasuda, W S Chilton. A useful synthesis of nopaline, a crown gall tumor metabolite. Biochemical and biophysical research communications. 1977 Apr; 75(4):1066-70. doi: 10.1016/0006-291x(77)91490-5. [PMID: 861025]
  • A L Montoya, M D Chilton, M P Gordon, D Sciaky, E W Nester. Octopine and nopaline metabolism in Agrobacterium tumefaciens and crown gall tumor cells: role of plasmid genes. Journal of bacteriology. 1977 Jan; 129(1):101-7. doi: 10.1128/jb.129.1.101-107.1977. [PMID: 830636]
  • J A Lippincott, R Beiderbeck, B B Lippincott. Utilization of octopine and nopaline by Agrobacterium. Journal of bacteriology. 1973 Oct; 116(1):378-83. doi: 10.1128/jb.116.1.378-383.1973. [PMID: 4745420]