Gene Association: SLC2A10
UniProt Search:
SLC2A10 (PROTEIN_CODING)
Function Description: solute carrier family 2 member 10
found 11 associated metabolites with current gene based on the text mining result from the pubmed database.
Phloretin
Phloretin is the aglucone of phlorizin, a plant-derived dihydrochalcone phytochemical reported to promote potent antioxidative activities in peroxynitrite scavenging and the inhibition of lipid peroxidation. Phloretin, which is present in apples, pears and tomatoes, has been found to inhibit the growth of several cancer cells and induce apoptosis of B16 melanoma and HL60 human leukemia cells. Phloretin also inhibits HT-29 cell growth by inducing apoptosis, which may be mediated through changes in mitochondrial membrane permeability and activation of the caspase pathways. Phloretin is a well-known inhibitor of eukaryotic urea transporters, blocks VacA-mediated urea and ion transport (PMID:18158826, 11560962, 18063724, 15671209, 12083758). Phloretin is a biomarker for the consumption of apples. Phloretin has been found to be a metabolite of Escherichia (PMID:23542617). Phloretin is a member of the class of dihydrochalcones that is dihydrochalcone substituted by hydroxy groups at positions 4, 2, 4 and 6. It has a role as a plant metabolite and an antineoplastic agent. It is functionally related to a dihydrochalcone. Phloretin is a natural dihydrochalcone found in apples and many other fruits. Phloretin is a natural product found in Malus doumeri, Populus candicans, and other organisms with data available. A natural dihydrochalcone found in apples and many other fruits. Phloretin is a dihydrochalcone, a type of natural phenols. It is the phloroglucin ester of paraoxyhydratropic acid. It can be found in apple tree leaves. Phloretin is a biomarker for the consumption of apples. A member of the class of dihydrochalcones that is dihydrochalcone substituted by hydroxy groups at positions 4, 2, 4 and 6. IPB_RECORD: 341; CONFIDENCE confident structure Phloretin (NSC 407292; RJC 02792) is a flavonoid extracted from Malus pumila Mill., has anti-inflammatory activities. Phloridzin is a specific, competitive and orally active inhibitor of sodium/glucose cotransporters in the intestine (SGLT1) and kidney (SGLT2). Phloretin inhibits Yeast-made GLUT1 as well as Human erythrocyte GLUT1 with IC50values of 49 μM and 61 μM, respectively[1].Phloretin has the potential for the treatment of rheumatoid arthritis (RA)?and allergic airway inflammation[4]. Phloretin (NSC 407292; RJC 02792) is a flavonoid extracted from Malus pumila Mill., has anti-inflammatory activities. Phloridzin is a specific, competitive and orally active inhibitor of sodium/glucose cotransporters in the intestine (SGLT1) and kidney (SGLT2). Phloretin inhibits Yeast-made GLUT1 as well as Human erythrocyte GLUT1 with IC50values of 49 μM and 61 μM, respectively[1].Phloretin has the potential for the treatment of rheumatoid arthritis (RA)?and allergic airway inflammation[4]. Phloretin (NSC 407292; RJC 02792) is a flavonoid extracted from Malus pumila Mill., has anti-inflammatory activities. Phloridzin is a specific, competitive and orally active inhibitor of sodium/glucose cotransporters in the intestine (SGLT1) and kidney (SGLT2). Phloretin inhibits Yeast-made GLUT1 as well as Human erythrocyte GLUT1 with IC50values of 49 μM and 61 μM, respectively[1].Phloretin has the potential for the treatment of rheumatoid arthritis (RA)?and allergic airway inflammation[4].
1,5-anhydroglucitol (1,5-AG)
1,5-Anhydrosorbitol or 1,5-anhydroglucitol (1,5-AG) is a validated marker of short-term glycemic control. This substance is derived mainly from food, is well absorbed in the intestine, and is distributed to all organs and tissues. It is metabolically stable, being excreted in the urine when its level exceeds the renal threshold. It is reabsorbed in the renal tubules, and is competitively inhibited by glucosuria, which leads to a reduction in its level in serum. The correlation between this reduction and the amount of glucose present in urine is so close that 1,5 AG can be used as a sensitive, day-to-day, real-time marker of glycemic control. It provides useful information on current glycemic control and is superior to both hemoglobin A1C and fructosamine in detecting near-normoglycemia. 1,5-AG in human plasma has been proposed for several years as a short-term, retrospective marker of glycaemic control and seems to be the most suitable parameter for monitoring glucose excursions. The decrease in serum 1,5-AG is very sensitive to urinary glucose excretion. It is a metabolically inert polyol that competes with glucose for reabsorption in the kidneys. Otherwise stable levels of 1,5-AG are rapidly depleted as blood glucose levels exceed the renal threshold for glucosuria. 1,5-AG is also more tightly associated with glucose fluctuations and postprandial glucose. (PMID: 18088226, 12166605, 7783360, 8940824) [HMDB] 1, 5-Anhydrosorbitol or 1,5-anhydroglucitol (1,5-AG) is a validated marker of short-term glycemic control. This substance is derived mainly from food, is well absorbed in the intestine, and is distributed to all organs and tissues. It is metabolically stable, being excreted in the urine when its level exceeds the renal threshold. It is reabsorbed in the renal tubules and is competitively inhibited by glucosuria, which leads to a reduction in its level in serum. The correlation between this reduction and the amount of glucose present in urine is so close that 1,5 AG can be used as a sensitive, day-to-day, real-time marker of glycemic control. It provides useful information on current glycemic control and is superior to both hemoglobin A1C and fructosamine in detecting near-normoglycemia. 1,5-AG in human plasma has been proposed for several years as a short-term, retrospective marker of glycemic control and seems to be the most suitable parameter for monitoring glucose excursions. The decrease in serum 1,5-AG is very sensitive to urinary glucose excretion. It is a metabolically inert polyol that competes with glucose for reabsorption in the kidneys. Otherwise stable levels of 1,5-AG are rapidly depleted as blood glucose levels exceed the renal threshold for glucosuria. 1,5-AG is also more tightly associated with glucose fluctuations and postprandial glucose (PMID:18088226, 12166605, 7783360, 8940824). 1,5-Anhydrosorbitol is a short-term marker for glycemic control. 1,5-Anhydrosorbitol is a short-term marker for glycemic control.
Pergolide
Pergolide is a long-acting dopamine agonist approved in 1982 for the treatment of Parkinsons Disease. It is an ergot derivative that acts on the dopamine D2 and D3, alpha2- and alpha1-adrenergic, and 5-hydroxytryptamine (5-HT) receptors. It was indicated as adjunct therapy with levodopa/carbidopa in the symptomatic treatment of parkinsonian syndrome. It was later found that pergolide increased the risk of cardiac valvulopathy. The drug was withdrawn from the US market in March 2007 and from the Canadian market in August 2007. N - Nervous system > N04 - Anti-parkinson drugs > N04B - Dopaminergic agents > N04BC - Dopamine agonists D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018491 - Dopamine Agonists C78272 - Agent Affecting Nervous System > C38149 - Antiparkinsonian Agent C78272 - Agent Affecting Nervous System > C66884 - Dopamine Agonist
Dehydroascorbic acid
Dehydroascorbic acid (DHA) is an oxidized form of ascorbic acid (vitamin C). It is actively imported into the endoplasmic reticulum of cells via glucose transporters. It is trapped therein by reduction back to ascorbate by glutathione and other thiols. Dehydroascorbic acid, also known as L-dehydroascorbate or DHAA, belongs to the class of organic compounds known as gamma butyrolactones. Gamma butyrolactones are compounds containing a gamma butyrolactone moiety, which consists of an aliphatic five-member ring with four carbon atoms, one oxygen atom, and bears a ketone group on the carbon adjacent to the oxygen atom. Dehydroascorbic acid has similar biological activity as ascorbic acid. Currently dehydroascorbic acid is an experimental drug with no known approved indications. Dehydroascorbic acid may be a unique E. coli metabolite. Norepinephrine and dehydroascorbic acid can be biosynthesized from dopamine and ascorbic acid through its interaction with the enzyme dopamine beta-hydroxylase. In humans, dehydroascorbic acid is involved in the metabolic disorder called tyrosinemia type I. Concerning dehydroascorbic acids antiviral effect against herpes simplex virus type 1, it is suggested that dehydroascorbic acid acts after replication of viral DNA and prevents the assembly of progeny virus particles. This is important because one study has found that after an ischemic stroke, dehydroascorbic acid has neuroprotective effects by reducing infarct volume, neurological deficits, and mortality. This reaction is reversible, but dehydroascorbic acid can instead undergo irreversible hydrolysis to 2,3-diketogulonic acid. In addition, unlike ascorbic Dehydroascorbic acid acid can cross the blood brain barrier and is then converted to ascorbic acid to enable retention in the brain. Dehydroascorbic acid is made from the oxidation of ascorbic acid. The exact mechanism of action is still being investigated, but some have been elucidated. Both compounds have been shown to have antiviral effects against herpes simplex virus type 1, influenza virus type A and poliovirus type 1 with dehydroascorbic acid having the stronger effect. In the body, both dehydroascorbic acid and ascorbic acid have similar biological activity as antivirals but dehydroascorbic acid also has neuroprotective effects. Even though dehydroascorbic acid and ascorbic acid have similar effects, their mechanism of action seems to be different. Dehydroascorbic acid, also known as dehydroascorbate, is a member of the class of compounds known as gamma butyrolactones. Gamma butyrolactones are compounds containing a gamma butyrolactone moiety, which consists of an aliphatic five-member ring with four carbon atoms, one oxygen atom, and bears a ketone group on the carbon adjacent to the oxygen atom. Dehydroascorbic acid is soluble (in water) and a moderately acidic compound (based on its pKa). Dehydroascorbic acid can be found in a number of food items such as white cabbage, gram bean, mexican groundcherry, and common pea, which makes dehydroascorbic acid a potential biomarker for the consumption of these food products. Dehydroascorbic acid may be a unique E.coli metabolite. Dehydroascorbic acid (DHA) is an oxidized form of ascorbic acid (vitamin C). It is actively imported into the endoplasmic reticulum of cells via glucose transporters. It is trapped therein by reduction back to ascorbate by glutathione and other thiols. The (free) chemical radical semidehydroascorbic acid (SDA) also belongs to the group of oxidized ascorbic acids . D018977 - Micronutrients > D014815 - Vitamins Dehydroascorbic acid, a blood-brain barrier transportable form of vitamin C, mediates potent cerebroprotection in experimental stroke. Dehydroascorbic acid, a blood-brain barrier transportable form of vitamin C, mediates potent cerebroprotection in experimental stroke.
1,5-Anhydrosorbitol
An anhydro sugar of D-glucitol. 1,5-Anhydrosorbitol is a short-term marker for glycemic control. 1,5-Anhydrosorbitol is a short-term marker for glycemic control.
1,5-Anhydroglucitol
1,5-Anhydrosorbitol is a short-term marker for glycemic control. 1,5-Anhydrosorbitol is a short-term marker for glycemic control.
Phloretin
relative retention time with respect to 9-anthracene Carboxylic Acid is 0.912 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.909 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.910 Phloretin (NSC 407292; RJC 02792) is a flavonoid extracted from Malus pumila Mill., has anti-inflammatory activities. Phloridzin is a specific, competitive and orally active inhibitor of sodium/glucose cotransporters in the intestine (SGLT1) and kidney (SGLT2). Phloretin inhibits Yeast-made GLUT1 as well as Human erythrocyte GLUT1 with IC50values of 49 μM and 61 μM, respectively[1].Phloretin has the potential for the treatment of rheumatoid arthritis (RA)?and allergic airway inflammation[4]. Phloretin (NSC 407292; RJC 02792) is a flavonoid extracted from Malus pumila Mill., has anti-inflammatory activities. Phloridzin is a specific, competitive and orally active inhibitor of sodium/glucose cotransporters in the intestine (SGLT1) and kidney (SGLT2). Phloretin inhibits Yeast-made GLUT1 as well as Human erythrocyte GLUT1 with IC50values of 49 μM and 61 μM, respectively[1].Phloretin has the potential for the treatment of rheumatoid arthritis (RA)?and allergic airway inflammation[4]. Phloretin (NSC 407292; RJC 02792) is a flavonoid extracted from Malus pumila Mill., has anti-inflammatory activities. Phloridzin is a specific, competitive and orally active inhibitor of sodium/glucose cotransporters in the intestine (SGLT1) and kidney (SGLT2). Phloretin inhibits Yeast-made GLUT1 as well as Human erythrocyte GLUT1 with IC50values of 49 μM and 61 μM, respectively[1].Phloretin has the potential for the treatment of rheumatoid arthritis (RA)?and allergic airway inflammation[4].
Pergolide
N - Nervous system > N04 - Anti-parkinson drugs > N04B - Dopaminergic agents > N04BC - Dopamine agonists D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018491 - Dopamine Agonists C78272 - Agent Affecting Nervous System > C38149 - Antiparkinsonian Agent C78272 - Agent Affecting Nervous System > C66884 - Dopamine Agonist relative retention time with respect to 9-anthracene Carboxylic Acid is 0.736 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.732 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.731
Dehydroascorbic acid
D018977 - Micronutrients > D014815 - Vitamins Dehydroascorbic acid, a blood-brain barrier transportable form of vitamin C, mediates potent cerebroprotection in experimental stroke. Dehydroascorbic acid, a blood-brain barrier transportable form of vitamin C, mediates potent cerebroprotection in experimental stroke.
Phloretol
Phloretin (NSC 407292; RJC 02792) is a flavonoid extracted from Malus pumila Mill., has anti-inflammatory activities. Phloridzin is a specific, competitive and orally active inhibitor of sodium/glucose cotransporters in the intestine (SGLT1) and kidney (SGLT2). Phloretin inhibits Yeast-made GLUT1 as well as Human erythrocyte GLUT1 with IC50values of 49 μM and 61 μM, respectively[1].Phloretin has the potential for the treatment of rheumatoid arthritis (RA)?and allergic airway inflammation[4]. Phloretin (NSC 407292; RJC 02792) is a flavonoid extracted from Malus pumila Mill., has anti-inflammatory activities. Phloridzin is a specific, competitive and orally active inhibitor of sodium/glucose cotransporters in the intestine (SGLT1) and kidney (SGLT2). Phloretin inhibits Yeast-made GLUT1 as well as Human erythrocyte GLUT1 with IC50values of 49 μM and 61 μM, respectively[1].Phloretin has the potential for the treatment of rheumatoid arthritis (RA)?and allergic airway inflammation[4]. Phloretin (NSC 407292; RJC 02792) is a flavonoid extracted from Malus pumila Mill., has anti-inflammatory activities. Phloridzin is a specific, competitive and orally active inhibitor of sodium/glucose cotransporters in the intestine (SGLT1) and kidney (SGLT2). Phloretin inhibits Yeast-made GLUT1 as well as Human erythrocyte GLUT1 with IC50values of 49 μM and 61 μM, respectively[1].Phloretin has the potential for the treatment of rheumatoid arthritis (RA)?and allergic airway inflammation[4].
Polygalytol
1,5-Anhydrosorbitol is a short-term marker for glycemic control. 1,5-Anhydrosorbitol is a short-term marker for glycemic control.