4\\%27,7-Dihydroxyflavone (BioDeep_00000017555)

 

Secondary id: BioDeep_00000003616, BioDeep_00000270166, BioDeep_00000862489

human metabolite PANOMIX_OTCML-2023 blood metabolite


代谢物信息卡片


4H-1-Benzopyran-4-one, 7-hydroxy-2-(4-hydroxyphenyl)-

化学式: C15H10O4 (254.0579)
中文名称: 7,4-二羟基黄酮, 7,4'-二羟基黄酮
谱图信息: 最多检出来源 Homo sapiens(plant) 9.09%

分子结构信息

SMILES: c1(ccc2c(c1)oc(cc2=O)c1ccc(cc1)O)O
InChI: InChI=1S/C15H10O4/c16-10-3-1-9(2-4-10)14-8-13(18)12-6-5-11(17)7-15(12)19-14/h1-8,16-17H

描述信息

4,7-dihydroxyflavone is a dihydroxyflavone in which the two hydroxy substituents are located at positions 4 and 7. It has a role as a metabolite.
7,4-Dihydroxyflavone is a natural product found in Dracaena cinnabari, Thermopsis macrophylla, and other organisms with data available.
See also: Glycyrrhiza uralensis Root (part of); Glycyrrhiza inflata root (part of).
A dihydroxyflavone in which the two hydroxy substituents are located at positions 4 and 7.
7,4'-Dihydroxyflavone (7,4'-DHF) is a flavonoid isolated from Glycyrrhiza uralensis, the eotaxin/CCL11 inhibitor, has the ability to consistently suppress eotaxin production and prevent dexamethasone (Dex)‐paradoxical adverse effects on eotaxin production[1]. 7,4'-Dihydroxyflavone (7,4'-DHF) inhibits MUC5AC gene expression, mucus production and secretion via regulation of NF-κB, STAT6 and HDAC2. 7,4'-Dihydroxyflavone (7,4'-DHF) decreases phorbol 12-myristate 13-acetate (PMA) stimulated NCI-H292 human airway epithelial cell MUC5AC gene expression and mucus production with IC50 value of 1.4 μM[1].
7,4'-Dihydroxyflavone (7,4'-DHF) is a flavonoid isolated from Glycyrrhiza uralensis, the eotaxin/CCL11 inhibitor, has the ability to consistently suppress eotaxin production and prevent dexamethasone (Dex)‐paradoxical adverse effects on eotaxin production[1]. 7,4'-Dihydroxyflavone (7,4'-DHF) inhibits MUC5AC gene expression, mucus production and secretion via regulation of NF-κB, STAT6 and HDAC2. 7,4'-Dihydroxyflavone (7,4'-DHF) decreases phorbol 12-myristate 13-acetate (PMA) stimulated NCI-H292 human airway epithelial cell MUC5AC gene expression and mucus production with IC50 value of 1.4 μM[1].

同义名列表

19 个代谢物同义名

4H-1-Benzopyran-4-one, 7-hydroxy-2-(4-hydroxyphenyl)-; 7-Hydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one #; 7-Hydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one; 7-hydroxy-2-(4-hydroxyphenyl)chromen-4-one; 7,4-dihydroxyflavone 7-O-glucoside; FLAVONE, 4,7-DIHYDROXY-; DIHYDROXYFLAVONE, 4,7-; 7,4-DIHYDROXYL FLAVONE; 7, 4-Dihydroxyflavone; 7,4-Dihydroxyflavone; 4,7-Dihydroxyflavone; 7,4-DIHYDROXYFLAVONE; Spectrum4_001280; UNII-53ZZF57X0U; KUMATAKENIN B; 53ZZF57X0U; 7,4-DHF; 7,4'-Dihydroxyflavone; 7,4'-Dihydroxyflavone



数据库引用编号

18 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

46 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 9 AKT1, CYP3A4, DICER1, ESR1, HDAC2, MAPK1, MAPK3, PTGS2, STAT6
Peripheral membrane protein 3 CYP1B1, ESR1, PTGS2
Endoplasmic reticulum membrane 5 CYP19A1, CYP1A2, CYP1B1, CYP3A4, PTGS2
Nucleus 8 AKT1, DICER1, ESR1, ESR2, HDAC2, MAPK1, MAPK3, STAT6
cytosol 7 AKT1, DICER1, ESR1, IL1B, MAPK1, MAPK3, STAT6
centrosome 1 MAPK1
nucleoplasm 7 AKT1, ESR1, ESR2, HDAC2, MAPK1, MAPK3, STAT6
RNA polymerase II transcription regulator complex 1 STAT6
Cell membrane 3 AKT1, ESR1, TNF
Cytoplasmic side 1 ESR1
lamellipodium 1 AKT1
Multi-pass membrane protein 1 CYP19A1
Synapse 1 MAPK1
cell cortex 1 AKT1
cell surface 1 TNF
glutamatergic synapse 2 AKT1, MAPK3
Golgi apparatus 3 ESR1, MAPK1, MAPK3
neuronal cell body 1 TNF
postsynapse 1 AKT1
Cytoplasm, cytosol 1 IL1B
Lysosome 1 IL1B
plasma membrane 7 AKT1, ESR1, IGHE, MAPK1, MAPK3, MUC5AC, TNF
Membrane 6 AKT1, CYP19A1, CYP1B1, CYP3A4, ESR1, HDAC2
caveola 3 MAPK1, MAPK3, PTGS2
extracellular exosome 2 DICER1, MUC5AC
endoplasmic reticulum 2 CYP19A1, PTGS2
extracellular space 7 CCL11, CXCL8, IGHE, IL1B, IL4, MUC5AC, TNF
perinuclear region of cytoplasm 1 DICER1
mitochondrion 4 CYP1B1, ESR2, MAPK1, MAPK3
protein-containing complex 4 AKT1, ESR1, HDAC2, PTGS2
intracellular membrane-bounded organelle 4 CYP1A2, CYP1B1, CYP3A4, ESR2
Microsome membrane 5 CYP19A1, CYP1A2, CYP1B1, CYP3A4, PTGS2
ESC/E(Z) complex 1 HDAC2
Single-pass type I membrane protein 1 IGHE
Secreted 5 CCL11, CXCL8, IL1B, IL4, MUC5AC
extracellular region 8 CCL11, CXCL8, IGHE, IL1B, IL4, MAPK1, MUC5AC, TNF
transcription regulator complex 1 ESR1
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 MAPK1
external side of plasma membrane 1 TNF
microtubule cytoskeleton 1 AKT1
Early endosome 2 MAPK1, MAPK3
cell-cell junction 1 AKT1
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
vesicle 1 AKT1
Cytoplasm, perinuclear region 1 DICER1
Membrane raft 1 TNF
Cell junction, focal adhesion 2 MAPK1, MAPK3
Cytoplasm, cytoskeleton, spindle 1 MAPK1
focal adhesion 2 MAPK1, MAPK3
spindle 2 AKT1, MAPK1
extracellular matrix 1 MUC5AC
Mitochondrion intermembrane space 1 AKT1
mitochondrial intermembrane space 1 AKT1
secretory granule 1 IL1B
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
Late endosome 2 MAPK1, MAPK3
neuron projection 1 PTGS2
ciliary basal body 1 AKT1
chromatin 4 ESR1, ESR2, HDAC2, STAT6
IgE immunoglobulin complex 1 IGHE
phagocytic cup 1 TNF
mitotic spindle 1 MAPK1
cytoskeleton 2 MAPK1, MAPK3
chromosome, telomeric region 1 HDAC2
[Isoform 2]: Cell membrane 1 IGHE
nuclear envelope 1 MAPK3
Membrane, caveola 2 MAPK1, MAPK3
euchromatin 1 ESR1
pseudopodium 2 MAPK1, MAPK3
ficolin-1-rich granule lumen 1 MAPK1
Golgi lumen 1 MUC5AC
endoplasmic reticulum lumen 3 MAPK1, MAPK3, PTGS2
histone deacetylase complex 1 HDAC2
Secreted, extracellular exosome 1 IL1B
azurophil granule lumen 1 MAPK1
NuRD complex 1 HDAC2
[Isoform 1]: Nucleus 1 ESR1
Sin3-type complex 1 HDAC2
mucus layer 1 MUC5AC
RISC complex 1 DICER1
RISC-loading complex 1 DICER1
[Isoform 3]: Cell membrane 1 IGHE
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
[Isoform 1]: Secreted 1 IGHE
IgE B cell receptor complex 1 IGHE
immunoglobulin complex, circulating 1 IGHE
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Safa M Shams Eldin, Mohamed M Radwan, Amira S Wanas, Abdel-Azim M Habib, Fahima F Kassem, Hala M Hammoda, Shabana I Khan, Michael L Klein, Khaled M Elokely, Mahmoud A ElSohly. Bioactivity-Guided Isolation of Potential Antidiabetic and Antihyperlipidemic Compounds from Trigonella stellata. Journal of natural products. 2018 05; 81(5):1154-1161. doi: 10.1021/acs.jnatprod.7b00707. [PMID: 29676912]
  • Yan Lin, Yi Kuang, Kai Li, Shuang Wang, Shuai Ji, Kuan Chen, Wei Song, Xue Qiao, Min Ye. Nrf2 activators from Glycyrrhiza inflata and their hepatoprotective activities against CCl4-induced liver injury in mice. Bioorganic & medicinal chemistry. 2017 10; 25(20):5522-5530. doi: 10.1016/j.bmc.2017.08.018. [PMID: 28835349]
  • Yan Lin, Yi Kuang, Kai Li, Shuang Wang, Wei Song, Xue Qiao, Gulnar Sabir, Min Ye. Screening for bioactive natural products from a 67-compound library of Glycyrrhiza inflata. Bioorganic & medicinal chemistry. 2017 07; 25(14):3706-3713. doi: 10.1016/j.bmc.2017.05.009. [PMID: 28522265]
  • Jiachun Li, Dongpo Li, Youzhi Pan, Jun-Hua Hu, Wenzhe Huang, Zhen-Zhong Wang, Wei Xiao, Yu Wang. Simultaneous determination of ten bioactive constituents of Sanjie Zhentong Capsule in rat plasma by ultra-high-performance liquid chromatography tandem mass spectrometry and its application to a pharmacokinetic study. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2017 Jun; 1054(?):20-26. doi: 10.1016/j.jchromb.2017.03.001. [PMID: 28415020]
  • Yelin Kang, Bong-Gyu Kim, Sunghoon Kim, Youngshim Lee, Youngdae Yoon. Inhibitory potential of flavonoids on PtdIns(3,4,5)P3 binding with the phosphoinositide-dependent kinase 1 pleckstrin homology domain. Bioorganic & medicinal chemistry letters. 2017 02; 27(3):420-426. doi: 10.1016/j.bmcl.2016.12.051. [PMID: 28049590]
  • Daniela Ribeiro, Marisa Freitas, Sara M Tomé, Artur M S Silva, Graça Porto, Eurico J Cabrita, M Manuel B Marques, Eduarda Fernandes. Inhibition of LOX by flavonoids: a structure-activity relationship study. European journal of medicinal chemistry. 2014 Jan; 72(?):137-45. doi: 10.1016/j.ejmech.2013.11.030. [PMID: 24368208]
  • Yun Li, Wei Xiao, Jianping Qin, Ying Guo, Qianqian Zhu. [Simultaneous determination of five active components in resina draconis and its extract by HPLC]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2012 Apr; 37(7):929-33. doi: . [PMID: 22792791]
  • Ao-Xue Wang, Ying Hu, Hui-Xin Liu, Xiao-Yi Qi, Yong Liu, Cai-Xia Tu, Ling Yang. C5-hydroxylation of liquiritigenin is catalyzed selectively by CYP1A2. Xenobiotica; the fate of foreign compounds in biological systems. 2011 May; 41(5):349-57. doi: 10.3109/00498254.2010.546014. [PMID: 21210738]
  • Judith Fliegmann, Katarina Furtwängler, Georg Malterer, Corrado Cantarello, Göde Schüler, Jürgen Ebel, Axel Mithöfer. Flavone synthase II (CYP93B16) from soybean (Glycine max L.). Phytochemistry. 2010 Apr; 71(5-6):508-14. doi: 10.1016/j.phytochem.2010.01.007. [PMID: 20132953]
  • Bolleddula Jayaprakasam, Srinivasulu Doddaga, Rong Wang, Daniel Holmes, Joseph Goldfarb, Xiu-Min Li. Licorice flavonoids inhibit eotaxin-1 secretion by human fetal lung fibroblasts in vitro. Journal of agricultural and food chemistry. 2009 Feb; 57(3):820-5. doi: 10.1021/jf802601j. [PMID: 19132888]
  • Juan Zhang, Senthil Subramanian, Gary Stacey, Oliver Yu. Flavones and flavonols play distinct critical roles during nodulation of Medicago truncatula by Sinorhizobium meliloti. The Plant journal : for cell and molecular biology. 2009 Jan; 57(1):171-83. doi: 10.1111/j.1365-313x.2008.03676.x. [PMID: 18786000]
  • René Kupfer, Leah Swanson, Sylvia Chow, Richard E Staub, Yan Ling Zhang, Isaac Cohen, Uwe Christians. Oxidative in vitro metabolism of liquiritigenin, a bioactive compound isolated from the Chinese herbal selective estrogen beta-receptor agonist MF101. Drug metabolism and disposition: the biological fate of chemicals. 2008 Nov; 36(11):2261-9. doi: 10.1124/dmd.108.021402. [PMID: 18669586]
  • Xiang Li, Zhi Liu, Xin-feng Zhang, Li-juan Wang, Yi-nan Zheng, Chang-chun Yuan, Guang-zhi Sun. Isolation and characterization of phenolic compounds from the leaves of Salix matsudana. Molecules (Basel, Switzerland). 2008 Aug; 13(8):1530-7. doi: 10.3390/molecules13081530. [PMID: 18794770]
  • Peter L Katavic, Kenneth Lamb, Hernan Navarro, Thomas E Prisinzano. Flavonoids as opioid receptor ligands: identification and preliminary structure-activity relationships. Journal of natural products. 2007 Aug; 70(8):1278-82. doi: 10.1021/np070194x. [PMID: 17685652]
  • Q-A Zheng, Y-J Zhang, C-R Yang. A new meta-homoisoflavane from the fresh stems of dracaena cochinchinensis. Journal of Asian natural products research. 2006 Sep; 8(6):571-7. doi: 10.1080/1028602042000204126. [PMID: 16931435]
  • Hun Sung Yoo, Ji Suk Lee, Chul Young Kim, Jinwoong Kim. Flavonoids of Crotalaria sessiliflora. Archives of pharmacal research. 2004 May; 27(5):544-6. doi: 10.1007/bf02980129. [PMID: 15202561]
  • Horng-Huey Ko, Jing-Ru Weng, Lo-Ti Tsao, Ming-Hong Yen, Jih-Pyang Wang, Chun-Nan Lin. Anti-inflammatory flavonoids and pterocarpanoid from Crotalaria pallida and C. assamica. Bioorganic & medicinal chemistry letters. 2004 Feb; 14(4):1011-4. doi: 10.1016/j.bmcl.2003.11.074. [PMID: 15013012]
  • Katja Schwalm, Roni Aloni, Markus Langhans, Werner Heller, Susanne Stich, Cornelia I Ullrich. Flavonoid-related regulation of auxin accumulation in Agrobacterium tumefaciens-induced plant tumors. Planta. 2003 Dec; 218(2):163-78. doi: 10.1007/s00425-003-1104-6. [PMID: 14523649]
  • Jeong An Park, Hyoung Ja Kim, Changbae Jin, Kyung-Tae Lee, Yong Sup Lee. A new pterocarpan, (-)-maackiain sulfate, from the roots of Sophora subprostrata. Archives of pharmacal research. 2003 Dec; 26(12):1009-13. doi: 10.1007/bf02994750. [PMID: 14723332]
  • U Mathesius. Flavonoids induced in cells undergoing nodule organogenesis in white clover are regulators of auxin breakdown by peroxidase. Journal of experimental botany. 2001 Mar; 52(Spec Issue):419-26. doi: 10.1093/jexbot/52.suppl_1.419. [PMID: 11326048]
  • L Costantino, G Rastelli, M C Gamberini, J A Vinson, P Bose, A Iannone, M Staffieri, L Antolini, A Del Corso, U Mura, A Albasini. 1-Benzopyran-4-one antioxidants as aldose reductase inhibitors. Journal of medicinal chemistry. 1999 Jun; 42(11):1881-93. doi: 10.1021/jm980441h. [PMID: 10354396]
  • G Lewin, Y Rolland, S Privat, C Breugnot, A Lenaers, J P Vilaine, J P Baltaze, J Poisson. Synthesis and evaluation of 3',5'-di-tert-butyl-4'-hydroxyflavones as potential inhibitors of low density lipoprotein (LDL) oxidation. Journal of natural products. 1995 Dec; 58(12):1840-7. doi: 10.1021/np50126a006. [PMID: 8691205]
  • M L Braysher. The excretion of hyperosmotic urine and other aspects of the electrolyte balance of the lizard Amphibolurus maculosus. Comparative biochemistry and physiology. A, Comparative physiology. 1976; 54(3):341-5. doi: 10.1016/s0300-9629(76)80123-5. [PMID: 5226]