Adenosine 3',5'-diphosphate (BioDeep_00000003911)
Secondary id: BioDeep_00001868836
natural product human metabolite PANOMIX_OTCML-2023 Endogenous BioNovoGene_Lab2019 Volatile Flavor Compounds
代谢物信息卡片
化学式: C10H15N5O10P2 (427.02941500000003)
中文名称: 腺苷3',5'-二磷酸
谱图信息:
最多检出来源 Helianthus annuus(natural_products) 4.42%
分子结构信息
SMILES: C([C@@H]1[C@H]([C@H]([C@H](n2cnc3c(N)ncnc23)O1)O)OP(=O)(O)O)OP(=O)(O)O
InChI: InChI=1S/C10H15N5O10P2/c11-8-5-9(13-2-12-8)15(3-14-5)10-6(16)7(25-27(20,21)22)4(24-10)1-23-26(17,18)19/h2-4,6-7,10,16H,1H2,(H2,11,12,13)(H2,17,18,19)(H2,20,21,22)
描述信息
Adenosine-3-5-diphosphate, also known as 3-phosphoadenylate or pap, is a member of the class of compounds known as purine ribonucleoside 3,5-bisphosphates. Purine ribonucleoside 3,5-bisphosphates are purine ribobucleotides with one phosphate group attached to 3 and 5 hydroxyl groups of the ribose moiety. Adenosine-3-5-diphosphate is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). Adenosine-3-5-diphosphate can be found in a number of food items such as beech nut, canola, chickpea, and red algae, which makes adenosine-3-5-diphosphate a potential biomarker for the consumption of these food products. Adenosine-3-5-diphosphate can be found primarily in cellular cytoplasm, as well as in human brain and liver tissues. Adenosine-3-5-diphosphate exists in all living species, ranging from bacteria to humans. In humans, adenosine-3-5-diphosphate is involved in several metabolic pathways, some of which include acetaminophen metabolism pathway, tamoxifen action pathway, androgen and estrogen metabolism, and metachromatic leukodystrophy (MLD). Adenosine-3-5-diphosphate is also involved in several metabolic disorders, some of which include gaucher disease, krabbe disease, fabry disease, and 17-beta hydroxysteroid dehydrogenase III deficiency.
Adenosine 3, 5-diphosphate or PAP is a nucleotide that is closely related to ADP. It has two phosphate groups attached to the 5 and 3 positions of the pentose sugar ribose (instead of pyrophosphoric acid at the 5 position, as found in ADP), and the nucleobase adenine. PAP is converted to PAPS by Sulfotransferase and then back to PAP after the sulfotransferase reaction. Sulfotransferase (STs) catalyze the transfer reaction of the sulfate group from the ubiquitous donor 3-phosphoadenosine 5-phosphosulfate (PAPS) to an acceptor group of numerous substrates. This reaction, often referred to as sulfuryl transfer, sulfation, or sulfonation, is widely observed from bacteria to humans and plays a key role in various biological processes such as cell communication, growth and development, and defense. PAP also appears to a role in bipolar depression. Phosphatases converting 3-phosphoadenosine 5-phosphate (PAP) into adenosine 5-phosphate are of fundamental importance in living cells as the accumulation of PAP is toxic to several cellular systems. These enzymes are lithium-sensitive and we have characterized a human PAP phosphatase as a potential target of lithium therapy.
同义名列表
26 个代谢物同义名
{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}phosphonic acid; Adenosine 3-phosphate-5-phosphate, monosodium salt; Adenosine 3-phosphate-5-phosphate, disodium salt; 5-(Dihydrogen phosphate)3-adenylic acid; Adenosine-3,5-diphosphate Sodium salt; 5-(Dihydrogen phosphate) 3-adenylate; Adenosine 3-phosphate-5-phosphate; Adenosine 3,5-bisphosphoric acid; Phosphoadenosine phosphoric acid; Adenosine 3,5-bisphosphate (PAP); Adenosine 3,5-diphosphoric acid; 3-Phosphoadenosine 5-phosphate; adenosine-3,5-bisphosphate; Adenosine 3,5-bisphosphate; Phosphoadenosine phosphate; Adenosine 3,5-diphosphate; Adenosine-3-5-diphosphate; 3-Phosphoadenylic acid; 3,5-Diphosphoadenosine; 3-Phosphoadenylate; Adenosine 3,5-bis; 3-Phosphoryl-AMP; 3,5-ADP; PAP; Adenosine 3',5'-diphosphate; Adenosine 3',5'-bisphosphate
数据库引用编号
33 个数据库交叉引用编号
- ChEBI: CHEBI:17985
- KEGG: C00054
- PubChem: 159296
- PubChem: 73
- HMDB: HMDB0000061
- Metlin: METLIN3533
- DrugBank: DB01812
- ChEMBL: CHEMBL574817
- ChEMBL: CHEMBL416789
- MetaCyc: 3-5-ADP
- KNApSAcK: C00019352
- foodb: FDB030650
- chemspider: 140102
- CAS: 1053-73-2
- MoNA: PS011303
- MoNA: PS011311
- MoNA: PS011302
- MoNA: PS011305
- MoNA: PS011307
- MoNA: PS011301
- MoNA: PS011310
- MoNA: PS011306
- MoNA: PS011304
- MoNA: PS011308
- PMhub: MS000013583
- PubChem: 3356
- PDB-CCD: A3P
- 3DMET: B01140
- NIKKAJI: J14.396K
- RefMet: Adenosine 3',5'-diphosphate
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-224
- KNApSAcK: 17985
- LOTUS: LTS0192555
分类词条
相关代谢途径
Reactome(0)
PlantCyc(0)
代谢反应
103 个相关的代谢反应过程信息。
Reactome(32)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + SAH ⟶ Ade-Rib + HCYS
- Cytosolic sulfonation of small molecules:
3,5,3'-triiodothyronine + PAPS ⟶ 3,5,3'-triiodothyronine 4-sulfate + PAP
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + SAH ⟶ Ade-Rib + HCYS
- Cytosolic sulfonation of small molecules:
3,5,3'-triiodothyronine + PAPS ⟶ 3,5,3'-triiodothyronine 4-sulfate + PAP
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Cytosolic sulfonation of small molecules:
H2O + PNPB ⟶ BUT + PNP
- Metabolism of proteins:
EIF5A2 + NAD + SPM ⟶ 1,3-diaminopropane + H+ + H0ZKZ7 + NADH
- Post-translational protein modification:
EIF5A2 + NAD + SPM ⟶ 1,3-diaminopropane + H+ + H0ZKZ7 + NADH
- Asparagine N-linked glycosylation:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Transport to the Golgi and subsequent modification:
HNK1 carbohydrate + PAPS ⟶ PAP + S-HNK1 carbohydrate
- N-glycan antennae elongation in the medial/trans-Golgi:
HNK1 carbohydrate + PAPS ⟶ PAP + S-HNK1 carbohydrate
- Reactions specific to the complex N-glycan synthesis pathway:
HNK1 carbohydrate + PAPS ⟶ PAP + S-HNK1 carbohydrate
- O-linked glycosylation:
PAPS ⟶ PAP
- O-linked glycosylation of mucins:
PAPS ⟶ PAP
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glycosaminoglycan metabolism:
H2O ⟶ CH3COO-
- Keratan sulfate/keratin metabolism:
Keratan(4)-PG + PAPS ⟶ KSPG(1) + PAP
- Keratan sulfate biosynthesis:
Keratan(4)-PG + PAPS ⟶ KSPG(1) + PAP
- Heparan sulfate/heparin (HS-GAG) metabolism:
H2O ⟶ CH3COO-
- HS-GAG biosynthesis:
H2O ⟶ CH3COO-
- Chondroitin sulfate/dermatan sulfate metabolism:
PAPS + chondroitin(3)-core proteins ⟶ C4S-PG + PAP
- Chondroitin sulfate biosynthesis:
PAPS + chondroitin(3)-core proteins ⟶ C4S-PG + PAP
- Dermatan sulfate biosynthesis:
D4S-PGs + PAPS ⟶ D2,4(S)2-PG + PAP
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Vitamin B5 (pantothenate) metabolism:
ATP + L-Cys + PPanK ⟶ AMP + PPC + PPi
BioCyc(2)
- sulfate reduction I (assimilatory):
adenosine 3',5'-bisphosphate + an oxidized thioredoxin + sulfite ⟶ a reduced thioredoxin + phosphoadenosine-5'-phosphosulfate
- sulfate assimilation:
SO3-2 + adenosine 3',5'-bisphosphate + an oxidized thioredoxin ⟶ PAPS + a reduced thioredoxin
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(68)
- Tamoxifen Action Pathway:
4-Hydroxytamoxifen + Phosphoadenosine phosphosulfate ⟶ 4-Hydroxytamoxifen sulfate + Adenosine 3',5'-diphosphate
- Tamoxifen Metabolism Pathway:
4-Hydroxytamoxifen + Phosphoadenosine phosphosulfate ⟶ 4-Hydroxytamoxifen sulfate + Adenosine 3',5'-diphosphate
- Tryptophan Metabolism:
Phosphoadenosine phosphosulfate + indolylmethyl-desulfoglucosinolate ⟶ Adenosine 3',5'-diphosphate + Glucobrassicin + Hydrogen Ion
- Sphingolipid Metabolism:
Glucosylceramide (d18:1/18:0) + Water ⟶ Ceramide (d18:1/18:0) + D-Glucose
- Gaucher Disease:
Glucosylceramide (d18:1/18:0) + Water ⟶ Ceramide (d18:1/18:0) + D-Glucose
- Globoid Cell Leukodystrophy:
Glucosylceramide (d18:1/18:0) + Water ⟶ Ceramide (d18:1/18:0) + D-Glucose
- Metachromatic Leukodystrophy (MLD):
Glucosylceramide (d18:1/18:0) + Water ⟶ Ceramide (d18:1/18:0) + D-Glucose
- Fabry Disease:
Glucosylceramide (d18:1/18:0) + Water ⟶ Ceramide (d18:1/18:0) + D-Glucose
- Krabbe Disease:
Glucosylceramide (d18:1/18:0) + Water ⟶ Ceramide (d18:1/18:0) + D-Glucose
- Androgen and Estrogen Metabolism:
Estradiol + NADP ⟶ Estrone + NADPH
- 17-beta Hydroxysteroid Dehydrogenase III Deficiency:
Estradiol + NADP ⟶ Estrone + NADPH
- Aromatase Deficiency:
Estradiol + NADP ⟶ Estrone + NADPH
- Androgen and Estrogen Metabolism:
Estradiol + NADP ⟶ Estrone + NADPH
- 17-beta Hydroxysteroid Dehydrogenase III Deficiency:
Estradiol + NADP ⟶ Estrone + NADPH
- Aromatase Deficiency:
Estradiol + NADP ⟶ Estrone + NADPH
- Androgen and Estrogen Metabolism:
Estradiol + NADP ⟶ Estrone + NADPH
- Androgen and Estrogen Metabolism:
Estradiol + NADP ⟶ Estrone + NADPH
- Androgen and Estrogen Metabolism:
Estradiol + NADP ⟶ Estrone + NADPH
- Androgen and Estrogen Metabolism:
Estradiol + NADP ⟶ Estrone + NADPH
- 17-beta Hydroxysteroid Dehydrogenase III Deficiency:
Estradiol + NADP ⟶ Estrone + NADPH
- Aromatase Deficiency:
Estradiol + NADP ⟶ Estrone + NADPH
- Sulfate/Sulfite Metabolism:
Estrone + Phosphoadenosine phosphosulfate ⟶ Adenosine 3',5'-diphosphate + Estrone sulfate
- Sulfite Oxidase Deficiency:
Estrone + Phosphoadenosine phosphosulfate ⟶ Adenosine 3',5'-diphosphate + Estrone sulfate
- Estrone Metabolism:
2-Hydroxyestrone + S-Adenosylmethionine ⟶ 2-Methoxyestrone + S-Adenosylhomocysteine
- Sulfate/Sulfite Metabolism:
Estrone + Phosphoadenosine phosphosulfate ⟶ Adenosine 3',5'-diphosphate + Estrone sulfate
- Estrone Metabolism:
2-Hydroxyestrone + S-Adenosylmethionine ⟶ 2-Methoxyestrone + S-Adenosylhomocysteine
- Sulfite Oxidase Deficiency:
Estrone + Phosphoadenosine phosphosulfate ⟶ Adenosine 3',5'-diphosphate + Estrone sulfate
- Sulfate/Sulfite Metabolism:
Estrone + Phosphoadenosine phosphosulfate ⟶ Adenosine 3',5'-diphosphate + Estrone sulfate
- Estrone Metabolism:
2-Hydroxyestrone + S-Adenosylmethionine ⟶ 2-Methoxyestrone + S-Adenosylhomocysteine
- Sulfate/Sulfite Metabolism:
Estrone + Phosphoadenosine phosphosulfate ⟶ Adenosine 3',5'-diphosphate + Estrone sulfate
- Estrone Metabolism:
2-Hydroxyestrone + S-Adenosylmethionine ⟶ 2-Methoxyestrone + S-Adenosylhomocysteine
- Sulfate/Sulfite Metabolism:
Estrone + Phosphoadenosine phosphosulfate ⟶ Adenosine 3',5'-diphosphate + Estrone sulfate
- Estrone Metabolism:
2-Hydroxyestrone + S-Adenosylmethionine ⟶ 2-Methoxyestrone + S-Adenosylhomocysteine
- Sulfate/Sulfite Metabolism:
Estrone + Phosphoadenosine phosphosulfate ⟶ Adenosine 3',5'-diphosphate + Estrone sulfate
- Estrone Metabolism:
2-Hydroxyestrone + S-Adenosylmethionine ⟶ 2-Methoxyestrone + S-Adenosylhomocysteine
- Sulfite Oxidase Deficiency:
Estrone + Phosphoadenosine phosphosulfate ⟶ Adenosine 3',5'-diphosphate + Estrone sulfate
- Acetaminophen Metabolism Pathway:
Acetaminophen + Phosphoadenosine phosphosulfate ⟶ Adenosine 3',5'-diphosphate + Paracetamol sulfate
- Cysteine Biosynthesis:
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism:
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Butanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Propanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Ethanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Isethionate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Methanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + Ammonium + L-Cysteine
- Cysteine Biosynthesis:
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism:
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Butanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Propanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Ethanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Isethionate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Methanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Flavone and Flavonol Biosynthesis:
Phosphoadenosine phosphosulfate + Quercetin ⟶ Adenosine 3',5'-diphosphate + Hydrogen Ion + Quercetin 3'-sulfate
- Sphingolipid Metabolism:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Gaucher Disease:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Globoid Cell Leukodystrophy:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Metachromatic Leukodystrophy (MLD):
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Fabry Disease:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Krabbe Disease:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Sphingolipid Metabolism:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Sphingolipid Metabolism:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Sphingolipid Metabolism:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Sphingolipid Metabolism:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Gaucher Disease:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Globoid Cell Leukodystrophy:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Metachromatic Leukodystrophy (MLD):
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Fabry Disease:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Krabbe Disease:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
PharmGKB(0)
16 个相关的物种来源信息
- 654 - Aeromonas veronii: 10.3389/FCIMB.2020.00044
- 2 - Bacteria: LTS0192555
- 7711 - Chordata: LTS0192555
- 543 - Enterobacteriaceae: LTS0192555
- 561 - Escherichia: LTS0192555
- 562 - Escherichia coli: LTS0192555
- 2759 - Eukaryota: LTS0192555
- 1236 - Gammaproteobacteria: LTS0192555
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
- 40674 - Mammalia: LTS0192555
- 33208 - Metazoa: LTS0192555
- 10066 - Muridae: LTS0192555
- 10088 - Mus: LTS0192555
- 10090 - Mus musculus: LTS0192555
- 10090 - Mus musculus: NA
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Andrea Pagano, Lorena Zannino, Paola Pagano, Enrico Doria, Daniele Dondi, Anca Macovei, Marco Biggiogera, Susana de Sousa Araújo, Alma Balestrazzi. Changes in genotoxic stress response, ribogenesis and PAP (3'-phosphoadenosine 5'-phosphate) levels are associated with loss of desiccation tolerance in overprimed Medicago truncatula seeds.
Plant, cell & environment.
2022 05; 45(5):1457-1473. doi:
10.1111/pce.14295
. [PMID: 35188276] - Manuel Balparda, Alejandro M Armas, Gonzalo M Estavillo, Hannetz Roschzttardtz, María A Pagani, Diego F Gomez-Casati. The PAP/SAL1 retrograde signaling pathway is involved in iron homeostasis.
Plant molecular biology.
2020 Feb; 102(3):323-337. doi:
10.1007/s11103-019-00950-7
. [PMID: 31900819] - Chenchen Zhao, Yuanyuan Wang, Kai Xun Chan, D Blaine Marchant, Peter J Franks, David Randall, Estee E Tee, Guang Chen, Sunita Ramesh, Su Yin Phua, Ben Zhang, Adrian Hills, Fei Dai, Dawei Xue, Matthew Gilliham, Steve Tyerman, Eviatar Nevo, Feibo Wu, Guoping Zhang, Gane K-S Wong, James H Leebens-Mack, Michael Melkonian, Michael R Blatt, Pamela S Soltis, Douglas E Soltis, Barry J Pogson, Zhong-Hua Chen. Evolution of chloroplast retrograde signaling facilitates green plant adaptation to land.
Proceedings of the National Academy of Sciences of the United States of America.
2019 03; 116(11):5015-5020. doi:
10.1073/pnas.1812092116
. [PMID: 30804180] - Da-Jeong Shin, Ji-Hee Min, Tinh Van Nguyen, Young-Min Kim, Cheol Soo Kim. Loss of Arabidopsis Halotolerance 2-like (AHL), a 3'-phosphoadenosine-5'-phosphate phosphatase, suppresses insensitive response of Arabidopsis thaliana ring zinc finger 1 (atrzf1) mutant to abiotic stress.
Plant molecular biology.
2019 Mar; 99(4-5):363-377. doi:
10.1007/s11103-019-00822-0
. [PMID: 30637572] - Xiaofeng Fang, Gaozhan Zhao, Su Zhang, Yaoxi Li, Hanqing Gu, Yan Li, Qiao Zhao, Yijun Qi. Chloroplast-to-Nucleus Signaling Regulates MicroRNA Biogenesis in Arabidopsis.
Developmental cell.
2019 02; 48(3):371-382.e4. doi:
10.1016/j.devcel.2018.11.046
. [PMID: 30595534] - Natallia Ashykhmina, Melanie Lorenz, Henning Frerigmann, Anna Koprivova, Eduard Hofsetz, Nils Stührwohldt, Ulf-Ingo Flügge, Ilka Haferkamp, Stanislav Kopriva, Tamara Gigolashvili. PAPST2 Plays Critical Roles in Removing the Stress Signaling Molecule 3'-Phosphoadenosine 5'-Phosphate from the Cytosol and Its Subsequent Degradation in Plastids and Mitochondria.
The Plant cell.
2019 01; 31(1):231-249. doi:
10.1105/tpc.18.00512
. [PMID: 30464037] - Estee E Tee. Too Much, Take it Back: PAP Moves from the Cytosol to Plastids and Mitochondria for Degradation via PAPST2.
The Plant cell.
2019 01; 31(1):15-16. doi:
10.1105/tpc.18.00944
. [PMID: 30573470] - Peter A Crisp, Aaron B Smith, Diep R Ganguly, Kevin D Murray, Steven R Eichten, Anthony A Millar, Barry J Pogson. RNA Polymerase II Read-Through Promotes Expression of Neighboring Genes in SAL1-PAP-XRN Retrograde Signaling.
Plant physiology.
2018 12; 178(4):1614-1630. doi:
10.1104/pp.18.00758
. [PMID: 30301775] - Suzanne Litthauer, Kai Xun Chan, Matthew Alan Jones. 3'-Phosphoadenosine 5'-Phosphate Accumulation Delays the Circadian System.
Plant physiology.
2018 04; 176(4):3120-3135. doi:
10.1104/pp.17.01611
. [PMID: 29487119] - Felix Hirschmann, Florian Krause, Petra Baruch, Igor Chizhov, Jonathan Wolf Mueller, Dietmar J Manstein, Jutta Papenbrock, Roman Fedorov. Structural and biochemical studies of sulphotransferase 18 from Arabidopsis thaliana explain its substrate specificity and reaction mechanism.
Scientific reports.
2017 06; 7(1):4160. doi:
10.1038/s41598-017-04539-2
. [PMID: 28646214] - Wannarat Pornsiriwong, Gonzalo M Estavillo, Kai Xun Chan, Estee E Tee, Diep Ganguly, Peter A Crisp, Su Yin Phua, Chenchen Zhao, Jiaen Qiu, Jiyoung Park, Miing Tiem Yong, Nazia Nisar, Arun Kumar Yadav, Benjamin Schwessinger, John Rathjen, Christopher I Cazzonelli, Philippa B Wilson, Matthew Gilliham, Zhong-Hua Chen, Barry J Pogson. A chloroplast retrograde signal, 3'-phosphoadenosine 5'-phosphate, acts as a secondary messenger in abscisic acid signaling in stomatal closure and germination.
eLife.
2017 03; 6(?):. doi:
10.7554/elife.23361
. [PMID: 28323614] - Kai Xun Chan, Peter D Mabbitt, Su Yin Phua, Jonathan W Mueller, Nazia Nisar, Tamara Gigolashvili, Elke Stroeher, Julia Grassl, Wiebke Arlt, Gonzalo M Estavillo, Colin J Jackson, Barry J Pogson. Sensing and signaling of oxidative stress in chloroplasts by inactivation of the SAL1 phosphoadenosine phosphatase.
Proceedings of the National Academy of Sciences of the United States of America.
2016 08; 113(31):E4567-76. doi:
10.1073/pnas.1604936113
. [PMID: 27432987] - Quentin Bruggeman, Christelle Mazubert, Florence Prunier, Raphaël Lugan, Kai Xun Chan, Su Yin Phua, Barry James Pogson, Anja Krieger-Liszkay, Marianne Delarue, Moussa Benhamed, Catherine Bergounioux, Cécile Raynaud. Chloroplast Activity and 3'phosphadenosine 5'phosphate Signaling Regulate Programmed Cell Death in Arabidopsis.
Plant physiology.
2016 Mar; 170(3):1745-56. doi:
10.1104/pp.15.01872
. [PMID: 26747283] - Benjamin H Hudson, John D York. Tissue-specific regulation of 3'-nucleotide hydrolysis and nucleolar architecture.
Advances in biological regulation.
2014 Jan; 54(?):208-13. doi:
10.1016/j.jbior.2013.11.002
. [PMID: 24309248] - S S Stojilkovic, K Kretschmannova, M Tomić, C A Stratakis. Dependence of the excitability of pituitary cells on cyclic nucleotides.
Journal of neuroendocrinology.
2012 Sep; 24(9):1183-200. doi:
10.1111/j.1365-2826.2012.02335.x
. [PMID: 22564128] - Elie Toledano, Vasily Ogryzko, Antoine Danchin, Daniel Ladant, Undine Mechold. 3'-5' phosphoadenosine phosphate is an inhibitor of PARP-1 and a potential mediator of the lithium-dependent inhibition of PARP-1 in vivo.
The Biochemical journal.
2012 Apr; 443(2):485-90. doi:
10.1042/bj20111057
. [PMID: 22240080] - Xiaoping Wang, Huanping Lin, Yan Gu. Multiple roles of dihomo-γ-linolenic acid against proliferation diseases.
Lipids in health and disease.
2012 Feb; 11(?):25. doi:
10.1186/1476-511x-11-25
. [PMID: 22333072] - Bok-Rye Lee, Stine Huseby, Anna Koprivova, Aurore Chételat, Markus Wirtz, Sam T Mugford, Emily Navid, Charles Brearley, Shikha Saha, Richard Mithen, Rüdiger Hell, Edward E Farmer, Stanislav Kopriva. Effects of fou8/fry1 mutation on sulfur metabolism: is decreased internal sulfate the trigger of sulfate starvation response?.
PloS one.
2012; 7(6):e39425. doi:
10.1371/journal.pone.0039425
. [PMID: 22724014] - Gonzalo M Estavillo, Peter A Crisp, Wannarat Pornsiriwong, Markus Wirtz, Derek Collinge, Chris Carrie, Estelle Giraud, James Whelan, Pascale David, Hélène Javot, Charles Brearley, Rüdiger Hell, Elena Marin, Barry J Pogson. Evidence for a SAL1-PAP chloroplast retrograde pathway that functions in drought and high light signaling in Arabidopsis.
The Plant cell.
2011 Nov; 23(11):3992-4012. doi:
10.1105/tpc.111.091033
. [PMID: 22128124] - Nancy A Eckardt. Retrograde signaling: a new candidate signaling molecule.
The Plant cell.
2011 Nov; 23(11):3870. doi:
10.1105/tpc.111.231113
. [PMID: 22128121] - Petter K Risøe, Una Ryg, Yun Yong Wang, Arkady Rutkovskiy, Bård Smedsrød, Guro Valen, Maria K Dahle. Cecal ligation and puncture sepsis is associated with attenuated expression of adenylyl cyclase 9 and increased miR142-3p.
Shock (Augusta, Ga.).
2011 Oct; 36(4):390-5. doi:
10.1097/shk.0b013e318228ec6f
. [PMID: 21701418] - Tsvetomir Loukanov, Hiroaki Takahashi, Pencho Tonchev, Jasmin Gross, Markus Bettendorf, Matthias Gorenflo. Plasma cyclic 3',5'-adenosine monophosphate in patients with elevated pulmonary pressure due to left-to-right shunt.
The Canadian journal of cardiology.
2011 Jul; 27(4):523.e25-9. doi:
10.1016/j.cjca.2010.12.063
. [PMID: 21652166] - Morten E Møldrup, Fernando Geu-Flores, Carl E Olsen, Barbara A Halkier. Modulation of sulfur metabolism enables efficient glucosinolate engineering.
BMC biotechnology.
2011 Jan; 11(?):12. doi:
10.1186/1472-6750-11-12
. [PMID: 21281472] - Hao Chen, Baichen Zhang, Leslie M Hicks, Liming Xiong. A nucleotide metabolite controls stress-responsive gene expression and plant development.
PloS one.
2011; 6(10):e26661. doi:
10.1371/journal.pone.0026661
. [PMID: 22028934] - Hao Chen, Liming Xiong. The bifunctional abiotic stress signalling regulator and endogenous RNA silencing suppressor FIERY1 is required for lateral root formation.
Plant, cell & environment.
2010 Dec; 33(12):2180-90. doi:
10.1111/j.1365-3040.2010.02218.x
. [PMID: 20807376] - Hannah M Jaag, Peter D Nagy. The combined effect of environmental and host factors on the emergence of viral RNA recombinants.
PLoS pathogens.
2010 Oct; 6(10):e1001156. doi:
10.1371/journal.ppat.1001156
. [PMID: 20975943] - S Aisling Aherne, Nora M O'Brien. Modulation of cytokine production by plant sterols in stimulated human Jurkat T cells.
Molecular nutrition & food research.
2008 Jun; 52(6):664-73. doi:
10.1002/mnfr.200700385
. [PMID: 18465778] - Constanze Pietsch, Reinhard Vogt, Nadja Neumann, Werner Kloas. Production of nitric oxide by carp (Cyprinus carpio L.) kidney leukocytes is regulated by cyclic 3',5'-adenosine monophosphate.
Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.
2008 May; 150(1):58-65. doi:
10.1016/j.cbpa.2008.03.003
. [PMID: 18424130] - Chizumi Nomura-Furuwatari, Shigeyuki Wakitani, Yusuke Hashimoto, Yuuki Imai, Yoichi Ohta, Keisuke Nakagawa, Yoshihiro Nakao, Kazushi Takayama, Tomoya Manaka, Kunio Takaoka. Expression profiles of phosphodiesterase 4D splicing variants in osteoblastic cells.
Journal of bone and mineral metabolism.
2008; 26(2):152-8. doi:
10.1007/s00774-007-0803-7
. [PMID: 18301971] - Zhixiong Chen, Zach Suntres, Jeffrey Palmer, Jorge Guzman, Asad Javed, Jianjing Xue, Jun-Ge Yu, Helen Cooke, Hamdy Awad, Hamdy H Hassanain, Arturo J Cardounel, Fievos L Christofi. Cyclic AMP signaling contributes to neural plasticity and hyperexcitability in AH sensory neurons following intestinal Trichinella spiralis-induced inflammation.
International journal for parasitology.
2007 Jun; 37(7):743-61. doi:
10.1016/j.ijpara.2006.12.018
. [PMID: 17307183] - Tobias Schuerholz, Annette Weissig, Bjoern Juettner, Thomas Becker, Dirk Scheinichen. Ex vivo microvesicle formation after prolonged ischemia in renal transplantation.
Thrombosis research.
2007; 120(2):231-6. doi:
10.1016/j.thromres.2006.10.003
. [PMID: 17107705] - Maayan Barnea, Avi Shamay, Aliza H Stark, Zecharia Madar. A high-fat diet has a tissue-specific effect on adiponectin and related enzyme expression.
Obesity (Silver Spring, Md.).
2006 Dec; 14(12):2145-53. doi:
10.1038/oby.2006.251
. [PMID: 17189540] - Z Su, J Zimpelmann, K D Burns. Angiotensin-(1-7) inhibits angiotensin II-stimulated phosphorylation of MAP kinases in proximal tubular cells.
Kidney international.
2006 Jun; 69(12):2212-8. doi:
10.1038/sj.ki.5001509
. [PMID: 16672906] - Mahesh Thirunavukkarasu, Sureshvarma Penumathsa, Bela Juhasz, Lijun Zhan, Manashi Bagchi, Taharat Yasmin, Michael A Shara, Hemant S Thatte, Debasis Bagchi, Nilanjana Maulik. Enhanced cardiovascular function and energy level by a novel chromium (III)-supplement.
BioFactors (Oxford, England).
2006; 27(1-4):53-67. doi:
10.1002/biof.5520270106
. [PMID: 17012764] - Dave Bridges, Marie E Fraser, Greg B G Moorhead. Cyclic nucleotide binding proteins in the Arabidopsis thaliana and Oryza sativa genomes.
BMC bioinformatics.
2005 Jan; 6(?):6. doi:
10.1186/1471-2105-6-6
. [PMID: 15644130] - E C Chin, T E Harris, D R E Abayasekara. Changes in cAMP-dependent protein kinase (PKA) and progesterone secretion in luteinizing human granulosa cells.
The Journal of endocrinology.
2004 Oct; 183(1):39-50. doi:
10.1677/joe.1.05549
. [PMID: 15525572] - F Mármol, P Gonzalez, G Maierhofer, J Gimenez, J Forn. Effects of phospholipid vesicles (liposomes) on cAMP levels in the rat cerebral cortex.
Methods and findings in experimental and clinical pharmacology.
2003 Jun; 25(5):349-53. doi:
10.1358/mf.2003.25.5.769655
. [PMID: 12851656] - A J Karsten, H Derouet, M Ziegler, R E Eckert. Involvement of cyclic nucleotides in renal artery smooth muscle relaxation.
Urological research.
2003 Feb; 30(6):367-73. doi:
10.1007/s00240-002-0281-2
. [PMID: 12599016] - J Forsblad, A Gottsäter, K Persson, L Jacobsson, F Lindgärde. Clinical manifestations of atherosclerosis in an elderly population are related to plasma neopterin, NGAL and endothelin-1, but not to Chlamydia pneumoniae serology.
International angiology : a journal of the International Union of Angiology.
2002 Jun; 21(2):173-9. doi:
. [PMID: 12110780]
- T Ikegami, T Nishizaki, S Hiroshige, R Ohta, K Yanaga, K Sugimachi. Experimental study of a type 3 phosphodiesterase inhibitor on liver graft function.
The British journal of surgery.
2001 Jan; 88(1):59-64. doi:
10.1046/j.1365-2168.2001.01621.x
. [PMID: 11136311] - S Nadanaka, M Fujita, K Sugahara. Demonstration of a novel sulfotransferase in fetal bovine serum, which transfers sulfate to the C6 position of the GalNAc residue in the sequence iduronic acid alpha1-3GalNAc beta1-4iduronic acid in dermatan sulfate.
FEBS letters.
1999 Jun; 452(3):185-9. doi:
10.1016/s0014-5793(99)00597-9
. [PMID: 10386587] - E Nandanan, E Camaioni, S Y Jang, Y C Kim, G Cristalli, P Herdewijn, J A Secrist, K N Tiwari, A Mohanram, T K Harden, J L Boyer, K A Jacobson. Structure-activity relationships of bisphosphate nucleotide derivatives as P2Y1 receptor antagonists and partial agonists.
Journal of medicinal chemistry.
1999 May; 42(9):1625-38. doi:
10.1021/jm980657j
. [PMID: 10229631] - E Camaioni, J L Boyer, A Mohanram, T K Harden, K A Jacobson. Deoxyadenosine bisphosphate derivatives as potent antagonists at P2Y1 receptors.
Journal of medicinal chemistry.
1998 Jan; 41(2):183-90. doi:
10.1021/jm970433l
. [PMID: 9457242] - J L Boyer, T Romero-Avila, J B Schachter, T K Harden. Identification of competitive antagonists of the P2Y1 receptor.
Molecular pharmacology.
1996 Nov; 50(5):1323-9. doi:
. [PMID: 8913364]
- L M Yang, M D Fernandez, G K Lamppa. Acyl carrier protein (ACP) import into chloroplasts. Covalent modification by a stromal holoACP synthase is stimulated by exogenously added CoA and inhibited by adenosine 3',5'-bisphosphate.
European journal of biochemistry.
1994 Sep; 224(2):743-50. doi:
10.1111/j.1432-1033.1994.00743.x
. [PMID: 7925393]