Gene Association: ATP5ME

UniProt Search: ATP5ME (PROTEIN_CODING)
Function Description: ATP synthase membrane subunit e

found 329 associated metabolites with current gene based on the text mining result from the pubmed database.

L-Tryptophan

L-Tryptophan, from non-animal source, meets EP, JP, USP testing specifications, suitable for cell culture, 99.0-101.0\\%

C11H12N2O2 (204.0899)


Tryptophan (Trp) or L-tryptophan is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-tryptophan is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Tryptophan is found in all organisms ranging from bacteria to plants to animals. It is classified as a non-polar, uncharged (at physiological pH) aromatic amino acid. Tryptophan is an essential amino acid, meaning the body cannot synthesize it, and it must be obtained from the diet. The requirement for tryptophan and protein decreases with age. The minimum daily requirement for adults is 3 mg/kg/day or about 200 mg a day. There is 400 mg of tryptophan in a cup of wheat germ. A cup of low-fat cottage cheese contains 300 mg of tryptophan and chicken and turkey contain up to 600 mg of tryptophan per pound (http://www.dcnutrition.com). Tryptophan is particularly plentiful in chocolate, oats, dried dates, milk, yogurt, cottage cheese, red meat, eggs, fish, poultry, sesame, chickpeas, almonds, sunflower seeds, pumpkin seeds, buckwheat, spirulina, and peanuts. Tryptophan is the precursor of both serotonin and melatonin. Melatonin is a hormone that is produced by the pineal gland in animals, which regulates sleep and wakefulness. Serotonin is a brain neurotransmitter, platelet clotting factor, and neurohormone found in organs throughout the body. Metabolism of tryptophan into serotonin requires nutrients such as vitamin B6, niacin, and glutathione. Niacin (also known as vitamin B3) is an important metabolite of tryptophan. It is synthesized via kynurenine and quinolinic acids, which are products of tryptophan degradation. There are a number of conditions or diseases that are characterized by tryptophan deficiencies. For instance, fructose malabsorption causes improper absorption of tryptophan in the intestine, which reduces levels of tryptophan in the blood and leads to depression. High corn diets or other tryptophan-deficient diets can cause pellagra, which is a niacin-tryptophan deficiency disease with symptoms of dermatitis, diarrhea, and dementia. Hartnups disease is a disorder in which tryptophan and other amino acids are not absorbed properly. Symptoms of Hartnups disease include skin rashes, difficulty coordinating movements (cerebellar ataxia), and psychiatric symptoms such as depression or psychosis. Tryptophan supplements may be useful for treating Hartnups disease. Assessment of tryptophan deficiency is done through studying excretion of tryptophan metabolites in the urine or blood. Blood may be the most sensitive test because the amino acid tryptophan is transported in a unique way. Increased urination of tryptophan breakdown products (such as kynurenine) correlates with increased tryptophan degradation, which occurs with oral contraception, depression, mental retardation, hypertension, and anxiety states. Tryptophan plays a role in "feast-induced" drowsiness. Ingestion of a meal rich in carbohydrates triggers the release of insulin. Insulin, in turn, stimulates the uptake of large neutral branched-chain amino acids (BCAAs) into muscle, increasing the ratio of tryptophan to BCAA in the bloodstream. The increased tryptophan ratio reduces competition at the large neutral amino acid transporter (which transports both BCAAs and tryptophan), resulting in greater uptake of tryptophan across the blood-brain barrier into the cerebrospinal fluid (CSF). Once in the CSF, tryptophan is converted into serotonin and the resulting serotonin is further metabolized into melatonin by the pineal gland, which promotes sleep. Because tryptophan is converted into 5-hydroxytryptophan (5-HTP) which is then converted into the neurotransmitter serotonin, it has been proposed th... L-tryptophan is a white powder with a flat taste. An essential amino acid; occurs in isomeric forms. (NTP, 1992) L-tryptophan is the L-enantiomer of tryptophan. It has a role as an antidepressant, a nutraceutical, a micronutrient, a plant metabolite, a human metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite. It is an erythrose 4-phosphate/phosphoenolpyruvate family amino acid, a proteinogenic amino acid, a tryptophan and a L-alpha-amino acid. It is a conjugate base of a L-tryptophanium. It is a conjugate acid of a L-tryptophanate. It is an enantiomer of a D-tryptophan. It is a tautomer of a L-tryptophan zwitterion. An essential amino acid that is necessary for normal growth in infants and for nitrogen balance in adults. It is a precursor of indole alkaloids in plants. It is a precursor of serotonin (hence its use as an antidepressant and sleep aid). It can be a precursor to niacin, albeit inefficiently, in mammals. L-Tryptophan is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Tryptophan is the least plentiful of all 22 amino acids and an essential amino acid in humans (provided by food), Tryptophan is found in most proteins and a precursor of serotonin. Tryptophan is converted to 5-hydroxy-tryptophan (5-HTP), converted in turn to serotonin, a neurotransmitter essential in regulating appetite, sleep, mood, and pain. Tryptophan is a natural sedative and present in dairy products, meats, brown rice, fish, and soybeans. (NCI04) Tryptophan is an essential amino acid which is the precursor of serotonin. Serotonin is a brain neurotransmitter, platelet clotting factor and neurohormone found in organs throughout the body. Metabolism of tryptophan to serotonin requires nutrients such as vitamin B6, niacin and glutathione. Niacin is an important metabolite of tryptophan. High corn or other tryptophan-deficient diets can cause pellagra, which is a niacin-tryptophan deficiency disease with symptoms of dermatitis, diarrhea and dementia. Inborn errors of tryptophan metabolism exist where a tumor (carcinoid) makes excess serotonin. Hartnups disease is a disease where tryptophan and other amino acids are not absorbed properly. Tryptophan supplements may be useful in each condition, in carcinoid replacing the over-metabolized nutrient and in Hartnups supplementing a malabsorbed nutrient. Some disorders of excess tryptophan in the blood may contribute to mental retardation. Assessment of tryptophan deficiency is done through studying excretion of tryptophan metabolites in the urine or blood. Blood may be the most sensitive test because the amino acid tryptophan is transported in a unique way. Increased urination of tryptophan fragments correlates with increased tryptophan degradation, which occurs with oral contraception, depression, mental retardation, hypertension and anxiety states. The requirement for tryptophan and protein decreases with age. Adults minimum daily requirement is 3 mg/kg/day or about 200 mg a day. This may be an underestimation, for there are 400 mg of tryptophan in just a cup of wheat germ. A cup of low fat cottage cheese contains 300 mg of tryptophan and chicken and turkey contain up to 600 mg per pound. An essential amino acid that is necessary for normal growth in infants and for NITROGEN balance in adults. It is a precursor of INDOLE ALKALOIDS in plants. It is a precursor of SEROTONIN (hence its use as an antidepressant and sleep aid). It can be a precursor to NIACIN, albeit inefficiently, in mammals. See also: Serotonin; tryptophan (component of); Chamomile; ginger; melatonin; thiamine; tryptophan (component of) ... View More ... Constituent of many plants. Enzymatic hydrolysis production of most plant and animal proteins. Dietary supplement, nutrient D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants COVID info from PDB, Protein Data Bank The L-enantiomer of tryptophan. Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CBA09_Tryptophan_pos_30eV_1-1_01_662.txt [Raw Data] CBA09_Tryptophan_pos_20eV_1-1_01_661.txt [Raw Data] CBA09_Tryptophan_neg_30eV_1-1_01_716.txt [Raw Data] CBA09_Tryptophan_pos_10eV_1-1_01_660.txt [Raw Data] CBA09_Tryptophan_neg_10eV_1-1_01_714.txt [Raw Data] CBA09_Tryptophan_neg_40eV_1-1_01_717.txt [Raw Data] CBA09_Tryptophan_neg_20eV_1-1_01_715.txt [Raw Data] CBA09_Tryptophan_pos_50eV_1-1_01_664.txt [Raw Data] CBA09_Tryptophan_neg_50eV_1-1_01_718.txt [Raw Data] CBA09_Tryptophan_pos_40eV_1-1_01_663.txt IPB_RECORD: 253; CONFIDENCE confident structure KEIO_ID T003 DL-Tryptophan is an endogenous metabolite. L-Tryptophan (Tryptophan) is an essential amino acid that is the precursor of serotonin, melatonin, and vitamin B3[1]. L-Tryptophan (Tryptophan) is an essential amino acid that is the precursor of serotonin, melatonin, and vitamin B3[1].

   

Harmaline

3H-Pyrido[3,4-b]indole, 4,9-dihydro-7-methoxy-1-methyl-

C13H14N2O (214.1106)


Harmaline is a harmala alkaloid in which the harman skeleton is methoxy-substituted at C-7 and has been reduced across the 3,4 bond. It has a role as a oneirogen. It derives from a hydride of a harman. Harmaline is a natural product found in Passiflora pilosicorona, Passiflora boenderi, and other organisms with data available. A beta-carboline alkaloid isolated from seeds of PEGANUM. A harmala alkaloid in which the harman skeleton is methoxy-substituted at C-7 and has been reduced across the 3,4 bond. Harmaline is found in fruits. Harmaline is an alkaloid from Passiflora incarnata (maypops D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants D004791 - Enzyme Inhibitors > D008996 - Monoamine Oxidase Inhibitors Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID H027; [MS2] KO008994 KEIO_ID H027

   

Cholic acid

(4R)-4-[(3R,5S,7R,8R,9S,10S,12S,13R,14S,17R)-3,7,12-trihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoic acid

C24H40O5 (408.2876)


Cholic acid is a bile acid that is 5beta-cholan-24-oic acid bearing three alpha-hydroxy substituents at position 3, 7 and 12. It has a role as a human metabolite and a mouse metabolite. It is a bile acid, a C24-steroid, a 3alpha-hydroxy steroid, a 7alpha-hydroxy steroid, a 12alpha-hydroxy steroid and a trihydroxy-5beta-cholanic acid. It is a conjugate acid of a cholate. Cholic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Cholic acid is a Bile Acid. Cholic acid is a naturally occurring bile acid that is used to treat patients with genetic deficiencies in the synthesis of bile acids. When given in high doses, cholic acid replacement therapy has been linked to minor elevations in serum aminotransferase levels, but it has not been linked to instances of clinically apparent acute liver injury with jaundice. Cholic acid is a natural product found in Caenorhabditis elegans, Bufo bufo, and Homo sapiens with data available. Cholic acid is a major primary bile acid produced in the liver and usually conjugated with glycine or taurine. It facilitates fat absorption and cholesterol excretion. Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g., membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues. (A3407, A3408, A3409, A3410). A major primary bile acid produced in the liver and usually conjugated with glycine or taurine. It facilitates fat absorption and cholesterol excretion. See also: Cholic acid; ferrous gluconate; honey (component of). Cholic acid is a major primary bile acid produced in the liver and is usually conjugated with glycine or taurine. It facilitates fat absorption and cholesterol excretion. Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, and depends only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine, and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH, and consequently require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). When present in sufficiently high levels, cholic acid can act as a hepatotoxin and a metabotoxin. A hepatotoxin causes damage to the liver or liver cells. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Among the primary bile acids, cholic acid is considered to be the least hepatotoxic while deoxycholic acid is the most hepatoxic (PMID: 1641875). The liver toxicity of bile acids appears to be due to their ability to peroxidate lipids and to lyse liver cells. Chronically high levels of cholic acid are associated with familial hypercholanemia. In hypercholanemia, bile acids, including cholic acid, are elevated in the blood. This disease causes liver damage, extensive itching, poor fat absorption, and can lead to rickets due to lack of calcium in bones. The deficiency of normal bile acids in the intestines results in a deficiency of vitamin K, which also adversely affects clotting of the blood. The bile acid ursodiol (ursodeoxycholic acid) can improve symptoms associated with familial hypercholanemia. Cholic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=81-25-4 (retrieved 2024-06-29) (CAS RN: 81-25-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Cholic acid is a major primary bile acid produced in the liver and usually conjugated with glycine or taurine. It facilitates fat absorption and cholesterol excretion. Cholic acid is orally active[1][2]. Cholic acid is a major primary bile acid produced in the liver and usually conjugated with glycine or taurine. It facilitates fat absorption and cholesterol excretion. Cholic acid is orally active[1][2].

   

Rotenone

[1]Benzopyrano[3,4-b]furo[2,3-h][1]benzopyran-6(6aH)-one, 1,2,12,12a-tetrahydro-8,9-dimethoxy-2-(1-methylethenyl)-, [2R-(2alpha,6aalpha,12aalpha)]-

C23H22O6 (394.1416)


Rotenone appears as colorless to brownish crystals or a white to brownish-white crystalline powder. Has neither odor nor taste. (NTP, 1992) Rotenone is a member of the class of rotenones that consists of 1,2,12,12a-tetrahydrochromeno[3,4-b]furo[2,3-h]chromen-6(6aH)-one substituted at position 2 by a prop-1-en-2-yl group and at positions 8 and 9 by methoxy groups (the 2R,6aS,12aS-isomer). A non-systemic insecticide, it is the principal insecticidal constituent of derris (the dried rhizome and root of Derris elliptica). It has a role as a phytogenic insecticide, a mitochondrial NADH:ubiquinone reductase inhibitor, a metabolite, an antineoplastic agent, a toxin and a piscicide. It is an organic heteropentacyclic compound and a member of rotenones. Rotenone is an isoflavone compound that naturally occurs in the jicama vine plant as well as many Fabaceae plants. It has broad spectrum insecticide and pesticide activity and is also toxic to fish. Rotenone is a natural product found in Pachyrhizus erosus, Millettia ferruginea, and other organisms with data available. Rotenone is a naturally occurring organic heteropentacyclic compound and member of rotenones that is found in the roots of several plant species. It is a mitochondrial NADH:ubiquinone reductase inhibitor, toxin, and metabolite, and is used as an antineoplastic agent and insecticide. It is characterized as a colorless to brownish or a white to brownish-white crystalline solid that is odorless. Exposure occurs by inhalation, ingestion, or contact. Rotenone is found in jicama. Rotenone is widely distributed in the Leguminosae (Papilionoideae) e.g. Pachyrrhizus erosus (yam bean).Rotenone is an odorless chemical that is used as a broad-spectrum insecticide, piscicide, and pesticide. It occurs naturally in the roots and stems of several plants such as the jicama vine plant. In mammals, including humans, it is linked to the development of Parkinsons disease. (Wikipedia) Rotenone has been shown to exhibit apoptotic, neuroprotectant and neuroprotective functions (A7776, A7777, A7777).Rotenone belongs to the family of Rotenoids. These are phenolic compounds containing aA cis-fused tetrahydrochromeno[3,4-b]chromenenucleus. Many rotenoids contain an additional ring, e.g rotenone[1]. (Reference: [1] IUPAC. Compendium of Chemical Terminology, 2nd ed. (the Gold Book). Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford (1997). XML on-line corrected version: http://goldbook.iupac.org (2006-) created by M. Nic, J. Jirat, B. Kosata; updates compiled by A. Jenkins. ISBN 0-9678550-9-8. doi:10.1351/goldbook. (PAC, 1995, 67, 1307 (Glossary of class names of organic compounds and reactivity intermediates based on structure (IUPAC Recommendations 1995)) on page 1364)). A botanical insecticide that is an inhibitor of mitochondrial electron transport. Rotenone is found in jicama. Rotenone is widely distributed in the Leguminosae (Papilionoideae) e.g. Pachyrrhizus erosus (yam bean).Rotenone is an odorless chemical that is used as a broad-spectrum insecticide, piscicide, and pesticide. It occurs naturally in the roots and stems of several plants such as the jicama vine plant. In mammals, including humans, it is linked to the development of Parkinsons disease. A member of the class of rotenones that consists of 1,2,12,12a-tetrahydrochromeno[3,4-b]furo[2,3-h]chromen-6(6aH)-one substituted at position 2 by a prop-1-en-2-yl group and at positions 8 and 9 by methoxy groups (the 2R,6aS,12aS-isomer). A non-systemic insecticide, it is the principal insecticidal constituent of derris (the dried rhizome and root of Derris elliptica). Widely distrib. in the Leguminosae (Papilionoideae) e.g. Pachyrrhizus erosus (yam bean) D004791 - Enzyme Inhibitors > D014475 - Uncoupling Agents D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals Rotenone is a mitochondrial electron transport chain complex I inhibitor. Rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. Rotenone is a mitochondrial electron transport chain complex I inhibitor. Rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. Rotenone is a mitochondrial electron transport chain complex I inhibitor. Rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production.

   

Aesculin

7-hydroxy-6-[3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]oxy-chromen-2-one hydrate;Esculin Sesquihydrate

C15H16O9 (340.0794)


Esculin is a hydroxycoumarin that is the 6-O-beta-D-glucoside of esculetin. It has a role as an antioxidant and a metabolite. It is a beta-D-glucoside and a hydroxycoumarin. It is functionally related to an esculetin. Esculin is found in barley. Vitamin C2 is generally considered a bioflavanoid, related to vitamin P esculin is a glucoside that naturally occurs in the horse chestnut (Aesculus hippocastanum), California Buckeye (Aesculus californica) and in daphnin (the dark green resin of Daphne mezereum). Esculin belongs to the family of Glycosyl Compounds. These are carbohydrate derivatives in which a sugar group is bonded through its anmoeric carbonA to another group via a C-, S-,N-,O-, or Se- glycosidic bond. Esculin is a natural product found in Ficus septica, Gardenia jasminoides, and other organisms with data available. A derivative of COUMARIN with molecular formula C15H16O9. See also: Horse Chestnut (part of); Aesculus hippocastanum bark (part of). Aesculin is found in barley. Vitamin C2 is generally considered a bioflavanoid, related to vitamin P Aesculin is a glucoside that naturally occurs in the horse chestnut (Aesculus hippocastanum), California Buckeye (Aesculus californica) and in daphnin (the dark green resin of Daphne mezereum) Vitamin C2 is generally considered a bioflavanoid, related to vitamin P A hydroxycoumarin that is the 6-O-beta-D-glucoside of esculetin. Acquisition and generation of the data is financially supported in part by CREST/JST. Esculin, a fluorescent coumarin glucoside, is an active ingredient of ash bark[1]. Esculin ameliorates cognitive impairment in experimental diabetic nephropathy (DN), and exerts anti?oxidative stress and anti?inflammatory effects, via the MAPK signaling pathway[2]. Esculin, a fluorescent coumarin glucoside, is an active ingredient of ash bark[1]. Esculin ameliorates cognitive impairment in experimental diabetic nephropathy (DN), and exerts anti?oxidative stress and anti?inflammatory effects, via the MAPK signaling pathway[2].

   

Ruscogenin

(1S,2S,4S,5R,6R,7S,8R,9S,12S,13R,14R,16R)-5,7,9,13-tetramethylspiro[5-oxapentacyclo[10.8.0.02,9.04,8.013,18]icos-18-ene-6,2-oxane]-14,16-diol

C27H42O4 (430.3083)


Ruscogenin is a triterpenoid. Ruscogenin is a natural product found in Cordyline rubra, Cordyline banksii, and other organisms with data available. Ruscogenin, an important steroid sapogenin derived from Ophiopogon japonicus, attenuates cerebral ischemia-induced blood-brain barrier dysfunction by suppressing TXNIP/NLRP3 inflammasome activation and the MAPK pathway. Ruscogenin exerts significant anti-inflammatory and anti-thrombotic activities. Ruscogenin has orally bioactivity[1][2]. Ruscogenin, an important steroid sapogenin derived from Ophiopogon japonicus, attenuates cerebral ischemia-induced blood-brain barrier dysfunction by suppressing TXNIP/NLRP3 inflammasome activation and the MAPK pathway. Ruscogenin exerts significant anti-inflammatory and anti-thrombotic activities. Ruscogenin has orally bioactivity[1][2].

   

Eriocitrin

(S)-2-(3,4-dihydroxyphenyl)-5-hydroxy-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)chroman-4-one

C27H32O15 (596.1741)


Eriocitrin is a disaccharide derivative that consists of eriodictyol substituted by a 6-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as an antioxidant. It is a disaccharide derivative, a member of 3-hydroxyflavanones, a trihydroxyflavanone, a flavanone glycoside, a member of 4-hydroxyflavanones and a rutinoside. It is functionally related to an eriodictyol. Eriocitrin is a natural product found in Cyclopia subternata, Citrus latipes, and other organisms with data available. Eriocitrin is a flavonoid glycoside that can be found in plants like Citrus grandis, Citrus limon, Mentha longifolia, Mentha piperita, Thymus vulgaris. It shows important antioxidant activities. Isolated from Mentha piperita (peppermint) leaves and from Citrus subspecies Eriocitrin is a flavonoid isolated from lemon, which is a strong antioxidant agent. Eriocitrin could inhibit the proliferation of hepatocellular carcinoma cell lines by arresting cell cycle in S phase through up-regulation of p53, cyclin A, cyclin D3 and CDK6. Eriocitrin triggers apoptosis by activating mitochondria-involved intrinsic signaling pathway[1]. Eriocitrin is a flavonoid isolated from lemon, which is a strong antioxidant agent. Eriocitrin could inhibit the proliferation of hepatocellular carcinoma cell lines by arresting cell cycle in S phase through up-regulation of p53, cyclin A, cyclin D3 and CDK6. Eriocitrin triggers apoptosis by activating mitochondria-involved intrinsic signaling pathway[1].

   

Citric acid

2-hydroxypropane-1,2,3-tricarboxylic acid

C6H8O7 (192.027)


Citric acid (citrate) is a tricarboxylic acid, an organic acid with three carboxylate groups. Citrate is an intermediate in the TCA cycle (also known as the Tricarboxylic Acid cycle, the Citric Acid cycle or Krebs cycle). The TCA cycle is a central metabolic pathway for all animals, plants, and bacteria. As a result, citrate is found in all living organisms, from bacteria to plants to animals. In the TCA cycle, the enzyme citrate synthase catalyzes the condensation of oxaloacetate with acetyl CoA to form citrate. Citrate then acts as the substrate for the enzyme known as aconitase and is then converted into aconitic acid. The TCA cycle ends with regeneration of oxaloacetate. This series of chemical reactions in the TCA cycle is the source of two-thirds of the food-derived energy in higher organisms. Citrate can be transported out of the mitochondria and into the cytoplasm, then broken down into acetyl-CoA for fatty acid synthesis, and into oxaloacetate. Citrate is a positive modulator of this conversion, and allosterically regulates the enzyme acetyl-CoA carboxylase, which is the regulating enzyme in the conversion of acetyl-CoA into malonyl-CoA (the commitment step in fatty acid synthesis). In short, citrate is transported into the cytoplasm, converted into acetyl CoA, which is then converted into malonyl CoA by acetyl CoA carboxylase, which is allosterically modulated by citrate. In mammals and other vertebrates, Citrate is a vital component of bone, helping to regulate the size of apatite crystals (PMID: 21127269). Citric acid is found in citrus fruits, most concentrated in lemons and limes, where it can comprise as much as 8\\\\\% of the dry weight of the fruit. Citric acid is a natural preservative and is also used to add an acidic (sour) taste to foods and carbonated drinks. Because it is one of the stronger edible acids, the dominant use of citric acid is as a flavoring and preservative in food and beverages, especially soft drinks and candies. Citric acid is an excellent chelating agent, binding metals by making them soluble. It is used to remove and discourage the buildup of limescale from boilers and evaporators. It can be used to treat water, which makes it useful in improving the effectiveness of soaps and laundry detergents. The salts of citric acid (citrates) can be used as anticoagulants due to their calcium chelating ability. Intolerance to citric acid in the diet is known to exist. Little information is available as the condition appears to be rare, but like other types of food intolerance it is often described as a "pseudo-allergic" reaction. Citric acid appears as colorless, odorless crystals with an acid taste. Denser than water. (USCG, 1999) Citric acid is a tricarboxylic acid that is propane-1,2,3-tricarboxylic acid bearing a hydroxy substituent at position 2. It is an important metabolite in the pathway of all aerobic organisms. It has a role as a food acidity regulator, a chelator, an antimicrobial agent and a fundamental metabolite. It is a conjugate acid of a citrate(1-) and a citrate anion. A key intermediate in metabolism. It is an acid compound found in citrus fruits. The salts of citric acid (citrates) can be used as anticoagulants due to their calcium-chelating ability. Citric acid is one of the active ingredients in Phexxi, a non-hormonal contraceptive agent that was approved by the FDA on May 2020. It is also used in combination with magnesium oxide to form magnesium citrate, an osmotic laxative. Citric acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Anhydrous citric acid is a Calculi Dissolution Agent and Anti-coagulant. The mechanism of action of anhydrous citric acid is as an Acidifying Activity and Calcium Chelating Activity. The physiologic effect of anhydrous citric acid is by means of Decreased Coagulation Factor Activity. Anhydrous Citric Acid is a tricarboxylic acid found in citrus fruits. Citric acid is used as an excipient in pharmaceutical preparations due to its antioxidant properties. It maintains stability of active ingredients and is used as a preservative. It is also used as an acidulant to control pH and acts as an anticoagulant by chelating calcium in blood. A key intermediate in metabolism. It is an acid compound found in citrus fruits. The salts of citric acid (citrates) can be used as anticoagulants due to their calcium chelating ability. See also: Citric Acid Monohydrate (related). Citrate, also known as anhydrous citric acid or 2-hydroxy-1,2,3-propanetricarboxylic acid, belongs to tricarboxylic acids and derivatives class of compounds. Those are carboxylic acids containing exactly three carboxyl groups. Citrate is soluble (in water) and a weakly acidic compound (based on its pKa). Citrate can be found in a number of food items such as ucuhuba, loquat, bayberry, and longan, which makes citrate a potential biomarker for the consumption of these food products. Citrate can be found primarily in most biofluids, including saliva, sweat, feces, and blood, as well as throughout all human tissues. Citrate exists in all living species, ranging from bacteria to humans. In humans, citrate is involved in several metabolic pathways, some of which include the oncogenic action of succinate, the oncogenic action of fumarate, the oncogenic action of 2-hydroxyglutarate, and congenital lactic acidosis. Citrate is also involved in several metabolic disorders, some of which include 2-ketoglutarate dehydrogenase complex deficiency, pyruvate dehydrogenase deficiency (E2), fumarase deficiency, and glutaminolysis and cancer. Moreover, citrate is found to be associated with lung Cancer, tyrosinemia I, maple syrup urine disease, and propionic acidemia. A citrate is a derivative of citric acid; that is, the salts, esters, and the polyatomic anion found in solution. An example of the former, a salt is trisodium citrate; an ester is triethyl citrate. When part of a salt, the formula of the citrate ion is written as C6H5O73− or C3H5O(COO)33− . A tricarboxylic acid that is propane-1,2,3-tricarboxylic acid bearing a hydroxy substituent at position 2. It is an important metabolite in the pathway of all aerobic organisms. Citric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=77-92-9 (retrieved 2024-07-01) (CAS RN: 77-92-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Citric acid is a natural preservative and food tartness enhancer. Citric acid induces apoptosis and cell cycle arrest at G2/M phase and S phase in HaCaT cells. Citric acid cause oxidative damage of the liver by means of the decrease of antioxidative enzyme activities. Citric acid causes renal toxicity in mice[1][2][3]. Citric acid is a natural preservative and food tartness enhancer. Citric acid induces apoptosis and cell cycle arrest at G2/M phase and S phase in HaCaT cells. Citric acid cause oxidative damage of the liver by means of the decrease of antioxidative enzyme activities. Citric acid causes renal toxicity in mice[1][2][3].

   

Fumaric acid

(2E)-but-2-enedioic acid

C4H4O4 (116.011)


Fumaric acid appears as a colorless crystalline solid. The primary hazard is the threat to the environment. Immediate steps should be taken to limit spread to the environment. Combustible, though may be difficult to ignite. Used to make paints and plastics, in food processing and preservation, and for other uses. Fumaric acid is a butenedioic acid in which the C=C double bond has E geometry. It is an intermediate metabolite in the citric acid cycle. It has a role as a food acidity regulator, a fundamental metabolite and a geroprotector. It is a conjugate acid of a fumarate(1-). Fumaric acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Fumaric acid is a precursor to L-malate in the Krebs tricarboxylic acid cycle. It is formed by the oxidation of succinate by succinate dehydrogenase. Fumarate is converted by fumarase to malate. A fumarate is a salt or ester of the organic compound fumaric acid, a dicarboxylic acid. Fumarate has recently been recognized as an oncometabolite. (A15199). As a food additive, fumaric acid is used to impart a tart taste to processed foods. It is also used as an antifungal agent in boxed foods such as cake mixes and flours, as well as tortillas. Fumaric acid is also added to bread to increase the porosity of the final baked product. It is used to impart a sour taste to sourdough and rye bread. In cake mixes, it is used to maintain a low pH and prevent clumping of the flours used in the mix. In fruit drinks, fumaric acid is used to maintain a low pH which, in turn, helps to stabilize flavor and color. Fumaric acid also prevents the growth of E. coli in beverages when used in combination with sodium benzoate. When added to wines, fumaric acid helps to prevent further fermentation and yet maintain low pH and eliminate traces of metallic elements. In this fashion, it helps to stabilize the taste of wine. Fumaric acid can also be added to dairy products, sports drinks, jams, jellies and candies. Fumaric acid helps to break down bonds between gluten proteins in wheat and helps to create a more pliable dough. Fumaric acid is used in paper sizing, printer toner, and polyester resin for making molded walls. Fumaric acid is a dicarboxylic acid. It is a precursor to L-malate in the Krebs tricarboxylic acid (TCA) cycle. It is formed by the oxidation of succinic acid by succinate dehydrogenase. Fumarate is converted by the enzyme fumarase to malate. Fumaric acid has recently been identified as an oncometabolite or an endogenous, cancer causing metabolite. High levels of this organic acid can be found in tumors or biofluids surrounding tumors. Its oncogenic action appears to due to its ability to inhibit prolyl hydroxylase-containing enzymes. In many tumours, oxygen availability becomes limited (hypoxia) very quickly due to rapid cell proliferation and limited blood vessel growth. The major regulator of the response to hypoxia is the HIF transcription factor (HIF-alpha). Under normal oxygen levels, protein levels of HIF-alpha are very low due to constant degradation, mediated by a series of post-translational modification events catalyzed by the prolyl hydroxylase domain-containing enzymes PHD1, 2 and 3, (also known as EglN2, 1 and 3) that hydroxylate HIF-alpha and lead to its degradation. All three of the PHD enzymes are inhibited by fumarate. Fumaric acid is found to be associated with fumarase deficiency, which is an inborn error of metabolism. It is also a metabolite of Aspergillus. Produced industrially by fermentation of Rhizopus nigricans, or manufactured by catalytic or thermal isomerisation of maleic anhydride or maleic acid. Used as an antioxidant, acidulant, leavening agent and flavouring agent in foods. Present in raw lean fish. Dietary supplement. Used in powdered products since fumaric acid is less hygroscopic than other acids. A precursor to L-malate in the Krebs tricarboxylic acid cycle. It is formed by the oxidation of succinate by succinate dehydrogenase (wikipedia). Fumaric acid is also found in garden tomato, papaya, wild celery, and star fruit. Fumaric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=110-17-8 (retrieved 2024-07-01) (CAS RN: 110-17-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Fumaric acid, associated with fumarase deficiency, is identified as an oncometabolite or an endogenous, cancer causing metabolite. Fumaric acid, associated with fumarase deficiency, is identified as an oncometabolite or an endogenous, cancer causing metabolite.

   

3,3',4'5-Tetrahydroxystilbene

(E)-4-[2-(3,5Dihydroxyphenyl)ethenyl]1,2-benzenediol, 3,3a?4,5a?Tetrahydroxy-trans-stilbene

C14H12O4 (244.0736)


Piceatannol is a stilbenol that is trans-stilbene in which one of the phenyl groups is substituted by hydroxy groups at positions 3 and 4, while the other phenyl group is substituted by hydroxy groups at positions 3 and 5. It has a role as a protein kinase inhibitor, a tyrosine kinase inhibitor, an antineoplastic agent, a plant metabolite, a hypoglycemic agent, an apoptosis inducer and a geroprotector. It is a stilbenol, a member of resorcinols, a member of catechols and a polyphenol. It derives from a hydride of a trans-stilbene. Piceatannol is a natural product found in Vitis amurensis, Smilax bracteata, and other organisms with data available. Piceatannol is a polyhydroxylated stilbene extract from the seeds of Euphorbia lagascae, which inhibits protein tyrosine kinase Syk and induces apoptosis. (NCI) Piceatannol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Wine grape (part of); Robinia pseudoacacia whole (part of); Tsuga canadensis bark (part of). 3,3,45-Tetrahydroxystilbene (or Piceatannol) is a phenolic stilbenoid. It is a metabolite of resveratrol found in red wine. A viral protein-tyrosine kinase (LMP2A) implicated in leukemia, non-Hodgkins lymphoma and other diseases associated with Epstein-Barr virus, was recently found to be blocked by picetannol in vitro (PMID 2590224). Therefore there is research interest in piceatannol as an anti-cancer and anti-EBV drug. Piceatannol can also act as an agonist for estrogen receptor alpha in human breast cancer cells (PMID: 16216908). [HMDB] 3,3,45-Tetrahydroxystilbene (or Piceatannol) is a phenolic stilbenoid. It is a metabolite of resveratrol found in red wine. A viral protein-tyrosine kinase (LMP2A) implicated in leukemia, non-Hodgkins lymphoma and other diseases associated with Epstein-Barr virus, was recently found to be blocked by picetannol in vitro (PMID 2590224). Therefore there is research interest in piceatannol as an anti-cancer and anti-EBV drug. Piceatannol can also act as an agonist for estrogen receptor alpha in human breast cancer cells (PMID: 16216908). A stilbenol that is trans-stilbene in which one of the phenyl groups is substituted by hydroxy groups at positions 3 and 4, while the other phenyl group is substituted by hydroxy groups at positions 3 and 5. C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C1967 - Tyrosine Kinase Inhibitor Piceatannol is a well-known Syk inhibitor and reduces the expression of iNOS induced by TNF. Piceatannol is an effective agent for research of acute lung injury (ALI)[1]. Piceatannol is a naturally occurring polyphenolic stilbene found in various fruits and vegetables and exhibits anticancer and anti-inflammatory properties[2]. Piceatannol induces apoptosis in DLBCL cell lines[3]. Piceatannol induces autophagy and apoptosis in MOLT-4 human leukemia cells[4]. Piceatannol is a well-known Syk inhibitor and reduces the expression of iNOS induced by TNF. Piceatannol is an effective agent for research of acute lung injury (ALI)[1]. Piceatannol is a naturally occurring polyphenolic stilbene found in various fruits and vegetables and exhibits anticancer and anti-inflammatory properties[2]. Piceatannol induces apoptosis in DLBCL cell lines[3]. Piceatannol induces autophagy and apoptosis in MOLT-4 human leukemia cells[4].

   

Sclareol

1-Naphthalenepropanol, alpha-ethenyldecahydro-2-hydroxy-alpha,2,5,5,8a-pentamethyl-, (alphaR,1R,2R,4aS,8aS)-: (1R,2R,4aS,8aS)-1-[(3R)-3-hydroxy-3-methylpent-4-en-1-yl]-2,5,5,8a-tetramethyldecahydronaphthalen-2-ol

C20H36O2 (308.2715)


Sclareol is a labdane diterpenoid that is labd-14-ene substituted by hydroxy groups at positions 8 and 13. It has been isolated from Salvia sclarea. It has a role as an antimicrobial agent, an apoptosis inducer, a fragrance, an antifungal agent and a plant metabolite. Sclareol is a natural product found in Curcuma aromatica, Curcuma wenyujin, and other organisms with data available. See also: Clary Sage Oil (part of). Constituent of Salvia sclarea (clary sage). Sclareol is found in many foods, some of which are common thyme, herbs and spices, tea, and nutmeg. Sclareol is found in alcoholic beverages. Sclareol is a constituent of Salvia sclarea (clary sage) Sclareol is isolated from Salvia sclarea with anticarcinogenic activity. Sclareol shows strong cytotoxic activity against mouse leukemia?(P-388), human epidermal?carcinoma?(KB) cells and human?leukemia?cell lines. Sclareol induces cell apoptosis[1]. Sclareol is isolated from Salvia sclarea with anticarcinogenic activity. Sclareol shows strong cytotoxic activity against mouse leukemia?(P-388), human epidermal?carcinoma?(KB) cells and human?leukemia?cell lines. Sclareol induces cell apoptosis[1].

   

(S)-[8]-Gingerol

3-Dodecanone, 5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-, (S)-(+)-

C19H30O4 (322.2144)


(8)-Gingerol is a beta-hydroxy ketone, a member of phenols and a monomethoxybenzene. (8)-Gingerol is a natural product found in Zingiber officinale with data available. See also: Ginger (part of). (S)-[8]-Gingerol is found in ginger. (S)-[8]-Gingerol is a constituent of ginger, the rhizome of Zingiber officinale. Constituent of ginger, the rhizome of Zingiber officinale. (S)-[8]-Gingerol is found in herbs and spices and ginger. 8-Gingerol, found in the rhizomes of ginger (Z. officinale) with oral bioavailability, activates TRPV1, with an EC50 of 5.0 μM. 8-Gingerol inhibits COX-2, and inhibits the growth of H. pylori in vitro[1][2]. 8-Gingerol, found in the rhizomes of ginger (Z. officinale) with oral bioavailability, activates TRPV1, with an EC50 of 5.0 μM. 8-Gingerol inhibits COX-2, and inhibits the growth of H. pylori in vitro[1][2].

   

(S)-[10]-Gingerol

3-Tetradecanone, 5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-, (5S)-

C21H34O4 (350.2457)


(10)-Gingerol is a beta-hydroxy ketone, a member of phenols and a monomethoxybenzene. (10)-Gingerol is a natural product found in Zingiber officinale with data available. See also: Ginger (part of). (S)-[10]-Gingerol is found in ginger. (S)-[10]-Gingerol is a constituent of ginger, the rhizome of Zingiber officinale. Constituent of ginger, the rhizome of Zingiber officinale. (S)-[10]-Gingerol is found in herbs and spices and ginger. 10-Gingerol is a major pungent constituent in the ginger oleoresin from fresh rhizome, with anti-inflammatory, antioxidant and anti-proliferative activities. 10-Gingerol inhibits the proliferation of MDA-MB-231 tumor cell line with an IC50 of 12.1 μM[1][2]. 10-Gingerol is a major pungent constituent in the ginger oleoresin from fresh rhizome, with anti-inflammatory, antioxidant and anti-proliferative activities. 10-Gingerol inhibits the proliferation of MDA-MB-231 tumor cell line with an IC50 of 12.1 μM[1][2].

   

Daphnoretin

7-hydroxy-6-methoxy-3-[(2-oxo-2H-chromen-7-yl)oxy]-2H-chromen-2-one

C19H12O7 (352.0583)


Daphnoretin (Dephnoretin), isolated from Wikstroemia indica, possesses antiviral activity[1]. Daphnoretin likes PMA, may direct activation of protein kinase C which in turn activated NADPH oxidase and elicited respiratory burst[2]. Daphnoretin (Dephnoretin), isolated from Wikstroemia indica, possesses antiviral activity[1]. Daphnoretin likes PMA, may direct activation of protein kinase C which in turn activated NADPH oxidase and elicited respiratory burst[2].

   

Monensin

(2S,3R,4S)-4-[(3S,5R,7S,8R,9S)-3-[(2R,5S)-5-ethyl-5-[(2R,3S,5R)-5-[(2S,3S,5R,6R)-6-hydroxy-6-(hydroxymethyl)-3,5-dimethyl-tetrahydropyran-2-yl]-3-methyl-tetrahydrofuran-2-yl]tetrahydrofuran-2-yl]-7-hydroxy-3,8-dimethyl-4,10-dioxaspiro[4.5]decan-9-yl]-3-methoxy-2-methyl-pentanoic acid

C36H62O11 (670.4292)


Monensin A is a spiroketal, monensin A is the major component of monensin, a mixture of antibiotic substances produced by Streptomyces cinnamonensis. An antiprotozoal, it is used as the sodium salt as a feed additive for the prevention of coccidiosis in poultry and as a growth promoter in cattle. It has a role as a coccidiostat, an antifungal agent and an ionophore. It is a monocarboxylic acid, a cyclic hemiketal, a spiroketal and a polyether antibiotic. Monensin is a polyether isolated from Streptomyces cinnamonensis that presents antibiotic properties. It is widely used in ruminant animal feeds. Monensin is a natural product found in Streptomyces glaucescens and Apis cerana with data available. An antiprotozoal agent produced by Streptomyces cinnamonensis. It exerts its effect during the development of first-generation trophozoites into first-generation schizonts within the intestinal epithelial cells. It does not interfere with hosts development of acquired immunity to the majority of coccidial species. Monensin is a sodium and proton selective ionophore and is widely used as such in biochemical studies. See also: Monensin Sodium (has salt form). A spiroketal, monensin A is the major component of monensin, a mixture of antibiotic substances produced by Streptomyces cinnamonensis. An antiprotozoal, it is used as the sodium salt as a feed additive for the prevention of coccidiosis in poultry and as a growth promoter in cattle. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D004791 - Enzyme Inhibitors > D014475 - Uncoupling Agents D007476 - Ionophores > D061209 - Proton Ionophores D007476 - Ionophores > D061210 - Sodium Ionophores C254 - Anti-Infective Agent > C258 - Antibiotic D049990 - Membrane Transport Modulators CONFIDENCE standard compound; INTERNAL_ID 8499

   

3-(3,4-Dihydroxyphenyl)lactic acid

3-(3,4-DIHYDROXYPHENYL)LACTIC ACID DL-.BETA.-(3,4-DIHYDROXYPHENYL)LACTIC ACID

C9H10O5 (198.0528)


3-(3,4-dihydroxyphenyl)lactic acid is a 2-hydroxy monocarboxylic acid and a member of catechols. It is functionally related to a rac-lactic acid. It is a conjugate acid of a 3-(3,4-dihydroxyphenyl)lactate. 3-(3,4-Dihydroxyphenyl)-2-hydroxypropanoic acid is a natural product found in Salvia miltiorrhiza, Salvia sonchifolia, and other organisms with data available. 3-(3,4-Dihydroxyphenyl)lactic acid is a natural catecholamine metabolite present in normal newborns plasma (PMID 1391254) and in normal urine (PMID 7460271) [HMDB]. 3-(3,4-Dihydroxyphenyl)lactic acid is found in rosemary. 3-(3,4-Dihydroxyphenyl)lactic acid is a natural catecholamine metabolite present in normal newborns plasma (PMID 1391254) and in normal urine (PMID 7460271).

   

Zeaxanthin

(1R)-4-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-18-[(4R)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]-3,5,5-trimethylcyclohex-3-en-1-ol

C40H56O2 (568.428)


Zeaxanthin is a carotenoid xanthophyll and is one of the most common carotenoid found in nature. It is the pigment that gives corn, saffron, and many other plants their characteristic color. Zeaxanthin breaks down to form picrocrocin and safranal, which are responsible for the taste and aroma of saffron Carotenoids are among the most common pigments in nature and are natural lipid soluble antioxidants. Zeaxanthin is one of the two carotenoids (the other is lutein) that accumulate in the eye lens and macular region of the retina with concentrations in the macula greater than those found in plasma and other tissues. Lutein and zeaxanthin have identical chemical formulas and are isomers, but they are not stereoisomers. The main difference between them is in the location of a double bond in one of the end rings. This difference gives lutein three chiral centers whereas zeaxanthin has two. A relationship between macular pigment optical density, a marker of lutein and zeaxanthin concentration in the macula, and lens optical density, an antecedent of cataractous changes, has been suggested. The xanthophylls may act to protect the eye from ultraviolet phototoxicity via quenching reactive oxygen species and/or other mechanisms. Some observational studies have shown that generous intakes of lutein and zeaxanthin, particularly from certain xanthophyll-rich foods like spinach, broccoli and eggs, are associated with a significant reduction in the risk for cataract (up to 20\\%) and for age-related macular degeneration (up to 40\\%). While the pathophysiology of cataract and age-related macular degeneration is complex and contains both environmental and genetic components, research studies suggest dietary factors including antioxidant vitamins and xanthophylls may contribute to a reduction in the risk of these degenerative eye diseases. Further research is necessary to confirm these observations. (PMID: 11023002). Zeaxanthin has been found to be a microbial metabolite, it can be produced by Algibacter, Aquibacter, Escherichia, Flavobacterium, Formosa, Gramella, Hyunsoonleella, Kordia, Mesoflavibacter, Muricauda, Nubsella, Paracoccus, Siansivirga, Sphingomonas, Zeaxanthinibacter and yeast (https://reader.elsevier.com/reader/sd/pii/S0924224417302571?token=DE6BC6CC7DCDEA6150497AA3E375097A00F8E0C12AE03A8E420D85D1AC8855E62103143B5AE0B57E9C5828671F226801). It is a marker for the activity of Bacillus subtilis and/or Pseudomonas aeruginosa in the intestine. Higher levels are associated with higher levels of Bacillus or Pseudomonas. (PMID: 17555270; PMID: 12147474) Zeaxanthin is a carotenol. It has a role as a bacterial metabolite, a cofactor and an antioxidant. It derives from a hydride of a beta-carotene. Zeaxanthin is a most common carotenoid alcohols found in nature that is involved in the xanthophyll cycle. As a coexistent isomer of lutein, zeaxanthin is synthesized in plants and some micro-organisms. It gives the distinct yellow color to many vegetables and other plants including paprika, corn, saffron and wolfberries. Zeaxanthin is one of the two primary xanthophyll carotenoids contained within the retina of the eye and plays a predominant component in the central macula. It is available as a dietary supplement for eye health benefits and potential prevention of age-related macular degeneration. Zeaxanthin is also added as a food dye. Zeaxanthin is a natural product found in Bangia fuscopurpurea, Erythrobacter longus, and other organisms with data available. Carotenoids found in fruits and vegetables. Zeaxanthin accumulates in the MACULA LUTEA. See also: Saffron (part of); Corn (part of); Lycium barbarum fruit (part of). D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

Adenosine triphosphate

({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)phosphonic acid

C10H16N5O13P3 (506.9957)


Adenosine triphosphate, also known as atp or atriphos, is a member of the class of compounds known as purine ribonucleoside triphosphates. Purine ribonucleoside triphosphates are purine ribobucleotides with a triphosphate group linked to the ribose moiety. Adenosine triphosphate is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). Adenosine triphosphate can be found in a number of food items such as lichee, alpine sweetvetch, pecan nut, and black mulberry, which makes adenosine triphosphate a potential biomarker for the consumption of these food products. Adenosine triphosphate can be found primarily in blood, cellular cytoplasm, cerebrospinal fluid (CSF), and saliva, as well as throughout most human tissues. Adenosine triphosphate exists in all living species, ranging from bacteria to humans. In humans, adenosine triphosphate is involved in several metabolic pathways, some of which include phosphatidylethanolamine biosynthesis PE(16:0/18:4(6Z,9Z,12Z,15Z)), carteolol action pathway, phosphatidylethanolamine biosynthesis PE(20:3(5Z,8Z,11Z)/15:0), and carfentanil action pathway. Adenosine triphosphate is also involved in several metabolic disorders, some of which include lysosomal acid lipase deficiency (wolman disease), phosphoenolpyruvate carboxykinase deficiency 1 (PEPCK1), propionic acidemia, and the oncogenic action of d-2-hydroxyglutarate in hydroxygluaricaciduria. Moreover, adenosine triphosphate is found to be associated with rachialgia, neuroinfection, stroke, and subarachnoid hemorrhage. Adenosine triphosphate is a non-carcinogenic (not listed by IARC) potentially toxic compound. Adenosine triphosphate is a drug which is used for nutritional supplementation, also for treating dietary shortage or imbalanc. Adenosine triphosphate (ATP) is a complex organic chemical that participates in many processes. Found in all forms of life, ATP is often referred to as the "molecular unit of currency" of intracellular energy transfer. When consumed in metabolic processes, it converts to either the di- or monophosphates, respectively ADP and AMP. Other processes regenerate ATP such that the human body recycles its own body weight equivalent in ATP each day. It is also a precursor to DNA and RNA . ATP is able to store and transport chemical energy within cells. ATP also plays an important role in the synthesis of nucleic acids. ATP can be produced by various cellular processes, most typically in mitochondria by oxidative phosphorylation under the catalytic influence of ATP synthase. The total quantity of ATP in the human body is about 0.1 mole. The energy used by human cells requires the hydrolysis of 200 to 300 moles of ATP daily. This means that each ATP molecule is recycled 2000 to 3000 times during a single day. ATP cannot be stored, hence its consumption must closely follow its synthesis (DrugBank). Metabolism of organophosphates occurs principally by oxidation, by hydrolysis via esterases and by reaction with glutathione. Demethylation and glucuronidation may also occur. Oxidation of organophosphorus pesticides may result in moderately toxic products. In general, phosphorothioates are not directly toxic but require oxidative metabolism to the proximal toxin. The glutathione transferase reactions produce products that are, in most cases, of low toxicity. Paraoxonase (PON1) is a key enzyme in the metabolism of organophosphates. PON1 can inactivate some organophosphates through hydrolysis. PON1 hydrolyzes the active metabolites in several organophosphates insecticides as well as, nerve agents such as soman, sarin, and VX. The presence of PON1 polymorphisms causes there to be different enzyme levels and catalytic efficiency of this esterase, which in turn suggests that different individuals may be more susceptible to the toxic effect of organophosphate exposure (T3DB). ATP is an adenosine 5-phosphate in which the 5-phosphate is a triphosphate group. It is involved in the transportation of chemical energy during metabolic pathways. It has a role as a nutraceutical, a micronutrient, a fundamental metabolite and a cofactor. It is an adenosine 5-phosphate and a purine ribonucleoside 5-triphosphate. It is a conjugate acid of an ATP(3-). An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. Adenosine triphosphate is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Adenosine-5-triphosphate is a natural product found in Chlamydomonas reinhardtii, Arabidopsis thaliana, and other organisms with data available. Adenosine Triphosphate is an adenine nucleotide comprised of three phosphate groups esterified to the sugar moiety, found in all living cells. Adenosine triphosphate is involved in energy production for metabolic processes and RNA synthesis. In addition, this substance acts as a neurotransmitter. In cancer studies, adenosine triphosphate is synthesized to examine its use to decrease weight loss and improve muscle strength. Adenosine triphosphate (ATP) is a nucleotide consisting of a purine base (adenine) attached to the first carbon atom of ribose (a pentose sugar). Three phosphate groups are esterified at the fifth carbon atom of the ribose. ATP is incorporated into nucleic acids by polymerases in the processes of DNA replication and transcription. ATP contributes to cellular energy charge and participates in overall energy balance, maintaining cellular homeostasis. ATP can act as an extracellular signaling molecule via interactions with specific purinergic receptors to mediate a wide variety of processes as diverse as neurotransmission, inflammation, apoptosis, and bone remodelling. Extracellular ATP and its metabolite adenosine have also been shown to exert a variety of effects on nearly every cell type in human skin, and ATP seems to play a direct role in triggering skin inflammatory, regenerative, and fibrotic responses to mechanical injury, an indirect role in melanocyte proliferation and apoptosis, and a complex role in Langerhans cell-directed adaptive immunity. During exercise, intracellular homeostasis depends on the matching of adenosine triphosphate (ATP) supply and ATP demand. Metabolites play a useful role in communicating the extent of ATP demand to the metabolic supply pathways. Effects as different as proliferation or differentiation, chemotaxis, release of cytokines or lysosomal constituents, and generation of reactive oxygen or nitrogen species are elicited upon stimulation of blood cells with extracellular ATP. The increased concentration of adenosine triphosphate (ATP) in erythrocytes from patients with chronic renal failure (CRF) has been observed in many studies but the mechanism leading to these abnormalities still is controversial. (A3367, A3368, A3369, A3370, A3371). Adenosine triphosphate is a metabolite found in or produced by Saccharomyces cerevisiae. An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. Adenosine triphosphate (ATP) is a nucleotide consisting of a purine base (adenine) attached to the first carbon atom of ribose (a pentose sugar). Three phosphate groups are esterified at the fifth carbon atom of the ribose. ATP is incorporated into nucleic acids by polymerases in the processes of DNA replication and transcription. ATP contributes to cellular energy charge and participates in overall energy balance, maintaining cellular homeostasis. ATP can act as an extracellular signaling molecule via interactions with specific purinergic receptors to mediate a wide variety of processes as diverse as neurotransmission, inflammation, apoptosis, and bone remodelling. Extracellular ATP and its metabolite adenosine have also been shown to exert a variety of effects on nearly every cell type in human skin, and ATP seems to play a direct role in triggering skin inflammatory, regenerative, and fibrotic responses to mechanical injury, an indirect role in melanocyte proliferation and apoptosis, and a complex role in Langerhans cell-directed adaptive immunity. During exercise, intracellular homeostasis depends on the matching of adenosine triphosphate (ATP) supply and ATP demand. Metabolites play a useful role in communicating the extent of ATP demand to the metabolic supply pathways. Effects as different as proliferation or differentiation, chemotaxis, release of cytokines or lysosomal constituents, and generation of reactive oxygen or nitrogen species are elicited upon stimulation of blood cells with extracellular ATP. The increased concentration of adenosine triphosphate (ATP) in erythrocytes from patients with chronic renal failure (CRF) has been observed in many studies but the mechanism leading to these abnormalities still is controversial. (PMID: 15490415, 15129319, 14707763, 14696970, 11157473). 5′-ATP. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=56-65-5 (retrieved 2024-07-01) (CAS RN: 56-65-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

(+)-Epicatechin

2H-1-Benzopyran-3,5,7-triol, 2-(3,4-dihydroxyphenyl)-3,4-dihydro-, (2S-cis)-

C15H14O6 (290.079)


(+)-epicatechin is a catechin that is flavan carrying five hydroxy substituents at positions 3, 3, 4, 5 and 7 (the 2S,3S-stereoisomer). It has a role as a cyclooxygenase 1 inhibitor and a plant metabolite. It is a catechin and a polyphenol. It is an enantiomer of a (-)-epicatechin. (+)-Epicatechin is a natural product found in Gambeya perpulchra, Pavetta owariensis, and other organisms with data available. (+)-Epicatechin or ent-Epicatechin is one of the 4 catechin diastereoisomers. ent-Epicatechin is found in many foods, some of which are tea, apple, star fruit, and common buckwheat. A catechin that is flavan carrying five hydroxy substituents at positions 3, 3, 4, 5 and 7 (the 2S,3S-stereoisomer). (+)-Epicatechin is found in apple. (+)-Epicatechin or ent-Epicatechin is one of the 4 catechin diastereoisomers. C26170 - Protective Agent > C275 - Antioxidant Acquisition and generation of the data is financially supported in part by CREST/JST.

   

Squalene

InChI=1/C30H50/c1-25(2)15-11-19-29(7)23-13-21-27(5)17-9-10-18-28(6)22-14-24-30(8)20-12-16-26(3)4/h15-18,23-24H,9-14,19-22H2,1-8H3/b27-17+,28-18+,29-23+,30-24

C30H50 (410.3912)


Squalene is an unsaturated aliphatic hydrocarbon (carotenoid) with six unconjugated double bonds found in human sebum (5\\\\%), fish liver oils, yeast lipids, and many vegetable oils (e.g. palm oil, cottonseed oil, rapeseed oil). Squalene is a volatile component of the scent material from Saguinus oedipus (cotton-top tamarin monkey) and Saguinus fuscicollis (saddle-back tamarin monkey) (Hawleys Condensed Chemical Reference). Squalene is a component of adult human sebum that is principally responsible for fixing fingerprints (ChemNetBase). It is a natural organic compound originally obtained for commercial purposes primarily from shark liver oil, though there are botanical sources as well, including rice bran, wheat germ, and olives. All higher organisms produce squalene, including humans. It is a hydrocarbon and a triterpene. Squalene is a biochemical precursor to the whole family of steroids. Oxidation of one of the terminal double bonds of squalene yields 2,3-squalene oxide which undergoes enzyme-catalyzed cyclization to afford lanosterol, which is then elaborated into cholesterol and other steroids. Squalene is a low-density compound often stored in the bodies of cartilaginous fishes such as sharks, which lack a swim bladder and must therefore reduce their body density with fats and oils. Squalene, which is stored mainly in the sharks liver, is lighter than water with a specific gravity of 0.855 (Wikipedia) Squalene is used as a bactericide. It is also an intermediate in the manufacture of pharmaceuticals, rubber chemicals, and colouring materials (Physical Constants of Chemical Substances). Trans-squalene is a clear, slightly yellow liquid with a faint odor. Density 0.858 g / cm3. Squalene is a triterpene consisting of 2,6,10,15,19,23-hexamethyltetracosane having six double bonds at the 2-, 6-, 10-, 14-, 18- and 22-positions with (all-E)-configuration. It has a role as a human metabolite, a plant metabolite, a Saccharomyces cerevisiae metabolite and a mouse metabolite. Squalene is originally obtained from shark liver oil. It is a natural 30-carbon isoprenoid compound and intermediate metabolite in the synthesis of cholesterol. It is not susceptible to lipid peroxidation and provides skin protection. It is ubiquitously distributed in human tissues where it is transported in serum generally in association with very low density lipoproteins. Squalene is investigated as an adjunctive cancer therapy. Squalene is a natural product found in Ficus septica, Garcinia multiflora, and other organisms with data available. squalene is a metabolite found in or produced by Saccharomyces cerevisiae. A natural 30-carbon triterpene. See also: Olive Oil (part of); Shark Liver Oil (part of). A triterpene consisting of 2,6,10,15,19,23-hexamethyltetracosane having six double bonds at the 2-, 6-, 10-, 14-, 18- and 22-positions with (all-E)-configuration. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Squalene is an intermediate product in the synthesis of cholesterol, and shows several pharmacological properties such as hypolipidemic, hepatoprotective, cardioprotective, antioxidant, and antitoxicant activity. Squalene also has anti-fungal activity and can be used for the research of Trichophyton mentagrophytes research[2]. Squalene is an intermediate product in the synthesis of cholesterol, and shows several pharmacological properties such as hypolipidemic, hepatoprotective, cardioprotective, antioxidant, and antitoxicant activity. Squalene also has anti-fungal activity and can be used for the research of Trichophyton mentagrophytes research[2].

   

Cuminyl alcohol

InChI=1/C10H14O/c1-8(2)10-5-3-9(7-11)4-6-10/h3-6,8,11H,7H2,1-2H3

C10H14O (150.1045)


Cuminol or Cuminyl alcohol, also known as p-cumin-7-ol or 4-Isopropylbenzyl alcohol, belongs to the class of organic compounds known as aromatic monoterpenoids. These are monoterpenoids containing at least one aromatic ring. Monoterpenoids are terpenes that contain 10 carbon atoms and are comprised of two isoprene units. The biosynthesis of monoterpenes is known to occur mainly through the methyl-erythritol-phosphate (MEP) pathway in the plastids (PMID:7640522 ). Geranyl diphosphate (GPP) is a key intermediate in the biosynthesis of cyclic monoterpenes. GPP undergoes several cyclization reactions to yield a diverse number of cyclic arrangements. Cuminol is an extremely weak basic (essentially neutral) compound (based on its pKa). Cuminol is an alcohol derivative of p-Cymene. It exists as a clear, colorless liquid that is poorly soluble in water. Cuminol can be used as a food additive or as a cosmetic fragrance. It has a cumin, caraway or spicy, herbal aroma and a similar spicy, herbal or peppery taste. Cuminol is found naturally in a number of plants, spices and foods including cumin seed and cumin oils, caraway eucalyptus oils, thyme, sunflowers, tuermeric, guava fruit and other spices and essential oils. Cumin, a widely used spice, is known to have anti-diabetic properties and two of its phytochemicals: cuminol and cuminaldehyde appear to be among the most active components. Cuminol is a potent insulinotrophic molecule that can enhance insulin secretion by up to 4-fold (in rat islet cells) (PMID:23507295 ). It also exhibits strong beta-cell protective action (PMID:23507295 ). 4-isopropylbenzyl alcohol is a member of the class of benzyl alcohols in which the hydrogen at position 4 on the phenyl ring of benzyl alcohol has been replaced by an isopropyl group. It has a role as a fragrance, an insect repellent, a volatile oil component, a plant metabolite and a xenobiotic metabolite. It is a p-menthane monoterpenoid and a member of benzyl alcohols. It is functionally related to a p-cymene. 4-Isopropylbenzyl alcohol is a natural product found in Xylopia aromatica, Curcuma amada, and other organisms with data available. Flavouring ingredient. Isolated from oils of Cuminum cyminum (cumin). Cuminyl alcohol is found in many foods, some of which are sweet bay, sunflower, cumin, and herbs and spices. A member of the class of benzyl alcohols in which the hydrogen at position 4 on the phenyl ring of benzyl alcohol has been replaced by an isopropyl group. 4-Isopropylbenzyl alcohol is a chemical composition of the essential oils from the leaves and flowers of Camellia nitidissima. C. nitidissima possess multiple biological activities including antioxidant activity, anticancer activity, and cytotoxicity as well as inhibiting the formation of advanced glycation end-products[1]. 4-Isopropylbenzyl alcohol is a chemical composition of the essential oils from the leaves and flowers of Camellia nitidissima. C. nitidissima possess multiple biological activities including antioxidant activity, anticancer activity, and cytotoxicity as well as inhibiting the formation of advanced glycation end-products[1].

   

Safranal

InChI=1/C10H14O/c1-8-5-4-6-10(2,3)9(8)7-11/h4-5,7H,6H2,1-3H3

C10H14O (150.1045)


Safranal is found in fig. Safranal is a constituent of saffron (Crocus sativa). Safranal is a flavouring ingredient It is believed that safranal is a degradation product of the carotenoid zeaxanthin via the intermediacy of picrocrocin. Safranal is an effective anticonvulsant shown to act as an agonist at GABAA receptors. Safranal also exhibits high antioxidant and free radical scavenging activity, along with cytotoxicity towards cancer cells in vitro. It has also been shown to have antidepressant properties. Safranal is an organic compound isolated from saffron, the spice consisting of the stigmas of crocus flowers (Crocus sativus). It is the constituent primarily responsible for the aroma of saffron Safranal is a monoterpenoid formally derived from beta-cyclocitral by dehydrogenation. It is functionally related to a beta-cyclocitral. Safranal is a natural product found in Aspalathus linearis, Cistus creticus, and other organisms with data available. Constituent of saffron (Crocus sativa). Flavouring ingredient Safranal is an orally active main component of Saffron (Crocus sativus) and is responsible for the unique aroma of this spice. Safranal has neuroprotective and anti-inflammatory effects and has the potential for Parkinson’s disease research[1]. Safranal is an orally active main component of Saffron (Crocus sativus) and is responsible for the unique aroma of this spice. Safranal has neuroprotective and anti-inflammatory effects and has the potential for Parkinson’s disease research[1].

   

(E)-methyl ester 3-phenyl-2-propenoic acid

methyl cinnamate, propenoic-3-(14)C-labeled, (E)-isomer

C10H10O2 (162.0681)


Flavouring compound [Flavornet] Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1]. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1]. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1].

   

alpha-Terpinene

InChI=1/C10H16/c1-8(2)10-6-4-9(3)5-7-10/h4,6,8H,5,7H2,1-3H

C10H16 (136.1252)


Alpha-Terpinene is one of four isomers of terpinene (the other three being beta terpinene, gamma terpenine, and delta terpinine or terpimolene) that differ in the position of carbon-carbon double bonds. Alpha-Terpinene belongs to the class of organic compounds known as menthane monoterpenes. These are monoterpenes with a structure based on the o-, m-, or p-menthane backbone. p-Menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. alpha-Terpinene is a naturally occurring monoterpene found in allspice, cardamom, and marjoram. alpha-Terpinene is a constituent of many essential oils with oil from Litsea ceylanica being is a major source (20\\\\%) of it. alpha-Terpinene has been found in Citrus, Eucalyptus and Juniperus species, and cannabis plants (PMID:6991645 ). ±-Terpinene is a flavouring agent and is produced industrially by acid-catalyzed rearrangement of ±-pinene. It has perfume and flavoring properties but is mainly used to confer a pleasant odor to industrial fluids. Alpha-terpinene is one of three isomeric monoterpenes differing in the positions of their two double bonds (beta- and gamma-terpinene being the others). In alpha-terpinene the double bonds are at the 1- and 3-positions of the p-menthane skeleton. It has a role as a volatile oil component and a plant metabolite. It is a monoterpene and a cyclohexadiene. alpha-Terpinene is a natural product found in Xylopia aromatica, Xylopia sericea, and other organisms with data available. One of three isomeric monoterpenes differing in the positions of their two double bonds (beta- and gamma-terpinene being the others). In alpha-terpinene the double bonds are at the 1- and 3-positions of the p-menthane skeleton. Alpha-terpinene, also known as 1-isopropyl-4-methyl-1,3-cyclohexadiene or 1-methyl-4-(1-methylethyl)-1,3-cyclohexadiene, is a member of the class of compounds known as menthane monoterpenoids. Menthane monoterpenoids are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. Thus, alpha-terpinene is considered to be an isoprenoid lipid molecule. Alpha-terpinene is a camphoraceous, citrus, and herbal tasting compound and can be found in a number of food items such as summer savory, cabbage, pot marjoram, and wild celery, which makes alpha-terpinene a potential biomarker for the consumption of these food products. Alpha-terpinene can be found primarily in saliva. Alpha-terpinene exists in all eukaryotes, ranging from yeast to humans. α-Terpinene (Terpilene) is a monoterpene found in the essential oils of a large variety of foods and aromatic plants such as Mentha piperita. α-Terpinene is active against Trypanosoma evansi and has the potential for trypanosomosis treatment. α-Terpinene has antioxidant and antifungal properties[1][2][3][4]. α-Terpinene (Terpilene) is a monoterpene found in the essential oils of a large variety of foods and aromatic plants such as Mentha piperita. α-Terpinene is active against Trypanosoma evansi and has the potential for trypanosomosis treatment. α-Terpinene has antioxidant and antifungal properties[1][2][3][4].

   

Malic_acid

Malic acid, Pharmaceutical Secondary Standard; Certified Reference Material

C4H6O5 (134.0215)


Malic acid is a 2-hydroxydicarboxylic acid that is succinic acid in which one of the hydrogens attached to a carbon is replaced by a hydroxy group. It has a role as a food acidity regulator and a fundamental metabolite. It is a 2-hydroxydicarboxylic acid and a C4-dicarboxylic acid. It is functionally related to a succinic acid. It is a conjugate acid of a malate(2-) and a malate. Malic acid has been used in trials studying the treatment of Xerostomia, Depression, and Hypertension. See also: Hibiscus sabdariffa Flower (part of) ... View More ... A 2-hydroxydicarboxylic acid that is succinic acid in which one of the hydrogens attached to a carbon is replaced by a hydroxy group. Malic acid (Hydroxybutanedioic acid) is a dicarboxylic acid that is naturally found in fruits such as apples and pears. It plays a role in many sour or tart foods. Malic acid (Hydroxybutanedioic acid) is a dicarboxylic acid that is naturally found in fruits such as apples and pears. It plays a role in many sour or tart foods.

   

Cyprodinil

4-Cyclopropyl-6-methyl-N-phenyl-2-pyrimidinamine, 9ci

C14H15N3 (225.1266)


CONFIDENCE standard compound; INTERNAL_ID 810; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9314; ORIGINAL_PRECURSOR_SCAN_NO 9312 CONFIDENCE standard compound; INTERNAL_ID 810; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9293; ORIGINAL_PRECURSOR_SCAN_NO 9292 CONFIDENCE standard compound; INTERNAL_ID 810; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9313; ORIGINAL_PRECURSOR_SCAN_NO 9312 CONFIDENCE standard compound; INTERNAL_ID 810; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9269; ORIGINAL_PRECURSOR_SCAN_NO 9268 CONFIDENCE standard compound; INTERNAL_ID 810; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9257; ORIGINAL_PRECURSOR_SCAN_NO 9256 CONFIDENCE standard compound; INTERNAL_ID 810; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9258; ORIGINAL_PRECURSOR_SCAN_NO 9257 CONFIDENCE standard compound; EAWAG_UCHEM_ID 148 CONFIDENCE standard compound; INTERNAL_ID 2569 KEIO_ID C172; [MS2] KO008908 Cyprodinil is a fungicide. Cyprodinil is a fungicide KEIO_ID C172

   

5-Methyltetrahydrofolic acid

(2R)-2-[(4-{[(2-amino-5-methyl-4-oxo-3,4,5,6,7,8-hexahydropteridin-6-yl)methyl]amino}phenyl)formamido]pentanedioic acid

C20H25N7O6 (459.1866)


5 methyltetrahydrofolic acid (5-MTHF) is the most biologically active form of the B-vitamin known as folic acid, also known generically as folate. 5-MTHF functions, in concert with vitamin B12, as a methyl-group donor involved in the conversion of the amino acid homocysteine to methionine. Methyl (CH3) group donation is vital to many bodily processes, including serotonin, melatonin, and DNA synthesis. Therapeutically, 5-MTHF is instrumental in reducing homocysteine levels, preventing neural tube defects, and improving vascular endothelial function. Research on folate supplementation suggests it plays a key role in preventing cervical dysplasia and protecting against neoplasia in ulcerative colitis. Folic acid also shows promise as part of a nutritional protocol to treat vitiligo, and may reduce inflammation of the gingiva. Furthermore, certain neurological, cognitive, and psychiatric presentations may be secondary to folate deficiency. Such presentations include depression, peripheral neuropathy, myelopathy, restless legs syndrome, insomnia, dementia, forgetfulness, irritability, endogenous depression, organic psychosis, and schizophrenia-like syndromes. After ingestion, the process of conversion of folic acid to the metabolically active coenzyme forms is relatively complex. Synthesis of the active forms of folic acid requires several enzymes, adequate liver and intestinal function, and adequate supplies of riboflavin (B2), niacin (B3), pyridoxine (B6), zinc, vitamin C, and serine. After formation of the coenzyme forms of the vitamin in the liver, these metabolically active compounds are secreted into the small intestine with bile (the folate enterohepatic cycle), where they are reabsorbed and distributed to tissues throughout the body. Human pharmacokinetic studies indicate folic acid has high bioavailability, with large oral doses of folic acid substantially raising plasma levels in healthy subjects in a time and dose dependent manner. Red blood cells (RBCs) appear to be the storage depot for folic acid, as RBC levels remain elevated for periods in excess of 40 days following discontinuation of supplementation. Folic acid is poorly transported to the brain and rapidly cleared from the central nervous system. The primary methods of elimination of absorbed folic acid are fecal (through bile) and urinary. Despite the biochemical complexity of this process, evidence suggests oral supplementation with folic acid increases the bodys pool of 5-MTHF in healthy individuals. However, enzyme defects, mal-absorption, digestive system pathology, and liver disease can result in impaired ability to activate folic acid. In fact, some individuals have a severe congenital deficiency of the enzyme Methyl tetrahydrofolate reductase (5-MTHFR), which is needed to convert folic acid to 5-MTHF. Milder forms of this enzyme defect likely interact with dietary folate status to determine risk for some disease conditions. In individuals with a genetic defect of this enzyme (whether mild or severe), supplementation with 5- MTHF might be preferable to folic acid supplementation. (PMID: 17176169). 5 methyltetrahydrofolic acid (5-MTHF) is the most biologically active form of the B-vitamin folic acid, also known generically as folate. 5-MTHF functions, in concert with vitamin B12, as a methyl-group donor involved in the conversion of the amino acid homocysteine to methionine. Methyl (CH3) group donation is vital to many bodily processes, including serotonin, melatonin, and DNA synthesis. Therapeutically, 5-MTHF is instrumental in reducing homocysteine levels, preventing neural tube defects, and improving vascular endothelial function. Research on folate supplementation suggests it plays a key role in preventing cervical dysplasia and protecting against neoplasia in ulcerative colitis. Folic acid also shows promise as part of a nutritional protocol to treat vitiligo, and may reduce inflammation of the gingiva. Furthermore, certain neurological, cognitive, and psychiatric presentations may be secondary to folate deficiency. Such presentations include depression, peripheral neuropathy, myelopathy, restless legs syndrome, insomnia, dementia, forgetfulness, irritability, endogenous depression, organic psychosis, and schizophrenia-like syndromes. After ingestion, the process of conversion of folic acid to the metabolically active coenzyme forms is relatively complex. Synthesis of the active forms of folic acid requires several enzymes, adequate liver and intestinal function, and adequate supplies of riboflavin (B2), niacin (B3), pyridoxine (B6), zinc, vitamin C, and serine. After formation of the coenzyme forms of the vitamin in the liver, these metabolically active compounds are secreted into the small intestine with bile (the folate enterohepatic cycle), where they are reabsorbed and distributed to tissues throughout the body. Human pharmacokinetic studies indicate folic acid has high bioavailability, with large oral doses of folic acid substantially raising plasma levels in healthy subjects in a time and dose dependent manner. Red blood cells (RBCs) appear to be the storage depot for folic acid, as RBC levels remain elevated for periods in excess of 40 days following discontinuation of supplementation. Folic acid is poorly transported to the brain and rapidly cleared from the central nervous system. The primary methods of elimination of absorbed folic acid are fecal (through bile) and urinary. Despite the biochemical complexity of this process, evidence suggests oral supplementation with folic acid increases the bodys pool of 5-MTHF in healthy individuals. However, enzyme defects, mal-absorption, digestive system pathology, and liver disease can result in impaired ability to activate folic acid. In fact, some individuals have a severe congenital deficiency of the enzyme Methyl tetrahydrofolate reductase (5-MTHFR), which is needed to convert folic acid to 5-MTHF. Milder forms of this enzyme defect likely interact with dietary folate status to determine risk for some disease conditions. In individuals with a genetic defect of this enzyme (whether mild or severe), supplementation with 5- MTHF might be preferable to folic acid supplementation. (PMID: 17176169) [HMDB] 5-Methyltetrahydrofolic acid (5-Methyl THF) is a biologically active form of folic acid. 5-Methyltetrahydrofolic acid is a methylated derivate of tetrahydrofolate. 5-Methyltetrahydrofolic acid is the predominant natural dietary folate and the principal form of folate in plasma and cerebrospinal fluid[1]. Levomefolic acid (5-MTHF) is an orally active, brain-penetrant natural active form of folic acid and is one of the most widely used folic acid food supplements[1][2].

   

16a-Hydroxyestrone

(1S,10R,11S,13R,15S)-5,13-dihydroxy-15-methyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadeca-2(7),3,5-trien-14-one

C18H22O3 (286.1569)


16a-Hydroxyestrone or 16alpha-hydroxyestrone (16α-OH-E1 or 16a OHE1), or hydroxyestrone, is an endogenous steroidal estrogen and a major metabolite of estrone and estradiol. 16a-hydroxyestrone belongs to the class of organic compounds known as estrogens and derivatives. These are steroids with a structure containing a 3-hydroxylated estrane. Thus, 16a-hydroxyestrone is considered to be a steroid molecule. 16a-hydroxyestrone is found in all vertebrates. Vertebrates, especially mammals, metabolizes estrogen into two major pathways and one minor. The two major pathways lead to 2-hydroxyestrone and 16a-hydroxyestrone (2-OHE1 and 16a OHE1 respectively). The minor pathway leads to 4-hydroxyestrone (4-OHE1). 2a-hydroxyestrone is considered to be the good metabolite (PMID: 8943806) as 2-hydroxyestrone does not stimulate cell growth and it blocks the action of stronger estrogens that may be carcinogenic. 16a-Hydroxyestrone, on the other hand, has a significantly stronger estrogenic activity, and studies show that it may increase the risk of breast cancer. The binding of 16a-hydroxyestrone to the estrogen receptor is reported to be covalent and irreversible (PMID: 3186693). A low urinary ratio of 2-hydroxyestrone to 16-alpha-hydroxyestrone is a strong predictor of breast cancer risk among women (PMID: 19502596). Estrone (also oestrone) is an estrogenic hormone secreted by the ovary. Its molecular formula is C18H22O2. estrone has a melting point of 254.5 degrees Celsius. estrone is one of the three estrogens, which also include estriol and estradiol. estrone is the least prevalent of the three hormones, estradiol being prevalent almost always in a female body, estriol being prevalent primarily during pregnancy. estrone sulfate is relevant to health and disease due to its conversion to estrone sulfate, a long-lived derivative of estrone. estrone sulfate acts as a pool of estrone which can be converted as needed to the more active estradiol. [HMDB] C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

Adenosine diphosphate

[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]phosphonic acid

C10H15N5O10P2 (427.0294)


Adenosine diphosphate (ADP), also known as adenosine pyrophosphate (APP), is an important organic compound in metabolism and is essential to the flow of energy in living cells. ADP consists of three important structural components: a sugar backbone attached to adenine and two phosphate groups bonded to the 5 carbon atom of ribose. The diphosphate group of ADP is attached to the 5’ carbon of the sugar backbone, while the adenine attaches to the 1’ carbon. ADP belongs to the class of organic compounds known as purine ribonucleoside diphosphates. These are purine ribobucleotides with diphosphate group linked to the ribose moiety. It is an ester of pyrophosphoric acid with the nucleotide adenine. Adenosine diphosphate is a nucleotide. ADP exists in all living species, ranging from bacteria to humans. In humans, ADP is involved in d4-gdi signaling pathway. ADP is the product of ATP dephosphorylation by ATPases. ADP is converted back to ATP by ATP synthases. ADP consists of the pyrophosphate group, the pentose sugar ribose, and the nucleobase adenine. Adenosine diphosphate, abbreviated ADP, is a nucleotide. It is an ester of pyrophosphoric acid with the nucleotide adenine. ADP consists of the pyrophosphate group, the pentose sugar ribose, and the nucleobase adenine. 5′-ADP. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=58-64-0 (retrieved 2024-07-01) (CAS RN: 58-64-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Adenosine 5'-diphosphate (Adenosine diphosphate) is a nucleoside diphosphate. Adenosine 5'-diphosphate is the product of ATP dephosphorylation by ATPases. Adenosine 5'-diphosphate induces human platelet aggregation and inhibits stimulated adenylate cyclase by an action at P2T-purinoceptors. Adenosine 5'-diphosphate (Adenosine diphosphate) is a nucleoside diphosphate. Adenosine 5'-diphosphate is the product of ATP dephosphorylation by ATPases. Adenosine 5'-diphosphate induces human platelet aggregation and inhibits stimulated adenylate cyclase by an action at P2T-purinoceptors.

   

Pseudouridine

5-[(2S,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-1,2,3,4-tetrahydropyrimidine-2,4-dione

C9H12N2O6 (244.0695)


Beta-pseudouridine, also known as p or 5-(b-D-ribofuranosyl)uracil, is a member of the class of compounds known as nucleoside and nucleotide analogues. Nucleoside and nucleotide analogues are analogues of nucleosides and nucleotides. These include phosphonated nucleosides, C-glycosylated nucleoside bases, analogues where the sugar unit is a pyranose, and carbocyclic nucleosides, among others. Beta-pseudouridine is soluble (in water) and a very weakly acidic compound (based on its pKa). Beta-pseudouridine can be found in a number of food items such as eggplant, wax gourd, asparagus, and garden cress, which makes beta-pseudouridine a potential biomarker for the consumption of these food products. Beta-pseudouridine can be found primarily in amniotic fluid, blood, feces, and urine. Beta-pseudouridine exists in all living species, ranging from bacteria to humans. Moreover, beta-pseudouridine is found to be associated with canavan disease. Pseudouridine, also known as psi-uridine or 5-ribosyluracil, belongs to the class of organic compounds known as nucleoside and nucleotide analogues. These are analogues of nucleosides and nucleotides, such as phosphonated nucleosides, C-glycosylated nucleoside bases, analogues where the sugar unit is a pyranose, and carbocyclic nucleosides. Pseudouridine specifically has its uracil attached via a carbon-carbon instead of a nitrogen-carbon glycosidic bond to the ribofuranose. It is the most prevalent of the over one hundred different modified nucleosides found in RNA (PMID: 17113994). Pseudouridine is a solid that is soluble in water. Pseudouridine exists in all living species, ranging from bacteria to humans, and is in all classes of RNA except mRNA. It is formed by enzymes called pseudouridine synthases, which post-transcriptionally isomerize specific uridine residues in RNA. Pseudouridine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=1445-07-4 (retrieved 2024-07-01) (CAS RN: 1445-07-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Pseudouridine is an isomer of the nucleoside uridine, and the most abundant modified nucleoside in non-coding RNAs. Pseudouridine in rRNA and tRNA can fine-tune and stabilize the regional structure and help maintain their functions in mRNA decoding, ribosome assembly, processing and translation[1][2][3][4]. Pseudouridine is an isomer of the nucleoside uridine, and the most abundant modified nucleoside in non-coding RNAs. Pseudouridine in rRNA and tRNA can fine-tune and stabilize the regional structure and help maintain their functions in mRNA decoding, ribosome assembly, processing and translation[1][2][3][4].

   

Crotonoyl-CoA

(2R)-4-({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-N-[2-({2-[(2E)-but-2-enoylsulfanyl]ethyl}-C-hydroxycarbonimidoyl)ethyl]-2-hydroxy-3,3-dimethylbutanimidic acid

C25H40N7O17P3S (835.1414)


Crotonoyl-CoA is an important component in several metabolic pathways, notably fatty acid and amino acid metabolism. It is the substrate of a group of enzymes acyl-Coenzyme A oxidases 1, 2, 3 (E.C.: 1.3.3.6) corresponding to palmitoyl, branched chain, and pristanoyl, respectively, in the peroxisomal fatty acid beta-oxidation, producing hydrogen peroxide. Abnormality of this group of enzymes is linked to coma, dehydration, diabetes, fatty liver, hyperinsulinemia, hyperlipidemia, and leukodystrophy. It is also a substrate of a group of enzymes called acyl-Coenzyme A dehydrogenase (E.C.:1.3.99-, including 1.3.99.2, 1.3.99.3) in the metabolism of fatty acids or branched chain amino acids in the mitochondria (Rozen et al., 1994). Acyl-Coenzyme A dehydrogenase (1.3.99.3) has shown to contribute to kidney-associated diseases, such as adrenogential syndrome, kidney failure, kidney tubular necrosis, homocystinuria, as well as other diseases including cretinism, encephalopathy, hypoglycemia, medium chain acyl-CoA dehydrogenase deficiency. The gene (ACADS) also plays a role in theta oscillation during sleep. In addition, crotonoyl-CoA is the substrate of enoyl coenzyme A hydratase (E.C.4.2.1.17) in the mitochondria during lysine degradation and tryptophan metabolism, benzoate degradation via CoA ligation; in contrast it is the product of this enzyme in the butanoate metabolism. Moreover, it is produced from multiple enzymes in the butanoate metabolism pathway, including 3-Hydroxybutyryl-CoA dehydratase (E.C.:4.2.1.55), glutaconyl-CoA decarboxylase (E.C.: 4.1.1.70), vinylacetyl-CoA Δ-isomerase (E.C.: 5.3.3.3), and trans-2-enoyl-CoA reductase (NAD+) (E.C.: 1.3.1.44). In lysine degradation and tryptophan metabolism, crotonoyl CoA is produced by glutaryl-Coenzyme A dehydrogenase (E.C.:1.3.99.7) lysine and tryptophan metabolic pathway. This enzyme is linked to type-1glutaric aciduria, metabolic diseases, movement disorders, myelinopathy, and nervous system diseases. [HMDB] Crotonoyl-CoA (CAS: 992-67-6) is an important component in several metabolic pathways, notably fatty acid and amino acid metabolism. It is the substrate of acyl-coenzyme A oxidases 1, 2, and 3 (EC 1.3.3.6) corresponding to palmitoyl, branched-chain, and pristanoyl, respectively. In peroxisomal fatty acid beta-oxidation, these enzymes produce hydrogen peroxide. Abnormalities in this group of enzymes are linked to coma, dehydration, diabetes, fatty liver, hyperinsulinemia, hyperlipidemia, and leukodystrophy. Crotonoyl-CoA is also a substrate of a group of enzymes called acyl-coenzyme A dehydrogenases (EC 1.3.99-, 1.3.99.2, 1.3.99.3) in the metabolism of fatty acids or branched-chain amino acids in the mitochondria (PMID: 7698750). Acyl-coenzyme A dehydrogenase has been shown to contribute to kidney-associated diseases, such as adrenogential syndrome, kidney failure, kidney tubular necrosis, homocystinuria, as well as other diseases including cretinism, encephalopathy, hypoglycemia, and medium-chain acyl-CoA dehydrogenase deficiency. The gene (ACADS) also plays a role in theta oscillation during sleep. In addition, crotonoyl-CoA is the substrate of enoyl-coenzyme A hydratase (EC 4.2.1.17) in the mitochondria during lysine degradation and tryptophan metabolism as well as benzoate degradation via CoA ligation. Crotonoyl-CoA is the product of this enzyme in butanoate metabolism. Moreover, it is produced from multiple enzymes in the butanoate metabolism pathway, including 3-hydroxybutyryl-CoA dehydratase (EC 4.2.1.55), glutaconyl-CoA decarboxylase (EC 4.1.1.70), vinylacetyl-CoA delta-isomerase (EC 5.3.3.3), and trans-2-enoyl-CoA reductase (NAD+) (EC 1.3.1.44). In lysine degradation and tryptophan metabolism, crotonoyl-CoA is produced by glutaryl-coenzyme A dehydrogenase (EC 1.3.99.7). This enzyme is linked to glutaric aciduria type I, metabolic diseases, movement disorders, myelinopathy, and nervous system diseases.

   

butanoyl-CoA

(2R)-4-({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-N-(2-{[2-(butanoylsulfanyl)ethyl]-C-hydroxycarbonimidoyl}ethyl)-2-hydroxy-3,3-dimethylbutanimidic acid

C25H42N7O17P3S (837.1571)


Butyryl-coa, also known as 4:0-coa or butanoyl-coa, is a member of the class of compounds known as acyl coas. Acyl coas are organic compounds containing a coenzyme A substructure linked to an acyl chain. Thus, butyryl-coa is considered to be a fatty ester lipid molecule. Butyryl-coa is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). Butyryl-coa can be synthesized from coenzyme A and butyric acid. Butyryl-coa is also a parent compound for other transformation products, including but not limited to, (2S,3S)-3-hydroxy-2-methylbutanoyl-CoA, acetoacetyl-CoA, and 2-methylacetoacetyl-CoA. Butyryl-coa can be found in a number of food items such as wild carrot, persian lime, redcurrant, and arrowroot, which makes butyryl-coa a potential biomarker for the consumption of these food products. Butyryl-coa may be a unique E.coli metabolite.

   

Glycerate

(2R)-2,3-dihydroxypropanoic acid

C3H6O4 (106.0266)


Glyceric acid is a colourless syrupy acid, obtained from oxidation of glycerol. It is a compound that is secreted excessively in the urine by patients suffering from D-glyceric aciduria, an inborn error of metabolism, and D-glycerate anemia. Deficiency of human glycerate kinase leads to D-glycerate acidemia/D-glyceric aciduria. Symptoms of the disease include progressive neurological impairment, hypotonia, seizures, failure to thrive, and metabolic acidosis. At sufficiently high levels, glyceric acid can act as an acidogen and a metabotoxin. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Glyceric acid is an organic acid. Abnormally high levels of organic acids in the blood (organic acidemia), urine (organic aciduria), the brain, and other tissues lead to general metabolic acidosis. Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis, the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). These can progress to heart abnormalities, seizures, coma, and possibly death. These are also the characteristic symptoms of untreated glyceric aciduria. Many affected children with organic acidemias experience intellectual disability or delayed development. In adults, acidosis or acidemia is characterized by headaches, confusion, feeling tired, tremors, sleepiness, and seizures. Elevated values may also be due to microbial sources such as yeast (Aspergillus, Penicillium, probably Candida) or due to dietary sources containing glycerol (glycerine). Glyceric acid is isolated from various plants (e.g. brassicas, pulses, and Vicia faba). A colorless syrupy acid, obtained from oxidation of glycerol. It is a compound that is secreted excessively in the urine by patients suffering from D-glyceric aciduria and D-glycerate anemia. Deficiency of human glycerate kinase leads to D-glycerate acidemia/D-glyceric aciduria. Symptoms of the disease include progressive neurological impairment, hypotonia, seizures, failure to thrive and metabolic acidosis.; Glyceric acid is a natural three-carbon sugar acid. Salts and esters of glyceric acid are known as glycerates. Glyceric acid is found in many foods, some of which are peanut, common grape, garden tomato (variety), and french plantain. Glyceric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=473-81-4 (retrieved 2024-06-29) (CAS RN: 473-81-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

8-Anilino-1-naphthalene sulfonate

1-Anilino-8-naphthalenesulfonate, monoammonium salt, hemihydrate

C16H13NO3S (299.0616)


8-Anilino-1-naphthalene sulfonate belongs to the class of organic compounds known as 1-naphthalene sulfonic acids and derivatives. These are organic aromatic compounds that contain a naphthalene moiety that carries a sulfonic acid group (or a derivative thereof) at the 1-position. Naphthalene is a bicyclic compound that is made up of two fused benzene ring. KEIO_ID A177

   

dGDP

[({[(2R,3S,5R)-5-(2-amino-6-oxo-6,9-dihydro-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]phosphonic acid

C10H15N5O10P2 (427.0294)


dGDP is a derivative of the common nucleic acid GTP, or guanosine triphosphate, in which the -OH (hydroxyl) group on the 2 carbon on the nucleotides pentose has been removed (hence the deoxy- part of the name). Additionally, the diphosphate of the name indicates that one of the phosphoryl groups of GTP has been removed, most likely by hydrolysis . [HMDB]. dGDP is found in many foods, some of which are tea, black chokeberry, european plum, and roman camomile. dGDP is a derivative of the common nucleic acid GTP, or guanosine triphosphate, in which the -OH (hydroxyl) group on the 2 carbon on the nucleotides pentose has been removed (hence the deoxy- part of the name). Additionally, the diphosphate of the name indicates that one of the phosphoryl groups of GTP has been removed, most likely by hydrolysis (Wikipedia). Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

2,6-Dihydroxybenzoic acid

2,6-Dihydroxybenzoic acid (acd/name 4.0)

C7H6O4 (154.0266)


2,6-dihydroxybenzoic acid, also known as gamma-resorcylic acid or 6-hydroxysalicylic acid, is a member of the class of compounds known as salicylic acids. Salicylic acids are ortho-hydroxylated benzoic acids. 2,6-dihydroxybenzoic acid is slightly soluble (in water) and a moderately acidic compound (based on its pKa). 2,6-dihydroxybenzoic acid can be found in beer and olive, which makes 2,6-dihydroxybenzoic acid a potential biomarker for the consumption of these food products. 2,6-dihydroxybenzoic acid can be found primarily in blood and urine. 2,6-Dihydroxybenzoic acid (γ-resorcylic acid) is a dihydroxybenzoic acid. It is a very strong acid due to its intramolecular hydrogen bonding . 2,6-dihydroxybenzoic acid is a secondary metabolite of salicylic acid which has been hydrolyzed by liver enzymes during phase I metabolism. 2,6-Dihydroxybenzoic acid is a secondary metabolite of salicylic acid which has been hydrolyzed by liver enzymes during phase I metabolism. 2,6-Dihydroxybenzoic acid is a secondary metabolite of salicylic acid which has been hydrolyzed by liver enzymes during phase I metabolism.

   

DL-Malic acid

2-Hydroxyethane-1,2-dicarboxylic acid

C4H6O5 (134.0215)


Malic acid (CAS: 6915-15-7) is a tart-tasting organic dicarboxylic acid that plays a role in many sour or tart foods. Apples contain malic acid, which contributes to the sourness of a green apple. Malic acid can make a wine taste tart, although the amount decreases with increasing fruit ripeness (Wikipedia). In its ionized form, malic acid is called malate. Malate is an intermediate of the TCA cycle along with fumarate. It can also be formed from pyruvate as one of the anaplerotic reactions. In humans, malic acid is both derived from food sources and synthesized in the body through the citric acid cycle or Krebs cycle which takes place in the mitochondria. Malates importance to the production of energy in the body during both aerobic and anaerobic conditions is well established. Under aerobic conditions, the oxidation of malate to oxaloacetate provides reducing equivalents to the mitochondria through the malate-aspartate redox shuttle. During anaerobic conditions, where a buildup of excess reducing equivalents inhibits glycolysis, malic acids simultaneous reduction to succinate and oxidation to oxaloacetate is capable of removing the accumulating reducing equivalents. This allows malic acid to reverse hypoxias inhibition of glycolysis and energy production. In studies on rats, it has been found that only tissue malate is depleted following exhaustive physical activity. Other key metabolites from the citric acid cycle needed for energy production were found to be unchanged. Because of this, a deficiency of malic acid has been hypothesized to be a major cause of physical exhaustion. Notably, the administration of malic acid to rats has been shown to elevate mitochondrial malate and increase mitochondrial respiration and energy production. Malic acid has been found to be a metabolite in Aspergillus (Hugo Vanden Bossche, D.W.R. Mackenzie and G. Cauwenbergh. Aspergillus and Aspergillosis, 1987). Acidulant, antioxidant, flavouring agent, flavour enhancer. Not for use in baby foods (GRAS) Malic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=617-48-1 (retrieved 2024-07-01) (CAS RN: 6915-15-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (S)-Malic acid ((S)-2-Hydroxysuccinic acid) is a dicarboxylic acid in naturally occurring form, contributes to the pleasantly sour taste of fruits and is used as a food additive. (S)-Malic acid ((S)-2-Hydroxysuccinic acid) is a dicarboxylic acid in naturally occurring form, contributes to the pleasantly sour taste of fruits and is used as a food additive. Malic acid (Hydroxybutanedioic acid) is a dicarboxylic acid that is naturally found in fruits such as apples and pears. It plays a role in many sour or tart foods. Malic acid (Hydroxybutanedioic acid) is a dicarboxylic acid that is naturally found in fruits such as apples and pears. It plays a role in many sour or tart foods.

   

L-Cysteine

(2R)-2-amino-3-sulfanylpropanoic acid

C3H7NO2S (121.0197)


Cysteine (Cys), also known as L-cysteine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-alanine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Cysteine is found in all organisms ranging from bacteria to plants to animals. It is classified as an aliphatic, non-polar, sulfur-containing amino acid. Cysteine is an important source of sulfur in human metabolism, and although it is classified as a non-essential amino acid, cysteine may be essential for infants, the elderly, and individuals with certain metabolic disease or who suffer from malabsorption syndromes. Cysteine can occasionally be considered as an essential or conditionally essential amino acid. Cysteine is unique amongst the twenty natural amino acids as it contains a thiol group. Thiol groups can undergo oxidation/reduction (redox) reactions; when cysteine is oxidized it can form cystine, which is two cysteine residues joined by a disulfide bond. This reaction is reversible since the reduction of this disulphide bond regenerates two cysteine molecules. The disulphide bonds of cystine are crucial to defining the structures of many proteins. Cysteine is often involved in electron-transfer reactions, and help the enzyme catalyze its reaction. Cysteine is also part of the antioxidant glutathione. N-Acetyl-L-cysteine (NAC) is a form of cysteine where an acetyl group is attached to cysteines nitrogen atom and is sold as a dietary supplement. Cysteine is named after cystine, which comes from the Greek word kustis meaning bladder (cystine was first isolated from kidney stones). Oxidation of cysteine can produce a disulfide bond with another thiol and further oxidation can produce sulphfinic or sulfonic acids. The cysteine thiol group is also a nucleophile and can undergo addition and substitution reactions. Thiol groups become much more reactive when they are ionized, and cysteine residues in proteins have pKa values close to neutrality, so they are often in their reactive thiolate form in the cell. The thiol group also has a high affinity for heavy metals and proteins containing cysteine will bind metals such as mercury, lead, and cadmium tightly. Due to this ability to undergo redox reactions, cysteine has antioxidant properties. Cysteine is important in energy metabolism. As cystine, it is a structural component of many tissues and hormones. Cysteine has clinical uses ranging from treating baldness to psoriasis to preventing smokers hack. In some cases, oral cysteine therapy has proved excellent for treatment of asthmatics, enabling them to stop theophylline and other medications. Cysteine also enhances the effect of topically applied silver, tin, and zinc salts in preventing dental cavities. In the future, cysteine may play a role in the treatment of cobalt toxicity, diabetes, psychosis, cancer, and seizures (http://www.dcnutrition.com/AminoAcids/). Cysteine has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). [Spectral] L-Cysteine (exact mass = 121.01975) and D-2-Aminobutyrate (exact mass = 103.06333) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] L-Cysteine (exact mass = 121.01975) and Creatine (exact mass = 131.06948) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Detoxicant, dietary supplement, dough strengthener, yeast nutrient for leavened bakery products. Flavouring agent. Enzymic browning inhibitor. L-Cysteine is found in many foods, some of which are bilberry, mugwort, cowpea, and sweet bay. L-(+)-Cysteine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=52-90-4 (retrieved 2024-07-01) (CAS RN: 52-90-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Cysteine is a conditionally essential amino acid, which acts as a precursor for biologically active molecules such as hydrogen sulphide (H2S), glutathione and taurine. L-Cysteine suppresses ghrelin and reduces appetite in rodents and humans[1]. L-Cysteine is a conditionally essential amino acid, which acts as a precursor for biologically active molecules such as hydrogen sulphide (H2S), glutathione and taurine. L-Cysteine suppresses ghrelin and reduces appetite in rodents and humans[1].

   

Methylmalonyl-CoA

(2S)-3-{[2-(3-{3-[({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)methyl]-2-hydroxy-3-methylbutanamido}propanamido)ethyl]sulfanyl}-2-methyl-3-oxopropanoic acid

C25H40N7O19P3S (867.1312)


Methylmalonyl-CoA is an intermediate in the metabolism of Propanoate. It is a substrate for Malonyl-CoA decarboxylase (mitochondrial), Methylmalonyl-CoA mutase (mitochondrial) and Methylmalonyl-CoA epimerase (mitochondrial). [HMDB] Methylmalonyl-CoA is an intermediate in the metabolism of Propanoate. It is a substrate for Malonyl-CoA decarboxylase (mitochondrial), Methylmalonyl-CoA mutase (mitochondrial) and Methylmalonyl-CoA epimerase (mitochondrial).

   

Valinomycin

(3S,6S,9R,12R,15S,18S,21R,24R,27S,30S,33R,36R)-6,18,30-trimethyl-3,9,12,15,21,24,27,33,36-nona(propan-2-yl)-1,7,13,19,25,31-hexaoxa-4,10,16,22,28,34-hexazacyclohexatriacontane-2,5,8,11,14,17,20,23,26,29,32,35-dodecone

C54H90N6O18 (1110.6311)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D049990 - Membrane Transport Modulators D007476 - Ionophores A twelve-membered cyclodepsipeptide composed of three repeating D-alpha-hydroxyisovaleryl-D-valyl-L-lactoyl-L-valyl units joined in sequence. An antibiotic found in several Streptomyces strains. C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C259 - Antineoplastic Antibiotic Valinomycin is a potassium-specific ionophore, the valinomycin-K+ complex can be incorporated into biological bilayer membranes with the hydrophobic surface of valinomycin, destroys the normal K+ gradient across the membrane, and as a result kills the cells, incorporating into liposomes can significantly reduces the cytotoxicity and enhances the targeting effect. Valinomycin exhibits antibiotic, antifungal, antiviral, antitumor and insecticidal efficacy, thus can be used for relevant research[1][2]. Valinomycin (NSC 122023), a cyclic depsipeptide antibiotic, act as a potassium selective ionophore. Valinomycin (NSC 122023) inhibits lymphocyte proliferation by its effects on the cell membrane, and induces apoptosis in CHO cells[1]. Valinomycin induces activation of PINK1 leading to Parkin Ser65 phosphorylation[2].

   

1,4-Dihydroxy-2-naphthoic acid

1,4-dihydroxynaphthalene-2-carboxylic acid

C11H8O4 (204.0423)


1,4-dihydroxy-2-naphthoate, also known as 1,4-dihydroxy-2-naphthalenecarboxylic acid, is a member of the class of compounds known as naphthalenecarboxylic acids. Naphthalenecarboxylic acids are compounds containing a naphthalene moiety, which bears a carboxylic acid group one or more positions. Naphthalene is a bicyclic compound that is made up of two fused benzene ring. 1,4-dihydroxy-2-naphthoate is practically insoluble (in water) and a moderately acidic compound (based on its pKa). 1,4-dihydroxy-2-naphthoate can be synthesized from 2-naphthoic acid. 1,4-dihydroxy-2-naphthoate can also be synthesized into 1,4-dihydroxy-2-naphthoyl-CoA. 1,4-dihydroxy-2-naphthoate can be found in a number of food items such as rowal, cinnamon, breadfruit, and horseradish, which makes 1,4-dihydroxy-2-naphthoate a potential biomarker for the consumption of these food products.

   

Glutaconic acid

1-Propene-1,3-dicarboxylic acid

C5H6O4 (130.0266)


Glutaconic acid is related to the fully saturated glutaric acid and belongs to the class of compounds known as dicarboxylic acids and derivatives. These are organic compounds containing exactly two carboxylic acid groups. Glutaconic acid is soluble (in water) and a weakly acidic compound (based on its pKa). Glutaconic acid has been detected in the urine of individuals with inborn errors of metabolism. When present in sufficiently high levels, glutaconic acid can act as an acidogen, a neurotoxin, and a metabotoxin. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A neurotoxin is a compound that is toxic to neural tissues and cells. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of glutaconic acid are associated with glutaric aciduria type I (glutaric acidemia type I, glutaryl-CoA dehydrogenase deficiency, GA1, or GAT1). GA1 is an inherited disorder in which the body is unable to completely break down the amino acids lysine, hydroxylysine, and tryptophan due to a deficiency of mitochondrial glutaryl-CoA dehydrogenase (EC 1.3.99.7, GCDH). Excessive levels of their intermediate breakdown products (e.g. glutaric acid, glutaryl-CoA, 3-hydroxyglutaric acid, glutaconic acid) can accumulate and cause damage to the brain (and also other organs), but particularly the basal ganglia. GA1 is associated with a risk for intracranial and retinal hemorrhage, and non-specific white matter changes. Babies with glutaric acidemia type I are often born with unusually large heads (macrocephaly). Other symptoms include spasticity (increased muscle tone/stiffness) and dystonia (involuntary muscle contractions resulting in abnormal movement or posture), but many affected individuals are asymptomatic. Seizures and coma (encephalopathy) are rare. GA1 also causes secondary carnitine deficiency because 3-hydroxyglutaric acid, like other organic acids, is detoxified by carnitine. Glutaconic acids neurotoxicity is thought to be partially caused by an excitotoxic mechanism in which glutaconic acid overactivates N-methyl-D-aspartate (NMDA) receptors. Accumulating trans-glutaconic (TG) acids have been proposed to be involved in the development of the striatal degeneration seen in children with glutaric acidemia type I via an excitotoxic mechanism. Glutaconic acid is an organic compound with general formula C5H6O4. The compound is a dicarboxylic acid and related with the fully saturated glutaric acid. [HMDB]

   

Fluazinam

Pesticide4_Fluazinam_C13H4Cl2F6N4O4_2-Pyridinamine, 3-chloro-N-[3-chloro-2,6-dinitro-4-(trifluoromethyl)phenyl]-5-(trifluoromethyl)-

C13H4Cl2F6N4O4 (463.9514)


CONFIDENCE standard compound; EAWAG_UCHEM_ID 119

   

Lincomycin

(4R)-N-[(1R,2R)-2-hydroxy-1-[(2R,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(methylsulfanyl)oxan-2-yl]propyl]-1-methyl-4-propylpyrrolidine-2-carboxamide

C18H34N2O6S (406.2137)


Lincomycin is only found in individuals that have used or taken this drug. It is an antibiotic produced by Streptomyces lincolnensis var. lincolnensis. It has been used in the treatment of staphylococcal, streptococcal, and Bacteroides fragilis infections. [PubChem]Lincomycin inhibits protein synthesis in susceptible bacteria by binding to the 50 S subunits of bacterial ribosomes and preventing peptide bond formation upon transcription. It is usually considered bacteriostatic, but may be bactericidal in high concentrations or when used against highly susceptible organisms. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01F - Macrolides, lincosamides and streptogramins > J01FF - Lincosamides D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D055231 - Lincosamides D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors C784 - Protein Synthesis Inhibitor > C82922 - Lincosamide Antibiotic C254 - Anti-Infective Agent > C258 - Antibiotic

   

Pyrazosulfuron-ethyl

Ethyl 5-({[(4,6-dimethoxypyrimidin-2-yl)-C-hydroxycarbonimidoyl]amino}sulphonyl)-1-methyl-1H-pyrazole-4-carboxylic acid

C14H18N6O7S (414.0958)


D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

Citrinin

(3R-trans)-4,6-Dihydro-8-hydroxy-3,4,5-trimethyl-6-oxo-3H-2-benzopyran-7-carboxylic acid

C13H14O5 (250.0841)


Citrinin is a mycotoxin originally isolated from Penicillium citrinum. It has since been found to be produced by a variety of other fungi which are found or used in the production of human foods, such as grain, cheese, sake and red pigments. Citrinin has also been found in commercial red yeast rice supplements, and also in Aspergillus niveus and Aspergillus terreus (Hugo Vanden Bossche, D.W.R. Mackenzie and G. Cauwenbergh. Aspergillus and Aspergillosis, 1987). D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins Citrinin is a mycotoxin which causes contamination in the food and is associated with different toxic effects. Citrinin is usually found together with another nephrotoxic mycotoxin, Ochratoxin A. Citrinin is also reported to possess a broad spectrum of bioactivities, including antibacterial, antifungal, and potential anticancer and neuro-protective effects in vitro[1][2].

   

Carteolol

5-[3-(tert-butylamino)-2-hydroxypropoxy]-1,2,3,4-tetrahydroquinolin-2-one

C16H24N2O3 (292.1787)


Carteolol is only found in individuals that have used or taken this drug. It is a beta-adrenergic antagonist used as an anti-arrhythmia agent, an anti-angina agent, an antihypertensive agent, and an antiglaucoma agent. [PubChem]The primary mechanism of the ocular hypotensive action of carteolol in reducing intraocular pressure is most likely a decrease in aqueous humor production. This process is initiated by the non-selective beta1 and beta2 adrenergic receptor blockade. C - Cardiovascular system > C07 - Beta blocking agents > C07A - Beta blocking agents > C07AA - Beta blocking agents, non-selective S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01ED - Beta blocking agents C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents

   

NORFLURAZON

NORFLURAZON

C12H9ClF3N3O (303.0386)


D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals CONFIDENCE standard compound; INTERNAL_ID 206; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4060; ORIGINAL_PRECURSOR_SCAN_NO 4056 ORIGINAL_ACQUISITION_NO 4060; CONFIDENCE standard compound; INTERNAL_ID 206; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_PRECURSOR_SCAN_NO 4056 DATA_PROCESSING MERGING RMBmix ver. 0.2.7; CONFIDENCE standard compound; INTERNAL_ID 206; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4018; ORIGINAL_PRECURSOR_SCAN_NO 4016 CONFIDENCE standard compound; INTERNAL_ID 206; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8632; ORIGINAL_PRECURSOR_SCAN_NO 8629 CONFIDENCE standard compound; INTERNAL_ID 206; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4018; ORIGINAL_PRECURSOR_SCAN_NO 4016 CONFIDENCE standard compound; INTERNAL_ID 206; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8613; ORIGINAL_PRECURSOR_SCAN_NO 8609 CONFIDENCE standard compound; INTERNAL_ID 206; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4026; ORIGINAL_PRECURSOR_SCAN_NO 4022 CONFIDENCE standard compound; INTERNAL_ID 206; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8558; ORIGINAL_PRECURSOR_SCAN_NO 8555 CONFIDENCE standard compound; INTERNAL_ID 206; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8639; ORIGINAL_PRECURSOR_SCAN_NO 8637 CONFIDENCE standard compound; INTERNAL_ID 206; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4017; ORIGINAL_PRECURSOR_SCAN_NO 4015 CONFIDENCE standard compound; INTERNAL_ID 206; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4023; ORIGINAL_PRECURSOR_SCAN_NO 4018 CONFIDENCE standard compound; INTERNAL_ID 206; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8625; ORIGINAL_PRECURSOR_SCAN_NO 8623 CONFIDENCE standard compound; INTERNAL_ID 206; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8604; ORIGINAL_PRECURSOR_SCAN_NO 8602

   

Diuron

3-(3,4-Dichlor-phenyl)-1,1-dimethyl-harnstoff

C9H10Cl2N2O (232.017)


CONFIDENCE standard compound; INTERNAL_ID 1200; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8771; ORIGINAL_PRECURSOR_SCAN_NO 8769 CONFIDENCE standard compound; INTERNAL_ID 1200; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8779; ORIGINAL_PRECURSOR_SCAN_NO 8777 CONFIDENCE standard compound; INTERNAL_ID 1200; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4215; ORIGINAL_PRECURSOR_SCAN_NO 4212 CONFIDENCE standard compound; INTERNAL_ID 1200; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4187; ORIGINAL_PRECURSOR_SCAN_NO 4185 CONFIDENCE standard compound; INTERNAL_ID 1200; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8742; ORIGINAL_PRECURSOR_SCAN_NO 8740 CONFIDENCE standard compound; INTERNAL_ID 1200; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8757; ORIGINAL_PRECURSOR_SCAN_NO 8755 CONFIDENCE standard compound; INTERNAL_ID 1200; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4217; ORIGINAL_PRECURSOR_SCAN_NO 4215 CONFIDENCE standard compound; INTERNAL_ID 1200; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4206; ORIGINAL_PRECURSOR_SCAN_NO 4202 CONFIDENCE standard compound; INTERNAL_ID 1200; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4204; ORIGINAL_PRECURSOR_SCAN_NO 4202 DATASET 20200303_ENTACT_RP_MIX504; CONFIDENCE standard compound; INTERNAL_ID 1200; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4215; ORIGINAL_PRECURSOR_SCAN_NO 4212 CONFIDENCE standard compound; INTERNAL_ID 1200; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4216; ORIGINAL_PRECURSOR_SCAN_NO 4214 ORIGINAL_PRECURSOR_SCAN_NO 8769; CONFIDENCE standard compound; INTERNAL_ID 1200; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8771 CONFIDENCE standard compound; INTERNAL_ID 1200; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8744; ORIGINAL_PRECURSOR_SCAN_NO 8740 CONFIDENCE standard compound; INTERNAL_ID 1200; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8778; ORIGINAL_PRECURSOR_SCAN_NO 8776 CONFIDENCE standard compound; INTERNAL_ID 4004 CONFIDENCE standard compound; INTERNAL_ID 2412 CONFIDENCE standard compound; INTERNAL_ID 8777 CONFIDENCE standard compound; INTERNAL_ID 3410 D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

Cilastatin

(Z)-7-((R)-2-Amino-2-carboxy-ethylsulphanyl)-2-[((S)-2,2-dimethyl-cyclopropanecarbonyl)-amino]-hept-2-enoic acid

C16H26N2O5S (358.1562)


A renal dehydropeptidase-I and leukotriene D4 dipeptidase inhibitor. Since the antibiotic, imipenem, is hydrolyzed by dehydropeptidase-I, which resides in the brush border of the renal tubule, cilastatin is administered with imipenem to increase its effectiveness. The drug also inhibits the metabolism of leukotriene D4 to leukotriene E4. [PubChem] D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors C471 - Enzyme Inhibitor > C783 - Protease Inhibitor CONFIDENCE standard compound; INTERNAL_ID 2129

   

N-PHENYL-1-NAPHTHYLAMINE

N-phenylnaphthalen-1-amine

C16H13N (219.1048)


CONFIDENCE standard compound; INTERNAL_ID 1239; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10077; ORIGINAL_PRECURSOR_SCAN_NO 10074 CONFIDENCE standard compound; INTERNAL_ID 1239; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10054; ORIGINAL_PRECURSOR_SCAN_NO 10051 CONFIDENCE standard compound; INTERNAL_ID 1239; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10017; ORIGINAL_PRECURSOR_SCAN_NO 10013 CONFIDENCE standard compound; INTERNAL_ID 1239; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10109; ORIGINAL_PRECURSOR_SCAN_NO 10106 CONFIDENCE standard compound; INTERNAL_ID 1239; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10083; ORIGINAL_PRECURSOR_SCAN_NO 10080 CONFIDENCE standard compound; INTERNAL_ID 1239; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10041; ORIGINAL_PRECURSOR_SCAN_NO 10037 D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D004396 - Coloring Agents > D005456 - Fluorescent Dyes CONFIDENCE standard compound; INTERNAL_ID 4139 CONFIDENCE standard compound; INTERNAL_ID 2426 CONFIDENCE standard compound; INTERNAL_ID 8127 D009676 - Noxae > D002273 - Carcinogens

   

But-2-enoic acid

beta-Methylacrylic acid

C4H6O2 (86.0368)


But-2-enoic acid, also known as (2E)-2-butenoate or alpha-crotonic acid, belongs to the class of organic compounds known as straight chain organic acids. These are organic acids with a straight aliphatic chain. But-2-enoic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Food flavour component KEIO_ID C093 NSC 8751 is an endogenous metabolite. NSC 8751 is an endogenous metabolite.

   

Amobarbital

5-Ethyl-5-(3-methylbutyl)-2,4,6(1H,3H,5H)-pyrimidinetrione

C11H18N2O3 (226.1317)


Amobarbital is only found in individuals that have used or taken this drug. It is a barbiturate with hypnotic and sedative properties (but not antianxiety). Adverse effects are mainly a consequence of dose-related CNS depression and the risk of dependence with continued use is high. (From Martindale, The Extra Pharmacopoeia, 30th ed, p565)Amobarbital (like all barbiturates) works by binding to the GABAA receptor at either the alpha or the beta sub unit. These are binding sites that are distinct from GABA itself and also distinct from the benzodiazepine binding site. Like benzodiazepines, barbiturates potentiate the effect of GABA at this receptor. This GABAA receptor binding decreases input resistance, depresses burst and tonic firing, especially in ventrobasal and intralaminar neurons, while at the same time increasing burst duration and mean conductance at individual chloride channels; this increases both the amplitude and decay time of inhibitory postsynaptic currents. In addition to this GABA-ergic effect, barbiturates also block the AMPA receptor, a subtype of glutamate receptor. Glutamate is the principal excitatory neurotransmitter in the mammalian CNS. Amobarbital also appears to bind neuronal nicotinic acetylcholine receptors. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CA - Barbiturates, plain C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C67084 - Barbiturate D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators

   

Helixin C

(2R)-2-[(2R,3S,6R)-6-[[(2S,4R,5R,6R,7R,9R)-2-[(2R,5S)-5-[(2R,3S,5R)-5-[(2S,3S,5R,6R)-6-hydroxy-6-(hydroxymethyl)-3,5-dimethyloxan-2-yl]-3-methyloxolan-2-yl]-5-methyloxolan-2-yl]-7-methoxy-2,4,6-trimethyl-1,10-dioxaspiro[4.5]decan-9-yl]methyl]-3-methyloxan-2-yl]propanoic acid

C40H68O11 (724.4761)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D049990 - Membrane Transport Modulators D007476 - Ionophores

   

Rimantadine

Forest brand OF rimantadine hydrochloride

C12H21N (179.1674)


Rimantadine is only found in individuals that have used or taken this drug. It is an RNA synthesis inhibitor that is used as an antiviral agent in the prophylaxis and treatment of influenza. [PubChem]The mechanism of action of rimantadine is not fully understood. Rimantadine appears to exert its inhibitory effect early in the viral replicative cycle, possibly inhibiting the uncoating of the virus. Genetic studies suggest that a virus protein specified by the virion M2 gene plays an important role in the susceptibility of influenza A virus to inhibition by rimantadine. J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AC - Cyclic amines D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents C254 - Anti-Infective Agent > C281 - Antiviral Agent CONFIDENCE standard compound; EAWAG_UCHEM_ID 3149

   

Salicylhydroxamic acid

2-Hydroxybenzohydroxamic acid

C7H7NO3 (153.0426)


D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Tentoxin

Tentoxin

C22H30N4O4 (414.2267)


CONFIDENCE Reference Standard (Level 1)

   

Phosphocreatine

{[imino(phosphonoamino)methyl](methyl)amino}acetic acid

C4H10N3O5P (211.0358)


Phosphocreatine, also known as creatine phosphate (CP) or PCr (Pcr), is a phosphorylated creatine molecule that serves as a rapidly mobilizable reserve of high-energy phosphates in skeletal muscle, myocardium and the brain to recycle adenosine triphosphate, the energy currency of the cell. Phosphocreatine undergoes irreversible cyclization and dehydration to form creatinine at a fractional rate of 0.026 per day, thus forming approximately 2 g creatinine/day in an adult male. This is the amount of creatine that must be provided either from dietary sources or by endogenous synthesis to maintain the body pool of (creatine and) phosphocreatine. Creatine is an amino acid that plays a vital role as phosphocreatine in regenerating adenosine triphosphate in skeletal muscle to energize muscle contraction. Creatine is phosphorylated to phosphocreatine in muscle in a reaction that is catalyzed by the enzyme creatine kinase. This enzyme is in highest concentration in muscle and nerve. Oral administration increases muscle stores. During the past decade, creatine has assumed prominence as an ergogenic (and legal) aid for professional and elite athletes. Most (~ 95\\%) of the total body creatine-phosphocreatine pool is in muscle (more in skeletal muscle than in smooth muscle) and amounts to 120 g (or 925 mmol) in a 70 kg adult male. Approximately 60-67\\% of the content in resting muscle is in the phosphorylated form. This generates enough ATP at the myofibrillar apparatus to power about 4 seconds of muscle contraction in exercise. Phosphocreatine reacts with ADP to yield ATP and creatine; the reversible reaction is catalyzed by creatine kinase. phosphocreatine is the chief store of high-energy phosphates in muscle. Thus, this reaction, which permits the rephosphorylation of ADP to ATP, is the immediate source of energy in muscle contraction. During rest, metabolic processes regenerate phosphocreatine stores. In normal muscle, ATP that is broken down to ADP is immediately rephosphorylated to ATP. Thus, phosphocreatine serves as a reservoir of ATP-synthesizing potential. phosphocreatine is the only fuel available to precipitously regenerate ATP during episodes of rapid fluctuations in demand. The availability of phosphocreatine likely limits muscle performance during brief, high-power exercise, i.e., maximal exercise of short duration. With near maximal isometric contraction, the rate of utilization of phosphocreatine declines after 1-2 seconds of contraction, prior to the glycolysis peak at approximately 3 seconds (PMID:10079702). Phosphocreatine undergoes irreversible cyclization and dehydration to form creatinine at a fractional rate of 0.026 per day, thus forming approximately 2 g creatinine/day in an adult male. This is the amount of creatine that must be provided either from dietary sources or by endogenous synthesis to maintain the body pool of (creatine and) phosphocreatine. Creatine is an amino acid that plays a vital role as phosphocreatine in regenerating adenosine triphosphate in skeletal muscle to energize muscle contraction. Creatine is phosphorylated to phosphocreatine in muscle in a reaction that is catalyzed by the enzyme creatine kinase. This enzyme is in highest concentration in muscle and nerve. Oral administration increases muscle stores. During the past decade, creatine has assumed prominence as an ergogenic (and legal) aid for professional and elite athletes. Most (~ 95\\%) of the total body creatine-phosphocreatine pool is in muscle (more in skeletal muscle than in smooth muscle) and amounts to 120 g (or 925 mmol) in a 70 kg adult male. Approximately 60-67\\% of the content in resting muscle is in the phosphorylated form. This generates enough ATP at the myofibrillar apparatus to power about 4 seconds of muscle contraction in exercise. Phosphocreatine reacts with ADP to yield ATP and creatine; the reversible reaction is catalyzed by creatine kinase. phosphocreatine is the chief store of high-energy phosphates in muscle. Thus, this reaction, which permits the rephosphorylation of ADP to ATP, is the immediate source of energy in muscle contraction. During rest, metabolic processes regenerate phosphocreatine stores. In normal muscle, ATP that is broken down to ADP is immediately rephosphorylated to ATP. Thus, phosphocreatine serves as a reservoir of ATP-synthesizing potential. phosphocreatine is the only fuel available to precipitously regenerate ATP during episodes of rapid fluctuations in demand. The availability of phosphocreatine likely limits muscle performance during brief, high-power exercise, i.e., maximal exercise of short duration. With near maximal isometric contraction, the rate of utilization of phosphocreatine declines after 1-2 seconds of contraction, prior to the glycolysis peak at approximately 3 seconds. (PMID: 10079702, Nutr Rev. 1999 Feb;57(2):45-50.) [HMDB] D020011 - Protective Agents > D002316 - Cardiotonic Agents C - Cardiovascular system > C01 - Cardiac therapy D002317 - Cardiovascular Agents KEIO_ID P084; [MS2] KO009218 KEIO_ID P084

   

Ethionamide

2-ethylpyridine-4-carbothioamide

C8H10N2S (166.0565)


Ethionamide is only found in individuals that have used or taken this drug. It is a second-line antitubercular agent that inhibits mycolic acid synthesis. It also may be used for treatment of leprosy. (From Smith and Reynard, Textbook of Pharmacology, 1992, p868)Ethionamide may be bacteriostatic or bactericidal in action, depending on the concentration of the drug attained at the site of infection and the susceptibility of the infecting organism. Ethionamide, like prothionamide and pyrazinamide, is a nicotinic acid derivative related to isoniazid. It is thought that ethionamide undergoes intracellular modification and acts in a similar fashion to isoniazid. Isoniazid inhibits the synthesis of mycoloic acids, an essential component of the bacterial cell wall. Specifically isoniazid inhibits InhA, the enoyl reductase from Mycobacterium tuberculosis, by forming a covalent adduct with the NAD cofactor. It is the INH-NAD adduct that acts as a slow, tight-binding competitive inhibitor of InhA. Ethionamide. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=536-33-4 (retrieved 2024-07-12) (CAS RN: 536-33-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Ethionamide (2-ethylthioisonicotinamide) is a second-line anti-tuberculosis antibiotic.

   

Phoxim

alpha-(((Diethoxyphosphinothioyl)oxy)imino)benzeneacetonitrile

C12H15N2O3PS (298.0541)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals

   

Malonate

Malonic acid, disodium salt, 1-(14)C-labeled

C3H4O4 (104.011)


Malonic acid (IUPAC systematic name: propanedioic acid) is a dicarboxylic acid with structure CH2(COOH)2. The ionised form of malonic acid, as well as its esters and salts, are known as malonates. For example, diethyl malonate is malonic acids ethyl ester. The name originates from Latin malum, meaning apple. Malonic acid is the archetypal example of a competitive inhibitor: it acts against succinate dehydrogenase (complex II) in the respiratory electron transport chain.; Malonic acid (IUPAC systematic name: propanedioic acid) is a dicarboxylic acid with structure CH2(COOH)2. The ionised form of malonic acid, as well as its esters and salts, are known as malonates. For example, diethyl malonate is malonic acids ethyl ester. The name originates from the Greek word ????? (malon) meaning apple. Propanedioic acid is found in many foods, some of which are green bell pepper, red bell pepper, common beet, and sweet orange. Malonic acid (IUPAC systematic name: propanedioic acid) is a dicarboxylic acid with structure CH2(COOH)2. The ionised form of malonic acid, as well as its esters and salts, are known as malonates. For example, diethyl malonate is malonic acids ethyl ester. The name originates from Latin malum, meaning apple. Malonic acid is the archetypal example of a competitive inhibitor: it acts against succinate dehydrogenase (complex II) in the respiratory electron transport chain. Malonic acid is found to be associated with malonyl-CoA decarboxylase deficiency, which is an inborn error of metabolism. Malonic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=141-82-2 (retrieved 2024-07-02) (CAS RN: 141-82-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

D-2-Hydroxyglutaric acid

alpha-Hydroxyglutarate, disodium salt

C5H8O5 (148.0372)


In humans, D-2-hydroxyglutaric acid is formed by a hydroxyacid-oxoacid transhydrogenase whereas in bacteria it is formed by a 2-hydroxyglutarate synthase. D-2-Hydroxyglutaric acid is also formed via the normal activity of hydroxyacid-oxoacid transhydrogenase during conversion of 4-hydroxybutyrate to succinate semialdehyde. The compound can be converted to alpha-ketoglutaric acid through the action of a 2-hydroxyglutarate dehydrogenase (EC 1.1.99.2). In humans, there are two such enzymes (D2HGDH and L2HGDH). Both the D and the L stereoisomers of hydroxyglutaric acid are found in body fluids. D-2-Hydroxyglutaric acid is a biochemical hallmark of the inherited neurometabolic disorder D-2-hydroxyglutaric aciduria (OMIM: 600721) and the genetic disorder glutaric aciduria II. D-2-Hydroxyglutaric aciduria (caused by loss of D2HGDH or gain of function of IDH) is rare, with symptoms including cancer, macrocephaly, cardiomyopathy, mental retardation, hypotonia, and cortical blindness. An elevated urine level of D-2-hydroxyglutaric acid has been reported in patients with spondyloenchondrodysplasia (OMIM: 271550). D-2-Hydroxyglutaric acid can be converted to alpha-ketoglutaric acid through the action of 2-hydroxyglutarate dehydrogenase (D2HGDH). Additionally, the enzyme D-3-phosphoglycerate dehydrogenase (PHGDH) can catalyze the NADH-dependent reduction of alpha-ketoglutarate (AKG) to D-2-hydroxyglutarate (D-2HG). Nyhan et al. (1995) described 3 female patients, 2 of them sibs, who were found to have excess accumulation of D-2-hydroxyglutaric acid in the urine. The phenotype was quite variable, even among the sibs, but included mental retardation, macrocephaly with cerebral atrophy, hypotonia, seizures, and involuntary movements. One of the patients developed severe intermittent vomiting and was given a pyloromyotomy. The electroencephalogram demonstrated hypsarrhythmia. There was an increased concentration of protein in cerebrospinal fluid, an unusual finding in inborn errors of metabolism. D-2-Hydroxyglutaric acid can also be produced via gain-of-function mutations in the cytosolic and mitochondrial isoforms of isocitrate dehydrogenase (IDH). IDH is part of the TCA cycle and this compound is generated in high abundance when IDH is mutated. Since D-2-hydroxyglutaric acid is sufficiently similar in structure to 2-oxoglutarate (2OG), it is able to inhibit a range of 2OG-dependent dioxygenases, including histone lysine demethylases (KDMs) and members of the ten-eleven translocation (TET) family of 5-methylcytosine (5mC) hydroxylases. This inhibitory effect leads to alterations in the hypoxia-inducible factor (HIF)-mediated hypoxic response and alterations in gene expression through global epigenetic remodeling. The net effect is that D-2-hydroxyglutaric acid causes a cascading effect that leads genetic perturbations and malignant transformation. Depending on the circumstances, D-2-hydroxyglutaric acid can act as an oncometabolite, a neurotoxin, an acidogen, and a metabotoxin. An oncometabolite is a compound that promotes tumour growth and survival. A neurotoxin is compound that is toxic to neurons or nerual tissue. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. As an oncometabolite, D-2-hydroxyglutaric acid is a competitive inhibitor of multiple alpha-ketoglutarate-dependent dioxygenases, including histone demethylases and the TET family of 5mC hydroxylases. As a result, high levels of 2-hydroxyglutarate lead to genome-wide histone and DNA methylation alterations, which in turn lead to mutations that ultimately cause cancer (PMID: 29038145). As a neurotoxin, D-2-hydroxyglutaric acid mediates its neurotoxicity through activation of N-methyl-D-aspartate receptors. D-2-Hydroxyglutaric acid is structurally similar to the excitatory amino acid glutamate and stimul... Tissue accumulation of high amounts of D 2 hydroxyglutaric acid is the biochemical hallmark of the inherited neurometabolic disorder D 2 hydroxyglutaric aciduria.

   

dCDP

[({[(2R,3S,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3-hydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]phosphonic acid

C9H15N3O10P2 (387.0233)


dCDP is a substrate for Uridine-cytidine kinase 1, Nucleoside diphosphate kinase (mitochondrial), Nucleoside diphosphate kinase homolog 5, Ribonucleoside-diphosphate reductase large subunit, Nucleoside diphosphate kinase A, Nucleoside diphosphate kinase 7, Ribonucleoside-diphosphate reductase M2 chain, Nucleoside diphosphate kinase B, Nucleoside diphosphate kinase 3, Nucleoside diphosphate kinase 6 and UMP-CMP kinase. [HMDB]. dCDP is found in many foods, some of which are oil palm, sweet bay, garden onion (variety), and italian sweet red pepper. dCDP is a substrate for Uridine-cytidine kinase 1, Nucleoside diphosphate kinase (mitochondrial), Nucleoside diphosphate kinase homolog 5, Ribonucleoside-diphosphate reductase large subunit, Nucleoside diphosphate kinase A, Nucleoside diphosphate kinase 7, Ribonucleoside-diphosphate reductase M2 chain, Nucleoside diphosphate kinase B, Nucleoside diphosphate kinase 3, Nucleoside diphosphate kinase 6 and UMP-CMP kinase. Acquisition and generation of the data is financially supported in part by CREST/JST.

   

Tetraphenylarsonium

Tetraphenylarsonium

C24H20As+ (383.0781)


   

Ophthalmic acid

(2S)-2-amino-4-{[(1S)-1-[(carboxymethyl)carbamoyl]propyl]carbamoyl}butanoic acid

C11H19N3O6 (289.1274)


Ophthalmic acid, also known as ophthalmate, belongs to the class of organic compounds known as oligopeptides. These are organic compounds containing a sequence of between three and ten alpha-amino acids joined by peptide bonds. Ophthalmic acid is a very strong basic compound (based on its pKa). Ophthalmic acid is an L-glutamine derivative in which L-glutamine is substituted by a 1--1-oxobutan-2-yl at the terminal amino nitrogen atom. Ophthalmic acid is an analogue of glutathione isolated from crystalline lens. Ophthalmic acid is an analogue of glutathione isolated from crystalline lens. [HMDB]

   

PHENAZINE

PHENAZINE

C12H8N2 (180.0687)


CONFIDENCE standard compound; INTERNAL_ID 191 CONFIDENCE standard compound; INTERNAL_ID 8129

   

Tetrachlorosalicylanilide

2-Hydroxy-3,4,5,6-tetrachlorobenzanilide

C13H7Cl4NO2 (348.9231)


CONFIDENCE standard compound; INTERNAL_ID 2369 D004791 - Enzyme Inhibitors CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 8640 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 8243

   

Dodemorph

4-Cyclododecyl-2,6-dimethylmorpholine

C18H35NO (281.2719)


CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 1013 CONFIDENCE standard compound; INTERNAL_ID 8459 CONFIDENCE standard compound; INTERNAL_ID 2587

   

Meta-Tyrosine

(2S)-2-Azaniumyl-3-(3-hydroxyphenyl)propanoate

C9H11NO3 (181.0739)


Meta-Tyrosine, or M-Tyrosine for short, is a natural weed suppressant found in certain Fine fescue grass. M-tyrosine exudes out of the grass plants roots and is then absorbed by neighbouring weed seedlings. The weed plants will either die or be stunted from the toxic acid. DL-m-Tyrosine shows effects on Arabidopsis root growth. Carbidopa combination with DL-m-tyrosine shows a potent hypotensive effect[1][2].

   

Clofazimine

(4-Chloro-phenyl)-[5-(4-chloro-phenyl)-3-isopropylimino-3,5-dihydro-phenazin-2-yl]-amine

C27H22Cl2N4 (472.1221)


A fat-soluble riminophenazine dye used for the treatment of leprosy. It has been used investigationally in combination with other antimycobacterial drugs to treat Mycobacterium avium infections in AIDS patients. Clofazimine also has a marked anti-inflammatory effect and is given to control the leprosy reaction, erythema nodosum leprosum. (From AMA Drug Evaluations Annual, 1993, p1619) J - Antiinfectives for systemic use > J04 - Antimycobacterials > J04B - Drugs for treatment of lepra > J04BA - Drugs for treatment of lepra D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007917 - Leprostatic Agents COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C254 - Anti-Infective Agent > C258 - Antibiotic D000893 - Anti-Inflammatory Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

N-Methylalanine

N-Methylalanine hydrochloride, (DL-ala)-isomer

C4H9NO2 (103.0633)


N-Methylalanine, also known as (S)-2-methylaminopropanoate or N-methyl-L-alanine, is classified as an alanine or an alanine derivative. Alanines are compounds containing alanine or a derivative thereof resulting from reaction of alanine at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. N-Methylalanine is considered to be soluble (in water) and acidic. (ChemoSummarizer) Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID M028

   

Hydroxyhydroquinone

1,2,4-Trihydroxybenzene

C6H6O3 (126.0317)


1,2,4-Trihydroxybenzene (Hydroxyhydroquinone), a by-product of coffee bean roasting, increases intracellular Ca2+ concentration in rat thymic lymphocytes[1]. 1,2,4-Trihydroxybenzene (Hydroxyhydroquinone), a by-product of coffee bean roasting, increases intracellular Ca2+ concentration in rat thymic lymphocytes[1].

   

Citramalate

2-Hydroxy-2-methyl-(b)-butanedioic acid

C5H8O5 (148.0372)


Citramalic acid, also known as 2-Methylmalic acid, is an analog of malic acid. The structure of citramalic acid is similar to the structure of malic acid except it has an extra CH3 group on position 2. It is also classified as a 2-hydroxydicarboxylic acid. Citramalic acid exists in two isomers, L-citramalic acid and D-citramalic acid. The L-isomer is more biologically relevant isomer. Citramalic acid is found in almost all living organisms from microbes to plants to humans although citramalate is primarily produced from bacteria. L-citramalic acid was first isolated from the peel of apples in 1954 (PMID: 13160011). It has also been isolated in wine and other ripening fruit (PMID: 13807713). Citramalic acid can inhibit the production of malic acid. Citramalic acid is also an important microbial metabolite and has been found to be a byproduct of Saccharomyces yeast species, as well as Propionibacterium acnes and Aspergillus niger (PMID: 31827810) (http://drweyrich.weyrich.com/labs/oat.html) (PMID: 7628083). Citramalic acid is a component of the C5-branched dibasic acid metabolism pathway. It can be broken down by the enzyme citramalate lyase, which converts citramalate to acetate and pyruvate. Citramalate synthase is an enzyme found in bacteria that synthesizes citramalic acid from acetyl-CoA, pyruvate and water. Citramalic acid may have a useful role in medical diagnoses. It has been found in the urine of two brothers with autistic features (PMID: 7628083). Citramalic acid can also be used as a urinary marker for gut dysbiosis (PMID: 31669633). Dysbiosis is a disorder of the bacterial flora of the human digestive tract. It is usually diagnosed clinically by direct detection of an abnormal pattern of the intestinal microbiota. Constituent of apple peel. (R)-2-Hydroxy-2-methylbutanedioic acid is found in pomes.

   

Trichloroacetic acid

Sanofi brand OF trichloroacetic acid

C2HCl3O2 (161.9042)


Trichloroacetic acid (TCA; also known as trichloroethanoic acid) is an analogue of acetic acid in which the three hydrogen atoms of the methyl group have all been replaced by chlorine atoms. D009676 - Noxae > D002424 - Caustics Same as: D08633

   

Palmitoylcarnitine

O-hexadecanoyl-R-carnitine

C23H45NO4 (399.3348)


D018977 - Micronutrients > D014815 - Vitamins CONFIDENCE standard compound; INTERNAL_ID 250

   

2,2',5,5'-Tetrachlorobiphenyl

1,4-dichloro-2-(2,5-dichlorophenyl)benzene

C12H6Cl4 (289.9224)


D004785 - Environmental Pollutants > D011078 - Polychlorinated Biphenyls

   

Isovaline

(S)-2-AMINO-2-METHYLBUTYRIC ACID

C5H11NO2 (117.079)


KEIO_ID A189

   

Thiamine pyrophosphate

3-[(4-amino-2-methylpyrimidin-5-yl)methyl]-5-(2-{[hydroxy(phosphonooxy)phosphoryl]oxy}ethyl)-4-methyl-1,3-thiazol-3-ium

[C12H19N4O7P2S]+ (425.045)


Thiamine pyrophosphate is the active form of thiamine, and it serves as a cofactor for several enzymes involved primarily in carbohydrate catabolism. The enzymes are important in the biosynthesis of a number of cell constituents, including neurotransmitters, and for the production of reducing equivalents used in oxidant stress defenses and in biosyntheses and for synthesis of pentoses used as nucleic acid precursors. The chemical structure of TPP is that of an aromatic methylaminopyrimidine ring, linked via a methylene bridge to a methylthiazolium ring with a pyrophosphate group attached to a hydroxyethyl side chain. In non-enzymatic model studies it has been demonstrated that the thiazolium ring can catalyse reactions which are similar to those of TPP-dependent enzymes but several orders of magnitude slower. Using infrared and NMR spectrophotometry it has been shown that the dissociation of the proton from C2 of the thiazolium ring is necessary for catalysis; the abstraction of the proton leads to the formation of a carbanion (ylid) with the potential for a nucleophilic attack on the carbonyl group of the substrate. In all TPP-dependent enzymes the abstraction of the proton from the C2 atom is the first step in catalysis, which is followed by a nucleophilic attack of this carbanion on the substrate. Subsequent cleavage of a C-C bond releases the first product with formation of a second carbanion (2-greek small letter alpha-carbanion or enamine). The formation of this 2-greek small letter alpha-carbanion is the second feature of TPP catalysis common to all TPP-dependent enzymes. Depending on the enzyme and the substrate(s), the reaction intermediates and products differ. Methyl-branched fatty acids, as phytanic acid, undergo peroxisomal beta-oxidation in which they are shortened by 1 carbon atom. This process includes four steps: activation, 2-hydroxylation, thiamine pyrophosphate dependent cleavage and aldehyde dehydrogenation. In the third step, 2-hydroxy-3-methylacyl-CoA is cleaved in the peroxisomal matrix by 2-hydroxyphytanoyl-CoA lyase (2-HPCL), which uses thiamine pyrophosphate (TPP) as cofactor. The thiamine pyrophosphate dependence of the third step is unique in peroxisomal mammalian enzymology. Human pathology due to a deficient alpha-oxidation is mostly linked to mutations in the gene coding for the second enzyme of the sequence, phytanoyl-CoA hydroxylase (EC 1.14.11.18). (PMID: 12694175, 11899071, 9924800) [HMDB] Thiamine pyrophosphate (CAS: 154-87-0) is the active form of thiamine, and it serves as a cofactor for several enzymes involved primarily in carbohydrate catabolism. These enzymes are important in the biosynthesis of several cell constituents, including neurotransmitters, and for the production of reducing equivalents used in oxidant stress defences. The enzymes are also important for the synthesis of pentoses used as nucleic acid precursors. The chemical structure of TPP is that of an aromatic methylaminopyrimidine ring, linked via a methylene bridge to a methylthiazolium ring with a pyrophosphate group attached to a hydroxyethyl side chain. In non-enzymatic model studies, it has been demonstrated that the thiazolium ring can catalyze reactions that are similar to those of TPP-dependent enzymes but several orders of magnitude slower. Using infrared and NMR spectrophotometry it has been shown that the dissociation of the proton from C2 of the thiazolium ring is necessary for catalysis; the abstraction of the proton leads to the formation of a carbanion with the potential for a nucleophilic attack on the carbonyl group of the substrate. In all TPP-dependent enzymes, the abstraction of the proton from the C2 atom is the first step in catalysis, which is followed by a nucleophilic attack of this carbanion on the substrate. Subsequent cleavage of a C-C bond releases the first product with the formation of a second carbanion (enamine). This formation is the second feature of TPP catalysis common to all TPP-dependent enzymes. Depending on the enzyme and the substrate(s), the reaction intermediates and products differ. Methyl-branched fatty acids, as phytanic acid, undergo peroxisomal beta-oxidation in which they are shortened by 1 carbon atom. This process includes four steps: activation, 2-hydroxylation, thiamine pyrophosphate-dependent cleavage, and aldehyde dehydrogenation. In the third step, 2-hydroxy-3-methylacyl-CoA is cleaved in the peroxisomal matrix by 2-hydroxyphytanoyl-CoA lyase (2-HPCL), which uses thiamine pyrophosphate (TPP) as a cofactor. The thiamine pyrophosphate dependence of the third step is unique in peroxisomal mammalian enzymology. Human pathology due to a deficient alpha-oxidation is mostly linked to mutations in the gene coding for the second enzyme of the sequence, phytanoyl-CoA hydroxylase (EC 1.14.11.18) (PMID:12694175, 11899071, 9924800). D018977 - Micronutrients > D014815 - Vitamins KEIO_ID C077

   

1,5-Diphenylcarbazide

1,5-Diphenylcarbohydrazide

C13H14N4O (242.1168)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents KEIO_ID D166; [MS2] KO009100 KEIO_ID D166

   

Methyl sulfate

Methyl hydrogen sulphuric acid

CH4O4S (111.983)


KEIO_ID M062

   

Oxamate

Oxalic monoamide

C2H3NO3 (89.0113)


KEIO_ID O011

   

Propynoic acid

Propiolic acid, monosodium salt

C3H2O2 (70.0055)


Propynoic acid, also known as propiolic acid, is involved in propanoate metabolism and is interconverted into 2-propyn-1-al by mitochondrial aldehyde dehydrogenase. Propynoic acid is an unsaturated organic acid and it can be prepared by boiling acetylene dicarboxylic acid. It is chemically obtained by the action of alcoholic potash on dibromosuccinic acid, or its acid potassium salt with water. It forms silky crystals which melt at 6°C and boil at about 144°C with decomposition. It is soluble in water and possesses an odour resembling that of acetic acid. Exposure to sunlight converts it into trimesic acid (benzene-1,3,5-tricarboxylic acid). It undergoes bromination to give dibromoacrylic acid. With hydrogen chloride it forms chloroacrylic acid. Its ethyl ester condenses with hydrazine to form pyrazolone. Propynoic acid forms a characteristic explosive silver salt upon the addition of ammoniacal silver nitrate to its aqueous solution, and an amorphous precipitate which explodes upon warming with ammoniacal cuprous chloride. Its ethyl ester condenses with hydrazine to form pyrazolone (Wikipedia). Propynoic acid is involved in propanoate metabolism and is interconverted between 2-propyn1-al and propynoic acid by mitochondrial aldehyde dehydrogenase. Propiolic acid is an unsaturated organic acid and it can be prepared by boiling acetylene dicarboxylic acid. It is chemically obtained by the action of alcoholic potash on dibromosuccinic acid, or its acid potassium salt with water. It forms silky crystals which melt at 6 degree centigrade, and boil at about 144 degree centigrade with decomposition. It is soluble in water and possesses an odor resembling that of acetic acid. Exposure to sunlight converts it into trimesic acid (benzene-1,3,5-tricarboxylic acid). Bromine converts it into dibromoacrylic acid, and it gives with hydrochloric acid O-chloracrylic acid. It forms a characteristic explosive silver salt on the addition of ammoniacal silver nitrate to its aqueous solution, and an amorphous precipitate which explodes on warming with ammoniacal cuprous chloride. Its ethyl ester condenses with hydrazine to form pyrazolone. [HMDB] KEIO_ID P040

   

D-ribulose-1,5-bisphosphate

{[(3R,4R)-3,4-dihydroxy-2-oxo-5-(phosphonooxy)pentyl]oxy}phosphonic acid

C5H12O11P2 (309.9855)


D-ribulose-1,5-bisphosphate, also known as ribulose-1,5-diphosphoric acid or ribulose-1,5 diphosphate, (D)-isomer, is a member of the class of compounds known as pentose phosphates. Pentose phosphates are carbohydrate derivatives containing a pentose substituted by one or more phosphate groups. D-ribulose-1,5-bisphosphate is soluble (in water) and a moderately acidic compound (based on its pKa). D-ribulose-1,5-bisphosphate can be found in a number of food items such as bamboo shoots, bog bilberry, chestnut, and other cereal product, which makes D-ribulose-1,5-bisphosphate a potential biomarker for the consumption of these food products. D-ribulose-1,5-bisphosphate may be a unique E.coli metabolite. Ribulose 1,5-bisphosphate (RuBP) is an organic substance that is involved in photosynthesis. It is a colourless anion, a double phosphate ester of the ketopentose (ketone-containing sugar with five carbon atoms) called ribulose. Salts of RuBP can be isolated, but its crucial biological function happens in solution. To simplify the presentation, the image in the above table depicts the acid form of this anion . KEIO_ID R005

   

N-ethylmaleimide

1-ethyl-2,5-dihydro-1H-pyrrole-2,5-dione

C6H7NO2 (125.0477)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D013439 - Sulfhydryl Reagents D004791 - Enzyme Inhibitors KEIO_ID E008

   

Quinoline

Quinoline Hydrochloride

C9H7N (129.0578)


Quinoline is an alkaloid from various plant species including Mentha species. Also present in cocoa, black tea and scotch whiskey. Quinoline is a flavouring ingredient Quinoline is a heterocyclic aromatic organic compound. It has the formula C9H7N and is a colourless hygroscopic liquid with a strong odour. Aged samples, if exposed to light, become yellow and later brown. Quinoline is only slightly soluble in cold water but dissolves readily in hot water and most organic solvents. Quinoline is found in alcoholic beverages. Quinoline is mainly used as a building block to other specialty chemicals. Approximately 4 tonnes are produced annually according to a report published in 2005.[citation needed] Its principal use is as a precursor to 8-hydroxyquinoline, which is a versatile chelating agent and precursor to pesticides. Its 2- and 4-methyl derivatives are precursors to cyanine dyes. Oxidation of quinoline affords quinolinic acid (pyridine-2,3-dicarboxylic acid), a precursor to the herbicide sold under the name "Assert" Alkaloid from various plant subspecies including Mentha subspeciesand is also present in cocoa, black tea and scotch whiskey. Flavouring ingredient CONFIDENCE standard compound; INTERNAL_ID 2526 KEIO_ID Q008

   

1,4-Dihydronicotinamide adenine dinucleotide

Dihydronicotinamide-adenine dinucleotide

C21H29N7O14P2 (665.1248)


Nicotinamide adenine dinucleotide (NAD) is a coenzyme central to metabolism. Found in all living cells, NAD is called a dinucleotide because it consists of two nucleotides joined through their phosphate groups. One nucleotide contains an adenine nucleobase and the other nicotinamide. NAD exists in two forms: an oxidized and reduced form, abbreviated as NAD+ and NADH (H for hydrogen) respectively. NADH is the reduced form of NAD+, and NAD+ is the oxidized form of NADH. NAD (or nicotinamide adenine dinucleotide) is used extensively in glycolysis and the citric acid cycle of cellular respiration. The reducing potential stored in NADH can be either converted into ATP through the electron transport chain or used for anabolic metabolism. ATP "energy" is necessary for an organism to live. Green plants obtain ATP through photosynthesis, while other organisms obtain it via cellular respiration. NAD is a coenzyme composed of ribosylnicotinamide 5-diphosphate coupled to adenosine 5-phosphate by a pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). NADP is formed through the addition of a phosphate group to the 2 position of the adenosyl nucleotide through an ester linkage. NADH is the reduced form of NAD+, and NAD+ is the oxidized form of NADH, A coenzyme composed of ribosylnicotinamide 5-diphosphate coupled to adenosine 5-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). It forms NADP with the addition of a phosphate group to the 2 position of the adenosyl nucleotide through an ester linkage.(Dorland, 27th ed) [HMDB]. NADH is found in many foods, some of which are dill, ohelo berry, fox grape, and black-eyed pea. Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

ADP-glucose

[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]({[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy})phosphinic acid

C16H25N5O15P2 (589.0822)


ADP-glucose serves as the glycosyl donor for formation of bacterial glycogen, amylose in green algae, and amylopectin in higher plants. ADP-glucose has been found to be a metabolite of Escherichia (PMID: 25102309). Acquisition and generation of the data is financially supported in part by CREST/JST.

   

Mesna

2-Mercaptoethanesulfonic acid solution

C2H6O3S2 (141.9758)


Mesna is a chemoprotectant. Chemoprotectants have been developed as a means of ameliorating the toxicity associated with cytotoxic agents by providing site-specific protection for normal tissues, without compromising antitumour efficacy. Mesna eliminates the risk of therapy-limiting urotoxic side effects of oxazaphosphorines. Mesna is widely used for the prevention of cyclophosphamide-related hemorrhagic cystitis. It has been associated with hypersensitivity-like cutaneous and systemic reactions in adult patients. Mesna offers significant uroprotection in patients receiving high dose cyclophosphamide, and is widely used in paediatric oncology practice It is, therefore, important to recognize that it may be associated with a rare but significant systemic adverse reaction. A hypersensitivity-like reaction to mesna was first reported in a young adult receiving treatment for Hodgkin disease over 20 years ago. Oral administration of mesna can facilitate outpatient ifosfamide therapy. Blood and urinary mesna concentrations are more steady and prolonged after oral delivery compared with after intravenous delivery. (PMID: 16333822, 10193684, 1485175) [HMDB] Mesna is a chemoprotectant. Chemoprotectants have been developed as a means of ameliorating the toxicity associated with cytotoxic agents by providing site-specific protection for normal tissues, without compromising antitumour efficacy. Mesna eliminates the risk of therapy-limiting urotoxic side effects of oxazaphosphorines. Mesna is widely used for the prevention of cyclophosphamide-related hemorrhagic cystitis. It has been associated with hypersensitivity-like cutaneous and systemic reactions in adult patients. Mesna offers significant uroprotection in patients receiving high dose cyclophosphamide, and is widely used in paediatric oncology practice It is, therefore, important to recognize that it may be associated with a rare but significant systemic adverse reaction. A hypersensitivity-like reaction to mesna was first reported in a young adult receiving treatment for Hodgkin disease over 20 years ago. Oral administration of mesna can facilitate outpatient ifosfamide therapy. Blood and urinary mesna concentrations are more steady and prolonged after oral delivery compared with after intravenous delivery. (PMID: 16333822, 10193684, 1485175). Acquisition and generation of the data is financially supported in part by CREST/JST. D020011 - Protective Agents

   

Antimycin A

N-{7-hexyl-4,9-dimethyl-8-[(3-methylbutanoyl)oxy]-2,6-dioxo-1,5-dioxonan-3-yl}-2-hydroxy-3-[(hydroxymethylidene)amino]benzene-1-carboximidate

C28H40N2O9 (548.2734)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents

   

Neoxanthin

(1R,3S)-6-[(1M,3E,5E,7E,9E,11E,13E,15Z,17E)-18-[(1S,4S,6R)-4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-ylidene]-1,5,5-trimethylcyclohexane-1,3-diol

C40H56O4 (600.4178)


Neoxanthin belongs to the class of organic compounds known as xanthophylls. These are carotenoids containing an oxygenated carotene backbone. Carotenes are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Xanthophylls arise by oxygenation of the carotene backbone. Neoxanthin is an intermediate in the synthesis of abscisic acid from violaxanthin. Neoxanthin has been detected, but not quantified in, several different foods, such as apples, paprikas, Valencia oranges, kiwis, globe artichokes, sparkleberries, hard wheat, and cinnamon. This could make neoxanthin a potential biomarker for the consumption of these foods. Neoxanthin has been shown to exhibit apoptotic and anti-proliferative functions (PMID: 15333710, 15333710). Neoxanthin is a carotenoid and xanthophyll. In plants, it is an intermediate in the biosynthesis of the plant hormone abscisic acid. It is produced from violaxanthin by the action of neoxanthin synthase. It is a major xanthophyll found in green leafy vegetables such as spinach. [Wikipedia] D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

Antheraxanthin A

6-[(1E,3Z,5E,7E,9E,11Z,13E,15E,17E)-18-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]-1,5,5-trimethyl-7-oxabicyclo[4.1.0]heptan-3-ol

C40H56O3 (584.4229)


Antheraxanthin a is a member of the class of compounds known as xanthophylls. Xanthophylls are carotenoids containing an oxygenated carotene backbone. Carotenes are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Carotenes belonging form a subgroup of the carotenoids family. Xanthophylls arise by oxygenation of the carotene backbone. Antheraxanthin a is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Antheraxanthin a can be found in herbs and spices, which makes antheraxanthin a a potential biomarker for the consumption of this food product. Antheraxanthin A is found in herbs and spices. Antheraxanthin A is a constituent of Capsicum fruit; potential nutriceutical D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

Violaxanthin

(1R,3S,6S)-6-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-18-[(1S,4S,6R)-4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]-1,5,5-trimethyl-7-oxabicyclo[4.1.0]heptan-3-ol

C40H56O4 (600.4178)


Violaxanthin belongs to the class of organic compounds known as xanthophylls. These are carotenoids containing an oxygenated carotene backbone. Carotenes are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Xanthophylls arise by oxygenation of the carotene backbone. Thus, violaxanthin is considered to be an isoprenoid lipid molecule. Violaxanthin is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Violaxanthin is an orange-coloured pigment that is found in brown algae and various plants (e.g. pansies). It is biosynthesized from the epoxidation of zeaxanthin. Violaxanthin is a food additive that is only approved for use in Australia and New Zealand (INS: 161e) (PMID: 29890662). 3 (violaxanthin, zeaxanthin and antheraxanthin) participate in series of photo-induced interconversions known as violaxanthin cycle; Xanthophyll; a carotene epoxide that is precursor to capsanthin; cleavage of 9-cis-epoxycarotenoids (violaxanthin) to xanthoxin, catalyzed by 9-cis-epoxycarotenoid dioxygenase, is the key regulatory step of abscisic acid biosynthesis; one of 3 xanthophylls involved in evolution of plastids of green plants (oxygen evolution). (all-E)-Violaxanthin is found in many foods, some of which are orange bell pepper, passion fruit, pepper (c. annuum), and italian sweet red pepper. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

Hydroquinone

Hydroquinone, lead (2+) salt (2:1)

C6H6O2 (110.0368)


Hydroquinone, also benzene-1,4-diol, is an aromatic organic compound which is a type of phenol, having the chemical formula C6H4(OH)2. Its chemical structure has two hydroxyl groups bonded to a benzene ring in a para position. Hydroquinone is commonly used as a biomarker for benzene exposure. The presence of hydroquinone in normal individuals stems mainly from direct dietary ingestion, catabolism of tyrosine and other substrates by gut bacteria, ingestion of arbutin containing foods, cigarette smoking, and the use of some over-the-counter medicines. Hydroquinone is a white granular solid at room temperature and pressure. The hydroxyl groups of hydroquinone are quite weakly acidic. Hydroquinone can lose an H+ from one of the hydroxyls to form a monophenolate ion or lose an H+ from both to form a diphenolate ion. Hydroquinone has a variety of uses principally associated with its action as a reducing agent which is soluble in water. It is a major component in most photographic developers where, with the compound Metol, it reduces silver halides to elemental silver. [HMDB]. Hydroquinone is found in many foods, some of which are kai-lan, agar, red bell pepper, and jostaberry. Hydroquinone, also known as benzene-1,4-diol, is an aromatic organic compound which is a type of phenol, having the chemical formula C6H4(OH)2. Its chemical structure has two hydroxyl groups bonded to a benzene ring in a para position. Hydroquinone is commonly used as a biomarker for benzene exposure. The presence of hydroquinone in normal individuals stems mainly from direct dietary ingestion, catabolism of tyrosine and other substrates by gut bacteria, ingestion of arbutin-containing foods, cigarette smoking, and the use of some over-the-counter medicines. Hydroquinone is a white granular solid at room temperature and pressure. The hydroxyl groups of hydroquinone are quite weakly acidic. Hydroquinone can lose an H+ from one of the hydroxyls to form a monophenolate ion or lose an H+ from both to form a diphenolate ion. Hydroquinone has a variety of uses principally associated with its action as a reducing agent which is soluble in water. It is a major component of most photographic developers where, with the compound Metol, it reduces silver halides to elemental silver. D020011 - Protective Agents > D011837 - Radiation-Protective Agents D020011 - Protective Agents > D000975 - Antioxidants D009676 - Noxae > D009153 - Mutagens D - Dermatologicals

   

Pomiferin

3-(3,4-dihydroxyphenyl)-5-hydroxy-8,8-dimethyl-6-(3-methylbut-2-en-1-yl)-4H,8H-pyrano[2,3-h]chromen-4-one

C25H24O6 (420.1573)


   

Digitin

(25R)-2alpha,15beta-dihydroxy-5alpha-spirostan-3beta-yl beta-D-glucopyranosyl-(1->3)-beta-D-galactopyranosyl-(1->2)-[beta-D-xylopyranosyl-(1->3)]-beta-D-glucopyranosyl-(1->4)-beta-D-galactopyranoside

C56H92O29 (1228.5724)


D020011 - Protective Agents > D002316 - Cardiotonic Agents > D004071 - Digitalis Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents Digitonin, a glycoside obtained from Digitalis purpurea, could increase cell permeability by binding to cholesterol molecules and reduce tumor growth[1]. Digitonin is an natural detergent[2]. Digitonin, a glycoside obtained from Digitalis purpurea, could increase cell permeability by binding to cholesterol molecules and reduce tumor growth[1]. Digitonin is an natural detergent[2].

   

Coenzyme Q10

2-[(2E,6E,10E,14E,18E,22E,26E,30E,34E)-3,7,11,15,19,23,27,31,35,39-decamethyltetraconta-2,6,10,14,18,22,26,30,34,38-decaen-1-yl]-5,6-dimethoxy-3-methylcyclohexa-2,5-diene-1,4-dione

C59H90O4 (862.6839)


Coenzyme Q10 (ubiquinone) is a naturally occurring compound widely distributed in animal organisms and in humans. The primary compounds involved in the biosynthesis of ubiquinone are 4-hydroxybenzoate and the polyprenyl chain. An essential role of coenzyme Q10 is as an electron carrier in the mitochondrial respiratory chain. Moreover, coenzyme Q10 is one of the most important lipophilic antioxidants, preventing the generation of free radicals as well as oxidative modifications of proteins, lipids, and DNA, it and can also regenerate the other powerful lipophilic antioxidant, alpha-tocopherol. Antioxidant action is a property of the reduced form of coenzyme Q10, ubiquinol (CoQ10H2), and the ubisemiquinone radical (CoQ10H*). Paradoxically, independently of the known antioxidant properties of coenzyme Q10, the ubisemiquinone radical anion (CoQ10-) possesses prooxidative properties. Decreased levels of coenzyme Q10 in humans are observed in many pathologies (e.g. cardiac disorders, neurodegenerative diseases, AIDS, cancer) associated with intensive generation of free radicals and their action on cells and tissues. In these cases, treatment involves pharmaceutical supplementation or increased consumption of coenzyme Q10 with meals as well as treatment with suitable chemical compounds (i.e. folic acid or B-group vitamins) which significantly increase ubiquinone biosynthesis in the organism. Estimation of coenzyme Q10 deficiency and efficiency of its supplementation requires a determination of ubiquinone levels in the organism. Therefore, highly selective and sensitive methods must be applied, such as HPLC with UV or coulometric detection. For a number of years, coenzyme Q (CoQ10 in humans) was known for its key role in mitochondrial bioenergetics; later studies demonstrated its presence in other subcellular fractions and in plasma, and extensively investigated its antioxidant role. These two functions constitute the basis on which research supporting the clinical use of CoQ10 is founded. Also at the inner mitochondrial membrane level, coenzyme Q is recognized as an obligatory co-factor for the function of uncoupling proteins and a modulator of the transition pore. Furthermore, recent data reveal that CoQ10 affects expression of genes involved in human cell signalling, metabolism, and transport and some of the effects of exogenously administered CoQ10 may be due to this property. Coenzyme Q is the only lipid soluble antioxidant synthesized endogenously. In its reduced form, CoQH2, ubiquinol, inhibits protein and DNA oxidation but it is the effect on lipid peroxidation that has been most deeply studied. Ubiquinol inhibits the peroxidation of cell membrane lipids and also that of lipoprotein lipids present in the circulation. Dietary supplementation with CoQ10 results in increased levels of ubiquinol-10 within circulating lipoproteins and increased resistance of human low-density lipoproteins to the initiation of lipid peroxidation. Moreover, CoQ10 has a direct anti-atherogenic effect, which has been demonstrated in apolipoprotein E-deficient mice fed with a high-fat diet. (PMID: 15928598, 17914161). COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C - Cardiovascular system > C01 - Cardiac therapy C26170 - Protective Agent > C275 - Antioxidant D018977 - Micronutrients > D014815 - Vitamins Same as: D01065 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Enniatin B

Enniatin B

C33H57N3O9 (639.4095)


An enniatin obtained from formal cyclocondensation of three N-[(2R)-2-hydroxy-3-methylbutanoyl]-N-methyl-L-valine units. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents CONFIDENCE Reference Standard (Level 1)

   

Dihydrolipoate

dl-Dihydro-α-6-thioctic acid

C8H16O2S2 (208.0592)


Dihydrolipoic acid is an organic compound that is the reduced form of lipoic acid. This carboxylic acid features a pair of thiol groups. It is optically active but only the R-enantiomer is biochemically significant. The lipoic acid/dihydrolipoic acid pair participate in a variety of biochemical transformations.( from Wiki). Inside the cell, alpha lipoic acid is readily reduced or broken down to dihydrolipoic acid. Dihydrolipoic acid is even more potent than alpha lipoic acid, neutralizing free radicals, preventing them from causing harm. It directly destroys damaging superoxide radicals, hydroperoxy radicals and hydroxyl radicals. It has been shown in vitro that dihydrolipoate (DL-6,8-dithioloctanoic acid) has antioxidant activity against microsomal lipid peroxidation.Dihydrolipoate is tested for its neuroprotective activity using models of hypoxic and excitotoxic neuronal damage in vitro and rodent models of cerebral ischemia in vivo. Dihydrolipoate, similarly to dimethylthiourea, is able to protect neurons against ischemic damage by diminishing the accumulation of reactive oxygen species within the cerebral tissue.(PMID: 1345759). Dihydrolipoic acid is an organic compound that is the reduced form of lipoic acid. This carboxylic acid features a pair of thiol groups. It is optically active but only the R-enantiomer is biochemically significant. The lipoic acid/dihydrolipoic acid pair participate in a variety of biochemical transformations.( from Wiki) D020011 - Protective Agents > D000975 - Antioxidants CONFIDENCE standard compound; INTERNAL_ID 162

   

PE(16:0/18:1(9Z))

(2-aminoethoxy)[(2R)-3-(hexadecanoyloxy)-2-[(9Z)-octadec-9-enoyloxy]propoxy]phosphinic acid

C39H76NO8P (717.5308)


PE(16:0/18:1(9Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(16:0/18:1(9Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of oleic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(16:0/18:1(9Z)) is a phosphatidylethanolamine. It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 atoms. PE(16:0/18:1(9Z)), in particular, consists of one hexadecanoyl chain to the C-1 atom, and one 9Z-octadecenoyl to the C-2 atom. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

Dicyclohexylamine

Cyclohexanamine, N-cyclohexyl-, sulfate (1:1)

C12H23N (181.183)


INTERNAL_ID 2356; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2356 D004791 - Enzyme Inhibitors

   

2-Deoxy-D-glucose

6-(hydroxymethyl)oxane-2,4,5-triol

C6H12O5 (164.0685)


D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D009676 - Noxae > D000963 - Antimetabolites

   

Chlorophyll a

(5R,22S,23S)-17-ethenyl-12-ethyl-5-(methoxycarbonyl)-8,13,18,22-tetramethyl-6-oxo-23-(3-oxo-3-{[(2E,7R,11R)-3,7,11,15-tetramethylhexadec-2-en-1-yl]oxy}propyl)-2,25lambda5,26lambda5,27-tetraaza-1-magnesanonacyclo[12.11.1.1^{1,16}.0^{2,9}.0^{3,7}.0^{4,24}.0^{11,26}.0^{21,25}.0^{19,27}]heptacosa-3,7,9,11(26),12,14,16,18,20,24-decaene-25,26-bis(ylium)-1,1-diuide

C55H72MgN4O5 (892.5353)


Chlorophyll a is found in common wheat. Chlorophyll a is used in food processing as an appearance control agent for colours.Chlorophyll is a chlorin pigment, which is structurally similar to and produced through the same metabolic pathway as other porphyrin pigments such as heme. At the center of the chlorin ring is a magnesium ion. For the structures depicted in this article, some of the ligands attached to the Mg2+ center are omitted for clarity. The chlorin ring can have several different side chains, usually including a long phytol chain. There are a few different forms that occur naturally, but the most widely distributed form in terrestrial plants is chlorophyll a. The general structure of chlorophyll a was elucidated by Hans Fischer in 1940, and by 1960, when most of the stereochemistry of chlorophyll a was known, Robert Burns Woodward published a total synthesis of the molecule as then known. In 1967, the last remaining stereochemical elucidation was completed by Ian Fleming, and in 1990 Woodward and co-authors published an updated synthesis. Chlorophyll is a green pigment found in most plants, algae, and cyanobacteria. Its name is derived from the Greek (chloros "green") and (phyllon "leaf"). Chlorophyll absorbs light most strongly in the blue and red but poorly in the green portions of the electromagnetic spectrum, hence the green colour of chlorophyll-containing tissues such as plant leaves. Chlorophyll itself is bound to proteins and can transfer the absorbed energy in the required direction. Protochlorophyllide, differently, mostly occur in the free form and under light conditions act as photosensitizer, forming highly toxic free radicals. Hence plants need an efficient mechanism of regulating the amount of chlorophyll precursor. In angiosperms, this is done at the step of aminolevulinic acid (ALA), one of the intermediate compounds in the biosynthesis pathway. Plants that are fed by ALA accumulate high and toxic levels of protochlorophyllide, so do the mutants with the damaged regulatory system. Chlorosis is a condition in which leaves produce insufficient chlorophyll, turning them yellow. Chlorosis can be caused by a nutrient deficiency including iron - called iron chlorosis, or in a shortage of magnesium or nitrogen. Soil pH sometimes play a role in nutrient-caused chlorosis, many plants are adapted to grow in soils with specific pHs and their ability to absorb nutrients from the soil can be dependent on the soil pH. Chlorosis can also be caused by pathogens including viruses, bacteria and fungal infections or sap sucking insects It is used in food processing as an appearance control agent for colours

   

Diethyl dicarbonate

Diethyl ester OF pyrocarbonic acid

C6H10O5 (162.0528)


Diethyl dicarbonate is formerly used as a fermentation inhibitor and preservative for wines, soft drinks and fruit juices. No longer permitted as a food additive. Formerly used as a fermentation inhibitor and preservative for wines, soft drinks and fruit juices. No longer permitted as a food additive.

   

Chymosin preparation, escherichia coli k-12

N-[(3S,7S,11S)-7,11-bis(2,3-dihydroxybenzamido)-2,6,10-trioxo-1,5,9-trioxacyclododecan-3-yl]-2,3-dihydroxybenzamide

C30H27N3O15 (669.1442)


Chymosin preparation, escherichia coli k-12 is used as a food additive [EAFUS] ("EAFUS: Everything Added to Food in the United States. [http://www.eafus.com/]") D064449 - Sequestering Agents > D002614 - Chelating Agents > D007502 - Iron Chelating Agents

   

S-Methyl GSH

2-Amino-5-((1-((carboxymethyl)amino)-3-(methylthio)-1-oxopropan-2-yl)amino)-5-oxopentanoic acid

C11H19N3O6S (321.0995)


S-Methylglutathione is an S-substitued?glutathione and a stronger nucleophile than GSH[1]. S-Methylglutathione has inhibitory effect on glyoxalase 1[2].

   

Oxygen

Molecular oxygen

O2 (31.9898)


Oxygen is the third most abundant element in the universe after hydrogen and helium and the most abundant element by mass in the Earths crust. Diatomic oxygen gas constitutes 20.9\\% of the volume of air. All major classes of structural molecules in living organisms, such as proteins, carbohydrates, and fats, contain oxygen, as do the major inorganic compounds that comprise animal shells, teeth, and bone. Oxygen in the form of O2 is produced from water by cyanobacteria, algae and plants during photosynthesis and is used in cellular respiration for all living organisms. Green algae and cyanobacteria in marine environments provide about 70\\% of the free oxygen produced on earth and the rest is produced by terrestrial plants. Oxygen is used in mitochondria to help generate adenosine triphosphate (ATP) during oxidative phosphorylation. For animals, a constant supply of oxygen is indispensable for cardiac viability and function. To meet this demand, an adult human, at rest, inhales 1.8 to 2.4 grams of oxygen per minute. This amounts to more than 6 billion tonnes of oxygen inhaled by humanity per year. At a resting pulse rate, the heart consumes approximately 8-15 ml O2/min/100 g tissue. This is significantly more than that consumed by the brain (approximately 3 ml O2/min/100 g tissue) and can increase to more than 70 ml O2/min/100 g myocardial tissue during vigorous exercise. As a general rule, mammalian heart muscle cannot produce enough energy under anaerobic conditions to maintain essential cellular processes; thus, a constant supply of oxygen is indispensable to sustain cardiac function and viability. However, the role of oxygen and oxygen-associated processes in living systems is complex, and they and can be either beneficial or contribute to cardiac dysfunction and death (through reactive oxygen species). Reactive oxygen species (ROS) are a family of oxygen-derived free radicals that are produced in mammalian cells under normal and pathologic conditions. Many ROS, such as the superoxide anion (O2-)and hydrogen peroxide (H2O2), act within blood vessels, altering mechanisms mediating mechanical signal transduction and autoregulation of cerebral blood flow. Reactive oxygen species are believed to be involved in cellular signaling in blood vessels in both normal and pathologic states. The major pathway for the production of ROS is by way of the one-electron reduction of molecular oxygen to form an oxygen radical, the superoxide anion (O2-). Within the vasculature there are several enzymatic sources of O2-, including xanthine oxidase, the mitochondrial electron transport chain, and nitric oxide (NO) synthases. Studies in recent years, however, suggest that the major contributor to O2- levels in vascular cells is the membrane-bound enzyme NADPH-oxidase. Produced O2- can react with other radicals, such as NO, or spontaneously dismutate to produce hydrogen peroxide (H2O2). In cells, the latter reaction is an important pathway for normal O2- breakdown and is usually catalyzed by the enzyme superoxide dismutase (SOD). Once formed, H2O2 can undergo various reactions, both enzymatic and nonenzymatic. The antioxidant enzymes catalase and glutathione peroxidase act to limit ROS accumulation within cells by breaking down H2O2 to H2O. Metabolism of H2O2 can also produce other, more damaging ROS. For example, the endogenous enzyme myeloperoxidase uses H2O2 as a substrate to form the highly reactive compound hypochlorous acid. Alternatively, H2O2 can undergo Fenton or Haber-Weiss chemistry, reacting with Fe2+/Fe3+ ions to form toxic hydroxyl radicals (-.OH). (PMID: 17027622, 15765131) [HMDB]. Oxygen is found in many foods, some of which are soy bean, watermelon, sweet basil, and spinach. Oxygen is the third most abundant element in the universe after hydrogen and helium and the most abundant element by mass in the Earths crust. Diatomic oxygen gas constitutes 20.9\\% of the volume of air. All major classes of structural molecules in living organisms, such as proteins, carbohydrates, and fats, contain oxygen, as do the major inorganic compounds that comprise animal shells, teeth, and bone. Oxygen in the form of O2 is produced from water by cyanobacteria, algae and plants during photosynthesis and is used in cellular respiration for all living organisms. Green algae and cyanobacteria in marine environments provide about 70\\% of the free oxygen produced on earth and the rest is produced by terrestrial plants. Oxygen is used in mitochondria to help generate adenosine triphosphate (ATP) during oxidative phosphorylation. For animals, a constant supply of oxygen is indispensable for cardiac viability and function. To meet this demand, an adult human, at rest, inhales 1.8 to 2.4 grams of oxygen per minute. This amounts to more than 6 billion tonnes of oxygen inhaled by humanity per year. At a resting pulse rate, the heart consumes approximately 8-15 ml O2/min/100 g tissue. This is significantly more than that consumed by the brain (approximately 3 ml O2/min/100 g tissue) and can increase to more than 70 ml O2/min/100 g myocardial tissue during vigorous exercise. As a general rule, mammalian heart muscle cannot produce enough energy under anaerobic conditions to maintain essential cellular processes; thus, a constant supply of oxygen is indispensable to sustain cardiac function and viability. However, the role of oxygen and oxygen-associated processes in living systems is complex, and they and can be either beneficial or contribute to cardiac dysfunction and death (through reactive oxygen species). Reactive oxygen species (ROS) are a family of oxygen-derived free radicals that are produced in mammalian cells under normal and pathologic conditions. Many ROS, such as the superoxide anion (O2-)and hydrogen peroxide (H2O2), act within blood vessels, altering mechanisms mediating mechanical signal transduction and autoregulation of cerebral blood flow. Reactive oxygen species are believed to be involved in cellular signaling in blood vessels in both normal and pathologic states. The major pathway for the production of ROS is by way of the one-electron reduction of molecular oxygen to form an oxygen radical, the superoxide anion (O2-). Within the vasculature there are several enzymatic sources of O2-, including xanthine oxidase, the mitochondrial electron transport chain, and nitric oxide (NO) synthases. Studies in recent years, however, suggest that the major contributor to O2- levels in vascular cells is the membrane-bound enzyme NADPH-oxidase. Produced O2- can react with other radicals, such as NO, or spontaneously dismutate to produce hydrogen peroxide (H2O2). In cells, the latter reaction is an important pathway for normal O2- breakdown and is usually catalyzed by the enzyme superoxide dismutase (SOD). Once formed, H2O2 can undergo various reactions, both enzymatic and nonenzymatic. The antioxidant enzymes catalase and glutathione peroxidase act to limit ROS accumulation within cells by breaking down H2O2 to H2O. Metabolism of H2O2 can also produce other, more damaging ROS. For example, the endogenous enzyme myeloperoxidase uses H2O2 as a substrate to form the highly reactive compound hypochlorous acid. Alternatively, H2O2 can undergo Fenton or Haber-Weiss chemistry, reacting with Fe2+/Fe3+ ions to form toxic hydroxyl radicals (-.OH). (PMID: 17027622, 15765131). V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AN - Medical gases

   

Succinyl-CoA

4-[(2-{3-[(2R)-3-[({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)methyl]-2-hydroxy-3-methylbutanamido]propanamido}ethyl)sulfanyl]-4-oxobutanoic acid

C25H40N7O19P3S (867.1312)


Succinyl-CoA is an important intermediate in the citric acid cycle, where it is synthesized from α-Ketoglutarate by α-ketoglutarate dehydrogenase (EC 1.2.4.2) through decarboxylation, and is converted into succinate through the hydrolytic release of coenzyme A by succinyl-CoA synthetase (EC 6.2.1.5). Succinyl-CoA may be an end product of peroxisomal beta-oxidation of dicarboxylic fatty acids; the identification of an apparently specific succinyl-CoA thioesterase (ACOT4, EC 3.1.2.3, hydrolyzes succinyl-CoA) in peroxisomes strongly suggests that succinyl-CoA is formed in peroxisomes. Acyl-CoA thioesterases (ACOTs) are a family of enzymes that catalyze the hydrolysis of the CoA esters of various lipids to the free acids and coenzyme A, thereby regulating levels of these compounds. (PMID: 16141203) [HMDB]. Succinyl-CoA is found in many foods, some of which are fruits, sea-buckthornberry, pomegranate, and sweet orange. Succinyl-CoA is an important intermediate in the citric acid cycle, where it is synthesized from α-Ketoglutarate by α-ketoglutarate dehydrogenase (EC 1.2.4.2) through decarboxylation, and is converted into succinate through the hydrolytic release of coenzyme A by succinyl-CoA synthetase (EC 6.2.1.5). Succinyl-CoA may be an end product of peroxisomal beta-oxidation of dicarboxylic fatty acids; the identification of an apparently specific succinyl-CoA thioesterase (ACOT4, EC 3.1.2.3, hydrolyzes succinyl-CoA) in peroxisomes strongly suggests that succinyl-CoA is formed in peroxisomes. Acyl-CoA thioesterases (ACOTs) are a family of enzymes that catalyze the hydrolysis of the CoA esters of various lipids to the free acids and coenzyme A, thereby regulating levels of these compounds. (PMID: 16141203).

   

Methanol

Methanol-water mixture

CH4O (32.0262)


Methanol, also known as columbian spirit or CH3OH, belongs to the class of organic compounds known as primary alcohols. Primary alcohols are compounds comprising the primary alcohol functional group, with the general structure RCOH (R=alkyl, aryl). The target of methanol in the eye is the retina, specifically the optic disk and optic nerve. Toxicity is due to the metabolic products of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase. Methanol exists in all living organisms, ranging from bacteria to humans. Methanol is an alcoholic tasting compound. Outside of the human body, Methanol is found, on average, in the highest concentration within cow milk and sweet oranges. Methanol has also been detected, but not quantified in several different foods, such as prairie turnips, mountain yams, mentha (mint), watermelons, and pasta. Methanol is responsible for accidental, suicidal, and epidemic poisonings, resulting in death or permanent sequelae. Methanol is a potentially toxic compound. Visual disturbances develop between 18h to 48h after ingestion and range from mild photophobia and blurred vision to markedly reduced visual acuity and complete blindness. Methanol is metabolized to formaldehyde by alcohol dehydrogenase, then from that to formate by formaldehyde dehydrogenase, and then to carbon dioxide by limited H4 folate. It is the simplest alcohol, and is a light, volatile, colourless, flammable, poisonous liquid with a distinctive odor that is somewhat milder and sweeter than ethanol. Present in various wines and spirits. It is used as a solvent for the preparation of modified hop extracts and spice oleoresins D012997 - Solvents

   

Cyanide ion

Cyanide ion; Prussiate; CN-; Cyano; Cyanide

CN- (26.0031)


   

Ferricyanide

Ferricyanide; Hexacyanoferrate(III)

C6FeN6-3 (211.9534)


D006401 - Hematologic Agents > D006397 - Hematinics > D005290 - Ferric Compounds

   
   

coenzyme F420

SCHEMBL16018850

C29H36N5O18P (773.1793)


   

Phosphoglycolic acid

Glycolic acid dihydrogen phosphate

C2H5O6P (155.9824)


Phosphoglycolic acid, also known as 2-phosphoglycolate or (phosphonooxy)-acetate, is a member of the class of compounds known as monoalkyl phosphates. Monoalkyl phosphates are organic compounds containing a phosphate group that is linked to exactly one alkyl chain. Phosphoglycolic acid is soluble (in water) and a moderately acidic compound (based on its pKa). Phosphoglycolic acid can be found in a number of food items such as arrowhead, rocket salad (sspecies), roselle, and natal plum, which makes phosphoglycolic acid a potential biomarker for the consumption of these food products. Phosphoglycolic acid can be found primarily throughout most human tissues. Phosphoglycolic acid exists in all living species, ranging from bacteria to humans. Phosphoglycolic acid is a substrate for triose-phosphate isomerase. This compound belongs to the family of Organophosphate Esters. These are organic compounds containing phosphoric acid ester functional group.

   

Ascorbate radical

Monodehydroascorbate radical

C6H7O6 (175.0243)


   

5,6,7,8-Tetrahydromethanopterin

(2S)-2-[({[(2R,3S,4R,5S)-3,4-dihydroxy-5-{[(2R,3S,4S)-2,3,4-trihydroxy-5-(4-{[(1R)-1-[(6S,7S)-4-hydroxy-2-imino-7-methyl-1,2,5,6,7,8-hexahydropteridin-6-yl]ethyl]amino}phenyl)pentyl]oxy}oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]pentanedioic acid

C30H45N6O16P (776.263)


This compound belongs to the family of Alkyl Glycosides. These are lipids containing a glycosyl moiety (one or several units) linked to the hydroxyl group of a fatty alcohol.

   

Sodium

sodium(1+)

Na+ (22.9898)


Na+, also known as sodium ion or na(+), is a member of the class of compounds known as homogeneous alkali metal compounds. Homogeneous alkali metal compounds are inorganic compounds containing only metal atoms,with the largest atom being a alkali metal atom. Na+ can be found in a number of food items such as nanking cherry, opium poppy, alpine sweetvetch, and salmonberry, which makes na+ a potential biomarker for the consumption of these food products. Na+ can be found primarily in blood, cerebrospinal fluid (CSF), saliva, and urine, as well as in human kidney tissue. Na+ exists in all eukaryotes, ranging from yeast to humans. In humans, na+ is involved in several metabolic pathways, some of which include eplerenone action pathway, betaxolol action pathway, furosemide action pathway, and morphine action pathway. Na+ is also involved in several metabolic disorders, some of which include diltiazem action pathway, bendroflumethiazide action pathway, dimethylthiambutene action pathway, and lidocaine (antiarrhythmic) action pathway. NA, N.A., Na, or n/a may refer to: . Sodium ions are necessary for regulation of blood and body fluids, transmission of nerve impulses, heart activity, and certain metabolic functions. Physiologically, it exists as an ion in the body. Sodium is needed by animals, which maintain high concentrations in their blood and extracellular fluids, but the ion is not needed by plants. The human requirement for sodium in the diet is less than 500 mg per day, which is typically less than a tenth as much as many diets "seasoned to taste." Most people consume far more sodium than is physiologically needed. For certain people with salt-sensitive blood pressure, this extra intake may cause a negative effect on health.

   

FADH

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}[({[(2R,3S,4S)-5-{7,8-dimethyl-2,4-dioxo-1H,2H,3H,4H,5H,10H-benzo[g]pteridin-10-yl}-2,3,4-trihydroxypentyl]oxy}(hydroxy)phosphoryl)oxy]phosphinic acid

C27H35N9O15P2 (787.1728)


Fadh2, also known as 1,5-dihydro-fad or dihydroflavine-adenine dinucleotide, is a member of the class of compounds known as flavin nucleotides. Flavin nucleotides are nucleotides containing a flavin moiety. Flavin is a compound that contains the tricyclic isoalloxazine ring system, which bears 2 oxo groups at the 2- and 4-positions. Fadh2 is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Fadh2 can be found in a number of food items such as soft-necked garlic, fruits, winter squash, and black cabbage, which makes fadh2 a potential biomarker for the consumption of these food products. Fadh2 exists in all living species, ranging from bacteria to humans. In humans, fadh2 is involved in several metabolic pathways, some of which include the oncogenic action of fumarate, the oncogenic action of 2-hydroxyglutarate, citric acid cycle, and congenital lactic acidosis. Fadh2 is also involved in several metabolic disorders, some of which include 2-ketoglutarate dehydrogenase complex deficiency, the oncogenic action of d-2-hydroxyglutarate in hydroxygluaricaciduria, the oncogenic action of l-2-hydroxyglutarate in hydroxygluaricaciduria, and pyruvate dehydrogenase deficiency (E2). FADH is the reduced form of flavin adenine dinucleotide (FAD). FAD is synthesized from riboflavin and two molecules of ATP. Riboflavin is phosphorylated by ATP to give riboflavin 5-phosphate (FMN). FAD is then formed from FMN by the transfer of an AMP moiety from a second molecule of ATP. FADH is generated in each round of fatty acid oxidation, and the fatty acyl chain is shortened by two carbon atoms as a result of these reactions; because oxidation is on the beta carbon, this series of reactions is called the beta-oxidation pathway. In the citric acid cycle, FADH is involved in the harvesting of high-energy electrons from carbon fuels; the citric acid cycle itself neither generates a large amount of ATP nor includes oxygen as a reactant. Instead, the citric acid cycle removes electrons from acetyl CoA and uses these electrons to form FADH.

   

Decyl alcohol

N-Decyl alcohol, magnesium salt

C10H22O (158.1671)


1-Decanol, or decyl alcohol, is a straight chain fatty alcohol with ten carbon atoms and the molecular formula CH3(CH2)9OH. It is a colorless viscous liquid that is insoluble in water. 1-Decanol has a strong odour. Decanol is used in the manufacture of plasticizers, lubricants, surfactants and solvents. Decanol causes a high irritability to skin and eyes, when splashed into the eyes it can cause permanent damage. Also inhalation and ingestion can be harmful, it can also function as a narcotic. It is also harmful to the environment. Isolated from plant sources, e.g. citrus oils, apple, coriander, babaco fruit (Carica pentagonia), wines, scallop and other foods

   

Coenzyme Q9

2,3-dimethoxy-5-methyl-6-[(2E,6E,10E,14E,18E,22E,26E,30E)-3,7,11,15,19,23,27,31,35-nonamethylhexatriaconta-2,6,10,14,18,22,26,30,34-nonaen-1-yl]cyclohexa-2,5-diene-1,4-dione

C54H82O4 (794.6213)


Coenzyme Q9 (CoQ9) is a normal constituent of human plasma. CoQ9 in human plasma may originate as a product of incomplete CoQ10 biosynthesis or from the diet. The estimated dietary CoQ9 intake is 0 to 1.3 umol/day, primarily from cereals and fats, but this is unreliable because many food items contain levels below the detection limit. Plasma CoQ9 increases after supplementation with CoQ10, and CoQ9 and CoQ10 are significantly correlated. (PMID: 17405953). D020011 - Protective Agents > D000975 - Antioxidants Coenzyme Q9 (Ubiquinone Q9), the major form of ubiquinone in rodents, is an amphipathic molecular component of the electron transport chain that functions as an endogenous antioxidant. Coenzyme Q9 attenuates the diabetes-induced decreases in antioxidant defense mechanisms. Coenzyme Q9 improves left ventricular performance and reduces myocardial infarct size and cardiomyocyte apoptosis[1][2]. Coenzyme Q9 (Ubiquinone Q9), the major form of ubiquinone in rodents, is an amphipathic molecular component of the electron transport chain that functions as an endogenous antioxidant. Coenzyme Q9 attenuates the diabetes-induced decreases in antioxidant defense mechanisms. Coenzyme Q9 improves left ventricular performance and reduces myocardial infarct size and cardiomyocyte apoptosis[1][2].

   

D-Luciferin

(S)-4,5-Dihydro-2-(6-hydroxy-1,3-benzothiazol-2-yl)thiazole-4-carboxylic acid

C11H8N2O3S2 (279.9976)


   

Thiamine triphosphate

3-[(4-amino-2-methylpyrimidin-5-yl)methyl]-5-(2-{[hydroxy({[hydroxy(phosphonooxy)phosphoryl]oxy})phosphoryl]oxy}ethyl)-4-methyl-1,3-thiazol-3-ium

C12H20N4O10P3S+ (505.0113)


Thiamine triphosphate is the triphosphate ester of thiamine. Thiamine triphosphate (ThTP) was previously considered to be a specific neuroactive form of thiamine. However, it was recently shown that ThTP exists in bacteria, fungi, plants and animals suggesting a much more general cellular role. In particular, it seems to play a role in response to amino acid starvation. In mammals, ThTP is hydrolyzed by a specific thiamine triphosphatase. In Leighs disease, this compound is present in decreased amounts in the brain due to a metabolic block in its formation. [HMDB] Thiamine triphosphate is the triphosphate ester of thiamine. Thiamine triphosphate (ThTP) was previously considered to be a specific neuroactive form of thiamine. However, it was recently shown that ThTP exists in bacteria, fungi, plants and animals suggesting a much more general cellular role. In particular, it seems to play a role in response to amino acid starvation. In mammals, ThTP is hydrolyzed by a specific thiamine triphosphatase. In Leighs disease, this compound is present in decreased amounts in the brain due to a metabolic block in its formation. D018977 - Micronutrients > D014815 - Vitamins

   

Mg-protoporphyrin IX

Mg-protoporphyrin IX

C34H32MgN4O4 (584.2274)


   

methyl coenzyme M

methyl coenzyme M

C3H8O3S2 (155.9915)


   

Diadenosine pentaphosphate

{[(2R,3S,4R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}[({[({[({[(3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)(hydroxy)phosphoryl]oxy}(hydroxy)phosphoryl)oxy]phosphinic acid

C20H29N10O22P5 (916.0146)


Diadenosine pentaphosphate (AP5A) is a diadenosine polyphosphate. Diadenosine polyphosphates (APnAs, n = 3-6) are a family of endogenous vasoactive purine dinucleotides which have been isolated from thrombocytes. APnAs have been demonstrated to be involved in the control of vascular tone as well as the growth of vascular smooth muscle cells and hence, possibly, in atherogenesis. APnAs isolated substances are Ap3A, Ap4A, Ap5A, and Ap6A. APnAs are naturally occurring substances that facilitate tear secretion; they are released from the corneal epithelium, they stimulate tear production and therefore they may be considered as physiological modulators of tear secretion. The APnAs were discovered in the mid-sixties in the course of studies on aminoacyl-tRNA synthetases (aaRS). APnAs have emerged as intracellular and extracellular signalling molecules implicated in the maintenance and regulation of vital cellular functions and become considered as second messengers. Great variety of physiological and pathological effects in mammalian cells was found to be associated with alterations of APnAs. APnAs are polyphosphated nucleotidic substances which are found in the CNS and are known to be released in a calcium-dependent manner from storage vesicles in brain synaptosomes. AP5A is a specific adenylate kinase inhibitor in the hippocampus, decreasing the rate of decomposition of ADP and the formation of ATP; a pathway that influences the availability of purines in the central nervous system. AP5A in nanomolar concentrations is found to significantly stimulate the proliferation of vascular smooth muscle cells. AP5A is a P2X agonist. The activation of nucleotide ion tropic receptors increases intracellular calcium concentration, resulting in calcium/calmodulin-dependent protein kinase II (CaMKII) activation. AP5A is an avid inhibitor of eosinophil-derived neurotoxin (EDN). EDN is a catalytically proficient member of the pancreatic ribonuclease superfamily secreted along with other eosinophil granule proteins during innate host defense responses and various eosinophil-related inflammatory and allergic diseases. The ribonucleolytic activity of EDN is central to its antiviral and neurotoxic activities and possibly to other facets of its biological activity. AP5A have been identified in human platelets and shown to be important modulator of cardiovascular function. AP5A is stored in synaptic vesicles and released upon nerve terminal depolarization. At the extracellular level, AP5A can stimulate presynaptic dinucleotide receptors. Responses to AP5A have been described in isolated synaptic terminals (synaptosomes) from several brain areas in different animal species, including man. Dinucleotide receptors are ligand-operated ion channels that allow the influx of cations into the terminals. These cations reach a threshold for N- and P/Q-type voltage-dependent calcium channels, which become activated. The activation of the dinucleotide receptor together with the activation of these calcium channels triggers the release of neurotransmitters. The ability of Ap5A to promote glutamate, GABA or acetylcholine release has been described. (PMID: 11212966, 12738682, 11810214, 9607303, 8922753, 10094777, 16401072, 16819989, 17721817, 17361116, 14502438) [HMDB] Diadenosine pentaphosphate (AP5A) is a diadenosine polyphosphate. Diadenosine polyphosphates (APnAs, n = 3-6) are a family of endogenous vasoactive purine dinucleotides which have been isolated from thrombocytes. APnAs have been demonstrated to be involved in the control of vascular tone as well as the growth of vascular smooth muscle cells and hence, possibly, in atherogenesis. APnAs isolated substances are Ap3A, Ap4A, Ap5A, and Ap6A. APnAs are naturally occurring substances that facilitate tear secretion; they are released from the corneal epithelium, they stimulate tear production and therefore they may be considered as physiological modulators of tear secretion. The APnAs were discovered in the mid-sixties in the course of studies on aminoacyl-tRNA synthetases (aaRS). APnAs have emerged as intracellular and extracellular signalling molecules implicated in the maintenance and regulation of vital cellular functions and become considered as second messengers. Great variety of physiological and pathological effects in mammalian cells was found to be associated with alterations of APnAs. APnAs are polyphosphated nucleotidic substances which are found in the CNS and are known to be released in a calcium-dependent manner from storage vesicles in brain synaptosomes. AP5A is a specific adenylate kinase inhibitor in the hippocampus, decreasing the rate of decomposition of ADP and the formation of ATP; a pathway that influences the availability of purines in the central nervous system. AP5A in nanomolar concentrations is found to significantly stimulate the proliferation of vascular smooth muscle cells. AP5A is a P2X agonist. The activation of nucleotide ion tropic receptors increases intracellular calcium concentration, resulting in calcium/calmodulin-dependent protein kinase II (CaMKII) activation. AP5A is an avid inhibitor of eosinophil-derived neurotoxin (EDN). EDN is a catalytically proficient member of the pancreatic ribonuclease superfamily secreted along with other eosinophil granule proteins during innate host defense responses and various eosinophil-related inflammatory and allergic diseases. The ribonucleolytic activity of EDN is central to its antiviral and neurotoxic activities and possibly to other facets of its biological activity. AP5A have been identified in human platelets and shown to be important modulator of cardiovascular function. AP5A is stored in synaptic vesicles and released upon nerve terminal depolarization. At the extracellular level, AP5A can stimulate presynaptic dinucleotide receptors. Responses to AP5A have been described in isolated synaptic terminals (synaptosomes) from several brain areas in different animal species, including man. Dinucleotide receptors are ligand-operated ion channels that allow the influx of cations into the terminals. These cations reach a threshold for N- and P/Q-type voltage-dependent calcium channels, which become activated. The activation of the dinucleotide receptor together with the activation of these calcium channels triggers the release of neurotransmitters. The ability of Ap5A to promote glutamate, GABA or acetylcholine release has been described. (PMID: 11212966, 12738682, 11810214, 9607303, 8922753, 10094777, 16401072, 16819989, 17721817, 17361116, 14502438). D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents

   

HQNO

2-Heptyl-4-hydroxyquinoline N-oxide

C16H21NO2 (259.1572)


HQNO, secreted by P. aeruginosa, is a potent electron transport chain inhibitor with a Kd of 64 nM for complex III[1]. HQNO is a potent inhibitor of mitochondrial NDH-2 in many species[2]. HQNO, secreted by P. aeruginosa, is a potent electron transport chain inhibitor with a Kd of 64 nM for complex III[1]. HQNO is a potent inhibitor of mitochondrial NDH-2 in many species[2].

   

CoM-S-S-CoB

Coenzyme M 7-mercaptoheptanoylthreonine-phosphate heterodisulfide; Coenzyme M-HTP heterodisulfide; CoM-S-S-CoB; N-{7-[(2-Sulfoethyl)dithio]heptanoyl}-3-O-phospho-L-threonine

C13H26NO10PS3 (483.0456)


   

Pheophytin a

3,7,11,15-tetramethylhexadec-2-en-1-yl [3S-[3alpha(2E,7S*,11S*),4beta,21beta]]-14-ethyl-21-(methoxycarbonyl)-4,8,13,18-tetramethyl-20-oxo-9-vinylphorbine-3-propionate

C55H74N4O5 (870.5659)


Pheophytin a is practically insoluble (in water) and an extremely strong acidic compound (based on its pKa). Pheophytin a can be found in a number of food items such as tea, wasabi, corn salad, and pigeon pea, which makes pheophytin a a potential biomarker for the consumption of these food products.

   

bacteriopheophytin

Bacteriopheophytin; Bacteriopheophytin a

C55H76N4O6 (888.5765)


   

Prostaglandin-c2

(5Z)-7-[(1R)-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopent-2-en-1-yl]hept-5-enoic acid

C20H30O4 (334.2144)


This compound belongs to the family of Prostaglandins and related compounds. These are unsaturated carboxylic acids consisting of of a 20 carbon skeleton that also contains a five member ring, and are based upon the fatty acid arachidonic acid.

   

Fluoroacetic acid

Fluoroacetic acid, ammonium salt, 2-(14)C-labeled

C2H3FO2 (78.0117)


D010575 - Pesticides > D012378 - Rodenticides D016573 - Agrochemicals

   

2-Oxazolidinone

1,3 Oxazolidine 2 one

C3H5NO2 (87.032)


D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors D000890 - Anti-Infective Agents > D023303 - Oxazolidinones

   

Atovaquone

2-hydroxy-3-[(1r,4r)-4-(4-chlorophenyl)cyclohexyl]-1,4-dihydronaphthalene-1,4-dione

C22H19ClO3 (366.1023)


Atovaquone is only found in individuals that have used or taken this drug. It is a hydroxynaphthoquinone that has antimicrobial activity and is being used in antimalarial protocols. [PubChem]Atovaquone is a hydroxy- 1, 4- naphthoquinone, an analog of ubiquinone, with antipneumocystis activity. The mechanism of action against Pneumocystis carinii has not been fully elucidated. In Plasmodium species, the site of action appears to be the cytochrome bc1 complex (Complex III). Several metabolic enzymes are linked to the mitochondrial electron transport chain via ubiquinone. Inhibition of electron transport by atovaquone will result in indirect inhibition of these enzymes. The ultimate metabolic effects of such blockade may include inhibition of nucleic acid and ATP synthesis. Atovaquone also has been shown to have good in vitro activity against Toxoplasma gondii. P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01A - Agents against amoebiasis and other protozoal diseases D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent D004791 - Enzyme Inhibitors

   

Maleic imide

Maleimide, potassium, silver (+1) (2:1:1) salt

C4H3NO2 (97.0164)


Maleimide can be used for production of antibody-drug conjugate (ADC) which is used in cancer research. Maleimide also be leveraged for the preparation of fluorogenic probe, which is mainly used for the specific detection of thiol analytes[1][2].

   

Thiamylal

Dihydro-5-(1-methylbutyl)-5-(2-propenyl)-2-thioxo-4,6(1H,5H)-pyrimidinedione

C12H18N2O2S (254.1089)


Thiamylal is only found in individuals that have used or taken this drug. It is a barbiturate that is administered intravenously for the production of complete anesthesia of short duration, for the induction of general anesthesia, or for inducing a hypnotic state. (From Martindale, The Extra Pharmacopoeia, 30th ed, p919)Thiamylal binds at a distinct binding site associated with a Cl- ionopore at the GABAA receptor, increasing the duration of time for which the Cl- ionopore is open. The post-synaptic inhibitory effect of GABA in the thalamus is, therefore, prolonged. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C67084 - Barbiturate D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent

   

Dalfopristin

(6R,10R,11R,12Z,17Z,19Z,21S)-6-[2-(Diethylamino)ethanesulphonyl]-14,21-dihydroxy-11,19-dimethyl-10-(propan-2-yl)-9,26-dioxa-3,15,28-triazatricyclo[23.2.1.0³,⁷]octacosa-1(27),12,14,17,19,25(28)-hexaene-2,8,23-trione

C34H50N4O9S (690.3298)


Dalfopristin is a combination of two antibiotics (Dalfopristin and quinupristin) used to treat infections by staphylococci and by vancomycin-resistant Enterococcus faecium. It is not effective against Enterococcus faecalis infections. Dalfopristin inhibits the early phase of protein synthesis in the bacterial ribosome and quinupristin inhibits the late phase of protein synthesis. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D025361 - Streptogramins

   

Rifapentine

(7S,9Z,11S,12R,13S,14R,15R,16R,17S,18S,21Z)-26-[(1E)-[(4-cyclopentylpiperazin-1-yl)imino]methyl]-2,15,17,23,27,29-hexahydroxy-11-methoxy-3,7,12,14,16,18,22-heptamethyl-6-oxo-8,30-dioxa-24-azatetracyclo[23.3.1.1^{4,7}.0^{5,28}]triaconta-1(28),2,4,9,19,21,23,25(29),26-nonaen-13-yl acetate

C47H64N4O12 (876.4521)


Rifapentine is only found in individuals that have used or taken this drug. It is an antibiotic drug used in the treatment of tuberculosis.Rifapentine has shown higher bacteriostatic and bactericidal activities especially against intracellular bacteria growing in human monocyte-derived macrophages. Rifapentine inhibits DNA-dependent RNA polymerase in susceptible strains of M. tuberculosis. Rifapentine acts via the inhibition of DNA-dependent RNA polymerase, leading to a suppression of RNA synthesis and cell death. J - Antiinfectives for systemic use > J04 - Antimycobacterials > J04A - Drugs for treatment of tuberculosis > J04AB - Antibiotics D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D000995 - Antitubercular Agents D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007917 - Leprostatic Agents D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D012294 - Rifamycins C254 - Anti-Infective Agent > C52588 - Antibacterial Agent > C280 - Antitubercular Agent

   

Daphnetoxin

Orthobenzoic acid, cyclic 7,8,10a-ester with 5,6-epoxy-4,5,6,6a,7,8,9,10,10a,10b-decahydro-3a,4,7,8,10a-pentahydroxy-5-(hydroxymethyl)-8-isopropenyl-2,10-dimethylbenz(e)azulen-3(3ah)-one

C27H30O8 (482.1941)


A daphnane-type orthoester diterpene with potential cholesterol-lowering activity, found exclusively in plants of the family Thymelaeaceae.

   

Cirsiliol

2-(3,4-dihydroxyphenyl)-5-hydroxy-6,7-dimethoxy-4H-chromen-4-one

C17H14O7 (330.0739)


Cirsiliol, also known as 3,4,5-trihydroxy-6,7-dimethoxyflavone or 6,7-dimethoxy-5,3,4-trihydroxyflavone, is a member of the class of compounds known as 7-o-methylated flavonoids. 7-o-methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, cirsiliol is considered to be a flavonoid lipid molecule. Cirsiliol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Cirsiliol can be found in common sage and lemon verbena, which makes cirsiliol a potential biomarker for the consumption of these food products. Cirsiliol is a potent and selective 5-lipoxygenase inhibitor and a competitive low affinity benzodiazepine receptor ligand. Cirsiliol is a potent and selective 5-lipoxygenase inhibitor and a competitive low affinity benzodiazepine receptor ligand. Cirsiliol is a potent and selective 5-lipoxygenase inhibitor and a competitive low affinity benzodiazepine receptor ligand.

   

Gingerenone A

1,7-Bis(4-hydroxy-3-methoxyphenyl)-4-hepten-3-one, 9ci

C21H24O5 (356.1624)


Constituent of Zingiber officinale (ginger). Gingerenone A is found in herbs and spices and ginger. Gingerenone A is found in ginger. Gingerenone A is a constituent of Zingiber officinale (ginger) Gingerenone A is a Nrf2-Gpx4 activator with anti-breast-cancer properties. Gingerenone A results a delayed G2/M in cancer cells, following oxidative stress and senescence responses. Gingerenone A also alleviates ferroptosis in secondary liver injury (SLI) in dextran sodium sulfate (DSS)-induced colitis mice. Gingerenone A can be isolated from Zingiber officinale[1][2]. Gingerenone A is a Nrf2-Gpx4 activator with anti-breast-cancer properties. Gingerenone A results a delayed G2/M in cancer cells, following oxidative stress and senescence responses. Gingerenone A also alleviates ferroptosis in secondary liver injury (SLI) in dextran sodium sulfate (DSS)-induced colitis mice. Gingerenone A can be isolated from Zingiber officinale[1][2].

   

1-(4-Hydroxy-3-methoxyphenyl)-3-decanone

2-08-00-00318 (Beilstein Handbook Reference)

C17H26O3 (278.1882)


1-(4-Hydroxy-3-methoxyphenyl)-3-decanone is found in alcoholic beverages. 1-(4-Hydroxy-3-methoxyphenyl)-3-decanone is from grains of paradise (Amomum melegueta) and ginger (Zingiber officinale).Paradol is the active flavor constituent of the seeds of Guinea pepper (Aframomum melegueta). The seed is also known as Grains of paradise. Paradol has been found to have antioxidative and antitumor promoting effects. It is used in flavors as an essential oil to give spiciness. (Wikipedia [6]-Paradol is a member of phenols, a ketone and a monomethoxybenzene. Paradol is a natural product found in Aframomum angustifolium, Aframomum melegueta, and Zingiber officinale with data available. From grains of paradise (Amomum melegueta) and ginger (Zingiber officinale) Paradol is a pungent phenolic substance found in ginger and other Zingiberaceae plants. Paradol is an effective inhibitor of tumor promotion in mouse skin carcinogenesis, binds to cyclooxygenase (COX)-2 active site. Paradol is a pungent phenolic substance found in ginger and other Zingiberaceae plants. Paradol is an effective inhibitor of tumor promotion in mouse skin carcinogenesis, binds to cyclooxygenase (COX)-2 active site.

   
   

Melitten

2-{[2-({6-amino-2-[(2-{[6-amino-2-({2-[(2-{[2-({2-[(2-{[2-({[1-(2-{[2-({2-[(2-{[2-({2-[(6-amino-2-{[2-({2-[(2-{[2-({2-[(2-amino-1-hydroxyethylidene)amino]-1-hydroxy-3-methylpentylidene}amino)-1-hydroxyethylidene]amino}-1-hydroxypropylidene)amino]-1-hydroxy-3-methylbutylidene}amino)-1-hydroxy-4-methylpentylidene]amino}-1-hydroxyhexylidene)amino]-1-hydroxy-3-methylbutylidene}amino)-1-hydroxy-4-methylpentylidene]amino}-1,3-dihydroxybutylidene)amino]-1,3-dihydroxybutylidene}amino)-1-hydroxyethylidene]amino}-4-methylpentanoyl)pyrrolidin-2-yl](hydroxy)methylidene}amino)-1-hydroxypropylidene]amino}-1-hydroxy-4-methylpentylidene)amino]-1-hydroxy-3-methylpentylidene}amino)-1,3-dihydroxypropylidene]amino}-1-hydroxy-3-(1H-indol-3-yl)propylidene)amino]-1-hydroxy-3-methylpentylidene}amino)-1-hydroxyhexylidene]amino}-5-carbamimidamido-1-hydroxypentylidene)amino]-1-hydroxyhexylidene}amino)-5-carbamimidamido-1-hydroxypentylidene]amino}-N-[1,3-bis(C-hydroxycarbonimidoyl)propyl]pentanediimidic acid

C131H229N39O31 (2844.7541)


   

N-Tetradecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate

N-Tetradecyl-N,N-dimethyl-3-ammonio-1-propanesulphonic acid

C19H41NO3S (363.2807)


   

Bacteriochlorophyll a

Bacterio-chlorophyll a

C55H74MgN4O6 (910.5459)


   

Bicozamycin

Bicyclomycin

C12H18N2O7 (302.1114)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D005765 - Gastrointestinal Agents > D000930 - Antidiarrheals C784 - Protein Synthesis Inhibitor D004791 - Enzyme Inhibitors

   

Mikamycin A

Virginiamycin Complex

C28H35N3O7 (525.2475)


C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C259 - Antineoplastic Antibiotic D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D025361 - Streptogramins Virginiamycin M1 (Pristinamycin IIA; Ostreogrycin A), produced by?Streptomyces virginiae, is an polyunsaturated macrocyclic lactone antibiotic and acts as a component of Virginiamycin (HY-112665)[1]. Virginiamycin M1 alone is against Staphylococcus aureus with a MIC of 0.25 μg/mL. The combination of Virginiamycin M1 and Virginiamycin S1 (HY-N6680) is 0.125 μg/mL (MIC Value), which can improve the bactericidal effect 1-30 times[2].

   

Oligomycin B

28-Oxooligomycin A

C45H72O12 (804.5024)


An oligomycin with formula C45H72O12 that is oligomycin A in which the spirocyclic ring bearing the 2-hydroxypropyl substituent has been substituted by an oxo group at the carbon which is directly attached to the spirocentre. It is a nonselective inhibitor of the mitochondrial F1F0 ATP synthase. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D009840 - Oligomycins

   

Rutamycin

Oligomycin D

C44H72O11 (776.5074)


An oligomycin with formula C44H72O11 that is oligomycin A in which the methyl substituent adjacent to the spirocyclic centre has been replaced by a hydrogen. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D009840 - Oligomycins C784 - Protein Synthesis Inhibitor > C261 - Macrolide Antibiotic D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D004791 - Enzyme Inhibitors > D014475 - Uncoupling Agents C254 - Anti-Infective Agent > C258 - Antibiotic Same as: D05778

   

TTFB

4,5,6,7-Tetrachloro-2-trifluoromethylbenzimidazole

C8HCl4F3N2 (321.8846)


   

Nafenopin

2-methyl-2-[4-(1,2,3,4-tetrahydronaphthalen-1-yl)phenoxy]propanoic acid

C20H22O3 (310.1569)


C78276 - Agent Affecting Digestive System or Metabolism > C29711 - Anti-diabetic Agent > C154291 - Peroxisome Proliferator-Activated Receptor Agonist C78276 - Agent Affecting Digestive System or Metabolism > C29703 - Antilipidemic Agent > C98150 - Fibrate Antilipidemic Agent D009676 - Noxae > D002273 - Carcinogens > D020025 - Peroxisome Proliferators D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Same as: D05102

   

dup-697

Thiophene, 5-bromo-2-(4-fluorophenyl)-3-(4-(methylsulfonyl)phenyl)-

C17H12BrFO2S2 (409.9446)


D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D004791 - Enzyme Inhibitors

   

(Z)-2-CHLORO-2-BUTENE

(Z)-3-((Aminoiminomethyl)thio)-2-propenoic acid

C4H6N2O2S (146.015)


An imidothiocarbamic ester that is (2Z)-prop-2-enoic acid with a carbamimidoylsulfanyl group at position 3.

   

Chloroform

Chloroformium pro narcosi

CHCl3 (117.9144)


Chloroform is found in spearmint. Indirect food additive arising from adhesives and polymers Chloroform is a common solvent in the laboratory because it is relatively unreactive, miscible with most organic liquids, and conveniently volatile. Chloroform is used as a solvent in the pharmaceutical industry and for producing dyes and pesticides. Chloroform is an effective solvent for alkaloids in their base form and thus plant material is commonly extracted with chloroform for pharmaceutical processing. For example, it is commercially used to extract morphine from poppies and scopolamine from Datura plants. Chloroform containing deuterium (heavy hydrogen), CDCl3, is a common solvent used in NMR spectroscopy. It can be used to bond pieces of acrylic glass (also known under the trade names Perspex and Plexiglas). Chloroform is a solvent of phenol:chloroform:isoamyl alcohol 25:24:1 is used to dissolve non-nucleic acid biomolecules in DNA and RNA extractions. Chloroform is the organic compound with formula CHCl3. It does not undergo combustion in air, although it will burn when mixed with more flammable substances. It is a member of a group of compounds known as trihalomethanes. Chloroform has myriad uses as a reagent and a solvent. It is also considered an environmental hazard. Several million tons are produced annually. The output of this process is a mixture of the four chloromethanes: chloromethane, dichloromethane, chloroform (trichloromethane), and carbon tetrachloride, which are then separated by distillation. The total global flux of chloroform through the environment is approximately 660000 tonnes per year, and about 90\\% of emissions are natural in origin. Many kinds of seaweed produce chloroform, and fungi are believed to produce chloroform in soil. Abiotic process is also believed to contribute to natural chloroform productions in soils although the mechanism is still unclear. Chloroform volatilizes readily from soil and surface water and undergoes degradation in air to produce phosgene, dichloromethane, formyl chloride, carbon monoxide, carbon dioxide, and hydrogen chloride. Its half-life in air ranges from 55 to 620 days. Biodegradation in water and soil is slow. Chloroform does not significantly bioaccumulate in aquatic organisms. N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general > N01AB - Halogenated hydrocarbons Indirect food additive arising from adhesives and polymers D012997 - Solvents ATC code: N01AB02

   

Fenobucarb

2-(1-Methylpropyl)phenyl methylcarbamic acid

C12H17NO2 (207.1259)


C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor

   

Tridecanol

1-Tridecanol, trialuminum salt

C13H28O (200.214)


1-tridecanol is a long chain fatty alcohol with a C-13 carbon back bone. It was found to be the most effective for controlling cariogenic bacterium. [HMDB] 1-tridecanol is a long chain fatty alcohol with a C-13 carbon back bone. It was found to be the most effective for controlling cariogenic bacterium.

   

RifamycinS

Rifamycin S

C37H45NO12 (695.2942)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D012294 - Rifamycins Rifamycin S, a quinone, is an antibiotic against Gram-positive bacteria (including MRSA). Rifamycin S is the oxidized forms of a reversible oxidation-reduction system involving two electrons. Rifamycin S generates reactive oxygen species (ROS) and inhibits microsomal lipid peroxidation. Rifamycin S can be used for tuberculosis and leprosy[1][2][3].

   

Dibromochloromethane

Dibromo-chloro-methane

CHBr2Cl (205.8133)


Dibromochloromethane belongs to the family of Organochlorides. These are organic compounds containing a chlorine atom

   

Bromodichloromethane

Bromodichloromethane, 14C-labeled

CHBrCl2 (161.8639)


Bromodichloromethane, also known as dichlorobromomethane or monobromodichloromethane, is classified as a member of the trihalomethanes. Trihalomethanes are organic compounds in which exactly three of the four hydrogen atoms of methane (CH4) are replaced by halogen atoms. Bromodichloromethane is a colorless, nonflammable liquid. Small amounts are formed naturally by algae in the oceans. Some of it will dissolve in water, but it readily evaporates into air. Only small quantities of bromodichloromethane are produced in the United States. The small quantities that are produced are used in laboratories or to make other chemicals. However, most bromodichloromethane is formed as a by-product when chlorine is added to drinking water to kill bacteria. Bromodichloromethane has been formerly used as a flame retardant, and a solvent for fats and waxes and because of its high density for mineral separation. Now it is only used as a reagent or intermediate in organic chemistry. Bromodichloromethane can also occur in municipally-treated drinking water as a by-product of the chlorine disinfection process. D009676 - Noxae > D002273 - Carcinogens

   

Hexakis(2-methyl-2-phenylpropyl)distannoxane

tris(2-methyl-2-phenylpropyl)({[tris(2-methyl-2-phenylpropyl)stannyl]oxy})stannane

C60H78OSn2 (1054.4096)


Miticide for use on fruit and vegetable crop

   

Decylubiquinone

2-decyl-5,6-dimethoxy-3-methylcyclohexa-2,5-diene-1,4-dione

C19H30O4 (322.2144)


   

Myxothiazol

Myxothiazol A

C25H33N3O3S2 (487.1963)


A 2,4-bi-1,3-thiazole substituted at the 4-position with a (1E,3S,4R,5E)-7-amino-3,5-dimethoxy-4-methyl-7-oxohepta-1,5-dien-1-yl] group and at the 2-position with a (2S,3E,5E)-7-methylocta-3,5-dien-2-yl group. It is an inhibitor of coenzyme Q - cytochrome c reductase. D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D004791 - Enzyme Inhibitors

   

Plastoquinol A

Plastoquinol A

C53H82O2 (750.6314)


   

Bufadienolide

Bufadienolide

C24H34O2 (354.2559)


D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002018 - Bufanolides

   

(±)-Tryptophan

alpha-Amino-beta-(3-indolyl)-propionic acid

C11H12N2O2 (204.0899)


(±)-Tryptophan is a dietary supplement, nutrient.Tryptophan is one of the 20 standard amino acids, as well as an essential amino acid in the human diet. Only the L-stereoisomer of tryptophan is used in structural or enzyme proteins, but the D-stereoisomer is occasionally found in naturally produced peptides (for example, the marine venom peptide contryphan). (Wikipedia Dietary supplement, nutrient DL-Tryptophan is an endogenous metabolite.

   

CoA 4:1;O2

5-O-[hydroxy({hydroxy[(15-hydroxy-16,16-dimethyl-3,5,10,14-tetraoxo-2-oxa-6-thia-9,13-diazaheptadecan-17-yl)oxy]phosphoryl}oxy)phosphoryl]adenosine 3-(dihydrogen phosphate);malonyl-coenzyme A methyl ester

C25H40N7O19P3S (867.1312)


The (R)-enantiomer of methylmalonyl-CoA.

   

Daphnoretin

Coumarin, 7-hydroxy-6-methoxy-3,7-oxydi-; 7-Hydroxy-6-methoxy-3-[(2-oxo-2H-1-benzopyran 7-yl)-oxy]-2H-1-benzopyran-2-one; Thymerol; Dephnoretin

C19H12O7 (352.0583)


Daphnoretin is a member of the class of coumarins that is coumarin substituted by a hydroxy group at position 7, a methoxy group at position 6 and a (2-oxo-2H-chromen-7-yl)oxy group at position 3. It has a role as a metabolite, an antiviral agent and an antineoplastic agent. It is a hydroxycoumarin and an aromatic ether. It is functionally related to a coumarin. Daphnoretin is a natural product found in Coronilla scorpioides, Edgeworthia chrysantha, and other organisms with data available. A member of the class of coumarins that is coumarin substituted by a hydroxy group at position 7, a methoxy group at position 6 and a (2-oxo-2H-chromen-7-yl)oxy group at position 3. Daphnoretin (Dephnoretin), isolated from Wikstroemia indica, possesses antiviral activity[1]. Daphnoretin likes PMA, may direct activation of protein kinase C which in turn activated NADPH oxidase and elicited respiratory burst[2]. Daphnoretin (Dephnoretin), isolated from Wikstroemia indica, possesses antiviral activity[1]. Daphnoretin likes PMA, may direct activation of protein kinase C which in turn activated NADPH oxidase and elicited respiratory burst[2].

   

Pomiferin

4H,8H-BENZO(1,2-B:3,4-B)DIPYRAN-4-ONE, 3-(3,4-DIHYDROXYPHENYL)-5-HYDROXY-8,8-DIMETHYL-6-(3-METHYL-2-BUTEN-1-YL)-

C25H24O6 (420.1573)


Pomiferin is a member of isoflavanones. Pomiferin is a natural product found in Derris montana, Maclura pomifera, and other organisms with data available.

   

Methyl_cinnamate

InChI=1/C10H10O2/c1-12-10(11)8-7-9-5-3-2-4-6-9/h2-8H,1H3/b8-7

C10H10O2 (162.0681)


Methyl cinnamate is a methyl ester resulting from the formal condensation of methyl cinnamic acid with methanol. It is found naturally in the essential oils of Alpinia and Basil leaf oil, and widely used in the flavor and perfume industries. It has a role as a flavouring agent, a fragrance, an insect attractant, a volatile oil component and an anti-inflammatory agent. It is a methyl ester and an alkyl cinnamate. Methyl cinnamate is a natural product found in Melaleuca viridiflora, Alpinia formosana, and other organisms with data available. Methyl cinnamate is a metabolite found in or produced by Saccharomyces cerevisiae. The E (trans) isomer of methyl cinnamate. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1]. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1]. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1].

   

16b-Hydroxyestrone

(1S,10R,11S,13S,15S)-5,13-dihydroxy-15-methyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadeca-2(7),3,5-trien-14-one

C18H22O3 (286.1569)


16b-Hydroxyestrone is an aromatized C18 steroid with a 3-hydroxyl group and a 17-ketone, a major mammalian estrogen. It is converted from androstenedione directly, or from testosterone via estradiol. In humans, it is produced primarily by the cyclic ovaries, placenta, and the adipose tissue of men and postmenopausal women. An aromatized C18 steroid with a 3-hydroxyl group and a 17-ketone, a major mammalian estrogen. It is converted from androstenedione directly, or from testosterone via estradiol. In humans, it is produced primarily by the cyclic ovaries, placenta, and the adipose tissue of men and postmenopausal women. [HMDB] C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

3alpha,7alpha,12beta-Trihydroxy-5beta-cholanoic acid

(4R)-4-[(1S,2S,5R,7S,9R,10R,11S,14R,15R,16R)-5,9,16-trihydroxy-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-14-yl]pentanoic acid

C24H40O5 (408.2876)


3alpha,7alpha,12beta-Trihydroxy-5beta-cholanoic acid, also known as lagocholic acid, is a bile acid. Bile acids with beta-hydroxyl and carbonyl groups at the C-3,7, and/or 12 positions are bile acids usually found in the urine of healthy humans (PMID: 8743575). Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, depending only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). A - Alimentary tract and metabolism > A05 - Bile and liver therapy > A05A - Bile therapy > A05AA - Bile acids and derivatives C78276 - Agent Affecting Digestive System or Metabolism > C66913 - Cholagogues or Choleretic Agents D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids Same as: D10699 Cholic acid is a major primary bile acid produced in the liver and usually conjugated with glycine or taurine. It facilitates fat absorption and cholesterol excretion. Cholic acid is orally active[1][2]. Cholic acid is a major primary bile acid produced in the liver and usually conjugated with glycine or taurine. It facilitates fat absorption and cholesterol excretion. Cholic acid is orally active[1][2].

   

Butyryl-CoA

{[5-(6-amino-9H-purin-9-yl)-2-[({[({3-[(2-{[2-(butanoylsulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]-3-hydroxy-2,2-dimethylpropoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)methyl]-4-hydroxyoxolan-3-yl]oxy}phosphonic acid

C25H42N7O17P3S (837.1571)


Butyryl-CoA is an intermediate in the metabolism of Butanoate. It is a substrate for Acyl-coenzyme A oxidase 3 (peroxisomal), 3-ketoacyl-CoA thiolase (mitochondrial), 3-ketoacyl-CoA thiolase (peroxisomal), Acyl-coenzyme A oxidase 1 (peroxisomal), Acyl-CoA dehydrogenase (medium-chain specific, mitochondrial), Acyl-CoA dehydrogenase (long-chain specific, mitochondrial), Acyl-coenzyme A oxidase 2 (peroxisomal), Acetyl-CoA acetyltransferase (mitochondrial), Acetyl-CoA acetyltransferase (cytosolic), Acyl-CoA dehydrogenase (short-chain specific, mitochondrial) and Trifunctional enzyme beta subunit (mitochondrial).

   

Methyl cinnamate

3-Phenyl-methyl ester(2E)-2-propenoic acid

C10H10O2 (162.0681)


Methyl cinnamate is found in ceylan cinnamon. Methyl cinnamate occurs in essential oils e.g. from Ocimum and Alpinia species Also present in various fruits, e.g. guava, feijoa, strawberry. Methyl cinnamate is a flavouring agent.Methyl cinnamate is the methyl ester of cinnamic acid and is a white or transparent solid with a strong, aromatic odor. It is found naturally in a variety of plants, including in fruits, like strawberry, and some culinary spices, such as Sichuan pepper and some varieties of basil. Eucalyptus olida has the highest known concentrations of methyl cinnamate (98\\\\\%) with a 2-6\\\\\% fresh weight yield in the leaf and twigs. Occurs in essential oils e.g. from Ocimum and Alpinia subspecies Also present in various fruits, e.g. guava, feijoa, strawberry. Flavouring agent Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1]. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1]. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1].

   

S-Methylmalonyl-CoA

(2S)-3-[(2-{3-[(2R)-3-[({[({[(3S,4R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)methyl]-2-hydroxy-3-methylbutanamido]propanamido}ethyl)sulfanyl]-2-methyl-3-oxopropanoic acid

C25H40N7O19P3S (867.1312)


Methylmalonyl-CoA is an intermediate in the metabolism of Propanoate. It is a substrate for Malonyl-CoA decarboxylase (mitochondrial), Methylmalonyl-CoA mutase (mitochondrial) and Methylmalonyl-CoA epimerase (mitochondrial). [HMDB] Methylmalonyl-CoA is an intermediate in the metabolism of Propanoate. It is a substrate for Malonyl-CoA decarboxylase (mitochondrial), Methylmalonyl-CoA mutase (mitochondrial) and Methylmalonyl-CoA epimerase (mitochondrial).

   

O-Palmitoylcarnitine

3-(Hexadecanoyloxy)-4-(trimethylammonio)butanoic acid

C23H45NO4 (399.3348)


O-Palmitoylcarnitine is an acylcarnitine. More specifically, it is an palmitic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy.  This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. O-Palmitoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine O-Palmitoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. In particular O-Palmitoylcarnitine is elevated in the blood or plasma of individuals with very long chain acyl-CoA dehydrogenase (VLCAD) deficiency (PMID: 9034211), sleep deprivation (PMID: 31419538), carnitine palmitoyl transferase 2 deficiency (PMID: 15653102), carnitine-acylcarnitine translocase deficiency (PMID: 12403251), type 2 diabetes mellitus (PMID: 27694567, PMID: 24837145, PMID: 20111019), non-alcoholic fatty liver disease (PMID: 27211699), obesity (PMID: 20111019), pulmonary arterial hypertension (PMID: 27006481), chronic heart failure (PMID: 22622056), cardiovascular mortality in chronic kidney disease (PMID: 24308938), diastolic heart failure (PMID: 26010610, PMID: 27473038), and systolic heart failure (PMID: 27473038). It is also decreased in the blood or plasma of individuals with intracerebral hemorrhage (PMID: 29265114), carnitine palmitoyl transferase 1A deficiency (PMID: 11568084), and psoriasis (PMID: 33391503). It is found to be increased in feces of patients with cirrhosis (PMID: 23384618). Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane.  Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Damb... D018977 - Micronutrients > D014815 - Vitamins

   

(1R,4E,5'R,6R,6'R,7S,8S,10S,11S,12R,14S,15R,16S,18E,20E,22S,25R,27S,29S)-22-Ethyl-7,11,14,15-tetrahydroxy-6'-(2-hydroxypropyl)-5',6,8,10,12,14,16,29-octamethylspiro[2,26-dioxabicyclo[23.3.1]nonacosa-4,18,20-triene-27,2'-oxane]-3,9,13-trione

(1R,4E,5R,6R,6R,7S,8S,10S,11S,12R,14S,15R,16S,18E,20E,22S,25R,27S,29S)-22-Ethyl-7,11,14,15-tetrahydroxy-6-(2-hydroxypropyl)-5,6,8,10,12,14,16,29-octamethylspiro[2,26-dioxabicyclo[23.3.1]nonacosa-4,18,20-triene-27,2-oxane]-3,9,13-trione

C44H72O11 (776.5074)


   

Digitonin

2-({2-[(2-{[4,5-dihydroxy-2-(hydroxymethyl)-6-{5,7,9,13-tetramethyl-5-oxaspiro[oxane-2,6-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]-3,15-dioloxy}oxan-3-yl]oxy}-5-hydroxy-6-(hydroxymethyl)-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-3-yl)oxy]-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl}oxy)-6-(hydroxymethyl)oxane-3,4,5-triol

C56H92O29 (1228.5724)


D020011 - Protective Agents > D002316 - Cardiotonic Agents > D004071 - Digitalis Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents Digitonin, a glycoside obtained from Digitalis purpurea, could increase cell permeability by binding to cholesterol molecules and reduce tumor growth[1]. Digitonin is an natural detergent[2]. Digitonin, a glycoside obtained from Digitalis purpurea, could increase cell permeability by binding to cholesterol molecules and reduce tumor growth[1]. Digitonin is an natural detergent[2].

   

3,3',4',5-Tetrachlorosalicylanilide

3,5-dichloro-N-(3,4-dichlorophenyl)-2-hydroxybenzene-1-carboximidic acid

C13H7Cl4NO2 (348.9231)


D004791 - Enzyme Inhibitors

   

Bufadienolide

5-{2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-14-yl}-2H-pyran-2-one

C24H34O2 (354.2559)


D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002018 - Bufanolides

   

8-Hydroxy-3,4,5-trimethyl-6-oxo-4,6-dihydro-3H-isochromene-7-carboxylic acid

6-hydroxy-3,4,5-trimethyl-8-oxo-4,8-dihydro-3H-2-benzopyran-7-carboxylic acid

C13H14O5 (250.0841)


   

Rifapentina

26-{[(4-cyclopentylpiperazin-1-yl)imino]methyl}-2,15,17,27,29-pentahydroxy-11-methoxy-3,7,12,14,16,18,22-heptamethyl-6,23-dioxo-8,30-dioxa-24-azatetracyclo[23.3.1.1^{4,7}.0^{5,28}]triaconta-1(28),2,4,9,19,21,25(29),26-octaen-13-yl acetate

C47H64N4O12 (876.4521)


   

Pseudouridine

Pseudouridine

C9H12N2O6 (244.0695)


Pseudouridine is an isomer of the nucleoside uridine, and the most abundant modified nucleoside in non-coding RNAs. Pseudouridine in rRNA and tRNA can fine-tune and stabilize the regional structure and help maintain their functions in mRNA decoding, ribosome assembly, processing and translation[1][2][3][4]. Pseudouridine is an isomer of the nucleoside uridine, and the most abundant modified nucleoside in non-coding RNAs. Pseudouridine in rRNA and tRNA can fine-tune and stabilize the regional structure and help maintain their functions in mRNA decoding, ribosome assembly, processing and translation[1][2][3][4].

   

Citric Acid

Citric Acid

C6H8O7 (192.027)


A - Alimentary tract and metabolism > A09 - Digestives, incl. enzymes > A09A - Digestives, incl. enzymes > A09AB - Acid preparations D064449 - Sequestering Agents > D002614 - Chelating Agents > D065096 - Calcium Chelating Agents D006401 - Hematologic Agents > D000925 - Anticoagulants C26170 - Protective Agent > C275 - Antioxidant COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Citric acid is a natural preservative and food tartness enhancer. Citric acid induces apoptosis and cell cycle arrest at G2/M phase and S phase in HaCaT cells. Citric acid cause oxidative damage of the liver by means of the decrease of antioxidative enzyme activities. Citric acid causes renal toxicity in mice[1][2][3]. Citric acid is a natural preservative and food tartness enhancer. Citric acid induces apoptosis and cell cycle arrest at G2/M phase and S phase in HaCaT cells. Citric acid cause oxidative damage of the liver by means of the decrease of antioxidative enzyme activities. Citric acid causes renal toxicity in mice[1][2][3].

   

Citramalic acid

Citramalic acid

C5H8O5 (148.0372)


   

Pyo II

2-n-Heptyl-4-hydroxyquinoline N-oxide

C16H21NO2 (259.1572)


HQNO, secreted by P. aeruginosa, is a potent electron transport chain inhibitor with a Kd of 64 nM for complex III[1]. HQNO is a potent inhibitor of mitochondrial NDH-2 in many species[2]. HQNO, secreted by P. aeruginosa, is a potent electron transport chain inhibitor with a Kd of 64 nM for complex III[1]. HQNO is a potent inhibitor of mitochondrial NDH-2 in many species[2].

   

OXAMIC ACID

OXAMIC ACID

C2H3NO3 (89.0113)


A dicarboxylic acid monoamide resulting from the formal condensation of one of the carboxy groups of oxalic acid with ammonia.

   

S-Methylglutathione

S-Methylglutathione

C11H19N3O6S (321.0995)


S-Methylglutathione is an S-substitued?glutathione and a stronger nucleophile than GSH[1]. S-Methylglutathione has inhibitory effect on glyoxalase 1[2].

   

Cirsiliol

6-Hydroxyluteolin-6,7-dimethyl ether; 6-Methoxyluteolin 7-methyl ether; Crisiliol

C17H14O7 (330.0739)


Cirsiliol is a dimethoxyflavone that is flavone substituted by methoxy groups at positions 6 and 7 and hydroxy groups at positions 5, 3 and 4 respectively. It has a role as a plant metabolite. It is a trihydroxyflavone and a dimethoxyflavone. It is functionally related to a flavone. Cirsiliol is a natural product found in Teucrium montanum, Thymus herba-barona, and other organisms with data available. A dimethoxyflavone that is flavone substituted by methoxy groups at positions 6 and 7 and hydroxy groups at positions 5, 3 and 4 respectively. Cirsiliol is a potent and selective 5-lipoxygenase inhibitor and a competitive low affinity benzodiazepine receptor ligand. Cirsiliol is a potent and selective 5-lipoxygenase inhibitor and a competitive low affinity benzodiazepine receptor ligand. Cirsiliol is a potent and selective 5-lipoxygenase inhibitor and a competitive low affinity benzodiazepine receptor ligand.

   

Eriocitrin

(S)-2-(3,4-dihydroxyphenyl)-5-hydroxy-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)chroman-4-one

C27H32O15 (596.1741)


Eriocitrin is a disaccharide derivative that consists of eriodictyol substituted by a 6-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as an antioxidant. It is a disaccharide derivative, a member of 3-hydroxyflavanones, a trihydroxyflavanone, a flavanone glycoside, a member of 4-hydroxyflavanones and a rutinoside. It is functionally related to an eriodictyol. Eriocitrin is a natural product found in Cyclopia subternata, Citrus latipes, and other organisms with data available. A disaccharide derivative that consists of eriodictyol substituted by a 6-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. Eriocitrin is a flavonoid isolated from lemon, which is a strong antioxidant agent. Eriocitrin could inhibit the proliferation of hepatocellular carcinoma cell lines by arresting cell cycle in S phase through up-regulation of p53, cyclin A, cyclin D3 and CDK6. Eriocitrin triggers apoptosis by activating mitochondria-involved intrinsic signaling pathway[1]. Eriocitrin is a flavonoid isolated from lemon, which is a strong antioxidant agent. Eriocitrin could inhibit the proliferation of hepatocellular carcinoma cell lines by arresting cell cycle in S phase through up-regulation of p53, cyclin A, cyclin D3 and CDK6. Eriocitrin triggers apoptosis by activating mitochondria-involved intrinsic signaling pathway[1].

   

Rotenone

Pesticide4_Rotenone_C23H22O6_Furo[2,3:7,8][1]benzopyrano[2,3-c][1]benzopyran-6(6aH)-one, 1,2,12,12a-tetrahydro-8,9-dimethoxy-2-(1-methylethenyl)-, (2R,6aS,12aS)-

C23H22O6 (394.1416)


Origin: Plant, Pyrans relative retention time with respect to 9-anthracene Carboxylic Acid is 1.283 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.281 Acquisition and generation of the data is financially supported by the Max-Planck-Society D004791 - Enzyme Inhibitors > D014475 - Uncoupling Agents D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals IPB_RECORD: 2241; CONFIDENCE confident structure Rotenone is a mitochondrial electron transport chain complex I inhibitor. Rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. Rotenone is a mitochondrial electron transport chain complex I inhibitor. Rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. Rotenone is a mitochondrial electron transport chain complex I inhibitor. Rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production.

   

3,3,4,5-Tetrachlorosalicylanilide

3,3,4,5-Tetrachlorosalicylanilide

C13H7Cl4NO2 (348.9231)


D004791 - Enzyme Inhibitors

   

Dtxcid6021115

Rifapentine (Priftin)

C47H64N4O12 (876.4521)


J - Antiinfectives for systemic use > J04 - Antimycobacterials > J04A - Drugs for treatment of tuberculosis > J04AB - Antibiotics D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D000995 - Antitubercular Agents D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007917 - Leprostatic Agents D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D012294 - Rifamycins C254 - Anti-Infective Agent > C52588 - Antibacterial Agent > C280 - Antitubercular Agent

   

Harmaline

HARMALINE HYDROCHLORIDE DIHYDRATE

C13H14N2O (214.1106)


relative retention time with respect to 9-anthracene Carboxylic Acid is 0.572 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.569 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.563 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.565 D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants D004791 - Enzyme Inhibitors > D008996 - Monoamine Oxidase Inhibitors

   

ADP-glucose

Adenosine diphosphate glucose

C16H25N5O15P2 (589.0822)


   

Daphnoretin

Daphnoretin

C19H12O7 (352.0583)


relative retention time with respect to 9-anthracene Carboxylic Acid is 1.010 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.011 Daphnoretin (Dephnoretin), isolated from Wikstroemia indica, possesses antiviral activity[1]. Daphnoretin likes PMA, may direct activation of protein kinase C which in turn activated NADPH oxidase and elicited respiratory burst[2]. Daphnoretin (Dephnoretin), isolated from Wikstroemia indica, possesses antiviral activity[1]. Daphnoretin likes PMA, may direct activation of protein kinase C which in turn activated NADPH oxidase and elicited respiratory burst[2].

   

Neoxanthin

(1R,3S)-6-[(3E,5E,7E,9E,11E,13E,15E,17E)-18-[(1S,4S,6R)-4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]-3,7,12,16-tetramethyl-octadeca-1,3,5,7,9,11,13,15,17-nonaenylidene]-1,5,5-trimethyl-cyclohexane-1,3-diol

C40H56O4 (600.4178)


9-cis-neoxanthin is a neoxanthin in which all of the double bonds have trans geometry except for that at the 9 position, which is cis. It is a 9-cis-epoxycarotenoid and a neoxanthin. Neoxanthin is a natural product found in Hibiscus syriacus, Cladonia rangiferina, and other organisms with data available. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

Squalene

InChI=1\C30H50\c1-25(2)15-11-19-29(7)23-13-21-27(5)17-9-10-18-28(6)22-14-24-30(8)20-12-16-26(3)4\h15-18,23-24H,9-14,19-22H2,1-8H3\b27-17+,28-18+,29-23+,30-24

C30H50 (410.3912)


Squalene, also known as (e,e,e,e)-squalene or all-trans-squalene, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Squalene can be found in a number of food items such as apricot, savoy cabbage, peach (variety), and bitter gourd, which makes squalene a potential biomarker for the consumption of these food products. Squalene can be found primarily in blood, feces, and sweat, as well as throughout most human tissues. In humans, squalene is involved in several metabolic pathways, some of which include risedronate action pathway, steroid biosynthesis, alendronate action pathway, and fluvastatin action pathway. Squalene is also involved in several metabolic disorders, some of which include cholesteryl ester storage disease, CHILD syndrome, hyper-igd syndrome, and wolman disease. Squalene is a natural 30-carbon organic compound originally obtained for commercial purposes primarily from shark liver oil (hence its name, as Squalus is a genus of sharks), although plant sources (primarily vegetable oils) are now used as well, including amaranth seed, rice bran, wheat germ, and olives. Yeast cells have been genetically engineered to produce commercially useful quantities of "synthetic" squalene . COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Window width to select the precursor ion was 3 Da.; CONE_VOLTAGE was 20 V.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 19HP8024 to the Mass Spectrometry Society of Japan. Squalene is an intermediate product in the synthesis of cholesterol, and shows several pharmacological properties such as hypolipidemic, hepatoprotective, cardioprotective, antioxidant, and antitoxicant activity. Squalene also has anti-fungal activity and can be used for the research of Trichophyton mentagrophytes research[2]. Squalene is an intermediate product in the synthesis of cholesterol, and shows several pharmacological properties such as hypolipidemic, hepatoprotective, cardioprotective, antioxidant, and antitoxicant activity. Squalene also has anti-fungal activity and can be used for the research of Trichophyton mentagrophytes research[2].

   

ophthalmic acid

L-gamma-Glutamyl-L-alpha-aminobutyrylglycine

C11H19N3O6 (289.1274)


A L-glutamine derivative that is L-glutamine substituted by a 1-[(carboxymethyl)amino]-1-oxobutan-2-yl at the terminal amino nitrogen atom. MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; JCMUOFQHZLPHQP-BQBZGAKWSA-N_STSL_0170_Ophthalmic acid_0500fmol_180425_S2_LC02_MS02_88; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I.

   

Lincomycin

Lincomycin

C18H34N2O6S (406.2137)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01F - Macrolides, lincosamides and streptogramins > J01FF - Lincosamides A carbohydrate-containing antibiotic produced by the actinomyces Streptomyces lincolnensis. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D055231 - Lincosamides D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors C784 - Protein Synthesis Inhibitor > C82922 - Lincosamide Antibiotic C254 - Anti-Infective Agent > C258 - Antibiotic Origin: Microbe, Glycosides, Pyrrolidines CONFIDENCE standard compound; INTERNAL_ID 1180 CONFIDENCE standard compound; INTERNAL_ID 4105 CONFIDENCE standard compound; EAWAG_UCHEM_ID 3687

   

diuron

Pesticide3_Diuron_C9H10Cl2N2O_3-(3,4-Dichlorophenyl)-1,1-dimethylurea

C9H10Cl2N2O (232.017)


D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals CONFIDENCE standard compound; EAWAG_UCHEM_ID 292

   

Cilastatin

7-{[(2R)-2-amino-2-carboxyethyl]sulfanyl}-2-{[(1S)-2,2-dimethylcyclopropyl]formamido}hept-2-enoic acid

C16H26N2O5S (358.1562)


The thioether resulting from the formal oxidative coupling of the thiol group of L-cysteine with the 7-position of (2Z)-2-({[(1S)-2,2-dimethylcyclopropyl]carbonyl}amino)hept-2-enoic acid. It is an inhibitor of dehydropeptidase I (membrane dipeptidase, 3.4.13.19), an enzyme found in the brush border of renal tubes and responsible for degrading the antibiotic imipenem. Cilastatin is therefore administered (as the sodium salt) with imipenem to prolong the antibacterial effect of the latter by preventing its renal metabolism to inactive and potentially nephrotoxic products. Cilastatin also acts as a leukotriene D4 dipeptidase inhibitor, preventing the metabolism of leukotriene D4 to leukotriene E4. D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors C471 - Enzyme Inhibitor > C783 - Protease Inhibitor CONFIDENCE standard compound; INTERNAL_ID 2129 CONFIDENCE standard compound; EAWAG_UCHEM_ID 2555 EAWAG_UCHEM_ID 2555; CONFIDENCE standard compound

   

nigericin

Antibiotic K178

C40H68O11 (724.4761)


A polyether antibiotic which affects ion transport and ATPase activity in mitochondria. It is produced by Streptomyces hygroscopicus. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D049990 - Membrane Transport Modulators D007476 - Ionophores CONFIDENCE standard compound; EAWAG_UCHEM_ID 3682

   

R-Phycoerythrin

[[5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] phosphono hydrogen phosphate

C10H16N5O13P3 (506.9957)


This record is a MS2 spectrum. Link to the MS spectrum is added in the following comment field.; [MS] MCH00018; Profile spectrum of this record is given as a JPEG file.; [Profile] MCH00020.jpg The metal-free red phycobilin pigment in a conjugated chromoprotein of red algae. It functions as a light-absorbing substance together with chlorophylls. This record is a MS2 spectrum. Link to the MS spectrum is added in the following comment field.; [MS] MCH00018; Profile spectrum of this record is given as a JPEG file.; [Profile] MCH00019.jpg Profile spectrum of this record is given as a JPEG file.; [Profile] MCH00018.jpg

   

Citrinin

(-)-Citrinin

C13H14O5 (250.0841)


CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 11 D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins CONFIDENCE Citrinin is a mycotoxin which causes contamination in the food and is associated with different toxic effects. Citrinin is usually found together with another nephrotoxic mycotoxin, Ochratoxin A. Citrinin is also reported to possess a broad spectrum of bioactivities, including antibacterial, antifungal, and potential anticancer and neuro-protective effects in vitro[1][2].

   

Sclareol

1-Naphthalenepropanol, alpha-ethenyldecahydro-2-hydroxy-alpha,2,5,5,8a-pentamethyl-, (alphaR,1R,2R,4aS,8aS)-: (1R,2R,4aS,8aS)-1-[(3R)-3-hydroxy-3-methylpent-4-en-1-yl]-2,5,5,8a-tetramethyldecahydronaphthalen-2-ol

C20H36O2 (308.2715)


Sclareol is a labdane diterpenoid that is labd-14-ene substituted by hydroxy groups at positions 8 and 13. It has been isolated from Salvia sclarea. It has a role as an antimicrobial agent, an apoptosis inducer, a fragrance, an antifungal agent and a plant metabolite. Sclareol is a natural product found in Curcuma aromatica, Curcuma wenyujin, and other organisms with data available. See also: Clary Sage Oil (part of). A labdane diterpenoid that is labd-14-ene substituted by hydroxy groups at positions 8 and 13. It has been isolated from Salvia sclarea. relative retention time with respect to 9-anthracene Carboxylic Acid is 1.468 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.471 Sclareol is isolated from Salvia sclarea with anticarcinogenic activity. Sclareol shows strong cytotoxic activity against mouse leukemia?(P-388), human epidermal?carcinoma?(KB) cells and human?leukemia?cell lines. Sclareol induces cell apoptosis[1]. Sclareol is isolated from Salvia sclarea with anticarcinogenic activity. Sclareol shows strong cytotoxic activity against mouse leukemia?(P-388), human epidermal?carcinoma?(KB) cells and human?leukemia?cell lines. Sclareol induces cell apoptosis[1].

   

Animicin A

Antimycin A

C28H40N2O9 (548.2734)


relative retention time with respect to 9-anthracene Carboxylic Acid is 1.578 D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 1.579 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.582

   

rimantadine

Rimantadine (Flumadine)

C12H21N (179.1674)


J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AC - Cyclic amines D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents C254 - Anti-Infective Agent > C281 - Antiviral Agent

   

ATOVAQUONE

Atovaquone (Atavaquone)

C22H19ClO3 (366.1023)


P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01A - Agents against amoebiasis and other protozoal diseases D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent D004791 - Enzyme Inhibitors

   

Phosphocreatine

Phosphocreatine

C4H10N3O5P (211.0358)


D020011 - Protective Agents > D002316 - Cardiotonic Agents C - Cardiovascular system > C01 - Cardiac therapy D002317 - Cardiovascular Agents

   

Hydroquinone sulfate

(4-hydroxyphenyl)oxidanesulfonic acid

C6H6O5S (189.9936)


A benzenediol comprising benzene core carrying two hydroxy substituents para to each other. Hydroquinone. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=123-31-9 (retrieved 2024-07-16) (CAS RN: 123-31-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

L-Malic acid

(2S)-2-hydroxybutanedioic acid

C4H6O5 (134.0215)


An optically active form of malic acid having (S)-configuration. Occurs naturally in apples and various other fruits. Flavour enhancer, pH control agent. L-Malic acid is found in many foods, some of which are mulberry, black cabbage, european plum, and fig. (S)-Malic acid ((S)-2-Hydroxysuccinic acid) is a dicarboxylic acid in naturally occurring form, contributes to the pleasantly sour taste of fruits and is used as a food additive. (S)-Malic acid ((S)-2-Hydroxysuccinic acid) is a dicarboxylic acid in naturally occurring form, contributes to the pleasantly sour taste of fruits and is used as a food additive.

   

Adenosine diphosphate

Adenosine-5-diphosphate Di(monocyclohexylammonium)salt

C10H15N5O10P2 (427.0294)


COVID info from COVID-19 Disease Map, PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Adenosine 5'-diphosphate (Adenosine diphosphate) is a nucleoside diphosphate. Adenosine 5'-diphosphate is the product of ATP dephosphorylation by ATPases. Adenosine 5'-diphosphate induces human platelet aggregation and inhibits stimulated adenylate cyclase by an action at P2T-purinoceptors. Adenosine 5'-diphosphate (Adenosine diphosphate) is a nucleoside diphosphate. Adenosine 5'-diphosphate is the product of ATP dephosphorylation by ATPases. Adenosine 5'-diphosphate induces human platelet aggregation and inhibits stimulated adenylate cyclase by an action at P2T-purinoceptors.

   

NADH

beta-nicotinamide adenine Dl-nucleotide ,reduced dipotassium salt

C21H29N7O14P2 (665.1248)


A coenzyme found in all living cells; consists of two nucleotides joined through their 5-phosphate groups, with one nucleotide containing an adenine base and the other containing nicotinamide. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

2-Mercaptoethanesulfonic acid

2-Mercaptoethanesulfonic acid solution

C2H6O3S2 (141.9758)


D020011 - Protective Agents

   

(all-E)-Antheraxanthin

(3S,5R,6S,3R)-5,6-Epoxy-5,6-dihydro-beta,beta-carotene-3,3-diol

C40H56O3 (584.4229)


An epoxycarotenol that is beta-carotene-3,3-diol in which one of the one of the endocyclic double bonds has been oxidised to the corresponding epoxide. It is a neutral yellow plant pigment found in Euglenophyta. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Window width for selecting the precursor ion was 3 Da.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 16HP2005 to the Mass Spectrometry Society of Japan.

   

10-gingerol

3-Tetradecanone, 5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-, (S)-

C21H34O4 (350.2457)


10-Gingerol is a major pungent constituent in the ginger oleoresin from fresh rhizome, with anti-inflammatory, antioxidant and anti-proliferative activities. 10-Gingerol inhibits the proliferation of MDA-MB-231 tumor cell line with an IC50 of 12.1 μM[1][2]. 10-Gingerol is a major pungent constituent in the ginger oleoresin from fresh rhizome, with anti-inflammatory, antioxidant and anti-proliferative activities. 10-Gingerol inhibits the proliferation of MDA-MB-231 tumor cell line with an IC50 of 12.1 μM[1][2].

   

Violaxanthin

(1S,4S,6R)-1-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-18-[(1S,4S,6R)-4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]-3,7,12,16-tetramethyl-octadeca-1,3,5,7,9,11,13,15,17-nonaenyl]-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-4-ol

C40H56O4 (600.4178)


D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Cucurbitachrome 1 is a member of the class of compounds known as xanthophylls. Xanthophylls are carotenoids containing an oxygenated carotene backbone. Carotenes are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Carotenes belonging form a subgroup of the carotenoids family. Xanthophylls arise by oxygenation of the carotene backbone. Cucurbitachrome 1 is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Cucurbitachrome 1 can be found in a number of food items such as italian sweet red pepper, herbs and spices, fruits, and red bell pepper, which makes cucurbitachrome 1 a potential biomarker for the consumption of these food products. (all-e)-violaxanthin is a member of the class of compounds known as xanthophylls. Xanthophylls are carotenoids containing an oxygenated carotene backbone. Carotenes are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Carotenes belonging form a subgroup of the carotenoids family. Xanthophylls arise by oxygenation of the carotene backbone (all-e)-violaxanthin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (all-e)-violaxanthin can be found in a number of food items such as orange bell pepper, green bell pepper, passion fruit, and yellow bell pepper, which makes (all-e)-violaxanthin a potential biomarker for the consumption of these food products.

   

Zeaxanthin

(1R)-4-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-18-[(4R)-4-hydroxy-2,6,6-trimethyl-1-cyclohexenyl]-3,7,12,16-tetramethyl-octadeca-1,3,5,7,9,11,13,15,17-nonaenyl]-3,5,5-trimethyl-cyclohex-3-en-1-ol

C40H56O2 (568.428)


Meso-zeaxanthin (3R,3´S-zeaxanthin) is a xanthophyll carotenoid, as it contains oxygen and hydrocarbons, and is one of the three stereoisomers of zeaxanthin. Of the three stereoisomers, meso-zeaxanthin is the second most abundant in nature after 3R,3´R-zeaxanthin, which is produced by plants and algae. To date, meso-zeaxanthin has been identified in specific tissues of marine organisms and in the macula lutea, also known as the "yellow spot", of the human retina . Meso-zeaxanthin is a member of the class of compounds known as xanthophylls. Xanthophylls are carotenoids containing an oxygenated carotene backbone. Carotenes are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Carotenes belonging form a subgroup of the carotenoids family. Xanthophylls arise by oxygenation of the carotene backbone. Meso-zeaxanthin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Meso-zeaxanthin can be found in channel catfish, crustaceans, and fishes, which makes meso-zeaxanthin a potential biomarker for the consumption of these food products. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Window width for selecting the precursor ion was 3 Da.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 16HP2005 to the Mass Spectrometry Society of Japan.

   

Fenobucarb

Pesticide3_Fenobucarb_C12H17NO2_Bassa

C12H17NO2 (207.1259)


C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor

   

Citramalic acid

Citramalic acid

C5H8O5 (148.0372)


A 2-hydroxydicarboxylic acid that is malic acid (hydroxysuccinic acid) in which the hydrogen at position 2 is substituted by a methyl group.

   

Glutaconic acid

trans-Glutaconic acid

C5H6O4 (130.0266)


A pentenedioic acid that is pent-2-ene substituted by carboxy groups at positions 1 and 5.

   

malonic acid

Propanedioic acid

C3H4O4 (104.011)


An alpha,omega-dicarboxylic acid in which the two carboxy groups are separated by a single methylene group.

   

methanol

methanol

CH4O (32.0262)


The primary alcohol that is the simplest aliphatic alcohol, comprising a methyl and an alcohol group. D012997 - Solvents

   

clofazimine

clofazimine

C27H22Cl2N4 (472.1221)


J - Antiinfectives for systemic use > J04 - Antimycobacterials > J04B - Drugs for treatment of lepra > J04BA - Drugs for treatment of lepra D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007917 - Leprostatic Agents COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C254 - Anti-Infective Agent > C258 - Antibiotic D000893 - Anti-Inflammatory Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Cysteine

D,L-Cysteine

C3H7NO2S (121.0197)


A sulfur-containing amino acid that is propanoic acid with an amino group at position 2 and a sulfanyl group at position 3. COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 18 L-Cysteine is a conditionally essential amino acid, which acts as a precursor for biologically active molecules such as hydrogen sulphide (H2S), glutathione and taurine. L-Cysteine suppresses ghrelin and reduces appetite in rodents and humans[1]. L-Cysteine is a conditionally essential amino acid, which acts as a precursor for biologically active molecules such as hydrogen sulphide (H2S), glutathione and taurine. L-Cysteine suppresses ghrelin and reduces appetite in rodents and humans[1].

   

Piceatannol

1,2-Benzenediol, {4-[2-(3,} 5-dihydroxyphenyl)ethenyl]-, (E)-

C14H12O4 (244.0736)


C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C1967 - Tyrosine Kinase Inhibitor Piceatannol is a well-known Syk inhibitor and reduces the expression of iNOS induced by TNF. Piceatannol is an effective agent for research of acute lung injury (ALI)[1]. Piceatannol is a naturally occurring polyphenolic stilbene found in various fruits and vegetables and exhibits anticancer and anti-inflammatory properties[2]. Piceatannol induces apoptosis in DLBCL cell lines[3]. Piceatannol induces autophagy and apoptosis in MOLT-4 human leukemia cells[4]. Piceatannol is a well-known Syk inhibitor and reduces the expression of iNOS induced by TNF. Piceatannol is an effective agent for research of acute lung injury (ALI)[1]. Piceatannol is a naturally occurring polyphenolic stilbene found in various fruits and vegetables and exhibits anticancer and anti-inflammatory properties[2]. Piceatannol induces apoptosis in DLBCL cell lines[3]. Piceatannol induces autophagy and apoptosis in MOLT-4 human leukemia cells[4].

   

Pseudouridine

Pseudouridine

C9H12N2O6 (244.0695)


A C-glycosyl pyrimidine that consists of uracil having a beta-D-ribofuranosyl residue attached at position 5. The C-glycosyl isomer of the nucleoside uridine. Pseudouridine is an isomer of the nucleoside uridine, and the most abundant modified nucleoside in non-coding RNAs. Pseudouridine in rRNA and tRNA can fine-tune and stabilize the regional structure and help maintain their functions in mRNA decoding, ribosome assembly, processing and translation[1][2][3][4]. Pseudouridine is an isomer of the nucleoside uridine, and the most abundant modified nucleoside in non-coding RNAs. Pseudouridine in rRNA and tRNA can fine-tune and stabilize the regional structure and help maintain their functions in mRNA decoding, ribosome assembly, processing and translation[1][2][3][4].

   

TRICHLOROACETIC ACID

TRICHLOROACETIC ACID

C2HCl3O2 (161.9042)


D009676 - Noxae > D002424 - Caustics

   

PALMITOYLCARNITINE

PALMITOYLCARNITINE

C23H45NO4 (399.3348)


D018977 - Micronutrients > D014815 - Vitamins

   

CARTEOLOL

CARTEOLOL

C16H24N2O3 (292.1787)


C - Cardiovascular system > C07 - Beta blocking agents > C07A - Beta blocking agents > C07AA - Beta blocking agents, non-selective S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01ED - Beta blocking agents C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents

   

amobarbital

amobarbital

C11H18N2O3 (226.1317)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CA - Barbiturates, plain C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C67084 - Barbiturate D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators

   

Enterobactin

Enterobactin

C30H27N3O15 (669.1442)


A macrotriolide produced by certain members of Enterobacteriaceae, e.g. Escherichia coli and Salmonella. D064449 - Sequestering Agents > D002614 - Chelating Agents > D007502 - Iron Chelating Agents

   

PE 34:1

7-Octadecenoic acid, 1-[[[(2-aminoethoxy)hydroxyphosphinyl]oxy]methyl]-2-[(1-oxohexadecyl)oxy]ethyl ester, [R-(Z)]- (9CI)

C39H76NO8P (717.5308)


Found in mouse brain; TwoDicalId=80; MgfFile=160720_brain_AA_18_Neg; MgfId=1248

   

D-Ribulose 1,5-bisphosphate

D-Ribulose 1,5-bisphosphate

C5H12O11P2 (309.9855)


A ribulose phosphate that is D-ribulose attached to phosphate groups at positions 1 and 5. It is an intermediate in photosynthesis.

   

Salicylhydroxamic acid

Salicylhydroxamic acid

C7H7NO3 (153.0426)


D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Crotonic acid

2-Butenoic acid

C4H6O2 (86.0368)


A but-2-enoic acid with a trans- double bond at C-2. It has been isolated from Daucus carota. But-2-enoic acid is fatty acid formed by the action of fatty acid synthases from acetyl-CoA and malonyl-CoA precursors. It is involved in the fatty acid biosynthesis. Specifically, it is the product of reaction between (R)-3-Hydroxybutyric acid and fatty acid synthase. [HMDB]. NSC 8751 is an endogenous metabolite. NSC 8751 is an endogenous metabolite.

   

2,6-DIHYDROXYBENZOIC ACID

2,6-DIHYDROXYBENZOIC ACID

C7H6O4 (154.0266)


A dihydroxybenzoic acid having the two hydroxy groups at the C-2 and C-6 positions. 2,6-Dihydroxybenzoic acid is a secondary metabolite of salicylic acid which has been hydrolyzed by liver enzymes during phase I metabolism. 2,6-Dihydroxybenzoic acid is a secondary metabolite of salicylic acid which has been hydrolyzed by liver enzymes during phase I metabolism.

   

cholate

(4R)-4-[(3R,5S,7R,8R,9S,10S,12S,13R,14S,17R)-3,7,12-trihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoic acid

C24H40O5 (408.2876)


Cholic acid, also known as 3a,7a,12a-trihydroxy-5b-cholanate or cholate, belongs to trihydroxy bile acids, alcohols and derivatives class of compounds. Those are prenol lipids structurally characterized by a bile acid or alcohol which bears three hydroxyl groups. Thus, cholic acid is considered to be a bile acid lipid molecule. Cholic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Cholic acid can be found in a number of food items such as cocoa bean, walnut, garden rhubarb, and carob, which makes cholic acid a potential biomarker for the consumption of these food products. Cholic acid can be found primarily in bile, blood, feces, and urine, as well as throughout all human tissues. Cholic acid exists in all living organisms, ranging from bacteria to humans. In humans, cholic acid is involved in few metabolic pathways, which include bile acid biosynthesis, cerebrotendinous xanthomatosis (CTX), congenital bile acid synthesis defect type II, and congenital bile acid synthesis defect type III. Cholic acid is also involved in few metabolic disorders, which include 27-hydroxylase deficiency, familial hypercholanemia (FHCA), and zellweger syndrome. Moreover, cholic acid is found to be associated with biliary atresia, cirrhosis, cystic fibrosis, and primary biliary cirrhosis. Cholic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. A - Alimentary tract and metabolism > A05 - Bile and liver therapy > A05A - Bile therapy > A05AA - Bile acids and derivatives C78276 - Agent Affecting Digestive System or Metabolism > C66913 - Cholagogues or Choleretic Agents D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids Same as: D10699 Cholic acid is a major primary bile acid produced in the liver and usually conjugated with glycine or taurine. It facilitates fat absorption and cholesterol excretion. Cholic acid is orally active[1][2]. Cholic acid is a major primary bile acid produced in the liver and usually conjugated with glycine or taurine. It facilitates fat absorption and cholesterol excretion. Cholic acid is orally active[1][2].

   

Cyprodinil

Pesticide4_Cyprodinil_C14H15N3_2-Pyrimidinamine, 4-cyclopropyl-6-methyl-N-phenyl-

C14H15N3 (225.1266)


   

benzoate

3,5-Dihydroxybenzoic acid (acd/name 4.0)

C7H6O4 (154.0266)


2,6-Dihydroxybenzoic acid is a secondary metabolite of salicylic acid which has been hydrolyzed by liver enzymes during phase I metabolism. 2,6-Dihydroxybenzoic acid is a secondary metabolite of salicylic acid which has been hydrolyzed by liver enzymes during phase I metabolism. 3,5-Dihydroxybenzoic acid a potential biomarker for the consumption of many food products, including beer, nuts, peanut, and pulses. 3,5-Dihydroxybenzoic acid a potential biomarker for the consumption of many food products, including beer, nuts, peanut, and pulses.

   

Catechin C

(2S-cis)-2-(3,4-dihydroxyphenyl)-3,4-dihydro-2H-1-Benzopyran-3,5,7-triol

C15H14O6 (290.079)


C26170 - Protective Agent > C275 - Antioxidant

   

FA 4:1

Dihydrofuran-2(3H)-one

C4H6O2 (86.0368)


NSC 8751 is an endogenous metabolite. NSC 8751 is an endogenous metabolite.

   

FA 5:2;O2

2-methyl-2Z-butenedioic acid

C5H6O4 (130.0266)


D003879 - Dermatologic Agents Citraconic acid belongs to the class of organic compounds known as methyl-branched fatty acids.

   

Prostaglandin C2

9-oxo-15S-hydroxy-5Z,11Z,13E-prostatrienoic acid

C20H30O4 (334.2144)


A member of the class of prostaglandins C that is prosta-5,11,13-trien-1-oic acid carrying oxo and hydroxy substituents at positions 9 and 15 respectively (the 5Z,13E,15S-stereoisomer).

   

decanol

Alcohols, C8-10

C10H22O (158.1671)


   

CoA 4:0

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-2,2-dimethyl-3-{[2-({2-[(2-methylpropanoyl)sulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}propoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C25H42N7O17P3S (837.1571)


   

CoA 4:1

3-phosphoadenosine 5-{3-[(3R)-3-hydroxy-2,2-dimethyl-4-{[3-({2-[(2-methylprop-2-enoyl)sulfanyl]ethyl}amino)-3-oxopropyl]amino}-4-oxobutyl] dihydrogen diphosphate}

C25H40N7O17P3S (835.1414)


   

ST 18:4;O3

3,16alpha-dihydroxy-1,3,5(10)-estratrien-17-one

C18H22O3 (286.1569)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D020011 - Protective Agents > D016588 - Anticarcinogenic Agents D000970 - Antineoplastic Agents 4-Hydroxyestrone (4-OHE1), an estrone metabolite, has strong neuroprotective effect against oxidative neurotoxicity. 4-Hydroxyestrone increases cytoplasmic translocation of p53 resulting from SIRT1-mediated deacetylation of p53. 4-Hydroxyestrone has little estrogenic activity[1].

   

Coenzyme Q9

2,3-dimethoxy-5-methyl-6-[(2E,6E,10E,14E,18E,22E,26E,30E)-3,7,11,15,19,23,27,31,35-nonamethylhexatriaconta-2,6,10,14,18,22,26,30,34-nonaen-1-yl]cyclohexa-2,5-diene-1,4-dione

C54H82O4 (794.6213)


D020011 - Protective Agents > D000975 - Antioxidants Coenzyme Q9 (Ubiquinone Q9), the major form of ubiquinone in rodents, is an amphipathic molecular component of the electron transport chain that functions as an endogenous antioxidant. Coenzyme Q9 attenuates the diabetes-induced decreases in antioxidant defense mechanisms. Coenzyme Q9 improves left ventricular performance and reduces myocardial infarct size and cardiomyocyte apoptosis[1][2]. Coenzyme Q9 (Ubiquinone Q9), the major form of ubiquinone in rodents, is an amphipathic molecular component of the electron transport chain that functions as an endogenous antioxidant. Coenzyme Q9 attenuates the diabetes-induced decreases in antioxidant defense mechanisms. Coenzyme Q9 improves left ventricular performance and reduces myocardial infarct size and cardiomyocyte apoptosis[1][2].

   

Plastoquinol-9

Plastoquinol-9

C53H82O2 (750.6314)


   

Virginiamycin M1

Pristinamycin IIA

C28H35N3O7 (525.2475)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D025361 - Streptogramins C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C259 - Antineoplastic Antibiotic Virginiamycin M1 (Pristinamycin IIA; Ostreogrycin A), produced by?Streptomyces virginiae, is an polyunsaturated macrocyclic lactone antibiotic and acts as a component of Virginiamycin (HY-112665)[1]. Virginiamycin M1 alone is against Staphylococcus aureus with a MIC of 0.25 μg/mL. The combination of Virginiamycin M1 and Virginiamycin S1 (HY-N6680) is 0.125 μg/mL (MIC Value), which can improve the bactericidal effect 1-30 times[2].

   

coenzyme Q10

Ubidecarenone

C59H90O4 (862.6839)


A ubiquinone having a side chain of 10 isoprenoid units. In the naturally occurring isomer, all isoprenyl double bonds are in the E- configuration. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C - Cardiovascular system > C01 - Cardiac therapy C26170 - Protective Agent > C275 - Antioxidant D018977 - Micronutrients > D014815 - Vitamins Same as: D01065 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Isolated from beef heart. Ubiquinone 10 is found in animal foods.

   

8-Anilino-1-naphthalenesulfonic acid

8-Anilino-1-naphthalenesulfonic acid

C16H13NO3S (299.0616)


   

Nafenopin

Nafenopin

C20H22O3 (310.1569)


C78276 - Agent Affecting Digestive System or Metabolism > C29711 - Anti-diabetic Agent > C154291 - Peroxisome Proliferator-Activated Receptor Agonist C78276 - Agent Affecting Digestive System or Metabolism > C29703 - Antilipidemic Agent > C98150 - Fibrate Antilipidemic Agent D009676 - Noxae > D002273 - Carcinogens > D020025 - Peroxisome Proliferators D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Same as: D05102

   

AIDS-026330

2H-1-Benzopyran-3,5,7-triol, 2-(3,4-dihydroxyphenyl)-3,4-dihydro-, (2S-cis)-

C15H14O6 (290.079)


C26170 - Protective Agent > C275 - Antioxidant

   

AI3-00579

InChI=1\C10H10O2\c1-12-10(11)8-7-9-5-3-2-4-6-9\h2-8H,1H3\b8-7

C10H10O2 (162.0681)


Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1]. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1]. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1].

   

Artra

InChI=1\C6H6O2\c7-5-1-2-6(8)4-3-5\h1-4,7-8

C6H6O2 (110.0368)


D020011 - Protective Agents > D011837 - Radiation-Protective Agents D020011 - Protective Agents > D000975 - Antioxidants D009676 - Noxae > D009153 - Mutagens D - Dermatologicals

   

Safranal

InChI=1\C10H14O\c1-8-5-4-6-10(2,3)9(8)7-11\h4-5,7H,6H2,1-3H

C10H14O (150.1045)


Safranal is an orally active main component of Saffron (Crocus sativus) and is responsible for the unique aroma of this spice. Safranal has neuroprotective and anti-inflammatory effects and has the potential for Parkinson’s disease research[1]. Safranal is an orally active main component of Saffron (Crocus sativus) and is responsible for the unique aroma of this spice. Safranal has neuroprotective and anti-inflammatory effects and has the potential for Parkinson’s disease research[1].

   

Terpilene

InChI=1\C10H16\c1-8(2)10-6-4-9(3)5-7-10\h4,6,8H,5,7H2,1-3H

C10H16 (136.1252)


α-Terpinene (Terpilene) is a monoterpene found in the essential oils of a large variety of foods and aromatic plants such as Mentha piperita. α-Terpinene is active against Trypanosoma evansi and has the potential for trypanosomosis treatment. α-Terpinene has antioxidant and antifungal properties[1][2][3][4]. α-Terpinene (Terpilene) is a monoterpene found in the essential oils of a large variety of foods and aromatic plants such as Mentha piperita. α-Terpinene is active against Trypanosoma evansi and has the potential for trypanosomosis treatment. α-Terpinene has antioxidant and antifungal properties[1][2][3][4].

   

97-67-6

(S)-(−)-2-Hydroxysuccinic acid

C4H6O5 (134.0215)


(S)-Malic acid ((S)-2-Hydroxysuccinic acid) is a dicarboxylic acid in naturally occurring form, contributes to the pleasantly sour taste of fruits and is used as a food additive. (S)-Malic acid ((S)-2-Hydroxysuccinic acid) is a dicarboxylic acid in naturally occurring form, contributes to the pleasantly sour taste of fruits and is used as a food additive.

   

AI3-06287

InChI=1\C4H6O2\c1-2-3-4(5)6\h2-3H,1H3,(H,5,6)\b3-2

C4H6O2 (86.0368)


NSC 8751 is an endogenous metabolite. NSC 8751 is an endogenous metabolite.

   

23513-08-8

3-Dodecanone, 5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-, (S)-(+)-

C19H30O4 (322.2144)


8-Gingerol, found in the rhizomes of ginger (Z. officinale) with oral bioavailability, activates TRPV1, with an EC50 of 5.0 μM. 8-Gingerol inhibits COX-2, and inhibits the growth of H. pylori in vitro[1][2]. 8-Gingerol, found in the rhizomes of ginger (Z. officinale) with oral bioavailability, activates TRPV1, with an EC50 of 5.0 μM. 8-Gingerol inhibits COX-2, and inhibits the growth of H. pylori in vitro[1][2].

   

Gingerenone A

(E)-1,7-bis(4-hydroxy-3-methoxy-phenyl)hept-4-en-3-one

C21H24O5 (356.1624)


Gingerenone A is a Nrf2-Gpx4 activator with anti-breast-cancer properties. Gingerenone A results a delayed G2/M in cancer cells, following oxidative stress and senescence responses. Gingerenone A also alleviates ferroptosis in secondary liver injury (SLI) in dextran sodium sulfate (DSS)-induced colitis mice. Gingerenone A can be isolated from Zingiber officinale[1][2]. Gingerenone A is a Nrf2-Gpx4 activator with anti-breast-cancer properties. Gingerenone A results a delayed G2/M in cancer cells, following oxidative stress and senescence responses. Gingerenone A also alleviates ferroptosis in secondary liver injury (SLI) in dextran sodium sulfate (DSS)-induced colitis mice. Gingerenone A can be isolated from Zingiber officinale[1][2].

   

Paradol

2-08-00-00318 (Beilstein Handbook Reference)

C17H26O3 (278.1882)


Paradol is a pungent phenolic substance found in ginger and other Zingiberaceae plants. Paradol is an effective inhibitor of tumor promotion in mouse skin carcinogenesis, binds to cyclooxygenase (COX)-2 active site. Paradol is a pungent phenolic substance found in ginger and other Zingiberaceae plants. Paradol is an effective inhibitor of tumor promotion in mouse skin carcinogenesis, binds to cyclooxygenase (COX)-2 active site.

   

Leucol

InChI=1\C9H7N\c1-2-6-9-8(4-1)5-3-7-10-9\h1-7

C9H7N (129.0578)


   

c0264

InChI=1\C6H6O3\c7-4-1-2-5(8)6(9)3-4\h1-3,7-9

C6H6O3 (126.0317)


1,2,4-Trihydroxybenzene (Hydroxyhydroquinone), a by-product of coffee bean roasting, increases intracellular Ca2+ concentration in rat thymic lymphocytes[1]. 1,2,4-Trihydroxybenzene (Hydroxyhydroquinone), a by-product of coffee bean roasting, increases intracellular Ca2+ concentration in rat thymic lymphocytes[1].

   

Antak

InChI=1\C10H22O\c1-2-3-4-5-6-7-8-9-10-11\h11H,2-10H2,1H

C10H22O (158.1671)


   

cuminol

InChI=1\C10H14O\c1-8(2)10-5-3-9(7-11)4-6-10\h3-6,8,11H,7H2,1-2H

C10H14O (150.1045)


4-Isopropylbenzyl alcohol is a chemical composition of the essential oils from the leaves and flowers of Camellia nitidissima. C. nitidissima possess multiple biological activities including antioxidant activity, anticancer activity, and cytotoxicity as well as inhibiting the formation of advanced glycation end-products[1]. 4-Isopropylbenzyl alcohol is a chemical composition of the essential oils from the leaves and flowers of Camellia nitidissima. C. nitidissima possess multiple biological activities including antioxidant activity, anticancer activity, and cytotoxicity as well as inhibiting the formation of advanced glycation end-products[1].

   

Escosyl

7-hydroxy-6-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-2-chromenone

C15H16O9 (340.0794)


Esculin, a fluorescent coumarin glucoside, is an active ingredient of ash bark[1]. Esculin ameliorates cognitive impairment in experimental diabetic nephropathy (DN), and exerts anti?oxidative stress and anti?inflammatory effects, via the MAPK signaling pathway[2]. Esculin, a fluorescent coumarin glucoside, is an active ingredient of ash bark[1]. Esculin ameliorates cognitive impairment in experimental diabetic nephropathy (DN), and exerts anti?oxidative stress and anti?inflammatory effects, via the MAPK signaling pathway[2].

   

tridecanol

4-01-00-01860 (Beilstein Handbook Reference)

C13H28O (200.214)


   

RFPDX@

Methanol, or methyl alcohol [UN1230] [Flammable liquid, Poison]

CH4O (32.0262)


D012997 - Solvents

   

Nonox A

InChI=1\C16H13N\c1-2-9-14(10-3-1)17-16-12-6-8-13-7-4-5-11-15(13)16\h1-12,17

C16H13N (219.1048)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D004396 - Coloring Agents > D005456 - Fluorescent Dyes D009676 - Noxae > D002273 - Carcinogens

   

303-07-1

InChI=1\C7H6O4\c8-4-2-1-3-5(9)6(4)7(10)11\h1-3,8-9H,(H,10,11

C7H6O4 (154.0266)


2,6-Dihydroxybenzoic acid is a secondary metabolite of salicylic acid which has been hydrolyzed by liver enzymes during phase I metabolism. 2,6-Dihydroxybenzoic acid is a secondary metabolite of salicylic acid which has been hydrolyzed by liver enzymes during phase I metabolism.

   

Thymelol

2H-1-Benzopyran-2-one, 7-hydroxy-6-methoxy-3-((2-oxo-2H-1-benzopyran-7-yl)oxy)- (9CI)

C19H12O7 (352.0583)


Daphnoretin (Dephnoretin), isolated from Wikstroemia indica, possesses antiviral activity[1]. Daphnoretin likes PMA, may direct activation of protein kinase C which in turn activated NADPH oxidase and elicited respiratory burst[2]. Daphnoretin (Dephnoretin), isolated from Wikstroemia indica, possesses antiviral activity[1]. Daphnoretin likes PMA, may direct activation of protein kinase C which in turn activated NADPH oxidase and elicited respiratory burst[2].

   

Oligomycin D

Oligomycin D

C44H72O11 (776.5074)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D009840 - Oligomycins C784 - Protein Synthesis Inhibitor > C261 - Macrolide Antibiotic D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D004791 - Enzyme Inhibitors > D014475 - Uncoupling Agents C254 - Anti-Infective Agent > C258 - Antibiotic

   

8-GINGEROL

3-Dodecanone, 5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-, (S)-(+)-

C19H30O4 (322.2144)


(8)-Gingerol is a beta-hydroxy ketone, a member of phenols and a monomethoxybenzene. (8)-Gingerol is a natural product found in Zingiber officinale with data available. See also: Ginger (part of). 8-Gingerol, found in the rhizomes of ginger (Z. officinale) with oral bioavailability, activates TRPV1, with an EC50 of 5.0 μM. 8-Gingerol inhibits COX-2, and inhibits the growth of H. pylori in vitro[1][2]. 8-Gingerol, found in the rhizomes of ginger (Z. officinale) with oral bioavailability, activates TRPV1, with an EC50 of 5.0 μM. 8-Gingerol inhibits COX-2, and inhibits the growth of H. pylori in vitro[1][2].

   

Gingerol

3-Tetradecanone, 5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-, (5S)-

C21H34O4 (350.2457)


(10)-Gingerol is a beta-hydroxy ketone, a member of phenols and a monomethoxybenzene. (10)-Gingerol is a natural product found in Zingiber officinale with data available. See also: Ginger (part of). 10-Gingerol is a major pungent constituent in the ginger oleoresin from fresh rhizome, with anti-inflammatory, antioxidant and anti-proliferative activities. 10-Gingerol inhibits the proliferation of MDA-MB-231 tumor cell line with an IC50 of 12.1 μM[1][2]. 10-Gingerol is a major pungent constituent in the ginger oleoresin from fresh rhizome, with anti-inflammatory, antioxidant and anti-proliferative activities. 10-Gingerol inhibits the proliferation of MDA-MB-231 tumor cell line with an IC50 of 12.1 μM[1][2].

   

Oxygen

Dioxygen

O2 (31.9898)


V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AN - Medical gases

   

leucoline

QUINOLINE

C9H7N (129.0578)


   

ethionamide

ethionamide

C8H10N2S (166.0565)


J - Antiinfectives for systemic use > J04 - Antimycobacterials > J04A - Drugs for treatment of tuberculosis > J04AD - Thiocarbamide derivatives D000963 - Antimetabolites > D000960 - Hypolipidemic Agents > D054872 - Fatty Acid Synthesis Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D000995 - Antitubercular Agents C254 - Anti-Infective Agent > C52588 - Antibacterial Agent > C280 - Antitubercular Agent D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Ethionamide (2-ethylthioisonicotinamide) is a second-line anti-tuberculosis antibiotic.

   

N-ethylmaleimide

N-ethylmaleimide

C6H7NO2 (125.0477)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D013439 - Sulfhydryl Reagents D004791 - Enzyme Inhibitors

   

FLUOROACETIC ACID

FLUOROACETIC ACID

C2H3FO2 (78.0117)


D010575 - Pesticides > D012378 - Rodenticides D016573 - Agrochemicals

   

MALEIMIDE

MALEIMIDE

C4H3NO2 (97.0164)


Maleimide can be used for production of antibody-drug conjugate (ADC) which is used in cancer research. Maleimide also be leveraged for the preparation of fluorogenic probe, which is mainly used for the specific detection of thiol analytes[1][2].

   

DL-Tryptophan

DL-Tryptophan

C11H12N2O2 (204.0899)


DL-Tryptophan is an endogenous metabolite.

   

1,2,4-BENZENETRIOL

1,2,4-Trihydroxybenzene

C6H6O3 (126.0317)


A benzenetriol carrying hydroxy groups at positions 1, 2 and 4. 1,2,4-Trihydroxybenzene (Hydroxyhydroquinone), a by-product of coffee bean roasting, increases intracellular Ca2+ concentration in rat thymic lymphocytes[1]. 1,2,4-Trihydroxybenzene (Hydroxyhydroquinone), a by-product of coffee bean roasting, increases intracellular Ca2+ concentration in rat thymic lymphocytes[1].

   

thiamylal

thiamylal

C12H18N2O2S (254.1089)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C67084 - Barbiturate D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent

   

16α-Hydroxyestrone

16alpha-hydroxyestrone

C18H22O3 (286.1569)


C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones The 16alpha-hydroxy derivative of estrone; a minor estrogen metabolite.

   

(2R)-2,3-Dihydroxypropanoic acid

(2R)-2,3-Dihydroxypropanoic acid

C3H6O4 (106.0266)


   

(2R)-2-hydroxypentanedioic acid

(2R)-2-hydroxypentanedioic acid

C5H8O5 (148.0372)


   

Propiolic acid

Propiolic acidd

C3H2O2 (70.0055)


   

oxazolidinone

Oxazolidin-2-one

C3H5NO2 (87.032)


An oxazolidinone that is 1,3-oxazolidine with an oxo substituent at position 2. D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors D000890 - Anti-Infective Agents > D023303 - Oxazolidinones

   

Pyrazosulfuron-ethyl

Pyrazosulfuron-ethyl

C14H18N6O7S (414.0958)


D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

1,4-Dihydroxy-2-naphthoic acid

1,4-Dihydroxy-2-naphthoic acid

C11H8O4 (204.0423)


A naphthoic acid that is 2-naphthoic acid substituted by hydroxy groups at positions 1 and 4.

   

Thiamine diphosphate

Thiamine diphosphate

C12H19N4O7P2S+ (425.045)


D018977 - Micronutrients > D014815 - Vitamins

   

L-m-Tyrosine

L-m-Tyrosine

C9H11NO3 (181.0739)


A hydroxyphenylalanine that is L-phenylalanine with a substituent hydroxy group at position 3.

   

2-Phosphoglycolic Acid

2-Phosphoglycolic Acid

C2H5O6P (155.9824)


The O-phospho derivative of glycolic acid.

   

Deoxycytidine diphosphate

Deoxycytidine diphosphate

C9H15N3O10P2 (387.0233)


A 2-deoxycytidine phosphate that is the 2- deoxy derivative of cytidine 5-diphosphate (CDP).

   
   

2-Deoxyguanosine-5-diphosphate

2-Deoxyguanosine-5-diphosphate

C10H15N5O10P2 (427.0294)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Butyryl-CoA

Butyryl-CoA

C25H42N7O17P3S (837.1571)


A short-chain fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of butyric acid.

   

N-Methyl-L-alanine

N-Methyl-L-alanine

C4H9NO2 (103.0633)


A methyl-L-alanine in which one of the the amino hydrogen of L-alanine is replaced by a methyl group.

   

Methyl sulfate

Methyl sulfate

CH4O4S (111.983)


An alkyl sulfate that is the monomethyl ester of sulfuric acid.

   

Sodium Cation

SODIUM ION CHROMATOGRAPHY STANDARD

Na+ (22.9898)


A monoatomic monocation obtained from sodium.

   

Crotonoyl-CoA

Crotonoyl-CoA

C25H40N7O17P3S (835.1414)


The (E)-isomer of but-2-enoyl-CoA.

   

FADH2

DIHYDROFLAVINE-adenine dinucleotide

C27H35N9O15P2 (787.1728)


   

D-Arabino-2-deoxyhexose

2-Deoxy-D-arabino-hexopyranose

C6H12O5 (164.0685)


   

Thiamine triphosphate

Thiamine triphosphate

C12H20N4O10P3S+ (505.0113)


D018977 - Micronutrients > D014815 - Vitamins

   

all-trans-neoxanthin

all-trans-neoxanthin

C40H56O4 (600.4178)


A neoxanthin in which all of the double bonds have trans geometry. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

(S)-methylmalonyl-CoA

(S)-methylmalonyl-CoA

C25H40N7O19P3S (867.1312)


The (S)-enantiomer of methylmalonyl-CoA.

   

Bis(adenosine)-5-pentaphosphate

Bis(adenosine)-5-pentaphosphate

C20H29N10O22P5 (916.0146)


D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents

   

Monodehydroascorbate radical

Monodehydroascorbate radical

C6H7O6 (175.0243)


   

Pentitol, 1-(4-((1-(2-amino-1,4,5,6,7,8-hexahydro-7-methyl-4-oxo-6-pteridinyl)ethyl)amino)phenyl)-1-deoxy-5-O-(5-O-((1,3-dicarboxypropoxy)hydroxyphosphinyl)-alpha-D-ribofuranosyl)-, (16alpha)-

Pentitol, 1-(4-((1-(2-amino-1,4,5,6,7,8-hexahydro-7-methyl-4-oxo-6-pteridinyl)ethyl)amino)phenyl)-1-deoxy-5-O-(5-O-((1,3-dicarboxypropoxy)hydroxyphosphinyl)-alpha-D-ribofuranosyl)-, (16alpha)-

C30H45N6O16P (776.263)


   

CHLOROFORM

CHLOROFORM

CHCl3 (117.9144)


N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general > N01AB - Halogenated hydrocarbons A one-carbon compound that is methane in which three of the hydrogens are replaced by chlorines. D012997 - Solvents ATC code: N01AB02

   
   

decylubiquinone

2,3-Dimethoxy-5-methyl-6-decyl-1,4-benzoquinone

C19H30O4 (322.2144)


   

Trichloroacetate

TRICHLOROACETIC ACID

C2HCl3O2 (161.9042)


A monocarboxylic acid that is acetic acid in which all three methyl hydrogens are substituted by chlorine. D009676 - Noxae > D002424 - Caustics Same as: D08633

   

N-Cyclohexylcyclohexanamine

N-Cyclohexylcyclohexanamine

C12H23N (181.183)


D004791 - Enzyme Inhibitors

   

diethyl pyrocarbonate

diethyl pyrocarbonate

C6H10O5 (162.0528)


   

N-PHENYL-1-NAPHTHYLAMINE

N-Phenyl-1-naphthalenamine

C16H13N (219.1048)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D004396 - Coloring Agents > D005456 - Fluorescent Dyes D009676 - Noxae > D002273 - Carcinogens

   

BROMODICHLOROMETHANE

BROMODICHLOROMETHANE

CHBrCl2 (161.8639)


D009676 - Noxae > D002273 - Carcinogens

   

DIBROMOCHLOROMETHANE

DIBROMOCHLOROMETHANE

CHBr2Cl (205.8133)


   

Neostanox

Bis[tris(2-methyl-2-phenylpropyl)tin]oxide

C60H78OSn2 (1054.4096)


   

Dihydrolipoic acid

Dihydrolipoic acid

C8H16O2S2 (208.0592)


A thio-fatty acid that is reduced form of lipoic acid. A potent antioxidant shown to directly destroy superoxide, hydroperoxy and hydroxyl radicals; also has neuroprotective and anti-tumour effects. D020011 - Protective Agents > D000975 - Antioxidants

   

PCB 52

2,2,5,5-TETRACHLOROBIPHENYL

C12H6Cl4 (289.9224)


D004785 - Environmental Pollutants > D011078 - Polychlorinated Biphenyls

   

Diphenylcarbazide

1,5-Diphenylcarbazide

C13H14N4O (242.1168)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents

   

Zwittergent 3-14

N-Tetradecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate

C19H41NO3S (363.2807)


   
   

{[(2R,3S,4R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}[({[({[({[(3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)(hydroxy)phosphoryl]oxy}(hydroxy)phosphoryl)oxy]phosphinic acid

{[(2R,3S,4R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}[({[({[({[(3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)(hydroxy)phosphoryl]oxy}(hydroxy)phosphoryl)oxy]phosphinic acid

C20H29N10O22P5 (916.0146)


D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents

   

DuP 697

Thiophene, 5-bromo-2-(4-fluorophenyl)-3-(4-(methylsulfonyl)phenyl)-

C17H12BrFO2S2 (409.9446)


D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D004791 - Enzyme Inhibitors

   

4,5,6,7-Tetrachloro-2-trifluoromethylbenzimidazole

4,5,6,7-Tetrachloro-2-trifluoromethylbenzimidazole

C8HCl4F3N2 (321.8846)