Zeaxanthin (BioDeep_00000000651)
Secondary id: BioDeep_00000402977, BioDeep_00000871776
natural product human metabolite PANOMIX_OTCML-2023 blood metabolite Volatile Flavor Compounds
代谢物信息卡片
化学式: C40H56O2 (568.4280076)
中文名称: 玉米黄质, 玉米黄素
谱图信息:
最多检出来源 Viridiplantae(plant) 0.17%
分子结构信息
SMILES: C/C(=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)C[C@H](CC1(C)C)O)/C=C/C=C(\C)/C=C/C1=C(C)C[C@H](CC1(C)C)O
InChI: InChI=1/C40H56O2/c1-29(17-13-19-31(3)21-23-37-33(5)25-35(41)27-39(37,7)8)15-11-12-16-30(2)18-14-20-32(4)22-24-38-34(6)26-36(42)28-40(38,9)10/h11-24,35-36,41-42H,25-28H2,1-10H3/b12-11+,17-13+,18-14+,23-21+,24-22+,29-15+,30-16+,31-19+,32-20+/t35-,36-/m1/s1
描述信息
Zeaxanthin is a carotenoid xanthophyll and is one of the most common carotenoid found in nature. It is the pigment that gives corn, saffron, and many other plants their characteristic color. Zeaxanthin breaks down to form picrocrocin and safranal, which are responsible for the taste and aroma of saffron Carotenoids are among the most common pigments in nature and are natural lipid soluble antioxidants. Zeaxanthin is one of the two carotenoids (the other is lutein) that accumulate in the eye lens and macular region of the retina with concentrations in the macula greater than those found in plasma and other tissues. Lutein and zeaxanthin have identical chemical formulas and are isomers, but they are not stereoisomers. The main difference between them is in the location of a double bond in one of the end rings. This difference gives lutein three chiral centers whereas zeaxanthin has two. A relationship between macular pigment optical density, a marker of lutein and zeaxanthin concentration in the macula, and lens optical density, an antecedent of cataractous changes, has been suggested. The xanthophylls may act to protect the eye from ultraviolet phototoxicity via quenching reactive oxygen species and/or other mechanisms. Some observational studies have shown that generous intakes of lutein and zeaxanthin, particularly from certain xanthophyll-rich foods like spinach, broccoli and eggs, are associated with a significant reduction in the risk for cataract (up to 20\\%) and for age-related macular degeneration (up to 40\\%). While the pathophysiology of cataract and age-related macular degeneration is complex and contains both environmental and genetic components, research studies suggest dietary factors including antioxidant vitamins and xanthophylls may contribute to a reduction in the risk of these degenerative eye diseases. Further research is necessary to confirm these observations. (PMID: 11023002). Zeaxanthin has been found to be a microbial metabolite, it can be produced by Algibacter, Aquibacter, Escherichia, Flavobacterium, Formosa, Gramella, Hyunsoonleella, Kordia, Mesoflavibacter, Muricauda, Nubsella, Paracoccus, Siansivirga, Sphingomonas, Zeaxanthinibacter and yeast (https://reader.elsevier.com/reader/sd/pii/S0924224417302571?token=DE6BC6CC7DCDEA6150497AA3E375097A00F8E0C12AE03A8E420D85D1AC8855E62103143B5AE0B57E9C5828671F226801). It is a marker for the activity of Bacillus subtilis and/or Pseudomonas aeruginosa in the intestine. Higher levels are associated with higher levels of Bacillus or Pseudomonas. (PMID: 17555270; PMID: 12147474)
Zeaxanthin is a carotenol. It has a role as a bacterial metabolite, a cofactor and an antioxidant. It derives from a hydride of a beta-carotene.
Zeaxanthin is a most common carotenoid alcohols found in nature that is involved in the xanthophyll cycle. As a coexistent isomer of lutein, zeaxanthin is synthesized in plants and some micro-organisms. It gives the distinct yellow color to many vegetables and other plants including paprika, corn, saffron and wolfberries. Zeaxanthin is one of the two primary xanthophyll carotenoids contained within the retina of the eye and plays a predominant component in the central macula. It is available as a dietary supplement for eye health benefits and potential prevention of age-related macular degeneration. Zeaxanthin is also added as a food dye.
Zeaxanthin is a natural product found in Bangia fuscopurpurea, Erythrobacter longus, and other organisms with data available.
Carotenoids found in fruits and vegetables. Zeaxanthin accumulates in the MACULA LUTEA.
See also: Saffron (part of); Corn (part of); Lycium barbarum fruit (part of).
D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids
同义名列表
70 个代谢物同义名
(1R)-4-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-18-[(4R)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]-3,5,5-trimethylcyclohex-3-en-1-ol; (1R)-3,5,5-trimethyl-4-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-3,7,12,16-tetramethyl-18-[(4R)-2,6,6-trimethyl-4-oxidanyl-cyclohexen-1-yl]octadeca-1,3,5,7,9,11,13,15,17-nonaenyl]cyclohex-3-en-1-ol; (1R)-4-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-18-[(4R)-4-hydroxy-2,6,6-trimethylcyclohexen-1-yl]-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaenyl]-3,5,5-trimethylcyclohex-3-en-1-ol; (1R)-4-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-18-[(4R)-4-hydroxy-2,6,6-trimethyl-1-cyclohexenyl]-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaenyl]-3,5,5-trimethyl-1-cyclohex-3-enol; (1R,1R)-4,4-((1E,3E,5E,7E,9E,11E,13E,15E,17E)-3,7,12,16-Tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaene-1,18-diyl)bis(3,5,5-trimethylcyclohex-3-enol); 4-(18-(4-hydroxy-2,6,6-trimethyl-1-cyclohexenyl)-3,7,12,16-tetramethyl-octadeca-1,3,5,7,9,11,13,15,17-nonaenyl)-3,5,5-trimethyl-cyclohex-3-en-1-ol; ZEAXANTHIN/(3R,3R)-ZEAXANTHIN (CONSTITUENT OF AZTEC MARIGOLD ZEAXANTHIN EXTRACT); beta,beta-carotene-3,3-diol, (3R,3R)-all-trans-; .beta.-Carotene-3,3-diol, (3R,3R)-all-trans-; .beta.,.beta.-Carotene-3,3-diol, (3R,3R)-; Zeaxanthin 10 microg/mL in Acetonitrile; beta,beta-Carotene-3,3-diol, (3R,3R)-; 6AB548E1-4B81-4843-8E0E-481DCFC93CA8; (3R,3R)-dihydroxy-beta,beta-carotene; (3R,3R)-beta,beta-Carotene-3,3-diol; (3R,3R)-DIHYDROXY-.BETA.-CAROTENE; all-trans-beta-carotene-3,3-diol; (3R,3’R)-β,β-Carotene-3,3’-diol; (3R,3R)-DIHYDROXY-beta-CAROTENE; Zeaxanthin, analytical standard; (3R,3r)-Dihydroxy-b,b-carotene; (3R,3r)-Dihydroxy-β,β-carotene; beta,beta-carotene-3R,3R-diol; all-trans-b-Carotene-3,3-diol; (3R,3’R)-Dihydroxy-β-carotene; all-trans-Β-carotene-3,3-diol; (3R,3r)-Β,β-carotene-3,3-diol; (3R,3r)-b,b-Carotene-3,3-diol; (3R,3R)-Dihydroxy-β-carotene; all-trans-3R,3’R-Zeaxanthin; Beta,beta-carotene-3,3-diol; Anchovyxanthin, all-trans-; all-trans-3R,3R-Zeaxanthin; all-trans-Anchovyxanthin; Beta Carotene 3,3 Diol; Zeaxanthin, all-trans-; beta-carotene-3,3-diol; b,b-Carotene-3,3-diol; Β,β-carotene-3,3-diol; all-trans-Zeaxanthin; ZEAXANTHIN [WHO-DD]; (3R,3’R)-Zeaxanthin; ZEAXANTHIN (MART.); ZEAXANTHIN [MART.]; (3R,3R)-Zeaxanthin; ZEAXANTHIN [VANDF]; Zeaxanthin, tech.; Zeaxanthin - 10\\%; ZEAXANTHIN [INCI]; all-E-Zeaxanthin; 3R,3R-Zeaxanthin; trans-Zeaxanthin; Zeaxanthin, 65\\%; 3R,3R Zeaxanthin; ZEAXANTHIN [MI]; UNII-CV0IB81ORO; Anchovyxanthin; Xanthophyll 3; Tox21_112670; Zeaxanthine; Zeaxanthins; Zeaxanthin; Luteinofta; Zeaxanthol; CV0IB81ORO; Optisharp; Zeagold; AK128409; Zeaxanthin; Zeaxanthin
数据库引用编号
29 个数据库交叉引用编号
- ChEBI: CHEBI:27547
- KEGG: C06098
- PubChem: 5280899
- PubChem: 534748
- HMDB: HMDB0002789
- DrugBank: DB11176
- ChEMBL: CHEMBL2359248
- Wikipedia: Zeaxanthin
- LipidMAPS: LMPR01070261
- MeSH: Zeaxanthins
- ChemIDplus: 0000144683
- MetaCyc: CPD1F-130
- KNApSAcK: C00000931
- KNApSAcK: C00023219
- foodb: FDB023113
- chemspider: 4444421
- CAS: 144-68-3
- MoNA: PS073302
- MoNA: PS073301
- medchemexpress: HY-120318
- PMhub: MS000010984
- MetaboLights: MTBLC27547
- PubChem: 8363
- PDB-CCD: 5X6
- 3DMET: B01973
- NIKKAJI: J5.830K
- RefMet: Zeaxanthin
- KNApSAcK: 27547
- LOTUS: LTS0192928
分类词条
相关代谢途径
Reactome(0)
BioCyc(8)
- echinenone and zeaxanthin biosynthesis (Synechocystis)
- superpathway of carotenoid biosynthesis in plants
- superpathway of carotenoid biosynthesis
- carotenoid cleavage
- nostoxanthin biosynthesis
- zeaxanthin-β-D-diglucoside biosynthesis
- crocetin biosynthesis
- astaxanthin biosynthesis (bacteria, fungi, algae)
PlantCyc(5)
代谢反应
622 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(19)
- zeaxanthin-β-D-diglucoside biosynthesis:
UDP-α-D-glucose + zeaxanthin-β-D-glucoside ⟶ H+ + UDP + zeaxanthin bis(β-D-glucoside)
- carotenoid cleavage:
β-carotene + O2 ⟶ β-ionone + 4,9-dimethyldodeca-2,4,6,8,10-pentaene-1,12-dial
- carotenoid cleavage:
all-trans-β-carotene + O2 ⟶ β-ionone + 4,9-dimethyldodeca-2,4,6,8,10-pentaene-1,12-dial
- crocetin biosynthesis:
O2 + zeaxanthin ⟶ (3S)-3-hydroxycyclocitral + crocetin dialdehyde
- crocetin biosynthesis:
β-citraurin + O2 ⟶ 3β-hydroxy-β-cyclocitral + 8',8-diapocarotene-8',8-dial
- nostoxanthin biosynthesis:
H+ + NADH + O2 + caloxanthin ⟶ H2O + NAD+ + nostoxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
γ-carotene ⟶ β-carotene
- astaxanthin biosynthesis (bacteria, fungi, algae):
β-carotene + A(H2) + O2 ⟶ A + H2O + echinenone
- echinenone and zeaxanthin biosynthesis (Synechocystis):
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
all-trans-β-carotene + H+ + NADH + O2 ⟶ β-cryptoxanthin + H2O + NAD+
- zeaxanthin biosynthesis:
β-cryptoxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + zeaxanthin
- zeaxanthin biosynthesis:
all-trans-β-carotene + H+ + NADH + O2 ⟶ β-cryptoxanthin + H2O + NAD+
- superpathway of carotenoid biosynthesis:
all-trans-β-carotene + H+ + NADH + O2 ⟶ β-cryptoxanthin + H2O + NAD+
- zeaxanthin biosynthesis:
all-trans-β-carotene + H+ + NADH + O2 ⟶ β-cryptoxanthin + H2O + NAD+
- zeaxanthin, antheraxanthin and violaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- zeaxanthin, antheraxanthin and violaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- antheraxanthin and violaxanthin biosynthesis:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
WikiPathways(0)
Plant Reactome(217)
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Crocetin biosynthesis:
Oxygen + zeaxanthin ⟶ crocetin dialdehyde + hydroxy-beta-cyclocitral
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Crocetin biosynthesis:
Oxygen + zeaxanthin ⟶ crocetin dialdehyde + hydroxy-beta-cyclocitral
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Crocetin biosynthesis:
Oxygen + zeaxanthin ⟶ crocetin dialdehyde + hydroxy-beta-cyclocitral
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Crocetin biosynthesis:
Oxygen + zeaxanthin ⟶ crocetin dialdehyde + hydroxy-beta-cyclocitral
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Crocetin biosynthesis:
Oxygen + zeaxanthin ⟶ crocetin dialdehyde + hydroxy-beta-cyclocitral
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Crocetin biosynthesis:
Oxygen + zeaxanthin ⟶ crocetin dialdehyde + hydroxy-beta-cyclocitral
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Crocetin biosynthesis:
Oxygen + zeaxanthin ⟶ crocetin dialdehyde + hydroxy-beta-cyclocitral
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Crocetin biosynthesis:
Oxygen + zeaxanthin ⟶ crocetin dialdehyde + hydroxy-beta-cyclocitral
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Secondary metabolism:
GPP + H2O ⟶ PPi + geraniol
- Crocetin biosynthesis:
UDP-Glc + hydroxy-beta-cyclocitral ⟶ UDP + picrocrocin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
DMAPP + genistein ⟶ PPi + lupiwighteone
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
gamma-carotene ⟶ beta-carotene
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
gamma-carotene ⟶ beta-carotene
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
gamma-carotene ⟶ beta-carotene
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Secondary metabolism:
DMAPP + genistein ⟶ PPi + lupiwighteone
- Carotenoid biosynthesis:
gamma-carotene ⟶ beta-carotene
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
L-Phe ⟶ ammonia + trans-cinnamate
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Carotenoid biosynthesis:
Oxygen + beta-cryptoxanthin + hydrogen donor ⟶ H2O + hydrogen acceptor + zeaxanthin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
INOH(0)
PlantCyc(383)
- carotenoid cleavage:
β-carotene + O2 ⟶ β-ionone + all-trans-10'-apo-β-carotenal
- carotenoid cleavage:
β-carotene + O2 ⟶ β-ionone + 4,9-dimethyldodeca-2,4,6,8,10-pentaene-1,12-dial
- carotenoid cleavage:
β-carotene + O2 ⟶ β-ionone + all-trans-10'-apo-β-carotenal
- carotenoid cleavage:
β-carotene + O2 ⟶ β-ionone + 4,9-dimethyldodeca-2,4,6,8,10-pentaene-1,12-dial
- carotenoid cleavage:
β-carotene + O2 ⟶ β-ionone + all-trans-10'-apo-β-carotenal
- crocetin biosynthesis:
8',8-diapocarotene-8',8-dial + A + H2O ⟶ A(H2) + H+ + crocetin
- crocetin biosynthesis:
heat + picrocrocin ⟶ D-glucopyranose + safranal
- nostoxanthin biosynthesis:
H+ + NADH + O2 + zeaxanthin ⟶ H2O + NAD+ + caloxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + antheraxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + violaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-cryptoxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-cryptoxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- superpathway of carotenoid biosynthesis in plants:
β-cryptoxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
γ-carotene ⟶ β-carotene
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + violaxanthin ⟶ H2O + L-dehydro-ascorbate + antheraxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-cryptoxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + antheraxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + violaxanthin
- superpathway of carotenoid biosynthesis in plants:
γ-carotene ⟶ β-carotene
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-cryptoxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- superpathway of carotenoid biosynthesis in plants:
β-cryptoxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- superpathway of carotenoid biosynthesis in plants:
β-cryptoxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-cryptoxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
15-cis-phytoene + a plastoquinone ⟶ 15,9'-di-cis-phytofluene + a plastoquinol
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + violaxanthin ⟶ H2O + L-dehydro-ascorbate + antheraxanthin
- superpathway of carotenoid biosynthesis in plants:
prephytoene diphosphate ⟶ 15-cis-phytoene + diphosphate
- astaxanthin biosynthesis (bacteria, fungi, algae):
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- astaxanthin biosynthesis (bacteria, fungi, algae):
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- astaxanthin biosynthesis (bacteria, fungi, algae):
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-cryptoxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + zeaxanthin
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-cryptoxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + zeaxanthin
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-cryptoxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + zeaxanthin
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-cryptoxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + zeaxanthin
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-cryptoxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + zeaxanthin
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-cryptoxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + zeaxanthin
- zeaxanthin biosynthesis:
β-cryptoxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + zeaxanthin
- zeaxanthin biosynthesis:
β-cryptoxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + zeaxanthin
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- zeaxanthin biosynthesis:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
COVID-19 Disease Map(0)
PathBank(3)
- Xanthophyll Cycle:
Ascorbic acid + Hydrogen Ion + Violaxanthin ⟶ Dehydroascorbic acid + Water + antheraxanthin
- Zeaxanthin Biosynthesis:
-Carotene ⟶ B-Carotene
- 11-cis-3-Hydroxyretinal Biosynthesis:
(3R)-all-trans-3-hydroxyretinal-[retinoid-binding protein] + Hydrogen Ion + NADPH ⟶ (3R)-all-trans-3-hydroxyretinol-[retinoid-binding protein] + NADP
PharmGKB(0)
1056 个相关的物种来源信息
- 85782 - Acanthella: LTS0192928
- 85783 - Acanthella acuta: 10.1016/0305-0491(84)90180-9
- 85783 - Acanthella acuta: LTS0192928
- 1890429 - Acaryochloridaceae: LTS0192928
- 155977 - Acaryochloris: 10.1093/PCP/PCS126
- 155977 - Acaryochloris: LTS0192928
- 155978 - Acaryochloris marina: 10.1093/PCP/PCS126
- 155978 - Acaryochloris marina: LTS0192928
- 2762544 - Acaryochloris marina: 10.1093/PCP/PCS126
- 186623 - Actinopteri: LTS0192928
- 7898 - Actinopterygii: LTS0192928
- 13817 - Adiantum: LTS0192928
- 13818 - Adiantum capillus-veneris: 10.1016/0305-1978(85)90030-4
- 13818 - Adiantum capillus-veneris: LTS0192928
- 911566 - Adiantum formosum: 10.1016/0305-1978(85)90030-4
- 911566 - Adiantum formosum: LTS0192928
- 29590 - Adiantum pedatum: 10.1016/0305-1978(85)90030-4
- 29590 - Adiantum pedatum: LTS0192928
- 446141 - Adiantum venustum: 10.1016/0305-1978(85)90030-4
- 446141 - Adiantum venustum: LTS0192928
- 39130 - Agastache: LTS0192928
- 39269 - Agastache foeniculum: 10.1080/10412905.1992.9698114
- 39269 - Agastache foeniculum: LTS0192928
- 272680 - Aglaomorpha sparsisora: 10.1016/0305-1978(85)90030-4
- 111638 - Alectoria: LTS0192928
- 4678 - Allium: LTS0192928
- 4679 - Allium cepa: 10.1021/JF00023A019
- 4679 - Allium cepa: LTS0192928
- 1174972 - Allium rotundum: 10.1007/S10600-009-9452-5
- 1174972 - Allium rotundum: LTS0192928
- 28211 - Alphaproteobacteria: LTS0192928
- 3563 - Amaranthaceae: LTS0192928
- 4668 - Amaryllidaceae: LTS0192928
- 178513 - Amphimedon: 10.1016/0305-0491(88)90145-9
- 178513 - Amphimedon: LTS0192928
- 1163 - Anabaena: LTS0192928
- 1165 - Anabaena cylindrica: 10.1016/B978-0-12-261650-1.50017-4
- 1165 - Anabaena cylindrica: LTS0192928
- 4011 - Anacardiaceae: LTS0192928
- 77184 - Ancorinidae: LTS0192928
- 6340 - Annelida: LTS0192928
- 2766 - Antithamnion: LTS0192928
- 1175 - Aphanizomenon: LTS0192928
- 54296 - Aphanizomenon gracile: 10.1111/J.1365-2427.2006.01582.X
- 54296 - Aphanizomenon gracile: LTS0192928
- 7458 - Apidae: LTS0192928
- 7459 - Apis: LTS0192928
- 7461 - Apis cerana: 10.1371/JOURNAL.PONE.0175573
- 7461 - Apis cerana: LTS0192928
- 6499 - Aplysia: LTS0192928
- 71498 - Aplysia punctata: 10.1016/0305-0491(84)90180-9
- 71498 - Aplysia punctata: LTS0192928
- 6498 - Aplysiidae: LTS0192928
- 3701 - Arabidopsis: LTS0192928
- 3702 - Arabidopsis thaliana: 10.1016/J.CHROMA.2006.04.033
- 3702 - Arabidopsis thaliana: LTS0192928
- 4454 - Araceae: LTS0192928
- 124739 - Arctocetraria: LTS0192928
- 326049 - Arctocetraria andrejevii: LTS0192928
- 4246 - Arnica: LTS0192928
- 436207 - Arnica montana: 10.1055/S-0028-1099449
- 436207 - Arnica montana: LTS0192928
- 6656 - Arthropoda: LTS0192928
- 35823 - Arthrospira: 10.1016/B978-0-12-261650-1.50017-4
- 35823 - Arthrospira: LTS0192928
- 30275 - Ascidia: LTS0192928
- 107392 - Ascidia zara: 10.1016/0305-0491(85)90174-9
- 107392 - Ascidia zara: LTS0192928
- 7713 - Ascidiacea: LTS0192928
- 30274 - Ascidiidae: LTS0192928
- 4890 - Ascomycota: LTS0192928
- 52968 - Ascophyllum: LTS0192928
- 52969 - Ascophyllum nodosum:
- 52969 - Ascophyllum nodosum: 10.1016/0305-1978(94)90112-0
- 52969 - Ascophyllum nodosum: 10.3891/ACTA.CHEM.SCAND.28B-0485
- 52969 - Ascophyllum nodosum: LTS0192928
- 51383 - Asphodelaceae: LTS0192928
- 41972 - Aspleniaceae: 10.1016/0305-1978(85)90030-4
- 41972 - Aspleniaceae: LTS0192928
- 32071 - Asplenium: 10.1016/0305-1978(85)90030-4
- 32071 - Asplenium: LTS0192928
- 78367 - Asplenium australasicum: 10.1016/0305-1978(85)90030-4
- 78367 - Asplenium australasicum: LTS0192928
- 147945 - Asplenium ceterach: LTS0192928
- 41964 - Asplenium scolopendrium: LTS0192928
- 2959658 - Asplenium scolopendrium var. scolopendrium: LTS0192928
- 78464 - Asplenium trichomanes: 10.1016/0305-1978(85)90030-4
- 78464 - Asplenium trichomanes: LTS0192928
- 4210 - Asteraceae: LTS0192928
- 7600 - Asteriidae: LTS0192928
- 7588 - Asteroidea: LTS0192928
- 20400 - Astragalus: LTS0192928
- 47038 - Astragalus falcatus: 10.1023/B:CONC.0000003427.89093.1F
- 47038 - Astragalus falcatus: LTS0192928
- 1203520 - Athyriaceae: LTS0192928
- 3078 - Auxenochlorella pyrenoidosa: 10.1016/J.CHROMA.2005.10.055
- 8782 - Aves: LTS0192928
- 45118 - Axinellidae: LTS0192928
- 39630 - Azolla: LTS0192928
- 39631 - Azolla caroliniana: 10.1016/0305-1978(85)90030-4
- 39631 - Azolla caroliniana: LTS0192928
- 1131306 - Azolla cristata: 10.1016/0305-1978(85)90030-4
- 84609 - Azolla filiculoides: 10.1016/0305-1978(85)90030-4
- 84609 - Azolla filiculoides: LTS0192928
- 336973 - Azolla mexicana: 10.1016/0305-1978(85)90030-4
- 336972 - Azolla microphylla: 10.1016/0305-1978(85)90030-4
- 336972 - Azolla microphylla: LTS0192928
- 2 - Bacteria: LTS0192928
- 31346 - Bangia: LTS0192928
- 101920 - Bangia fuscopurpurea: 10.1016/S0031-9422(00)89006-8
- 101920 - Bangia fuscopurpurea: LTS0192928
- 31345 - Bangiaceae: LTS0192928
- 2797 - Bangiophyceae: LTS0192928
- 6544 - Bivalvia: LTS0192928
- 29600 - Blechnaceae: LTS0192928
- 29605 - Blechnum: LTS0192928
- 32073 - Blechnum occidentale: 10.1016/0305-1978(85)90030-4
- 32073 - Blechnum occidentale: LTS0192928
- 31368 - Bonnemaisonia: LTS0192928
- 31369 - Bonnemaisonia hamifera: 10.1016/S0031-9422(00)89006-8
- 31369 - Bonnemaisonia hamifera: LTS0192928
- 31365 - Bonnemaisoniaceae: LTS0192928
- 3184 - Boodleaceae: LTS0192928
- 68528 - Boronia: LTS0192928
- 709985 - Boronia megastigma: LTS0192928
- 38879 - Botryococcaceae: LTS0192928
- 38880 - Botryococcus: LTS0192928
- 38881 - Botryococcus braunii: LTS0192928
- 3705 - Brassica: LTS0192928
- 3712 - Brassica oleracea: 10.1021/JF00023A019
- 3712 - Brassica oleracea: LTS0192928
- 3700 - Brassicaceae: LTS0192928
- 371829 - Bryocaulon: LTS0192928
- 371830 - Bryocaulon divergens: 10.1016/0305-1978(87)90002-0
- 371830 - Bryocaulon divergens: LTS0192928
- 1186 - Calothrix: LTS0192928
- 32054 - Calothrix parietina: 10.1016/B978-0-12-261650-1.50017-4
- 32054 - Calothrix parietina: LTS0192928
- 4071 - Capsicum: LTS0192928
- 4072 - Capsicum annuum:
- 4072 - Capsicum annuum: LTS0192928
- 7956 - Carassius: LTS0192928
- 7957 - Carassius auratus: 10.1016/S0305-0491(99)00124-8
- 7957 - Carassius auratus: LTS0192928
- 4305 - Celastraceae: LTS0192928
- 85180 - Celastrus: LTS0192928
- 85181 - Celastrus orbiculatus: 10.1016/J.PHYTOCHEM.2009.04.018
- 85181 - Celastrus orbiculatus: LTS0192928
- 31377 - Ceramiaceae: LTS0192928
- 31380 - Ceramium: LTS0192928
- 35157 - Ceramium rubrum: 10.1016/S0031-9422(00)89006-8
- 35157 - Ceramium rubrum: LTS0192928
- 78063 - Cetraria: LTS0192928
- 78064 - Cetraria islandica: 10.1016/0305-1978(87)90002-0
- 78064 - Cetraria islandica: LTS0192928
- 95628 - Cetraria islandica subsp. islandica: 10.1016/0305-1978(87)90002-0
- 95628 - Cetraria islandica subsp. islandica: LTS0192928
- 124737 - Cetraria nigricans: 10.1016/0305-1978(87)90002-0
- 124737 - Cetraria nigricans: LTS0192928
- 115237 - Cetrariella: LTS0192928
- 115238 - Cetrariella delisei: 10.1016/0305-1978(87)90002-0
- 115238 - Cetrariella delisei: LTS0192928
- 3185 - Chaetomorpha: LTS0192928
- 162064 - Chaetomorpha crassa: 10.1111/J.1529-8817.2004.03210.X
- 162064 - Chaetomorpha crassa: LTS0192928
- 162065 - Chaetomorpha linum: 10.1111/J.1529-8817.2004.03210.X
- 162065 - Chaetomorpha linum: LTS0192928
- 6056 - Chalinidae: LTS0192928
- 13778 - Chara: LTS0192928
- 1658599 - Chara aculeolata: 10.1016/S0304-3770(99)00095-9
- 69330 - Chara aspera: 10.1016/S0304-3770(99)00095-9
- 69330 - Chara aspera: LTS0192928
- 69334 - Chara contraria: 10.1016/S0304-3770(99)00095-9
- 69334 - Chara contraria: LTS0192928
- 69338 - Chara globularis: 10.1016/S0304-3770(99)00095-9
- 69338 - Chara globularis: LTS0192928
- 1658605 - Chara gymnophylla: 10.1016/S0304-3770(99)00095-9
- 1658605 - Chara gymnophylla: LTS0192928
- 37303 - Chara hispida: 10.1016/S0304-3770(99)00095-9
- 37303 - Chara hispida: LTS0192928
- 1304952 - Chara intermedia: 10.1016/S0304-3770(99)00095-9
- 1304952 - Chara intermedia: LTS0192928
- 1304951 - Chara rudis: 10.1016/S0304-3770(99)00095-9
- 1304951 - Chara rudis: LTS0192928
- 69346 - Chara tomentosa: 10.1016/S0304-3770(99)00095-9
- 69346 - Chara tomentosa: LTS0192928
- 55564 - Chara vulgaris: 10.1016/S0304-3770(99)00095-9
- 55564 - Chara vulgaris: LTS0192928
- 3146 - Characeae: LTS0192928
- 304574 - Charophyceae: LTS0192928
- 658124 - Chattonellaceae: LTS0192928
- 1804623 - Chenopodiaceae: LTS0192928
- 3051 - Chlamydomonadaceae: LTS0192928
- 3052 - Chlamydomonas: LTS0192928
- 3055 - Chlamydomonas reinhardtii: 10.1104/PP.39.4.680
- 3055 - Chlamydomonas reinhardtii: LTS0192928
- 3071 - Chlorella: LTS0192928
- 3077 - Chlorella vulgaris: 10.1016/J.CHROMA.2005.10.055
- 35461 - Chlorellaceae: LTS0192928
- 35429 - Chlorodendraceae: LTS0192928
- 1524962 - Chlorodendrophyceae: LTS0192928
- 3166 - Chlorophyceae: LTS0192928
- 3041 - Chlorophyta: LTS0192928
- 7711 - Chordata: LTS0192928
- 173869 - Christella: LTS0192928
- 714463 - Christella parasitica: LTS0192928
- 2997 - Chromulina: LTS0192928
- 1034828 - Chromulina ochromonoides: 10.1016/0305-0491(81)90110-3
- 1034828 - Chromulina ochromonoides: LTS0192928
- 98651 - Chromulinaceae: LTS0192928
- 1890464 - Chroococcaceae: LTS0192928
- 101918 - Chroodactylon: LTS0192928
- 139907 - Chroodactylon ornatum: 10.1007/BF00409152
- 139907 - Chroodactylon ornatum: LTS0192928
- 2825 - Chrysophyceae: LTS0192928
- 7718 - Ciona: LTS0192928
- 7719 - Ciona intestinalis: 10.1016/0305-0491(85)90174-9
- 7719 - Ciona intestinalis: LTS0192928
- 7717 - Cionidae: LTS0192928
- 2706 - Citrus: LTS0192928
- 558547 - Citrus deliciosa:
- 85571 - Citrus reticulata:
- 85571 - Citrus reticulata: 10.1016/0031-9422(83)83012-X
- 85571 - Citrus reticulata: 10.1021/JF960057Y
- 85571 - Citrus reticulata: LTS0192928
- 5199 - Cladonia: 10.1002/FEDR.19911020518
- 5199 - Cladonia: 10.1016/0305-1978(87)90002-0
- 5199 - Cladonia: 10.1016/0305-1978(88)90082-8
- 5199 - Cladonia: LTS0192928
- 174044 - Cladonia arbuscula: LTS0192928
- 197103 - Cladonia cariosa: 10.1016/0305-1978(85)90064-X
- 197103 - Cladonia cariosa: LTS0192928
- 174050 - Cladonia cenotea: 10.1016/0305-1978(85)90064-X
- 174050 - Cladonia cenotea: LTS0192928
- 174051 - Cladonia cervicornis: LTS0192928
- 184202 - Cladonia cervicornis subsp. cervicornis: 10.1016/0305-1978(85)90064-X
- 184202 - Cladonia cervicornis subsp. cervicornis: LTS0192928
- 197022 - Cladonia ciliata: LTS0192928
- 1156959 - Cladonia ciliata var. tenuis: 10.1016/0305-1978(85)90064-X
- 1156959 - Cladonia ciliata var. tenuis: LTS0192928
- 174053 - Cladonia coccifera: 10.1016/0305-1978(85)90064-X
- 174053 - Cladonia coccifera: LTS0192928
- 184094 - Cladonia cornuta: 10.1016/0305-1978(85)90064-X
- 184094 - Cladonia cornuta: LTS0192928
- 174054 - Cladonia crispata: LTS0192928
- 184097 - Cladonia deformis: 10.1016/0305-1978(85)90064-X
- 184097 - Cladonia deformis: LTS0192928
- 195763 - Cladonia digitata: 10.1016/0305-1978(85)90064-X
- 195763 - Cladonia digitata: LTS0192928
- 184098 - Cladonia ecmocyna: 10.1016/0305-1978(87)90002-0
- 184098 - Cladonia ecmocyna: LTS0192928
- 174058 - Cladonia fimbriata: 10.1016/0305-1978(85)90064-X
- 174058 - Cladonia fimbriata: LTS0192928
- 553796 - Cladonia firma: 10.1016/0305-1978(88)90082-8
- 553796 - Cladonia firma: LTS0192928
- 174060 - Cladonia furcata: 10.1016/0305-1978(85)90064-X
- 174060 - Cladonia furcata: LTS0192928
- 174061 - Cladonia glauca: 10.1016/0305-1978(85)90064-X
- 174061 - Cladonia glauca: LTS0192928
- 111668 - Cladonia gracilis:
- 111668 - Cladonia gracilis: 10.1016/0305-1978(85)90064-X
- 111668 - Cladonia gracilis: 10.1016/0305-1978(87)90002-0
- 111668 - Cladonia gracilis: LTS0192928
- 196765 - Cladonia macilenta: 10.1016/0305-1978(85)90064-X
- 196765 - Cladonia macilenta: LTS0192928
- 197105 - Cladonia macrophylla: 10.1016/0305-1978(87)90002-0
- 197105 - Cladonia macrophylla: LTS0192928
- 195774 - Cladonia mitis:
- 195774 - Cladonia mitis: 10.1016/0305-1978(85)90064-X
- 195774 - Cladonia mitis: 10.1016/0305-1978(87)90002-0
- 195774 - Cladonia mitis: LTS0192928
- 174062 - Cladonia ochrochlora: 10.1016/0305-1978(85)90064-X
- 174062 - Cladonia ochrochlora: LTS0192928
- 184109 - Cladonia phyllophora: 10.1016/0305-1978(85)90064-X
- 184109 - Cladonia phyllophora: LTS0192928
- 174065 - Cladonia pleurota: 10.1016/0305-1978(85)90064-X
- 174065 - Cladonia pleurota: LTS0192928
- 50943 - Cladonia portentosa: 10.1016/0305-1978(85)90064-X
- 50943 - Cladonia portentosa: LTS0192928
- 2031061 - Cladonia ramulosa: 10.1016/0305-1978(85)90064-X
- 2031061 - Cladonia ramulosa: LTS0192928
- 111670 - Cladonia rangiferina:
- 111670 - Cladonia rangiferina: 10.1016/0305-1978(85)90064-X
- 111670 - Cladonia rangiferina: 10.1016/0305-1978(87)90002-0
- 111670 - Cladonia rangiferina: LTS0192928
- 174071 - Cladonia scabriuscula: 10.1016/0305-1978(85)90064-X
- 174071 - Cladonia scabriuscula: LTS0192928
- 174045 - Cladonia stellaris: 10.1016/0305-1978(85)90064-X
- 174045 - Cladonia stellaris: LTS0192928
- 174079 - Cladonia turgida: 10.1016/0305-1978(85)90064-X
- 174079 - Cladonia turgida: LTS0192928
- 5198 - Cladoniaceae: LTS0192928
- 34125 - Cladophora: LTS0192928
- 35436 - Cladophoraceae: LTS0192928
- 13442 - Coffea: LTS0192928
- 13443 - Coffea arabica: 10.1016/S0167-4501(06)80090-7
- 13443 - Coffea arabica: LTS0192928
- 49390 - Coffea canephora: 10.1016/S0167-4501(06)80090-7
- 49390 - Coffea canephora: LTS0192928
- 41218 - Colchicaceae: LTS0192928
- 930023 - Compsopogonophyceae: LTS0192928
- 29597 - Coniogramme: LTS0192928
- 29598 - Coniogramme japonica: 10.1016/0305-1978(85)90030-4
- 29598 - Coniogramme japonica: LTS0192928
- 35169 - Corallina: LTS0192928
- 35170 - Corallina officinalis: 10.1016/S0031-9422(00)98236-0
- 35170 - Corallina officinalis: LTS0192928
- 31396 - Corallinaceae: LTS0192928
- 45948 - Corbicula: 10.1021/JF058088T
- 45948 - Corbicula: LTS0192928
- 141464 - Corbicula japonica: 10.1021/JF058088T
- 141464 - Corbicula japonica: LTS0192928
- 141465 - Corbicula sandai: 10.1021/JF058088T
- 141465 - Corbicula sandai: LTS0192928
- 60564 - Coscinasterias: LTS0192928
- 72676 - Coscinasterias tenuispina: 10.1016/0305-0491(84)90180-9
- 72676 - Coscinasterias tenuispina: LTS0192928
- 58949 - Crocus: LTS0192928
- 82528 - Crocus sativus: 10.1016/S0031-9422(00)82412-7
- 82528 - Crocus sativus: LTS0192928
- 2896 - Cryptomonadaceae: LTS0192928
- 3030 - Cryptomonas: LTS0192928
- 70450 - Cryptomonas ovata: 10.1016/0305-1978(85)90029-8
- 70450 - Cryptomonas ovata: LTS0192928
- 3027 - Cryptophyceae: LTS0192928
- 7958 - Ctenopharyngodon: LTS0192928
- 7959 - Ctenopharyngodon idella: 10.1016/0305-0491(81)90400-4
- 7959 - Ctenopharyngodon idella: LTS0192928
- 3660 - Cucurbita: LTS0192928
- 3661 - Cucurbita maxima: 10.1016/S0031-9422(00)83753-X
- 3661 - Cucurbita maxima: LTS0192928
- 3650 - Cucurbitaceae: LTS0192928
- 3367 - Cupressaceae: LTS0192928
- 265316 - Cyanidiaceae: LTS0192928
- 45156 - Cyanidioschyzon: LTS0192928
- 45157 - Cyanidioschyzon merolae: 10.1128/EC.00265-06
- 45157 - Cyanidioschyzon merolae: LTS0192928
- 2761 - Cyanophora: LTS0192928
- 2762 - Cyanophora paradoxa: 10.1007/BF00409152
- 2762 - Cyanophora paradoxa: LTS0192928
- 33678 - Cyanophoraceae: LTS0192928
- 3028117 - Cyanophyceae: LTS0192928
- 32180 - Cyclosorus: LTS0192928
- 714463 - Cyclosorus parasiticus: 10.1016/0305-1978(85)90030-4
- 7953 - Cyprinidae: LTS0192928
- 1176409 - Cyrenidae: LTS0192928
- 84613 - Cyrtomium: LTS0192928
- 84614 - Cyrtomium falcatum: 10.1016/0305-1978(85)90030-4
- 84614 - Cyrtomium falcatum: LTS0192928
- 1203500 - Cystopteridaceae: LTS0192928
- 32111 - Cystopteris: LTS0192928
- 32112 - Cystopteris fragilis: 10.1016/0305-1978(85)90030-4
- 32112 - Cystopteris fragilis: LTS0192928
- 872508 - Cystopteris sudetica: 10.1016/0305-1978(85)90030-4
- 872508 - Cystopteris sudetica: LTS0192928
- 89373 - Cytophagaceae: LTS0192928
- 768503 - Cytophagia: LTS0192928
- 29638 - Davallia: LTS0192928
- 2487050 - Davallia sinensis: 10.1016/0305-1978(85)90030-4
- 2487050 - Davallia sinensis: LTS0192928
- 194872 - Davallia solida: 10.1016/0305-1978(85)90030-4
- 194872 - Davallia solida: LTS0192928
- 29637 - Davalliaceae: LTS0192928
- 188787 - Deinococci: LTS0192928
- 6042 - Demospongiae: LTS0192928
- 32084 - Dennstaedtiaceae: LTS0192928
- 146293 - Dermatocarpon: LTS0192928
- 172328 - Dermatocarpon miniatum: LTS0192928
- 172331 - Dermatocarpon miniatum var. miniatum: 10.1016/0305-1978(87)90002-0
- 172331 - Dermatocarpon miniatum var. miniatum: LTS0192928
- 85793 - Dictyonellidae: LTS0192928
- 107393 - Didemnidae: LTS0192928
- 13492 - Diospyros: LTS0192928
- 35925 - Diospyros kaki:
- 35925 - Diospyros kaki: 10.1007/BF00597795
- 35925 - Diospyros kaki: 10.1016/S0031-9422(00)80801-8
- 35925 - Diospyros kaki: 10.1111/J.1365-2621.1960.TB00012.X
- 35925 - Diospyros kaki: LTS0192928
- 455304 - Diphasiastrum: LTS0192928
- 34168 - Diphasiastrum complanatum: LTS0192928
- 37432 - Diphasiastrum tristachyum: 10.1016/0305-1978(85)90030-4
- 37432 - Diphasiastrum tristachyum: LTS0192928
- 29614 - Diplazium: LTS0192928
- 86695 - Diplazium sibiricum: 10.1016/0305-1978(85)90030-4
- 86695 - Diplazium sibiricum: LTS0192928
- 187348 - Drynaria: LTS0192928
- 29607 - Dryopteridaceae: LTS0192928
- 3287 - Dryopteris: LTS0192928
- 239547 - Dryopteris affinis: 10.1016/0305-1978(85)90030-4
- 239548 - Dryopteris borreri: 10.1016/0305-1978(85)90030-4
- 239548 - Dryopteris borreri: LTS0192928
- 239555 - Dryopteris carthusiana: 10.1016/0305-1978(85)90030-4
- 239555 - Dryopteris carthusiana: LTS0192928
- 239561 - Dryopteris dilatata: 10.1016/0305-1978(85)90030-4
- 239561 - Dryopteris dilatata: LTS0192928
- 239563 - Dryopteris expansa: 10.1016/0305-1978(85)90030-4
- 239563 - Dryopteris expansa: LTS0192928
- 3289 - Dryopteris filix-mas: 10.1016/0305-1978(85)90030-4
- 3289 - Dryopteris filix-mas: LTS0192928
- 239607 - Dryopteris wallichiana: 10.1016/0305-1978(85)90030-4
- 239607 - Dryopteris wallichiana: LTS0192928
- 19955 - Ebenaceae: LTS0192928
- 7586 - Echinodermata: LTS0192928
- 25996 - Elaeagnaceae: LTS0192928
- 1982659 - Ellisolandia: LTS0192928
- 48944 - Ellisolandia elongata: 10.1016/S0031-9422(00)98236-0
- 48944 - Ellisolandia elongata: LTS0192928
- 543 - Enterobacteriaceae: LTS0192928
- 3256 - Equisetaceae: LTS0192928
- 3257 - Equisetum: LTS0192928
- 3258 - Equisetum arvense: 10.1016/0305-1978(85)90030-4
- 3258 - Equisetum arvense: LTS0192928
- 231680 - Equisetum fluviatile: 10.1016/0305-1978(85)90030-4
- 231680 - Equisetum fluviatile: LTS0192928
- 3262 - Equisetum hyemale: 10.1016/0305-1978(85)90030-4
- 3262 - Equisetum hyemale: LTS0192928
- 113538 - Equisetum palustre: 10.1016/0305-1978(85)90030-4
- 113538 - Equisetum palustre: LTS0192928
- 231681 - Equisetum pratense: 10.1016/0305-1978(85)90030-4
- 231681 - Equisetum pratense: LTS0192928
- 231679 - Equisetum sylvaticum: 10.1016/0305-1978(85)90030-4
- 231679 - Equisetum sylvaticum: LTS0192928
- 3260 - Equisetum telmateia: 10.1016/0305-1978(85)90030-4
- 3260 - Equisetum telmateia: LTS0192928
- 4345 - Ericaceae: LTS0192928
- 1903409 - Erwiniaceae: LTS0192928
- 1041 - Erythrobacter: LTS0192928
- 1044 - Erythrobacter longus: 10.1007/BF00247807
- 1044 - Erythrobacter longus: LTS0192928
- 335929 - Erythrobacteraceae: LTS0192928
- 35150 - Erythrotrichia: LTS0192928
- 35151 - Erythrotrichia carnea: 10.1016/0305-1978(84)90049-8
- 35151 - Erythrotrichia carnea: LTS0192928
- 240428 - Erythrotrichiaceae: LTS0192928
- 561 - Escherichia: LTS0192928
- 562 - Escherichia coli: LTS0192928
- 3466 - Eschscholzia: LTS0192928
- 3467 - Eschscholzia californica: 10.1021/NP0000670
- 3467 - Eschscholzia californica: LTS0192928
- 3038 - Euglena: LTS0192928
- 3039 - Euglena gracilis: LTS0192928
- 158060 - Euglena gracilis var. bacillaris: 10.1104/PP.39.3.441
- 158060 - Euglena gracilis var. bacillaris: LTS0192928
- 1131320 - Euglenaceae: LTS0192928
- 3035 - Euglenida: LTS0192928
- 2704141 - Euglenophyceae: LTS0192928
- 33682 - Euglenozoa: LTS0192928
- 2759 - Eukaryota: LTS0192928
- 147545 - Eurotiomycetes: LTS0192928
- 5747 - Eustigmatophyceae: LTS0192928
- 3803 - Fabaceae: LTS0192928
- 49546 - Flavobacteriaceae: LTS0192928
- 117743 - Flavobacteriia: LTS0192928
- 237 - Flavobacterium: 10.1007/BF00428576
- 237 - Flavobacterium: LTS0192928
- 78067 - Flavocetraria: LTS0192928
- 95627 - Flavocetraria nivalis: 10.1016/0305-1978(87)90002-0
- 95627 - Flavocetraria nivalis: LTS0192928
- 992 - Flexibacter: 10.1007/BF01922424
- 992 - Flexibacter: LTS0192928
- 2762284 - Flexibacteraceae: LTS0192928
- 2806 - Florideophyceae: LTS0192928
- 3010 - Fucaceae: LTS0192928
- 3011 - Fucus: LTS0192928
- 87148 - Fucus serratus:
- 87148 - Fucus serratus: 10.1016/0305-1978(94)90112-0
- 87148 - Fucus serratus: 10.3891/ACTA.CHEM.SCAND.28B-0485
- 87148 - Fucus serratus: LTS0192928
- 49266 - Fucus vesiculosus:
- 49266 - Fucus vesiculosus: 10.1016/0305-1978(94)90112-0
- 49266 - Fucus vesiculosus: 10.1039/C29710000448
- 49266 - Fucus vesiculosus: 10.3891/ACTA.CHEM.SCAND.28B-0485
- 49266 - Fucus vesiculosus: LTS0192928
- 4751 - Fungi: LTS0192928
- 7136 - Galleria: LTS0192928
- 7137 - Galleria mellonella: 10.1073/PNAS.0807805105
- 7137 - Galleria mellonella: LTS0192928
- 9030 - Gallus: LTS0192928
- 9031 - Gallus gallus: 10.1016/J.CHROMA.2013.09.074
- 9031 - Gallus gallus: LTS0192928
- 1236 - Gammaproteobacteria: LTS0192928
- 6448 - Gastropoda: LTS0192928
- 469339 - Gelliodes: LTS0192928
- 1336858 - Gelliodes callista: 10.2331/SUISAN.53.1271
- 1336858 - Gelliodes callista: LTS0192928
- 33664 - Gigartina: LTS0192928
- 29217 - Gigartinaceae: LTS0192928
- 38257 - Glaucocystaceae: LTS0192928
- 38258 - Glaucocystis: LTS0192928
- 38271 - Glaucocystis nostochinearum: 10.1007/BF00409152
- 38271 - Glaucocystis nostochinearum: LTS0192928
- 38254 - Glaucocystophyceae: LTS0192928
- 511215 - Gowardia: LTS0192928
- 413822 - Gowardia nigricans: 10.1016/0305-1978(87)90002-0
- 413822 - Gowardia nigricans: LTS0192928
- 32115 - Gymnocarpium: LTS0192928
- 32116 - Gymnocarpium dryopteris: 10.1016/0305-1978(85)90030-4
- 32116 - Gymnocarpium dryopteris: LTS0192928
- 6061 - Halichondria: LTS0192928
- 6062 - Halichondria japonica: 10.1007/BF01922424
- 6062 - Halichondria japonica: LTS0192928
- 6060 - Halichondriidae: LTS0192928
- 6057 - Haliclona: 10.1080/14786410701768246
- 6057 - Haliclona: LTS0192928
- 7728 - Halocynthia: LTS0192928
- 7729 - Halocynthia roretzi:
- 7729 - Halocynthia roretzi: 10.1016/0305-0491(85)90174-9
- 7729 - Halocynthia roretzi: 10.1248/CPB.32.4309
- 7729 - Halocynthia roretzi: LTS0192928
- 16107 - Hemerocallis: LTS0192928
- 34190 - Hemerocallis fulva: LTS0192928
- 213590 - Hemerocallis fulva var. angustifolia: 10.1021/JF000956T
- 213590 - Hemerocallis fulva var. angustifolia: LTS0192928
- 48233 - Hippophae: LTS0192928
- 193516 - Hippophae rhamnoides:
- 193516 - Hippophae rhamnoides: 10.1007/BF00570873
- 193516 - Hippophae rhamnoides: 10.1007/BF00713311
- 193516 - Hippophae rhamnoides: LTS0192928
- 7705 - Holothuroidea: LTS0192928
- 9604 - Hominidae: LTS0192928
- 9605 - Homo: LTS0192928
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1167/IOVS.06-1046
- 9606 - Homo sapiens: LTS0192928
- 37428 - Huperzia: LTS0192928
- 70001 - Huperzia selago: 10.1016/0305-1978(85)90030-4
- 70001 - Huperzia selago: LTS0192928
- 375145 - Ianthella: LTS0192928
- 1162769 - Ianthella flabelliformis: 10.1016/0305-1978(89)90042-2
- 1162769 - Ianthella flabelliformis: LTS0192928
- 252952 - Ianthellidae: LTS0192928
- 50557 - Insecta: LTS0192928
- 26339 - Iridaceae: LTS0192928
- 31397 - Jania: 10.1016/S0031-9422(00)98236-0
- 31397 - Jania: LTS0192928
- 4136 - Lamiaceae: LTS0192928
- 33637 - Laminaria: LTS0192928
- 80365 - Laminaria digitata:
- 80365 - Laminaria digitata: 10.1016/0305-1978(94)90112-0
- 80365 - Laminaria digitata: 10.3891/ACTA.CHEM.SCAND.28B-0485
- 80365 - Laminaria digitata: LTS0192928
- 33636 - Laminariaceae: LTS0192928
- 147547 - Lecanoromycetes: LTS0192928
- 4469 - Lemna: LTS0192928
- 89585 - Lemna aequinoctialis: 10.1271/BBB1961.50.2053
- 89585 - Lemna aequinoctialis: LTS0192928
- 161103 - Lemna perpusilla: 10.1271/BBB1961.50.2053
- 47251 - Leptolyngbya: LTS0192928
- 1202 - Leptolyngbya ectocarpi: 10.1016/B978-0-12-261650-1.50017-4
- 1202 - Leptolyngbya ectocarpi: LTS0192928
- 47253 - Leptolyngbya foveolarum: 10.1016/B978-0-12-261650-1.50017-4
- 1890438 - Leptolyngbyaceae: LTS0192928
- 4677 - Liliaceae: LTS0192928
- 4447 - Liliopsida: LTS0192928
- 109181 - Linckia: LTS0192928
- 109185 - Linckia laevigata: 10.1016/0305-0491(89)90090-4
- 109185 - Linckia laevigata: LTS0192928
- 6739 - Lithodidae: LTS0192928
- 63752 - Lobaria: LTS0192928
- 86794 - Lobaria pulmonaria: 10.1016/0305-1978(88)90082-8
- 86794 - Lobaria pulmonaria: LTS0192928
- 129109 - Lobariaceae: LTS0192928
- 32137 - Lomariopsidaceae: LTS0192928
- 980636 - Lophanthus: LTS0192928
- 2668598 - Lophanthus chinensis: LTS0192928
- 3869 - Lupinus: LTS0192928
- 3870 - Lupinus albus: 10.1002/JSFA.2740301209
- 3870 - Lupinus albus: LTS0192928
- 3871 - Lupinus angustifolius: 10.1002/JSFA.2740301209
- 3871 - Lupinus angustifolius: LTS0192928
- 3873 - Lupinus luteus: 10.1002/JSFA.2740301209
- 3873 - Lupinus luteus: LTS0192928
- 53232 - Lupinus mutabilis: 10.1002/JSFA.2740301209
- 53232 - Lupinus mutabilis: LTS0192928
- 24646 - Lycium: LTS0192928
- 112863 - Lycium barbarum: 10.1055/S-0029-1186218
- 112863 - Lycium barbarum: LTS0192928
- 112883 - Lycium chinense:
- 112883 - Lycium chinense: 10.1007/BF02975206
- 112883 - Lycium chinense: 10.1055/S-0029-1186218
- 112883 - Lycium chinense: LTS0192928
- 3250 - Lycopodiaceae: LTS0192928
- 1521260 - Lycopodiopsida: LTS0192928
- 3251 - Lycopodium: LTS0192928
- 3252 - Lycopodium clavatum: 10.1016/0305-1978(85)90030-4
- 3252 - Lycopodium clavatum: LTS0192928
- 3398 - Magnoliopsida: LTS0192928
- 6681 - Malacostraca: LTS0192928
- 40674 - Mammalia: LTS0192928
- 23461 - Mangifera: LTS0192928
- 29780 - Mangifera indica: 10.1021/JF960276J
- 29780 - Mangifera indica: LTS0192928
- 29417 - Mastigocladus: LTS0192928
- 83541 - Mastigocladus laminosus: 10.1016/B978-0-12-261650-1.50017-4
- 83541 - Mastigocladus laminosus: LTS0192928
- 29226 - Mastocarpus: LTS0192928
- 29227 - Mastocarpus stellatus: 10.1016/S0031-9422(00)89006-8
- 29227 - Mastocarpus stellatus: LTS0192928
- 3276 - Matteuccia: LTS0192928
- 3277 - Matteuccia struthiopteris: 10.1016/0305-1978(85)90030-4
- 3277 - Matteuccia struthiopteris: LTS0192928
- 3877 - Medicago: LTS0192928
- 70936 - Medicago arabica: 10.1016/0305-1978(73)90022-7
- 70936 - Medicago arabica: 10.1016/0305-1978(75)90058-7
- 70936 - Medicago arabica: LTS0192928
- 70939 - Medicago brachycarpa: 10.1016/0305-1978(73)90022-7
- 70939 - Medicago brachycarpa: 10.1016/0305-1978(75)90058-7
- 66809 - Medicago cancellata: 10.1016/0305-1978(73)90022-7
- 66809 - Medicago cancellata: 10.1016/0305-1978(75)90058-7
- 66809 - Medicago cancellata: LTS0192928
- 66810 - Medicago carstiensis: 10.1016/0305-1978(73)90022-7
- 66810 - Medicago carstiensis: 10.1016/0305-1978(75)90058-7
- 66810 - Medicago carstiensis: LTS0192928
- 66812 - Medicago cretacea: 10.1016/0305-1978(73)90022-7
- 66812 - Medicago cretacea: 10.1016/0305-1978(75)90058-7
- 66812 - Medicago cretacea: LTS0192928
- 70942 - Medicago daghestanica: 10.1016/0305-1978(73)90022-7
- 70942 - Medicago daghestanica: 10.1016/0305-1978(75)90058-7
- 70942 - Medicago daghestanica: LTS0192928
- 66814 - Medicago hybrida: 10.1016/0305-1978(73)90022-7
- 66814 - Medicago hybrida: 10.1016/0305-1978(75)90058-7
- 66814 - Medicago hybrida: LTS0192928
- 66815 - Medicago marina: 10.1016/0305-1978(73)90022-7
- 66815 - Medicago marina: 10.1016/0305-1978(75)90058-7
- 66815 - Medicago marina: LTS0192928
- 70964 - Medicago papillosa: 10.1016/0305-1978(73)90022-7
- 70964 - Medicago papillosa: 10.1016/0305-1978(75)90058-7
- 70964 - Medicago papillosa: LTS0192928
- 66816 - Medicago pironae: 10.1016/0305-1978(73)90022-7
- 66816 - Medicago pironae: 10.1016/0305-1978(75)90058-7
- 66816 - Medicago pironae: LTS0192928
- 70967 - Medicago prostrata: 10.1016/0305-1978(73)90022-7
- 70967 - Medicago prostrata: 10.1016/0305-1978(75)90058-7
- 70967 - Medicago prostrata: LTS0192928
- 70973 - Medicago ruthenica: 10.1016/0305-1978(73)90022-7
- 70973 - Medicago ruthenica: 10.1016/0305-1978(75)90058-7
- 70973 - Medicago ruthenica: LTS0192928
- 3879 - Medicago sativa: 10.1016/0305-1978(73)90022-7
- 3879 - Medicago sativa: 10.1016/0305-1978(75)90058-7
- 3879 - Medicago sativa: LTS0192928
- 70933 - Medicago sativa subsp. glomerata: 10.1016/0305-1978(75)90058-7
- 70933 - Medicago sativa subsp. glomerata: LTS0192928
- 119392 - Medicago saxatilis: 10.1016/0305-1978(73)90022-7
- 119392 - Medicago saxatilis: 10.1016/0305-1978(75)90058-7
- 119392 - Medicago saxatilis: LTS0192928
- 66818 - Medicago suffruticosa: 10.1016/0305-1978(73)90022-7
- 66818 - Medicago suffruticosa: 10.1016/0305-1978(75)90058-7
- 66818 - Medicago suffruticosa: LTS0192928
- 53402 - Merismopedia: LTS0192928
- 882065 - Merismopedia punctata: 10.1016/B978-0-12-261650-1.50017-4
- 882065 - Merismopedia punctata: LTS0192928
- 1890428 - Merismopediaceae: LTS0192928
- 3370 - Metasequoia: LTS0192928
- 3371 - Metasequoia glyptostroboides: 10.1016/0305-1978(87)90003-2
- 3371 - Metasequoia glyptostroboides: LTS0192928
- 33208 - Metazoa: LTS0192928
- 2511165 - Microchloropsis salina: 10.1080/00071618200650061
- 1892252 - Microcoleaceae: LTS0192928
- 44471 - Microcoleus: LTS0192928
- 119532 - Microcoleus vaginatus: LTS0192928
- 1890449 - Microcystaceae: LTS0192928
- 1125 - Microcystis: LTS0192928
- 1126 - Microcystis aeruginosa: 10.1111/J.1365-2427.2006.01582.X
- 1126 - Microcystis aeruginosa: LTS0192928
- 32096 - Microlepia: LTS0192928
- 449865 - Microlepia speluncae: 10.1016/0305-1978(85)90030-4
- 449865 - Microlepia speluncae: LTS0192928
- 6447 - Mollusca: LTS0192928
- 3671 - Momordica: LTS0192928
- 3673 - Momordica charantia:
- 3673 - Momordica charantia: 10.1016/S0031-9422(99)00174-0
- 3673 - Momordica charantia: 10.1271/BBB.66.2479
- 3673 - Momordica charantia: LTS0192928
- 425072 - Monodopsidaceae: LTS0192928
- 5748 - Nannochloropsis: LTS0192928
- 43925 - Nannochloropsis oculata: 10.1080/00071618200650061
- 43925 - Nannochloropsis oculata: LTS0192928
- 32151 - Nephrolepidaceae: LTS0192928
- 32152 - Nephrolepis: LTS0192928
- 32153 - Nephrolepis cordifolia: 10.1016/0305-1978(85)90030-4
- 32153 - Nephrolepis cordifolia: LTS0192928
- 34165 - Nephrolepis exaltata: 10.1016/0305-1978(85)90030-4
- 34165 - Nephrolepis exaltata: LTS0192928
- 48858 - Nephroma: LTS0192928
- 48859 - Nephroma arcticum: 10.1016/0305-1978(87)90002-0
- 48859 - Nephroma arcticum: LTS0192928
- 203387 - Nephroma parile: 10.1016/0305-1978(87)90002-0
- 203387 - Nephroma parile: LTS0192928
- 48857 - Nephromataceae: LTS0192928
- 2682465 - Nephroselmidaceae: LTS0192928
- 1242998 - Nephroselmidophyceae: LTS0192928
- 31311 - Nephroselmis: LTS0192928
- 31312 - Nephroselmis olivacea: 10.1016/S0031-9422(96)00650-4
- 31312 - Nephroselmis olivacea: LTS0192928
- 156128 - Nephroselmis pyriformis: 10.1016/S0031-9422(96)00650-4
- 156128 - Nephroselmis pyriformis: LTS0192928
- 344402 - Nephroselmis rotunda:
- 344402 - Nephroselmis rotunda: 10.1016/0305-1978(95)00075-5
- 344402 - Nephroselmis rotunda: 10.1016/S0031-9422(96)00650-4
- 344402 - Nephroselmis rotunda: LTS0192928
- 178475 - Niphatidae: LTS0192928
- 3148 - Nitella: LTS0192928
- 97465 - Nitella opaca: 10.1016/S0304-3770(99)00095-9
- 97465 - Nitella opaca: LTS0192928
- 1177 - Nostoc: 10.1128/AEM.00071-13
- 1177 - Nostoc: LTS0192928
- 1178 - Nostoc commune: 10.1016/B978-0-12-261650-1.50017-4
- 1178 - Nostoc commune: LTS0192928
- 1162 - Nostocaceae: LTS0192928
- 88165 - Ochromonadaceae: LTS0192928
- 2985 - Ochromonas: 10.1016/0305-0491(81)90110-3
- 2985 - Ochromonas: LTS0192928
- 2696291 - Ochrophyta: LTS0192928
- 82999 - Olisthodiscus: LTS0192928
- 83000 - Olisthodiscus luteus: 10.1016/0305-0491(81)90110-3
- 83000 - Olisthodiscus luteus: LTS0192928
- 3280 - Onoclea: LTS0192928
- 3281 - Onoclea sensibilis: 10.1016/0305-1978(85)90030-4
- 3281 - Onoclea sensibilis: LTS0192928
- 693794 - Onocleaceae: LTS0192928
- 3070 - Oocystaceae: LTS0192928
- 60561 - Ophidiasteridae: LTS0192928
- 1158 - Oscillatoria: LTS0192928
- 212355 - Oscillatoria amoena: 10.1016/B978-0-12-261650-1.50017-4
- 212355 - Oscillatoria amoena: LTS0192928
- 153188 - Oscillatoria limosa:
- 153188 - Oscillatoria limosa: 10.1016/B978-0-12-261650-1.50017-4
- 153188 - Oscillatoria limosa: 10.1016/S0031-9422(00)81568-X
- 153188 - Oscillatoria limosa: LTS0192928
- 1892254 - Oscillatoriaceae: LTS0192928
- 3283 - Osmunda: LTS0192928
- 3285 - Osmunda regalis: 10.1016/0305-1978(85)90030-4
- 3285 - Osmunda regalis: LTS0192928
- 3282 - Osmundaceae: LTS0192928
- 2201463 - Palmophyllophyceae: LTS0192928
- 4726 - Pandanus tectorius: 10.1079/PHN2005892
- 53335 - Pantoea: LTS0192928
- 549 - Pantoea agglomerans: 10.1007/BF00302252
- 549 - Pantoea agglomerans: 10.1128/JB.172.12.6704-6712.1990
- 549 - Pantoea agglomerans: LTS0192928
- 553 - Pantoea ananatis: 10.1007/BF00302252
- 553 - Pantoea ananatis: 10.1128/JB.172.12.6704-6712.1990
- 553 - Pantoea ananatis: LTS0192928
- 694376 - Panzerina: LTS0192928
- 694377 - Panzerina lanata: 10.1007/S10600-011-0065-4
- 694377 - Panzerina lanata: LTS0192928
- 3465 - Papaveraceae: LTS0192928
- 6740 - Paralithodes: LTS0192928
- 174403 - Paralithodes brevipes: 10.1248/CPB.54.1462
- 174403 - Paralithodes brevipes: LTS0192928
- 7688 - Parastichopus: LTS0192928
- 1497336 - Parastichopus regalis: 10.1016/0305-0491(84)90180-9
- 1497336 - Parastichopus regalis: LTS0192928
- 78060 - Parmeliaceae: LTS0192928
- 37461 - Pellaea: LTS0192928
- 414639 - Pellaea atropurpurea: 10.1016/0305-1978(85)90030-4
- 414639 - Pellaea atropurpurea: LTS0192928
- 40973 - Pellaea rotundifolia: 10.1016/0305-1978(85)90030-4
- 40973 - Pellaea rotundifolia: LTS0192928
- 48861 - Peltigera: LTS0192928
- 162008 - Peltigera rufescens: 10.1016/0305-1978(87)90002-0
- 162008 - Peltigera rufescens: LTS0192928
- 48860 - Peltigeraceae: LTS0192928
- 48071 - Pelvetia: LTS0192928
- 74467 - Pelvetia canaliculata:
- 74467 - Pelvetia canaliculata: 10.1016/0305-1978(94)90112-0
- 74467 - Pelvetia canaliculata: 10.3891/ACTA.CHEM.SCAND.28B-0485
- 74467 - Pelvetia canaliculata: LTS0192928
- 179837 - Perilla frutescens var. crispa: 10.1016/J.FCT.2009.10.009
- 2870 - Phaeophyceae: LTS0192928
- 9005 - Phasianidae: LTS0192928
- 218619 - Phlebodium: LTS0192928
- 218620 - Phlebodium aureum: 10.1016/0305-1978(85)90030-4
- 218620 - Phlebodium aureum: LTS0192928
- 1198 - Phormidium: LTS0192928
- 693231 - Phormidium lucidum: 10.1016/B978-0-12-261650-1.50017-4
- 693231 - Phormidium lucidum: LTS0192928
- 28021 - Phyllophoraceae: LTS0192928
- 3328 - Picea: LTS0192928
- 3329 - Picea abies: 10.1016/S0021-9673(01)84605-7
- 3329 - Picea abies: LTS0192928
- 3318 - Pinaceae: LTS0192928
- 58019 - Pinopsida: LTS0192928
- 164273 - Pityrogramma: LTS0192928
- 1868143 - Pityrogramma sulphurea: 10.1016/0305-1978(85)90030-4
- 1868143 - Pityrogramma sulphurea: LTS0192928
- 54304 - Planktothrix: LTS0192928
- 1160 - Planktothrix agardhii:
- 1160 - Planktothrix agardhii: 10.1016/B978-0-12-261650-1.50017-4
- 1160 - Planktothrix agardhii: 10.1016/S0031-9422(00)81568-X
- 1160 - Planktothrix agardhii: 10.1016/S0031-9422(00)85703-9
- 1160 - Planktothrix agardhii: 10.1111/J.1365-2427.2006.01582.X
- 1160 - Planktothrix agardhii: LTS0192928
- 59512 - Planktothrix rubescens:
- 61309 - Platycerium: LTS0192928
- 85331 - Platycerium alcicorne: 10.1016/0305-1978(85)90030-4
- 85331 - Platycerium alcicorne: LTS0192928
- 4479 - Poaceae: LTS0192928
- 6341 - Polychaeta: LTS0192928
- 286202 - Polycitor: LTS0192928
- 260822 - Polycitoridae: LTS0192928
- 3275 - Polypodiaceae: LTS0192928
- 241806 - Polypodiopsida: LTS0192928
- 38352 - Polypodium: LTS0192928
- 872808 - Polypodium virginianum: 10.1016/0305-1978(85)90030-4
- 872808 - Polypodium virginianum: LTS0192928
- 58048 - Polypodium vulgare: 10.1016/0305-1978(85)90030-4
- 58048 - Polypodium vulgare: LTS0192928
- 2804 - Polysiphonia: 10.1016/S0031-9422(00)89006-8
- 2804 - Polysiphonia: LTS0192928
- 173545 - Polysiphonia stricta: 10.1016/S0031-9422(00)89006-8
- 173545 - Polysiphonia stricta: LTS0192928
- 65404 - Polysiphonia urceolata: 10.1016/S0031-9422(00)89006-8
- 65404 - Polysiphonia urceolata: LTS0192928
- 3278 - Polystichum: 10.1016/0305-1978(85)90030-4
- 3278 - Polystichum: LTS0192928
- 983335 - Polystichum aculeatum: 10.1016/0305-1978(85)90030-4
- 983335 - Polystichum aculeatum: LTS0192928
- 207866 - Polystichum luctuosum: 10.1016/0305-1978(85)90030-4
- 207866 - Polystichum luctuosum: LTS0192928
- 207872 - Polystichum setiferum: 10.1016/0305-1978(85)90030-4
- 207876 - Polystichum tsus-simense: 10.1016/0305-1978(85)90030-4
- 207876 - Polystichum tsus-simense: LTS0192928
- 6040 - Porifera: LTS0192928
- 2799 - Porphyridiaceae: LTS0192928
- 2791 - Porphyridium: LTS0192928
- 2792 - Porphyridium aerugineum: 10.1007/BF00409152
- 2792 - Porphyridium aerugineum: LTS0192928
- 88166 - Poterioochromonas: LTS0192928
- 88167 - Poterioochromonas malhamensis: 10.1016/0305-0491(81)90110-3
- 88167 - Poterioochromonas malhamensis: LTS0192928
- 2201465 - Prasinococcaceae: LTS0192928
- 110669 - Prasinococcus: LTS0192928
- 156131 - Prasinococcus capsulatus: 10.1016/S0031-9422(96)00650-4
- 156131 - Prasinococcus capsulatus: LTS0192928
- 1213 - Prochloraceae: LTS0192928
- 1218 - Prochlorococcus: LTS0192928
- 1219 - Prochlorococcus marinus:
- 1219 - Prochlorococcus marinus: 10.1093/PCP/PCS126
- 1219 - Prochlorococcus marinus: 10.4319/LO.1992.37.2.0425
- 1219 - Prochlorococcus marinus: LTS0192928
- 1214 - Prochloron: 10.1093/PCP/PCS126
- 1214 - Prochloron: LTS0192928
- 1222 - Prochlorothrix: LTS0192928
- 1223 - Prochlorothrix hollandica: 10.1093/PCP/PCS126
- 1223 - Prochlorothrix hollandica: LTS0192928
- 2303730 - Prochlorotrichaceae: LTS0192928
- 235511 - Protousnea: 10.1002/FEDR.200411068
- 235511 - Protousnea: LTS0192928
- 51281 - Protula: LTS0192928
- 363316 - Protula tubularia: 10.1016/0305-0491(84)90180-9
- 363316 - Protula tubularia: LTS0192928
- 3754 - Prunus: LTS0192928
- 36596 - Prunus armeniaca: 10.1021/JF403644R
- 36596 - Prunus armeniaca: LTS0192928
- 3760 - Prunus persica: 10.1021/JF00090A003
- 3760 - Prunus persica: LTS0192928
- 945773 - Pseudanabaena persicina: 10.1016/B978-0-12-261650-1.50017-4
- 1890436 - Pseudanabaenaceae: LTS0192928
- 13819 - Pteridaceae: LTS0192928
- 32100 - Pteridium: LTS0192928
- 32101 - Pteridium aquilinum: 10.1016/0305-1978(85)90030-4
- 32101 - Pteridium aquilinum: LTS0192928
- 13820 - Pteris: LTS0192928
- 49539 - Pteris cretica: 10.1016/0305-1978(85)90030-4
- 49539 - Pteris cretica: LTS0192928
- 491155 - Pteris longifolia: 10.1016/0305-1978(85)90030-4
- 491155 - Pteris longifolia: LTS0192928
- 262952 - Pteris tremula: 10.1016/0305-1978(85)90030-4
- 262952 - Pteris tremula: LTS0192928
- 13821 - Pteris vittata: 10.1016/0305-1978(85)90030-4
- 173462 - Pterothamnion plumula: 10.1016/S0031-9422(00)83475-5
- 41878 - Pycnococcaceae: LTS0192928
- 41879 - Pycnococcus: LTS0192928
- 41880 - Pycnococcus provasolii: 10.1016/S0031-9422(96)00650-4
- 41880 - Pycnococcus provasolii: LTS0192928
- 7135 - Pyralidae: LTS0192928
- 2682468 - Pyramimonadaceae: LTS0192928
- 2704063 - Pyramimonadophyceae: LTS0192928
- 36882 - Pyramimonas: LTS0192928
- 3766 - Pyrus: LTS0192928
- 23211 - Pyrus communis: 10.1007/BF00598399
- 23211 - Pyrus communis: LTS0192928
- 7727 - Pyuridae: LTS0192928
- 56479 - Ramalina: LTS0192928
- 859456 - Ramalina capitata: 10.1006/LICH.1995.0012
- 859456 - Ramalina capitata: LTS0192928
- 56478 - Ramalinaceae: LTS0192928
- 3726 - Raphanus sativus: 10.3390/NU11020402
- 38410 - Raphidophyceae: LTS0192928
- 2803 - Rhodomelaceae: LTS0192928
- 2763 - Rhodophyta: LTS0192928
- 1185 - Rivulariaceae: LTS0192928
- 3764 - Rosa: LTS0192928
- 74635 - Rosa canina: 10.1016/S0731-7085(97)00099-X
- 74635 - Rosa canina: LTS0192928
- 267261 - Rosa villosa: 10.1002/HLCA.19830660211
- 267261 - Rosa villosa: LTS0192928
- 3745 - Rosaceae: LTS0192928
- 24966 - Rubiaceae: LTS0192928
- 23513 - Rutaceae: LTS0192928
- 309357 - Saccharina: LTS0192928
- 309358 - Saccharina latissima:
- 309358 - Saccharina latissima: 10.1016/0305-1978(94)90112-0
- 309358 - Saccharina latissima: 10.3891/ACTA.CHEM.SCAND.28B-0485
- 309358 - Saccharina latissima: LTS0192928
- 8015 - Salmonidae: LTS0192928
- 8033 - Salvelinus: LTS0192928
- 8036 - Salvelinus alpinus: 10.1016/S0305-0491(99)00183-2
- 8036 - Salvelinus alpinus: LTS0192928
- 32186 - Salviniaceae: LTS0192928
- 61863 - Sandersonia: LTS0192928
- 61864 - Sandersonia aurantiaca: 10.1016/S0304-4238(97)00124-6
- 61864 - Sandersonia aurantiaca: LTS0192928
- 1182 - Scytonemataceae: LTS0192928
- 4549 - Secale: LTS0192928
- 4550 - Secale cereale: 10.1515/ZNC-1993-11-1212
- 4550 - Secale cereale: LTS0192928
- 51280 - Serpulidae: LTS0192928
- 30989 - Siluridae: LTS0192928
- 94992 - Silurus: LTS0192928
- 30991 - Silurus asotus: 10.1248/CPB.59.140
- 30991 - Silurus asotus: LTS0192928
- 35439 - Siphonocladaceae: LTS0192928
- 4070 - Solanaceae: LTS0192928
- 4107 - Solanum: LTS0192928
- 4113 - Solanum tuberosum:
- 4113 - Solanum tuberosum: 10.1021/JF00023A019
- 4113 - Solanum tuberosum: 10.1021/JF0257953
- 4113 - Solanum tuberosum: LTS0192928
- 84566 - Sphingobacteriaceae: 10.1007/978-1-61779-879-5_5
- 84566 - Sphingobacteriaceae: LTS0192928
- 117747 - Sphingobacteriia: LTS0192928
- 41297 - Sphingomonadaceae: 10.1007/978-1-61779-879-5_5
- 41297 - Sphingomonadaceae: LTS0192928
- 3561 - Spinacia: LTS0192928
- 3562 - Spinacia oleracea: 10.1021/JF00023A019
- 3562 - Spinacia oleracea: LTS0192928
- 1965351 - Spinulum: LTS0192928
- 13840 - Spinulum annotinum: LTS0192928
- 1154 - Spirulina: LTS0192928
- 253167 - Stelletta: LTS0192928
- 1336884 - Stelletta clavosa: 10.1016/J.BMC.2004.07.061
- 1336884 - Stelletta clavosa: LTS0192928
- 50937 - Stereocaulaceae: LTS0192928
- 50938 - Stereocaulon: LTS0192928
- 350623 - Stereocaulon alpinum: 10.1016/0305-1978(87)90002-0
- 350623 - Stereocaulon alpinum: LTS0192928
- 405089 - Stereocaulon botryosum: 10.1016/0305-1978(87)90002-0
- 405089 - Stereocaulon botryosum: LTS0192928
- 50940 - Stereocaulon paschale: 10.1016/0305-1978(87)90002-0
- 50940 - Stereocaulon paschale: LTS0192928
- 83470 - Stereocaulon vesuvianum: 10.1016/0305-1978(87)90002-0
- 83470 - Stereocaulon vesuvianum: LTS0192928
- 7687 - Stichopodidae: LTS0192928
- 137528 - Sticta: LTS0192928
- 243211 - Sticta canariensis: 10.1016/0305-1978(88)90082-8
- 243211 - Sticta canariensis: LTS0192928
- 35493 - Streptophyta: LTS0192928
- 7724 - Styela: LTS0192928
- 7725 - Styela clava: 10.1016/0305-0491(85)90174-9
- 7725 - Styela clava: LTS0192928
- 7721 - Styelidae: LTS0192928
- 446133 - Stylonemataceae: LTS0192928
- 446134 - Stylonematophyceae: LTS0192928
- 1890426 - Synechococcaceae: LTS0192928
- 1129 - Synechococcus: LTS0192928
- 32046 - Synechococcus elongatus: 10.1016/B978-0-12-261650-1.50017-4
- 32046 - Synechococcus elongatus: LTS0192928
- 32047 - Synechococcus leopoliensis: 10.1111/J.1365-2427.2006.01582.X
- 32047 - Synechococcus leopoliensis: LTS0192928
- 1142 - Synechocystis:
- 1142 - Synechocystis: 10.1016/S0014-5793(99)00817-0
- 1142 - Synechocystis: 10.1111/J.1365-2427.2006.01582.X
- 1142 - Synechocystis: LTS0192928
- 33859 - Synurophyceae: LTS0192928
- 13707 - Tagetes: LTS0192928
- 13708 - Tagetes erecta: 10.1021/JF990096K
- 13708 - Tagetes erecta: LTS0192928
- 32443 - Teleostei: LTS0192928
- 34493 - Tethya: LTS0192928
- 281732 - Tethya aurantium: 10.1016/0305-0491(84)90180-9
- 281732 - Tethya aurantium: LTS0192928
- 45120 - Tethyidae: LTS0192928
- 3164 - Tetraselmis:
- 3164 - Tetraselmis: 10.1016/0305-1978(95)00075-5
- 3164 - Tetraselmis: 10.1016/S0031-9422(96)00650-4
- 3164 - Tetraselmis: LTS0192928
- 29616 - Thelypteridaceae: LTS0192928
- 29617 - Thelypteris: LTS0192928
- 29618 - Thelypteris palustris: 10.1016/0305-1978(85)90030-4
- 29618 - Thelypteris palustris: LTS0192928
- 1132572 - Thelypteris palustris var. pubescens: 10.1016/0305-1978(85)90030-4
- 1132572 - Thelypteris palustris var. pubescens: LTS0192928
- 188786 - Thermaceae: LTS0192928
- 270 - Thermus: LTS0192928
- 276 - Thermus filiformis: 10.1007/S11274-011-0993-Y
- 276 - Thermus filiformis: LTS0192928
- 274 - Thermus thermophilus: 10.1007/S002030050336
- 274 - Thermus thermophilus: LTS0192928
- 324795 - Thomandersia: LTS0192928
- 324797 - Thomandersia laurifolia: 10.1021/NP50103A025
- 324797 - Thomandersia laurifolia: LTS0192928
- 324794 - Thomandersiaceae: LTS0192928
- 119859 - Tolypothrichaceae: LTS0192928
- 111782 - Tolypothrix: LTS0192928
- 457083 - Tolypothrix tenuis: 10.1016/B978-0-12-261650-1.50017-4
- 457083 - Tolypothrix tenuis: LTS0192928
- 58023 - Tracheophyta: LTS0192928
- 75966 - Trebouxiophyceae: LTS0192928
- 264691 - Trichormus variabilis: 10.1016/B978-0-12-261650-1.50017-4
- 322846 - Trididemnum: LTS0192928
- 1079459 - Trididemnum solidum: 10.1021/NP50055A001
- 1079459 - Trididemnum solidum: LTS0192928
- 59513 - Tychonema bornetii: 10.1016/S0031-9422(00)81568-X
- 33103 - Ulvophyceae: LTS0192928
- 87270 - Umbilicaria: LTS0192928
- 87282 - Umbilicaria rigida: 10.1016/0305-1978(87)90002-0
- 87282 - Umbilicaria rigida: LTS0192928
- 392743 - Umbilicaria torrefacta: 10.1016/0305-1978(87)90002-0
- 392743 - Umbilicaria torrefacta: LTS0192928
- 87287 - Umbilicaria vellea: 10.1016/0305-1978(87)90002-0
- 87287 - Umbilicaria vellea: LTS0192928
- 87265 - Umbilicariaceae: LTS0192928
- 13749 - Vaccinium: LTS0192928
- 180763 - Vaccinium myrtillus: 10.1016/S0168-9452(97)00241-0
- 180763 - Vaccinium myrtillus: LTS0192928
- 146292 - Verrucariaceae: LTS0192928
- 3904 - Vicia: LTS0192928
- 200967 - Vicia articulata: 10.1002/JSFA.2740320312
- 200967 - Vicia articulata: LTS0192928
- 154498 - Vicia ervilia: 10.1002/JSFA.2740320312
- 154498 - Vicia ervilia: LTS0192928
- 3908 - Vicia sativa: 10.1002/JSFA.2740320312
- 3908 - Vicia sativa: LTS0192928
- 3911 - Vicia villosa: 10.1002/JSFA.2740320312
- 3911 - Vicia villosa: LTS0192928
- 33090 - Viridiplantae: LTS0192928
- 3602 - Vitaceae: LTS0192928
- 3603 - Vitis: LTS0192928
- 29760 - Vitis vinifera:
- 29760 - Vitis vinifera: 10.1007/BF00574814
- 29760 - Vitis vinifera: LTS0192928
- 246271 - Woodsiaceae: LTS0192928
- 279 - Xanthobacter: LTS0192928
- 280 - Xanthobacter autotrophicus: 10.1007/S00203-002-0442-2
- 280 - Xanthobacter autotrophicus: LTS0192928
- 335928 - Xanthobacteraceae: LTS0192928
- 2833 - Xanthophyceae: LTS0192928
- 2743745 - Xenocyprididae: LTS0192928
- 4575 - Zea: LTS0192928
- 4577 - Zea mays:
- 4577 - Zea mays: 10.1002/HLCA.19290120178
- 4577 - Zea mays: 10.1002/HLCA.19300130215
- 4577 - Zea mays: 10.3390/NU5041169
- 4577 - Zea mays: LTS0192928
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Jia Wang, Xiao Zhou, Kexin Li, Herong Wang, Chenglong Zhang, Yi Shi, Mingdong Yao, Ying Wang, Wenhai Xiao. Systems Metabolic Engineering for Efficient Violaxanthin Production in Yeast.
Journal of agricultural and food chemistry.
2024 May; 72(18):10459-10468. doi:
10.1021/acs.jafc.4c01240
. [PMID: 38666490] - Amy Verhoeven, Charles Southwick, Emma Miller, Morgan Blood, Andre Thibodeau. Do red and yellow autumn leaves make use of different photoprotective strategies during autumn senescence?.
Physiologia plantarum.
2024 May; 176(3):e14327. doi:
10.1111/ppl.14327
. [PMID: 38716559] - Liu Yang, Chengting Zi, Yanlang Li, Jia Huang, Zhijia Gu, Caiyun Wang, Jiang-Miao Hu, Zhihong Jiang, Wei Zhang. An in-depth investigation of molecular interaction in zeaxanthin/corn silk glycan complexes and its positive role in hypoglycemic activity.
Food chemistry.
2024 Apr; 438(?):137986. doi:
10.1016/j.foodchem.2023.137986
. [PMID: 38000158] - Veronika Gunjević, Mirta Majerić Musa, Dora Zurak, Zlatko Svečnjak, Marija Duvnjak, Darko Grbeša, Kristina Kljak. Carotenoid degradation rate in milled grain of dent maize hybrids and its relationship with the grain physicochemical properties.
Food research international (Ottawa, Ont.).
2024 Feb; 177(?):113909. doi:
10.1016/j.foodres.2023.113909
. [PMID: 38225147] - Weidong Chen, Yuanqing Li, Min Li, Hai Li, Caifang Chen, Yanzhao Lin. Association between dietary carotenoid intakes and abdominal aortic calcification in adults: National Health and Nutrition Examination Survey 2013-2014.
Journal of health, population, and nutrition.
2024 Feb; 43(1):20. doi:
10.1186/s41043-024-00511-9
. [PMID: 38303096] - Sharayah Carter, Alison M Hill, Catherine Yandell, Jonathan D Buckley, Alison M Coates. Study protocol for a 15-week randomised controlled trial assessing the independent effects of high-cholesterol and high-saturated fat diets on LDL cholesterol.
BMJ open.
2024 01; 14(1):e081664. doi:
10.1136/bmjopen-2023-081664
. [PMID: 38272555] - Seo-Young Lee, So-Jeong Jang, Hyo-Bong Jeong, Joung-Ho Lee, Geon Woo Kim, Jelli Venkatesh, Seungki Back, Jin-Kyung Kwon, Da-Min Choi, Jeong-Ll Kim, Geun-Joong Kim, Byoung-Cheorl Kang. Leaky mutations in the zeaxanthin epoxidase in Capsicum annuum result in bright-red fruit containing a high amount of zeaxanthin.
The Plant journal : for cell and molecular biology.
2024 Jan; ?(?):. doi:
10.1111/tpj.16619
. [PMID: 38180307] - Jun Ho Lee, Seong-Rae Lee, Sang Yup Lee, Pyung Cheon Lee. Complete microbial synthesis of crocetin and crocins from glycerol in Escherichia coli.
Microbial cell factories.
2024 Jan; 23(1):10. doi:
10.1186/s12934-023-02287-9
. [PMID: 38178149] - Xiongmin Chen, Sensen Zhang, Lili Yang, Qihang Kong, Wenhua Zhang, Jinhong Zhang, Xiangfeng Hao, Kwok-Fai So, Ying Xu. Zeaxanthin dipalmitate-enriched wolfberry extract improves vision in a mouse model of photoreceptor degeneration.
PloS one.
2024; 19(5):e0302742. doi:
10.1371/journal.pone.0302742
. [PMID: 38768144] - Kristina Radić, Ana Isabel Barbosa, Salette Reis, Marijan Marijan, Sofia Antunes Costa Lima, Dubravka Vitali Čepo. Preparation of astaxanthin/zeaxanthin-loaded nanostructured lipid carriers for enhanced bioavailability: Characterization-, stability-and permeability study.
Acta pharmaceutica (Zagreb, Croatia).
2023 Dec; 73(4):581-599. doi:
10.2478/acph-2023-0038
. [PMID: 38147480] - Yunping Yao, Guilin Peng, Juan Tian, Xiaodi Qu, Changmo Li. Zeaxanthin Combined with Tocopherol to Improve the Oxidative Stability of Chicken Oil.
Journal of oleo science.
2023 Dec; 72(12):1063-1072. doi:
10.5650/jos.ess23079
. [PMID: 37989306] - Shaohua Yan, Siyu Chen, Yumiao Liu, Hongbin Liang, Xinlu Zhang, Qiuxia Zhang, Jiancheng Xiu. Associations of serum carotenoids with visceral adiposity index and lipid accumulation product: a cross-sectional study based on NHANES 2001-2006.
Lipids in health and disease.
2023 Nov; 22(1):209. doi:
10.1186/s12944-023-01945-6
. [PMID: 38037060] - Xiaobai Li, Dandan Zhang, Xuhao Pan, Kaleem Ullah Kakar, Zarqa Nawaz. Regulation of carotenoid metabolism and ABA biosynthesis during blueberry fruit ripening.
Plant physiology and biochemistry : PPB.
2023 Nov; 206(?):108232. doi:
10.1016/j.plaphy.2023.108232
. [PMID: 38091932] - Jadwiga Hamulka, Agnieszka Sulich, Magdalena Górnicka, Marta Jeruszka-Bielak. Changes in Plasma Carotenoid Concentrations during the AntioxObesity Weight Reduction Program among Adults with Excessive Body Weight.
Nutrients.
2023 Nov; 15(23):. doi:
10.3390/nu15234890
. [PMID: 38068747] - Dieudonné M Dansou, Han Chen, Yanan Yu, Youyou Yang, Isabelle N Tchana, Liyuan Zhao, Chaohua Tang, Qingyu Zhao, Yuchang Qin, Junmin Zhang. Enrichment efficiency of lutein in eggs and its function in improving fatty liver hemorrhagic syndrome in aged laying hens.
Poultry science.
2023 Nov; 103(2):103286. doi:
10.1016/j.psj.2023.103286
. [PMID: 38100949] - Claire Bordat, Charlotte Cuerq, Charlotte Halimi, Donato Vairo, Emilie Blond, Liora Restier, Pierre Poinsot, Rémi Duclaux-Loras, Noël Peretti, Emmanuelle Reboul. Carotenoids in familial hypobetalipoproteinemia disorders: Malabsorption in Caco2 cell models and severe deficiency in patients.
Journal of clinical lipidology.
2023 Nov; ?(?):. doi:
10.1016/j.jacl.2023.10.010
. [PMID: 37989694] - Sushil S Changan, Vaibhav Kumar, Aruna Tyagi. Expression pattern of candidate genes and their correlation with various metabolites of abscisic acid biosynthetic pathway under drought stress in rice.
Physiologia plantarum.
2023 Nov; 175(6):e14102. doi:
10.1111/ppl.14102
. [PMID: 38148246] - Ying Wang, Siqi Li, Ze Zhou, Lifen Sun, Jing Sun, Chuanpu Shen, Ranran Gao, Jingyuan Song, Xiangdong Pu. The Functional Characteristics and Soluble Expression of Saffron CsCCD2.
International journal of molecular sciences.
2023 Oct; 24(20):. doi:
10.3390/ijms242015090
. [PMID: 37894770] - Maria Sulli, Luca Dall'Osto, Paola Ferrante, Zeno Guardini, Rodrigo Lionel Gomez, Paola Mini, Olivia Costantina Demurtas, Giuseppe Aprea, Alessandro Nicolia, Roberto Bassi, Giovanni Giuliano. Generation and physiological characterization of genome-edited Nicotiana benthamiana plants containing zeaxanthin as the only leaf xanthophyll.
Planta.
2023 Oct; 258(5):93. doi:
10.1007/s00425-023-04248-3
. [PMID: 37796356] - Corinne N Cannavale, Shelby A Keye, Laura M Rosok, Shelby G Martell, Tori A Holthaus, Lauren R Raine, Sean P Mullen, Hannah D Holscher, Charles H Hillman, Arthur F Kramer, Neal J Cohen, Billy R Hammond, Lisa Renzi-Hammond, Naiman A Khan. Macular Pigment Optical Density and Skin Carotenoids in a Childhood Sample.
The Journal of nutrition.
2023 10; 153(10):3144-3151. doi:
10.1016/j.tjnut.2023.06.006
. [PMID: 37315793] - Nancy E Moran, Joshua Wade, Rachel Stroh, Barbara Stoll, Gregory Guthrie, Amy B Hair, Douglas G Burrin. Preterm Pigs Fed Donor Human Milk Have Greater Liver Beta-carotene Concentrations than Pigs Fed Infant Formula.
The Journal of nutrition.
2023 Sep; ?(?):. doi:
10.1016/j.tjnut.2023.08.026
. [PMID: 37666415] - Stephanie Bethmann, Ann-Kathrin Haas, Michael Melzer, Peter Jahns. The impact of long-term acclimation to different growth light intensities on the regulation of zeaxanthin epoxidase in different plant species.
Physiologia plantarum.
2023 Sep; 175(5):e13998. doi:
10.1111/ppl.13998
. [PMID: 37882279] - Monireh Saeid Nia, Louis Scholz, Adriana Garibay-Hernández, Hans-Peter Mock, Urska Repnik, Jennifer Selinski, Karin Krupinska, Wolfgang Bilger. How do barley plants with impaired photosynthetic light acclimation survive under high-light stress?.
Planta.
2023 Aug; 258(4):71. doi:
10.1007/s00425-023-04227-8
. [PMID: 37632541] - Justyna Widomska, Witold K Subczynski, Renata Welc-Stanowska, Rafal Luchowski. An Overview of Lutein in the Lipid Membrane.
International journal of molecular sciences.
2023 Aug; 24(16):. doi:
10.3390/ijms241612948
. [PMID: 37629129] - Lukas Küster, Rebecca Lücke, Christin Brabender, Stephanie Bethmann, Peter Jahns. The amount of zeaxanthin epoxidase but not the amount of violaxanthin de-epoxidase is a critical determinant of zeaxanthin accumulation in Arabidopsis thaliana and Nicotiana tabacum.
Plant & cell physiology.
2023 Aug; ?(?):. doi:
10.1093/pcp/pcad091
. [PMID: 37556318] - Rosamaria Pennisi, Paola Trischitta, Maria Pia Tamburello, Davide Barreca, Giuseppina Mandalari, Maria Teresa Sciortino. Mechanistic Understanding of the Antiviral Properties of Pistachios and Zeaxanthin against HSV-1.
Viruses.
2023 Jul; 15(8):. doi:
10.3390/v15081651
. [PMID: 37631995] - Hui Xia, Zhiyi Lin, Zunzhen He, Yuqi Guo, Xinling Liu, Honghong Deng, Minzhang Li, Yue Xie, Mingfei Zhang, Jin Wang, Xiulan Lv, Qunxian Deng, Xian Luo, Yi Tang, Lijin Lin, Dong Liang. AcMADS32 positively regulates carotenoid biosynthesis in kiwifruit by activating AcBCH1/2 expression.
International journal of biological macromolecules.
2023 Jul; 242(Pt 3):124928. doi:
10.1016/j.ijbiomac.2023.124928
. [PMID: 37224896] - Giorgio Perin, Alessandra Bellan, Tim Michelberger, Dagmar Lyska, Setsuko Wakao, Krishna K Niyogi, Tomas Morosinotto. Modulation of xanthophyll cycle impacts biomass productivity in the marine microalga Nannochloropsis.
Proceedings of the National Academy of Sciences of the United States of America.
2023 Jun; 120(25):e2214119120. doi:
10.1073/pnas.2214119120
. [PMID: 37307488] - Linda D Thomas, Srinivasagan Ramkumar, Marcin Golczak, Johannes von Lintig. Genetic deletion of Bco2 and Isx establishes a golden mouse model for carotenoid research.
Molecular metabolism.
2023 May; ?(?):101742. doi:
10.1016/j.molmet.2023.101742
. [PMID: 37225015] - Rudy Kurniawan, Fahrul Nurkolis, Nurpudji Astuti Taslim, Dionysius Subali, Reggie Surya, William Ben Gunawan, Darmawan Alisaputra, Nelly Mayulu, Netty Salindeho, Bonglee Kim. Carotenoids Composition of Green Algae Caulerpa racemosa and Their Antidiabetic, Anti-Obesity, Antioxidant, and Anti-Inflammatory Properties.
Molecules (Basel, Switzerland).
2023 Apr; 28(7):. doi:
10.3390/molecules28073267
. [PMID: 37050034] - Sepalika Bandara, Jean Moon, Srinivasagan Ramkumar, Johannes von Lintig. ASTER-B regulates mitochondrial carotenoid transport and homeostasis.
Journal of lipid research.
2023 Apr; ?(?):100369. doi:
10.1016/j.jlr.2023.100369
. [PMID: 37030626] - Huimin Liu, Jie Yan, Fengtao Guan, Zhibo Jin, Jiahan Xie, Chongrui Wang, Meihong Liu, Jingsheng Liu. Zeaxanthin prevents ferroptosis by promoting mitochondrial function and inhibiting the p53 pathway in free fatty acid-induced HepG2 cells.
Biochimica et biophysica acta. Molecular and cell biology of lipids.
2023 Apr; 1868(4):159287. doi:
10.1016/j.bbalip.2023.159287
. [PMID: 36690321] - Corinne N Cannavale, Caitlyn G Edwards, Ruyu Liu, Shelby A Keye, Samantha J Iwinski, Hannah D Holscher, Lisa Renzi-Hammond, Naiman A Khan. Macular pigment is inversely related to circulating C-reactive protein concentrations in school-aged children.
Nutrition research (New York, N.Y.).
2023 Mar; 114(?):13-19. doi:
10.1016/j.nutres.2023.03.003
. [PMID: 37149925] - Caterina D'Ambrosio, Adriana Lucia Stigliani, José L Rambla, Sarah Frusciante, Gianfranco Diretto, Eugenia M A Enfissi, Antonio Granell, Paul D Fraser, Giovanni Giorio. A xanthophyll-derived apocarotenoid regulates carotenogenesis in tomato chromoplasts.
Plant science : an international journal of experimental plant biology.
2023 Mar; 328(?):111575. doi:
10.1016/j.plantsci.2022.111575
. [PMID: 36572066] - Shun Tamaki, Kazunari Ozasa, Toshihisa Nomura, Marumi Ishikawa, Koji Yamada, Kengo Suzuki, Keiichi Mochida. Zeaxanthin is required for eyespot formation and phototaxis in Euglena gracilis.
Plant physiology.
2023 Jan; ?(?):. doi:
10.1093/plphys/kiad001
. [PMID: 36611254] - Jin-Song Ri, Chun-Sik Choe, Se-Hyok Choe, Kwang-Hyok Jong, Song-Nam Hong, Johannes Schleusener, Juergen Lademann, Maxim E Darvin. Lycopene, but not zeaxanthin, serves as a skeleton for the formation of an orthorhombic organization of intercellular lipids within the lamellae in the stratum corneum: Molecular dynamics simulations of the hydrated ceramide NS bilayer model.
Biochimica et biophysica acta. Biomembranes.
2023 01; 1865(1):184081. doi:
10.1016/j.bbamem.2022.184081
. [PMID: 36342013] - Nisha Chouhan, Ranay Mohan Yadav, Jayendra Pandey, Rajagopal Subramanyam. High light-induced changes in thylakoid supercomplexes organization from cyclic electron transport mutants of Chlamydomonas reinhardtii.
Biochimica et biophysica acta. Bioenergetics.
2023 01; 1864(1):148917. doi:
10.1016/j.bbabio.2022.148917
. [PMID: 36108725] - Nikolai N Sluchanko, Yury B Slonimskiy, Nikita A Egorkin, Larisa A Varfolomeeva, Sergey Yu Kleymenov, Mikhail E Minyaev, Yaroslav V Faletrov, Anastasia M Moysenovich, Evgenia Yu Parshina, Thomas Friedrich, Eugene G Maksimov, Konstantin M Boyko, Vladimir O Popov. Structural basis for the carotenoid binding and transport function of a START domain.
Structure (London, England : 1993).
2022 12; 30(12):1647-1659.e4. doi:
10.1016/j.str.2022.10.007
. [PMID: 36356587] - Xiongjie Zheng, Jianing Mi, Aparna Balakrishna, Kit Xi Liew, Abdugaffor Ablazov, Rachid Sougrat, Salim Al-Babili. Gardenia carotenoid cleavage dioxygenase 4a is an efficient tool for biotechnological production of crocins in green and non-green plant tissues.
Plant biotechnology journal.
2022 11; 20(11):2202-2216. doi:
10.1111/pbi.13901
. [PMID: 35997958] - Omolayo J Olorunwa, Bikash Adhikari, Skyler Brazel, Sorina C Popescu, George V Popescu, Ainong Shi, T Casey Barickman. Waterlogging during the reproductive growth stage causes physiological and biochemical modifications in the leaves of cowpea (Vigna unguiculata L.) genotypes with contrasting tolerance.
Plant physiology and biochemistry : PPB.
2022 Nov; 190(?):133-144. doi:
10.1016/j.plaphy.2022.08.018
. [PMID: 36115267] - Shan-Rong Xie, Yu Li, Hao-Hong Chen, Ming-Hua Liang, Jian-Guo Jiang. A strategy to promote carotenoids production in Dunaliella bardawil by melatonin combined with photoinduction.
Enzyme and microbial technology.
2022 Nov; 161(?):110115. doi:
10.1016/j.enzmictec.2022.110115
. [PMID: 36030697] - Fan Li, Xiaowei Gong, Yupeng Liang, Lijuan Peng, Xiulin Han, Mengliang Wen. Characteristics of a new carotenoid cleavage dioxygenase NtCCD10 derived from Nicotiana tabacum.
Planta.
2022 Oct; 256(5):100. doi:
10.1007/s00425-022-04013-y
. [PMID: 36251100] - Alberto José López-Jiménez, Lucía Morote, Enrique Niza, María Mondéjar, Ángela Rubio-Moraga, Gianfranco Diretto, Oussama Ahrazem, Lourdes Gómez-Gómez. Subfunctionalization of D27 Isomerase Genes in Saffron.
International journal of molecular sciences.
2022 Sep; 23(18):. doi:
10.3390/ijms231810543
. [PMID: 36142456] - Ginga Shimakawa, Anja Krieger-Liszkay, Thomas Roach. ROS-derived lipid peroxidation is prevented in barley leaves during senescence.
Physiologia plantarum.
2022 Sep; 174(5):e13769. doi:
10.1111/ppl.13769
. [PMID: 36018559] - Jiahan Xie, Huimin Liu, Wandi Yin, Sitong Ge, Zhibo Jin, Mingzhu Zheng, Dan Cai, Meihong Liu, Jingsheng Liu. Zeaxanthin remodels cytoplasmic lipid droplets via β3-adrenergic receptor signaling and enhances perilipin 5-mediated lipid droplet-mitochondrion interactions in adipocytes.
Food & function.
2022 Aug; 13(17):8892-8906. doi:
10.1039/d2fo01094a
. [PMID: 35924967] - Dimitrij Holzmann, Stephanie Bethmann, Peter Jahns. Zeaxanthin Epoxidase Activity Is Downregulated by Hydrogen Peroxide.
Plant & cell physiology.
2022 Aug; 63(8):1091-1100. doi:
10.1093/pcp/pcac081
. [PMID: 35674150] - Yury B Slonimskiy, Nikita A Egorkin, Aleksandr A Ashikhmin, Thomas Friedrich, Eugene G Maksimov, Nikolai N Sluchanko. Reconstitution of the functional Carotenoid-Binding Protein from silkworm in E. coli.
International journal of biological macromolecules.
2022 Aug; 214(?):664-671. doi:
10.1016/j.ijbiomac.2022.06.135
. [PMID: 35753519] - Yong-Moon Mark Park, Jenna Lilyquist, Thomas J Van't Erve, Katie M O'Brien, Hazel B Nichols, Ginger L Milne, Clarice R Weinberg, Dale P Sandler. Association of dietary and plasma carotenoids with urinary F2-isoprostanes.
European journal of nutrition.
2022 Aug; 61(5):2711-2723. doi:
10.1007/s00394-022-02837-8
. [PMID: 35253072] - Rao Yao, Wen Fu, Ming Du, Zi-Xi Chen, An-Ping Lei, Jiang-Xin Wang. Carotenoids Biosynthesis, Accumulation, and Applications of a Model Microalga Euglenagracilis.
Marine drugs.
2022 Jul; 20(8):. doi:
10.3390/md20080496
. [PMID: 36005499] - Qianyi Hao, Guangwang Zhang, Xilong Zuo, Ying He, Hanlai Zeng. Cia Zeaxanthin Biosynthesis, OsZEP and OsVDE Regulate Striped Leaves Occurring in Response to Deep Transplanting of Rice.
International journal of molecular sciences.
2022 Jul; 23(15):. doi:
10.3390/ijms23158340
. [PMID: 35955477] - Uthman O Badmus, Alexander Ač, Karel Klem, Otmar Urban, Marcel A K Jansen. A meta-analysis of the effects of UV radiation on the plant carotenoid pool.
Plant physiology and biochemistry : PPB.
2022 Jul; 183(?):36-45. doi:
10.1016/j.plaphy.2022.05.001
. [PMID: 35561499] - Caitlyn G Edwards, Anne M Walk, Sharon V Thompson, Ginger E Reeser, Ryan N Dilger, John W Erdman, Nicholas A Burd, Hannah D Holscher, Naiman A Khan. Dietary lutein plus zeaxanthin and choline intake is interactively associated with cognitive flexibility in middle-adulthood in adults with overweight and obesity.
Nutritional neuroscience.
2022 Jul; 25(7):1437-1452. doi:
10.1080/1028415x.2020.1866867
. [PMID: 33448903] - So-Hee Son, Gyuri Park, Junho Lim, Chang Yun Son, Seung Soo Oh, Ju Young Lee. Chain flexibility of medicinal lipids determines their selective partitioning into lipid droplets.
Nature communications.
2022 06; 13(1):3612. doi:
10.1038/s41467-022-31400-6
. [PMID: 35750680] - Minu S Thomas, Lindsey Huang, Chelsea Garcia, Junichi R Sakaki, Christopher N Blesso, Ock K Chun, Maria Luz Fernandez. The Effects of Eggs in a Plant-Based Diet on Oxidative Stress and Inflammation in Metabolic Syndrome.
Nutrients.
2022 Jun; 14(12):. doi:
10.3390/nu14122548
. [PMID: 35745278] - Selly D Msungu, Arnold A Mushongi, Pavithravani B Venkataramana, Ernest R Mbega. Status of carotenoids in elite and landrace maize genotypes: Implications for provitamin A biofortification in Tanzania.
Food research international (Ottawa, Ont.).
2022 06; 156(?):111303. doi:
10.1016/j.foodres.2022.111303
. [PMID: 35651063] - Samim Sardar, Roberto Caferri, Franco V A Camargo, Javier Pamos Serrano, Alberto Ghezzi, Stefano Capaldi, Luca Dall'Osto, Roberto Bassi, Cosimo D'Andrea, Giulio Cerullo. Molecular mechanisms of light harvesting in the minor antenna CP29 in near-native membrane lipidic environment.
The Journal of chemical physics.
2022 May; 156(20):205101. doi:
10.1063/5.0087898
. [PMID: 35649882] - May A Beydoun, Hind A Beydoun, Marie T Fanelli-Kuczmarski, Jordan Weiss, Sharmin Hossain, Jose Atilio Canas, Michele Kim Evans, Alan B Zonderman. Association of Serum Antioxidant Vitamins and Carotenoids With Incident Alzheimer Disease and All-Cause Dementia Among US Adults.
Neurology.
2022 05; 98(21):e2150-e2162. doi:
10.1212/wnl.0000000000200289
. [PMID: 35508396] - Minu S Thomas, Michael Puglisi, Olga Malysheva, Marie A Caudill, Maria Sholola, Jessica L Cooperstone, Maria Luz Fernandez. Eggs Improve Plasma Biomarkers in Patients with Metabolic Syndrome Following a Plant-Based Diet-A Randomized Crossover Study.
Nutrients.
2022 May; 14(10):. doi:
10.3390/nu14102138
. [PMID: 35631279] - Artur Nosalewicz, Karolina Okoń, Maria Skorupka. Non-Photochemical Quenching under Drought and Fluctuating Light.
International journal of molecular sciences.
2022 May; 23(9):. doi:
10.3390/ijms23095182
. [PMID: 35563573] - Donatella Carbonera, Alessandro Agostini, Marco Bortolus, Luca Dall'Osto, Roberto Bassi. Violaxanthin and Zeaxanthin May Replace Lutein at the L1 Site of LHCII, Conserving the Interactions with Surrounding Chlorophylls and the Capability of Triplet-Triplet Energy Transfer.
International journal of molecular sciences.
2022 Apr; 23(9):. doi:
10.3390/ijms23094812
. [PMID: 35563202] - Frejus Ariel Kpedetin Sodedji, Dahye Ryu, Jaeyoung Choi, Symphorien Agbahoungba, Achille Ephrem Assogbadjo, Simon-Pierre Assanvo N'Guetta, Je Hyeong Jung, Chu Won Nho, Ho-Youn Kim. Genetic Diversity and Association Analysis for Carotenoid Content among Sprouts of Cowpea (Vigna unguiculata L. Walp).
International journal of molecular sciences.
2022 Mar; 23(7):. doi:
10.3390/ijms23073696
. [PMID: 35409065] - Tomasz Konecki, Aleksandra Juszczak, Marcin Cichocki. Can Diet Prevent Urological Cancers? An Update on Carotenoids as Chemopreventive Agents.
Nutrients.
2022 Mar; 14(7):. doi:
10.3390/nu14071367
. [PMID: 35405980] - David Zaragoza-Huesca, Carlos Martínez-Cortés, Antonio Jesús Banegas-Luna, Alfonso Pérez-Garrido, Josefina María Vegara-Meseguer, Julia Peñas-Martínez, Maria Carmen Rodenas, Salvador Espín, Horacio Pérez-Sánchez, Irene Martínez-Martínez. Identification of Kukoamine A, Zeaxanthin, and Clexane as New Furin Inhibitors.
International journal of molecular sciences.
2022 Mar; 23(5):. doi:
10.3390/ijms23052796
. [PMID: 35269938] - Binxing Li, Preejith Vachali, Fu-Yen Chang, Aruna Gorusupudi, Ranganathan Arunkumar, Linjia Shi, Gregory T Rognon, Jeanne M Frederick, Paul S Bernstein. HDL is the primary transporter for carotenoids from liver to retinal pigment epithelium in transgenic ApoA-I-/-/Bco2-/- mice.
Archives of biochemistry and biophysics.
2022 02; 716(?):109111. doi:
10.1016/j.abb.2021.109111
. [PMID: 34942193] - Fatemeh Azadi-Chegeni, Sebastian Thallmair, Meaghan E Ward, Giorgio Perin, Siewert J Marrink, Marc Baldus, Tomas Morosinotto, Anjali Pandit. Protein dynamics and lipid affinity of monomeric, zeaxanthin-binding LHCII in thylakoid membranes.
Biophysical journal.
2022 02; 121(3):396-409. doi:
10.1016/j.bpj.2021.12.039
. [PMID: 34971616] - Rebecca Power, John M Nolan, Alfonso Prado-Cabrero, Warren Roche, Robert Coen, Tommy Power, Ríona Mulcahy. Omega-3 fatty acid, carotenoid and vitamin E supplementation improves working memory in older adults: A randomised clinical trial.
Clinical nutrition (Edinburgh, Scotland).
2022 02; 41(2):405-414. doi:
10.1016/j.clnu.2021.12.004
. [PMID: 34999335] - Yuko Yamaguchi, Marta Zampino, Toshiko Tanaka, Stefania Bandinelli, Ruin Moaddel, Giovanna Fantoni, Julián Candia, Luigi Ferrucci, Richard D Semba. The Plasma Proteome Fingerprint Associated with Circulating Carotenoids and Retinol in Older Adults.
The Journal of nutrition.
2022 01; 152(1):40-48. doi:
10.1093/jn/nxab340
. [PMID: 34550359] - Lianhong Li, Xiang Liu, Na Tao, Qing Chen, Zhongming Sun, Qinglin Yang, Xun Zhao, Jun Liu. Dietary carotenoid intake and dental fluorosis in relation to SOD2 (rs 11968525) polymorphisms in Guizhou, China.
Asia Pacific journal of clinical nutrition.
2022; 31(2):320-330. doi:
10.6133/apjcn.202206_31(2).0018
. [PMID: 35766568] - Jiahan Xie, Meihong Liu, Huimin Liu, Zhibo Jin, Fengtao Guan, Sitong Ge, Jie Yan, Mingzhu Zheng, Dan Cai, Jingsheng Liu. Zeaxanthin ameliorates obesity by activating the β3-adrenergic receptor to stimulate inguinal fat thermogenesis and modulating the gut microbiota.
Food & function.
2021 Dec; 12(24):12734-12750. doi:
10.1039/d1fo02863d
. [PMID: 34846398] - Maria Dolores Garcia Molina, Ermelinda Botticella, Romina Beleggia, Samuela Palombieri, Pasquale De Vita, Stefania Masci, Domenico Lafiandra, Francesco Sestili. Enrichment of provitamin A content in durum wheat grain by suppressing β-carotene hydroxylase 1 genes with a TILLING approach.
TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik.
2021 Dec; 134(12):4013-4024. doi:
10.1007/s00122-021-03944-6
. [PMID: 34477900] - Petra Skotnicová, Hristina Staleva-Musto, Valentyna Kuznetsova, David Bína, Minna M Konert, Shan Lu, Tomáš Polívka, Roman Sobotka. Plant LHC-like proteins show robust folding and static non-photochemical quenching.
Nature communications.
2021 11; 12(1):6890. doi:
10.1038/s41467-021-27155-1
. [PMID: 34824207] - Hanxiao Sun, Ting Wu, Yingyi Mao, Fang Tian, Xiaokun Cai, Matthew J Kuchan, Lishi Zhang, Yanrong Zhao, Jinyao Chen. Carotenoid profile in breast milk and maternal and cord plasma: a longitudinal study in Southwest China.
The British journal of nutrition.
2021 11; 126(9):1281-1287. doi:
10.1017/s0007114521000027
. [PMID: 33413728] - Minjung Son, Raymundo Moya, Alberta Pinnola, Roberto Bassi, Gabriela S Schlau-Cohen. Protein-Protein Interactions Induce pH-Dependent and Zeaxanthin-Independent Photoprotection in the Plant Light-Harvesting Complex, LHCII.
Journal of the American Chemical Society.
2021 10; 143(42):17577-17586. doi:
10.1021/jacs.1c07385
. [PMID: 34648708] - Yan Wang, Li Deng, Junren Meng, Liang Niu, Lei Pan, Zhenhua Lu, Guochao Cui, Zhiqiang Wang, Wenfang Zeng. Transcriptomic and Metabolic Analyses Reveal the Mechanism of Ethylene Production in Stony Hard Peach Fruit during Cold Storage.
International journal of molecular sciences.
2021 Oct; 22(21):. doi:
10.3390/ijms222111308
. [PMID: 34768737] - Begoña Olmedilla-Alonso, Elena Rodríguez-Rodríguez, Beatriz Beltrán-de-Miguel, Milagros Sánchez-Prieto, Rocío Estévez-Santiago. Changes in Lutein Status Markers (Serum and Faecal Concentrations, Macular Pigment) in Response to a Lutein-Rich Fruit or Vegetable (Three Pieces/Day) Dietary Intervention in Normolipemic Subjects.
Nutrients.
2021 Oct; 13(10):. doi:
10.3390/nu13103614
. [PMID: 34684614] - Nan Liang, Ming-Dong Yao, Ying Wang, Jia Liu, Lu Feng, Zhi-Ming Wang, Xiang-Yu Li, Wen-Hai Xiao, Ying-Jin Yuan. CsCCD2 Access Tunnel Design for a Broader Substrate Profile in Crocetin Production.
Journal of agricultural and food chemistry.
2021 Oct; 69(39):11626-11636. doi:
10.1021/acs.jafc.1c04588
. [PMID: 34554747] - Elena Rodríguez-Rodríguez, Aránzazu Aparicio, Laura María Bermejo López, Rosa M Ortega Anta, Ana M López-Sobaler. [Involvement of egg antioxidant components in macular protection and vision improvement].
Nutricion hospitalaria.
2021 Sep; 38(Spec No2):9-12. doi:
10.20960/nh.03789
. [PMID: 34323086] - Coralie Schnebelen-Berthier, Niyazi Acar, Emilie Simon, Clémentine Thabuis, Anne Bourdillon, Adeline Mathiaud, Luc Dauchet, Cécile Delcourt, Pascale Benlian, Martine Crochet, Sabine Defoort, Anne Tailleux, Bart Staels, Lionel Bretillon, Jean-Michel Lecerf. The ALGOVUE Clinical Trial: Effects of the Daily Consumption of Eggs Enriched with Lutein and Docosahexaenoic Acid on Plasma Composition and Macular Pigment Optical Density.
Nutrients.
2021 Sep; 13(10):. doi:
10.3390/nu13103347
. [PMID: 34684356] - Jonathan Cerna, Nikta S Athari Anaraki, Connor M Robbs, Brynn C Adamson, Isabel R Flemming, John W Erdman, Leanne T Labriola, Robert W Motl, Naiman A Khan. Macular Xanthophylls and Markers of the Anterior Visual Pathway among Persons with Multiple Sclerosis.
The Journal of nutrition.
2021 09; 151(9):2680-2688. doi:
10.1093/jn/nxab164
. [PMID: 34087931] - Cemal Orhan, Füsun Erten, Beşir Er, Mehmet Tuzcu, Nurhan Şahin, Öznur Ece Durmaz Kurşun, Vijaya Juturu, Kazim Şahin. Lutein/zeaxanthin isomers regulate neurotrophic factors and synaptic plasticity in trained rats.
Turkish journal of medical sciences.
2021 08; 51(4):2167-2176. doi:
10.3906/sag-2101-264
. [PMID: 33843170] - Zhe-Yu Yang, Wei-Liang Chen. Physiological significance of link between polycyclic aromatic hydrocarbons and serum nutritional biomarkers.
Food chemistry.
2021 Aug; 353(?):129445. doi:
10.1016/j.foodchem.2021.129445
. [PMID: 33714110] - Masoumeh Khalighi Sikaroudi, Sahar Saraf-Bank, Zachary S Clayton, Sepideh Soltani. A positive effect of egg consumption on macular pigment and healthy vision: a systematic review and meta-analysis of clinical trials.
Journal of the science of food and agriculture.
2021 Aug; 101(10):4003-4009. doi:
10.1002/jsfa.11109
. [PMID: 33491232] - Bailing Zhao, Meihong Liu, Huimin Liu, Jiahan Xie, Jie Yan, Xiaobo Hou, Jingsheng Liu. Zeaxanthin promotes browning by enhancing mitochondrial biogenesis through the PKA pathway in 3T3-L1 adipocytes.
Food & function.
2021 Jul; 12(14):6283-6293. doi:
10.1039/d1fo00524c
. [PMID: 34047728] - Drake W Lem, Dennis L Gierhart, Pinakin Gunvant Davey. A Systematic Review of Carotenoids in the Management of Diabetic Retinopathy.
Nutrients.
2021 Jul; 13(7):. doi:
10.3390/nu13072441
. [PMID: 34371951] - Renata Welc, Rafal Luchowski, Dariusz Kluczyk, Monika Zubik-Duda, Wojciech Grudzinski, Magdalena Maksim, Emilia Reszczynska, Karol Sowinski, Radosław Mazur, Artur Nosalewicz, Wieslaw I Gruszecki. Mechanisms shaping the synergism of zeaxanthin and PsbS in photoprotective energy dissipation in the photosynthetic apparatus of plants.
The Plant journal : for cell and molecular biology.
2021 07; 107(2):418-433. doi:
10.1111/tpj.15297
. [PMID: 33914375] - Bénédicte M J Merle, Audrey Cougnard-Grégoire, Jean-François Korobelnik, Wolfgang Schalch, Stéphane Etheve, Marie-Bénédicte Rougier, Catherine Féart, Cécilia Samieri, Marie-Noëlle Delyfer, Cécile Delcourt. Plasma Lutein, a Nutritional Biomarker for Development of Advanced Age-Related Macular Degeneration: The Alienor Study.
Nutrients.
2021 Jun; 13(6):. doi:
10.3390/nu13062047
. [PMID: 34203817] - T Shalini, Sarin S Jose, P S Prasanthi, N Balakrishna, K Viswanath, G Bhanuprakash Reddy. Carotenoid status in type 2 diabetes patients with and without retinopathy.
Food & function.
2021 May; 12(10):4402-4410. doi:
10.1039/d0fo03321a
. [PMID: 33928954] - Beatriz Fernández-Marín, Thomas Roach, Amy Verhoeven, José Ignacio García-Plazaola. Shedding light on the dark side of xanthophyll cycles.
The New phytologist.
2021 05; 230(4):1336-1344. doi:
10.1111/nph.17191
. [PMID: 33452715] - Chaonan Tang, Jianming Xie, Jian Lv, Jing Li, Jing Zhang, Cheng Wang, Guoping Liang. Alleviating damage of photosystem and oxidative stress from chilling stress with exogenous zeaxanthin in pepper (Capsicum annuum L.) seedlings.
Plant physiology and biochemistry : PPB.
2021 May; 162(?):395-409. doi:
10.1016/j.plaphy.2021.03.010
. [PMID: 33740679] - Sunbin Kim, Weon-Sun Shin. Formation of a novel coating material containing lutein and zeaxanthin via a Maillard reaction between bovine serum albumin and fucoidan.
Food chemistry.
2021 May; 343(?):128437. doi:
10.1016/j.foodchem.2020.128437
. [PMID: 33162255] - Emmanuel Kofi Addo, Aruna Gorusupudi, Susan Allman, Paul S Bernstein. The Lutein and Zeaxanthin in Pregnancy (L-ZIP) study-carotenoid supplementation during pregnancy: ocular and systemic effects-study protocol for a randomized controlled trial.
Trials.
2021 Apr; 22(1):300. doi:
10.1186/s13063-021-05244-2
. [PMID: 33888136] - Alfredo García-Layana, Sergio Recalde, Maria Hernandez, Maximino J Abraldes, João Nascimento, Emiliano Hernández-Galilea, Begoña Olmedilla-Alonso, Jose Juan Escobar-Barranco, Miguel Angel Zapata, Rufino Silva, Mariana Caballero Arredondo, María Carmen Lopez-Sabater, Silvia Mendez-Martínez, Nieves Pardiñas-Barón, Pilar Calvo, Patricia Fernández-Robredo. A Randomized Study of Nutritional Supplementation in Patients with Unilateral Wet Age-Related Macular Degeneration.
Nutrients.
2021 Apr; 13(4):. doi:
10.3390/nu13041253
. [PMID: 33920232] - Amy S Verhoeven, Jennifer M Berkowitz, Brenna N Walton, Brandt K Berube, Jerry J Willour, Sidney B Polich. Is zeaxanthin needed for desiccation tolerance? Sustained forms of thermal dissipation in tolerant versus sensitive bryophytes.
Physiologia plantarum.
2021 Mar; 171(3):453-467. doi:
10.1111/ppl.13263
. [PMID: 33161567] - Wen-Da Duan, Kai-Jun Quan, Xin-Yi Huang, Yuan Gong, Sun Xiao, Jian-Fei Liu, Dong Pei, Duo-Long Di. Recovery and recycling of solvent of counter-current chromatography: The sample of isolation of zeaxanthin in the Lycium barbarum L. fruits.
Journal of separation science.
2021 Feb; 44(3):759-766. doi:
10.1002/jssc.202000750
. [PMID: 33253473] - Diana Cenariu, Eva Fischer-Fodor, Adrian Bogdan Țigu, Andrea Bunea, Piroska Virág, Maria Perde-Schrepler, Vlad-Alexandru Toma, Andrei Mocan, Ioana Berindan-Neagoe, Adela Pintea, Gianina Crișan, Mihai Cenariu, Alma Maniu. Zeaxanthin-Rich Extract from Superfood Lycium barbarum Selectively Modulates the Cellular Adhesion and MAPK Signaling in Melanoma versus Normal Skin Cells In Vitro.
Molecules (Basel, Switzerland).
2021 Jan; 26(2):. doi:
10.3390/molecules26020333
. [PMID: 33440679] - Eugeniusz Parys, Tomasz Krupnik, Ilona Kułak, Kinga Kania, Elżbieta Romanowska. Photosynthesis of the Cyanidioschyzon merolae cells in blue, red, and white light.
Photosynthesis research.
2021 Jan; 147(1):61-73. doi:
10.1007/s11120-020-00796-x
. [PMID: 33231791] - Akihiko Nagao. Metabolism of Carotenoids in Mammals.
Advances in experimental medicine and biology.
2021; 1261(?):67-78. doi:
10.1007/978-981-15-7360-6_6
. [PMID: 33783731] - Begoña Olmedilla-Alonso, Elena Rodríguez-Rodríguez, Beatriz Beltrán-de-Miguel, Rocío Estévez-Santiago, Milagros Sánchez-Prieto. Predictors of macular pigment and contrast threshold in Spanish healthy normolipemic subjects (45-65 years) with habitual food intake.
PloS one.
2021; 16(5):e0251324. doi:
10.1371/journal.pone.0251324
. [PMID: 34043644] - Xiaoran Liu, Klodian Dhana, Jeremy D Furtado, Puja Agarwal, Neelum T Aggarwal, Christy Tangney, Nancy Laranjo, Vincent Carey, Lisa L Barnes, Frank M Sacks. Higher circulating α-carotene was associated with better cognitive function: an evaluation among the MIND trial participants.
Journal of nutritional science.
2021; 10(?):e64. doi:
10.1017/jns.2021.56
. [PMID: 34527222]