Pheophytin a (BioDeep_00000005956)
natural product
代谢物信息卡片
化学式: C55H74N4O5 (870.5659)
中文名称: 脱镁叶绿素 A
谱图信息:
最多检出来源 Viridiplantae(plant) 19.28%
分子结构信息
SMILES: C=CC1=C(C)C2=NC1=CC1=NC(=CC3=C(C)C4=C(O)C(C(=O)OC)C(=C5NC(=C2)C(C)C5CCC(=O)OCC=C(C)CCCC(C)CCCC(C)CCCC(C)C)C4=N3)C(CC)=C1C
InChI: InChI=1S/C55H72N4O5/c1-13-39-35(8)42-28-44-37(10)41(24-25-48(60)64-27-26-34(7)23-17-22-33(6)21-16-20-32(5)19-15-18-31(3)4)52(58-44)50-51(55(62)63-12)54(61)49-38(11)45(59-53(49)50)30-47-40(14-2)36(9)43(57-47)29-46(39)56-42/h13,26,28-33,37,41,51H,1,14-25,27H2,2-12H3/b34-26+,42-28-,43-29-,44-28-,45-30-,46-29-,47-30-,52-50-
描述信息
Pheophytin a is practically insoluble (in water) and an extremely strong acidic compound (based on its pKa). Pheophytin a can be found in a number of food items such as tea, wasabi, corn salad, and pigeon pea, which makes pheophytin a a potential biomarker for the consumption of these food products.
同义名列表
数据库引用编号
16 个数据库交叉引用编号
- ChEBI: CHEBI:44898
- KEGG: C05797
- PubChem: 135398712
- ChEMBL: CHEMBL3349047
- MetaCyc: CPD-8155
- KNApSAcK: C00030990
- foodb: FDB007170
- CAS: 603-17-8
- MoNA: CCMSLIB00000471426
- PMhub: MS000248172
- PMhub: MS000018870
- PubChem: 8092
- PDB-CCD: PHO
- 3DMET: B01896
- NIKKAJI: J37.089D
- RefMet: Pheophytin a
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
127 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(127)
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H+ + chlorophyll a ⟶ Mg2+ + pheophytin a
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
12 个相关的物种来源信息
- 946572 - Ajuga taiwanensis: 10.1248/CPB.53.836
- 258163 - Alloberberis fremontii: 10.1016/S0305-1978(01)00025-4
- 158550 - Aristolochia kaempferi: 10.1248/CPB.46.1624
- 258160 - Berberis fendleri: 10.1016/S0305-1978(01)00025-4
- 3712 - Brassica oleracea: 10.1021/JF00089A034
- 4442 - Camellia sinensis: 10.1016/S0304-3835(98)00113-X
- 256638 - Euchresta formosana: 10.1080/1478641031000103669
- 354508 - Phellodendron chinense: 10.1002/CHIN.200324205
- 137893 - Saussurea medusa: 10.1016/S0031-9422(01)00429-0
- 3562 - Spinacia oleracea: 10.1093/CARCIN/19.7.1323
- 1079459 - Trididemnum solidum:
- 3117 - Ulva prolifera: 10.1016/S0192-0561(97)00070-2
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Alexey A Zabelin, Anton M Khristin, Vyacheslav B Kovalev, Ravil A Khatypov, Anatoly Ya Shkuropatov. Primary charge separation in native and plant pheophytin a-modified reaction centers of Chloroflexus aurantiacus: Ultrafast transient absorption measurements at low temperature.
Biochimica et biophysica acta. Bioenergetics.
2023 Apr; 1864(3):148976. doi:
10.1016/j.bbabio.2023.148976
. [PMID: 37061174] - Caihuang Xu, Qingjun Zhu, Jing-Hua Chen, Liangliang Shen, Xiaohan Yi, Zihui Huang, Wenda Wang, Min Chen, Tingyun Kuang, Jian-Ren Shen, Xing Zhang, Guangye Han. A unique photosystem I reaction center from a chlorophyll d-containing cyanobacterium Acaryochloris marina.
Journal of integrative plant biology.
2021 Oct; 63(10):1740-1752. doi:
10.1111/jipb.13113
. [PMID: 34002536] - Hamdoon A Mohammed, Mohsen S Al-Omar, Mahmoud Zaki El-Readi, Ahmad H Alhowail, Maha A Aldubayan, Ahmed A H Abdellatif. Formulation of Ethyl Cellulose Microparticles Incorporated Pheophytin A Isolated from Suaeda vermiculata for Antioxidant and Cytotoxic Activities.
Molecules (Basel, Switzerland).
2019 Apr; 24(8):. doi:
10.3390/molecules24081501
. [PMID: 30999569] - Ying Chen, Yousuke Shimoda, Makio Yokono, Hisashi Ito, Ayumi Tanaka. Mg-dechelatase is involved in the formation of photosystem II but not in chlorophyll degradation in Chlamydomonas reinhardtii.
The Plant journal : for cell and molecular biology.
2019 03; 97(6):1022-1031. doi:
10.1111/tpj.14174
. [PMID: 30471153] - Rebecca L Hansen, Hongqing Guo, Yanhai Yin, Young Jin Lee. FERONIA mutation induces high levels of chloroplast-localized Arabidopsides which are involved in root growth.
The Plant journal : for cell and molecular biology.
2019 01; 97(2):341-351. doi:
10.1111/tpj.14123
. [PMID: 30300943] - Petrina Kapewangolo, Martha Kandawa-Schulz, Debra Meyer. Anti-HIV Activity of Ocimum labiatum Extract and Isolated Pheophytin-a.
Molecules (Basel, Switzerland).
2017 Nov; 22(11):. doi:
10.3390/molecules22111763
. [PMID: 29113139] - Myoung-Yun Pyo, Bo-kyung Park, Jeong June Choi, Mihi Yang, Hyun Ok Yang, Jin Wook Cha, Jin-Cheol Kim, In Seon Kim, Hyang Burm Lee, Mirim Jin. Pheophytin a and chlorophyll a identified from environmentally friendly cultivation of green pepper enhance interleukin-2 and interferon-γ in Peyer's patches ex vivo.
Biological & pharmaceutical bulletin.
2013; 36(11):1747-53. doi:
10.1248/bpb.b13-00302
. [PMID: 24189419] - Ramón Aparicio-Ruiz, María Roca, Beatriz Gandul-Rojas. Mathematical model to predict the formation of pyropheophytin a in virgin olive oil during storage.
Journal of agricultural and food chemistry.
2012 Jul; 60(28):7040-9. doi:
10.1021/jf3010965
. [PMID: 22708655] - Appian Subramoniam, Velikkakathu V Asha, Sadasivan Ajikumaran Nair, Sreejith P Sasidharan, Parameswaran K Sureshkumar, Krishnan Nair Rajendran, Devarajan Karunagaran, Krishnan Ramalingam. Chlorophyll revisited: anti-inflammatory activities of chlorophyll a and inhibition of expression of TNF-α gene by the same.
Inflammation.
2012 Jun; 35(3):959-66. doi:
10.1007/s10753-011-9399-0
. [PMID: 22038065] - Suleyman I Allakhverdiev, Tohru Tsuchiya, Kazuyuki Watabe, Akane Kojima, Dmitry A Los, Tatsuya Tomo, Vyacheslav V Klimov, Mamoru Mimuro. Redox potentials of primary electron acceptor quinone molecule (QA)- and conserved energetics of photosystem II in cyanobacteria with chlorophyll a and chlorophyll d.
Proceedings of the National Academy of Sciences of the United States of America.
2011 May; 108(19):8054-8. doi:
10.1073/pnas.1100173108
. [PMID: 21521792] - Mun Y Jung, Dong S Choi, Ki H Park, Bosoon Lee, David B Min. Luminescence spectroscopic observation of singlet oxygen formation in extra virgin olive oil as affected by irradiation light wavelengths, 1,4-diazabicyclo[2.2.2]octane, irradiation time, and oxygen bubbling.
Journal of food science.
2011 Jan; 76(1):C59-63. doi:
10.1111/j.1750-3841.2010.01883.x
. [PMID: 21535654] - Hui-Min Wang, Wen-Li Lo, Lee-Yu Huang, Yau-Der Wang, Chung-Yi Chen. Chemical constituents from the leaves of Michelia alba.
Natural product research.
2010 Mar; 24(5):398-406. doi:
10.1080/14786410802394132
. [PMID: 20306361] - O B Belyaeva, F F Litvin. Pathways of formation of pigment forms at the terminal photobiochemical stage of chlorophyll biosynthesis.
Biochemistry. Biokhimiia.
2009 Dec; 74(13):1535-44. doi:
10.1134/s0006297909130070
. [PMID: 20210707] - Ryouhei Morita, Yutaka Sato, Yu Masuda, Minoru Nishimura, Makoto Kusaba. Defect in non-yellow coloring 3, an alpha/beta hydrolase-fold family protein, causes a stay-green phenotype during leaf senescence in rice.
The Plant journal : for cell and molecular biology.
2009 Sep; 59(6):940-52. doi:
10.1111/j.1365-313x.2009.03919.x
. [PMID: 19453447] - Silvia Schelbert, Sylvain Aubry, Bo Burla, Birgit Agne, Felix Kessler, Karin Krupinska, Stefan Hörtensteiner. Pheophytin pheophorbide hydrolase (pheophytinase) is involved in chlorophyll breakdown during leaf senescence in Arabidopsis.
The Plant cell.
2009 Mar; 21(3):767-85. doi:
10.1105/tpc.108.064089
. [PMID: 19304936] - Isamu Ikegami, Aki Nemoto, Kohki Sakashita. The formation of Zn-Chl a in Chlorella heterotrophically grown in the dark with an excessive amount of Zn2+.
Plant & cell physiology.
2005 May; 46(5):729-35. doi:
10.1093/pcp/pci079
. [PMID: 15753102] - Teresa Galeano Díaz, Isabel Durán Merás, Carlos Arturo Correa, Belén Roldán, María Isabel Rodríguez Cáceres. Simultaneous fluorometric determination of chlorophylls a and B and pheophytins a and B in olive oil by partial least-squares calibration.
Journal of agricultural and food chemistry.
2003 Nov; 51(24):6934-40. doi:
10.1021/jf034456m
. [PMID: 14611149] - Anatoli Ya Shkuropatov, Sieglinde Neerken, Hjalmar P Permentier, Rik de Wijn, Kristiane A Schmidt, Vladimir A Shuvalov, Thijs J Aartsma, Peter Gast, Arnold J Hoff. The effect of exchange of bacteriopheophytin a with plant pheophytin a on charge separation in Y(M210)W mutant reaction centers of Rhodobacter sphaeroides at low temperature.
Biochimica et biophysica acta.
2003 Mar; 1557(1-3):1-12. doi:
10.1016/s0005-2728(02)00373-0
. [PMID: 12615343] - Dmitrii Vavilin, Hong Xu, Su Lin, Wim Vermaas. Energy and electron transfer in photosystem II of a chlorophyll b-containing Synechocystis sp. PCC 6803 mutant.
Biochemistry.
2003 Feb; 42(6):1731-46. doi:
10.1021/bi026853g
. [PMID: 12578388] - Andrea Zehetner, Hugo Scheer, Pavel Siffel, Frantisek Vacha. Photosystem II reaction center with altered pigment-composition: reconstitution of a complex containing five chlorophyll a per two pheophytin a with modified chlorophylls.
Biochimica et biophysica acta.
2002 Oct; 1556(1):21-8. doi:
10.1016/s0005-2728(02)00282-7
. [PMID: 12351215] - A Nakamura, S Tanaka, T Watanabe. Normal-phase HPLC separation of possible biosynthetic intermediates of pheophytin a and chlorophyll a'.
Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.
2001 Apr; 17(4):509-13. doi:
10.2116/analsci.17.509
. [PMID: 11990567] - A Nakamura, T Watanabe. Separation and determination of minor photosynthetic pigments by reversed-phase HPLC with minimal alteration of chlorophylls.
Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.
2001 Apr; 17(4):503-8. doi:
10.2116/analsci.17.503
. [PMID: 11990566] - L Tang, A Okazawa, E Fukusaki, A Kobayashi. Removal of magnesium by Mg-dechelatase is a major step in the chlorophyll-degrading pathway in Ginkgo biloba in the process of autumnal tints.
Zeitschrift fur Naturforschung. C, Journal of biosciences.
2000 Nov; 55(11-12):923-6. doi:
10.1515/znc-2000-11-1213
. [PMID: 11204197] - A Agostiano, L Catucci, G Colafemmina, M Della Monica, H Scheer. Relevance of the chlorophyll phytyl chain on lamellar phase formation and organisation.
Biophysical chemistry.
2000 May; 84(3):189-94. doi:
10.1016/s0301-4622(00)00137-x
. [PMID: 10852306] - E Dark, B Schoefs, Y Lemoine. Improved liquid chromatographic method for the analysis of photosynthetic pigments of higher plants.
Journal of chromatography. A.
2000 Apr; 876(1-2):111-6. doi:
10.1016/s0021-9673(00)00141-2
. [PMID: 10823506] - K Higashi-Okai, S Otani, Y Okai, K Hiqashi-Okaj. Potent suppressive effect of a Japanese edible seaweed, Enteromorpha prolifera (Sujiao-nori) on initiation and promotion phases of chemically induced mouse skin tumorigenesis.
Cancer letters.
1999 Jun; 140(1-2):21-5. doi:
10.1016/s0304-3835(99)00047-6
. [PMID: 10403537] - V A Shuvalov, A G Yakovlev. Energy level of P+B- with respect to P* found from recombination fluorescence measurements in pheophytin-modified reaction centres.
Membrane & cell biology.
1998; 12(5):563-9. doi:
"
. [PMID: 10379640] - A Y Shkuropatov, R A Khatypov, T S Volshchukova, V A Shkuropatova, T G Owens, V A Shuvalov. Spectral and photochemical properties of borohydride-treated D1-D2-cytochrome b-559 complex of photosystem II.
FEBS letters.
1997 Dec; 420(2-3):171-4. doi:
10.1016/s0014-5793(97)01512-3
. [PMID: 9459304] - J T Kennis, A Y Shkuropatov, I H van Stokkum, P Gast, A J Hoff, V A Shuvalov, T J Aartsma. Formation of a long-lived P+BA- state in plant pheophytin-exchanged reaction centers of Rhodobacter sphaeroides R26 at low temperature.
Biochemistry.
1997 Dec; 36(51):16231-8. doi:
10.1021/bi9712605
. [PMID: 9405057] - T A Egorova-Zachernyuk, B van Rossum, G J Boender, E Franken, J Ashurst, J Raap, P Gast, A J Hoff, H Oschkinat, H J de Groot. Characterization of pheophytin ground states in Rhodobacter sphaeroides R26 photosynthetic reaction centers from multispin pheophytin enrichment and 2-D 13C MAS NMR dipolar correlation spectroscopy.
Biochemistry.
1997 Jun; 36(24):7513-9. doi:
10.1021/bi962770m
. [PMID: 9200701] - Y Deligiannakis, A W Rutherford. Spin-lattice relaxation of the pheophytin, Pheo-, radical of photosystem II.
Biochemistry.
1996 Sep; 35(35):11239-46. doi:
10.1021/bi9608471
. [PMID: 8784177] - Shkuropatov Aya, I I Proskuryakov, V A Shkuropatova, M G Zvereva, V A Shuvalov. Formation of charge separated state P+OA- and triplet state 3P at low temperature in Rhodobacter sphaeroides (R-26) reaction centers in which bacteriopheophytin a is replaced by plant pheophytin a.
FEBS letters.
1994 Sep; 351(2):249-52. doi:
10.1016/0014-5793(94)00843-4
. [PMID: 8082774] - Shkuropatov AYa, V A Shuvalov. Electron transfer in pheophytin a-modified reaction centers from Rhodobacter sphaeroides (R-26).
FEBS letters.
1993 May; 322(2):168-72. doi:
10.1016/0014-5793(93)81561-d
. [PMID: 8482386] - W Lubitz, R A Isaacson, M Y Okamura, E C Abresch, M Plato, G Feher. ENDOR studies of the intermediate electron acceptor radical anion I-. in Photosystem II reaction centers.
Biochimica et biophysica acta.
1989 Nov; 977(2):227-32. doi:
10.1016/s0005-2728(89)80076-3
. [PMID: 2553112]