Melitten (BioDeep_00000008537)

 

Secondary id: BioDeep_00001871994

human metabolite blood metabolite Volatile Flavor Compounds natural product


代谢物信息卡片


2-{[2-({6-amino-2-[(2-{[6-amino-2-({2-[(2-{[2-({2-[(2-{[2-({[1-(2-{[2-({2-[(2-{[2-({2-[(6-amino-2-{[2-({2-[(2-{[2-({2-[(2-amino-1-hydroxyethylidene)amino]-1-hydroxy-3-methylpentylidene}amino)-1-hydroxyethylidene]amino}-1-hydroxypropylidene)amino]-1-hydroxy-3-methylbutylidene}amino)-1-hydroxy-4-methylpentylidene]amino}-1-hydroxyhexylidene)amino]-1-hydroxy-3-methylbutylidene}amino)-1-hydroxy-4-methylpentylidene]amino}-1,3-dihydroxybutylidene)amino]-1,3-dihydroxybutylidene}amino)-1-hydroxyethylidene]amino}-4-methylpentanoyl)pyrrolidin-2-yl](hydroxy)methylidene}amino)-1-hydroxypropylidene]amino}-1-hydroxy-4-methylpentylidene)amino]-1-hydroxy-3-methylpentylidene}amino)-1,3-dihydroxypropylidene]amino}-1-hydroxy-3-(1H-indol-3-yl)propylidene)amino]-1-hydroxy-3-methylpentylidene}amino)-1-hydroxyhexylidene]amino}-5-carbamimidamido-1-hydroxypentylidene)amino]-1-hydroxyhexylidene}amino)-5-carbamimidamido-1-hydroxypentylidene]amino}-N-[1,3-bis(C-hydroxycarbonimidoyl)propyl]pentanediimidic acid

化学式: C131H229N39O31 (2844.7540844)
中文名称: 蜂毒肽
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CCC(C)C(N=C(O)CN)C(O)=NCC(O)=NC(C)C(O)=NC(C(C)C)C(O)=NC(CC(C)C)C(O)=NC(CCCCN)C(O)=NC(C(C)C)C(O)=NC(CC(C)C)C(O)=NC(C(C)O)C(O)=NC(C(C)O)C(O)=NCC(O)=NC(CC(C)C)C(=O)N1CCCC1C(O)=NC(C)C(O)=NC(CC(C)C)C(O)=NC(C(C)CC)C(O)=NC(CO)C(O)=NC(CC1=CNC2=CC=CC=C12)C(O)=NC(C(C)CC)C(O)=NC(CCCCN)C(O)=NC(CCCNC(N)=N)C(O)=NC(CCCCN)C(O)=NC(CCCNC(N)=N)C(O)=NC(CCC(O)=N)C(O)=NC(CCC(O)=N)C(O)=N
InChI: InChI=1S/C131H229N39O31/c1-23-71(16)102(163-97(176)60-135)122(194)146-62-98(177)148-74(19)109(181)164-100(69(12)13)124(196)160-88(55-65(4)5)116(188)155-84(41-30-33-51-134)115(187)165-101(70(14)15)125(197)161-90(57-67(8)9)118(190)168-106(77(22)173)128(200)169-105(76(21)172)123(195)147-63-99(178)150-92(58-68(10)11)129(201)170-54-36-44-94(170)121(193)149-75(20)108(180)158-89(56-66(6)7)117(189)166-104(73(18)25-3)127(199)162-93(64-171)120(192)159-91(59-78-61-145-80-38-27-26-37-79(78)80)119(191)167-103(72(17)24-2)126(198)157-83(40-29-32-50-133)111(183)154-85(42-34-52-143-130(139)140)112(184)152-82(39-28-31-49-132)110(182)153-86(43-35-53-144-131(141)142)113(185)156-87(46-48-96(137)175)114(186)151-81(107(138)179)45-47-95(136)174/h26-27,37-38,61,65-77,81-94,100-106,145,171-173H,23-25,28-36,39-60,62-64,132-135H2,1-22H3,(H2,136,174)(H2,137,175)(H2,138,179)(H,146,194)(H,147,195)(H,148,177)(H,149,193)(H,150,178)(H,151,186)(H,152,184)(H,153,182)(H,154,183)(H,155,188)(H,156,185)(H,157,198)(H,158,180)(H,159,192)(H,160,196)(H,161,197)(H,162,199)(H,163,176)(H,164,181)(H,165,187)(H,166,189)(H,167,191)(H,168,190)(H,169,200)(H4,139,140,143)(H4,141,142,144)



数据库引用编号

13 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

9 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Liya Bai, Hui Liu, Ran You, Xiaoyu Jiang, Tao Zhang, Yunan Li, Tianhe Shan, Zhanyin Qian, Yinsong Wang, Yuanyuan Liu, Chunyu Li. Combination Nano-Delivery Systems Remodel the Immunosuppressive Tumor Microenvironment for Metastatic Triple-Negative Breast Cancer Therapy. Molecular pharmaceutics. 2024 May; 21(5):2148-2162. doi: 10.1021/acs.molpharmaceut.3c00242. [PMID: 38536949]
  • Sein Min, Cyrus Picou, Hye Jin Jeong, Adam Bower, Keunhong Jeong, Jean K Chung. Melittin-Phospholipase A2 Synergism Is Mediated by Liquid-Liquid Miscibility Phase Transition in Giant Unilamellar Vesicles. Langmuir : the ACS journal of surfaces and colloids. 2024 Apr; 40(14):7456-7462. doi: 10.1021/acs.langmuir.3c03920. [PMID: 38546877]
  • Magda Vargas-Pérez, Azucena González-Horta, Hiram Mendoza-Hernández, Myriam Elías-Santos, Karim Acuña-Askar, Luis Jesús Galán-Wong, Hugo Alberto Luna-Olvera. Neochloris oleoabundans cell wall rupture through melittin peptide: a new approach to increase lipid recovery. Biotechnology letters. 2024 Feb; 46(1):97-106. doi: 10.1007/s10529-023-03451-2. [PMID: 38109017]
  • Justus C Stephani, Luca Gerhards, Bishoy Khairalla, Ilia A Solov'yov, Izabella Brand. How do Antimicrobial Peptides Interact with the Outer Membrane of Gram-Negative Bacteria? Role of Lipopolysaccharides in Peptide Binding, Anchoring, and Penetration. ACS infectious diseases. 2024 Jan; ?(?):. doi: 10.1021/acsinfecdis.3c00673. [PMID: 38259029]
  • Jing-Shun Meng, Yun He, Heng-Bin Yang, Li-Ping Zhou, Si-Yuan Wang, Xi-Lin Feng, Omar Yahya Al-Shargi, Xiao-Min Yu, Li-Qing Zhu, Chang-Quan Ling. Melittin analog p5RHH enhances recombinant adeno-associated virus transduction efficiency. Journal of integrative medicine. 2024 Jan; 22(1):72-82. doi: 10.1016/j.joim.2024.01.001. [PMID: 38307819]
  • Xin Jin, Hangyi Wu, Jie Yu, Yanni Cao, Lanyi Zhang, Zhenhai Zhang, Huixia Lv. Glutamate affects self-assembly, protein corona, and anti-4 T1 tumor effects of melittin/vitamin E-succinic acid-(glutamate)n nanoparticles. Journal of controlled release : official journal of the Controlled Release Society. 2024 Jan; 365(?):802-817. doi: 10.1016/j.jconrel.2023.12.013. [PMID: 38092255]
  • Linfu Yang, Wenzheng Zhao, Xueyang Gong, Dan Yue, Yiqiu Liu, Yakai Tian, Kun Dong. Exploring potential network pharmacology-and molecular docking-based mechanism of melittin in treating rheumatoid arthritis. Medicine. 2023 Aug; 102(32):e34728. doi: 10.1097/md.0000000000034728. [PMID: 37565866]
  • Haoning Gong, Xuzhi Hu, Lin Zhang, Ke Fa, Mingrui Liao, Huayang Liu, Giovanna Fragneto, Mario Campana, Jian Ren Lu. How do antimicrobial peptides disrupt the lipopolysaccharide membrane leaflet of Gram-negative bacteria?. Journal of colloid and interface science. 2023 May; 637(?):182-192. doi: 10.1016/j.jcis.2023.01.051. [PMID: 36701864]
  • Diana Harfmann, Adrian Florea. Experimental envenomation with honeybee venom melittin and phospholipase A2 induced multiple ultrastructural changes in adrenocortical mitochondria. Toxicon : official journal of the International Society on Toxinology. 2023 Apr; ?(?):107136. doi: 10.1016/j.toxicon.2023.107136. [PMID: 37116588]
  • Parisa Mansouri Rad, Leila Rahbarnia, Azam Safary, Azizeh ShadiDizaji, Zahra Maani. The Synthetic Antimicrobial Peptide Derived From Melittin Displays Low Toxicity and Anti-infectious Properties. Probiotics and antimicrobial proteins. 2023 Mar; ?(?):. doi: 10.1007/s12602-023-10066-6. [PMID: 36988897]
  • Cheng Xu, Kai Yang, Bing Yuan. Non-Gaussian Diffusion of Individual Lipids Unveils the Unique Peptide-Membrane Interaction Dynamics. The journal of physical chemistry letters. 2023 Feb; 14(4):854-862. doi: 10.1021/acs.jpclett.2c03467. [PMID: 36656807]
  • Can Lv, Jiaojiao Chen, Feng Huang, Fanfu Fang, Bai Li. Melittin inhibits the proliferation migration and invasion of HCC cells by regulating ADAMTS9-AS2 demethylation. Toxicon : official journal of the International Society on Toxinology. 2023 Jan; 222(?):106996. doi: 10.1016/j.toxicon.2022.106996. [PMID: 36535531]
  • Zheng Liu, Zhan Fan, Jinxin Liu, Jialu Wang, Mengli Xu, Xinlin Li, Yilun Xu, Yafang Lu, Chenlu Han, Zhihong Zhang. Melittin-Carrying Nanoparticle Suppress T Cell-Driven Immunity in a Murine Allergic Dermatitis Model. Advanced science (Weinheim, Baden-Wurttemberg, Germany). 2023 Jan; ?(?):e2204184. doi: 10.1002/advs.202204184. [PMID: 36638280]
  • Alain Bolaño Alvarez, Benjamín Caruso, Steffen B Petersen, Pablo E A Rodríguez, Gerardo D Fidelio. Melittin-solid phospholipid mixed films trigger amyloid-like nano-fibril arrangements at air-water interface. Biochimica et biophysica acta. Biomembranes. 2022 12; 1864(12):184048. doi: 10.1016/j.bbamem.2022.184048. [PMID: 36115495]
  • Liang Sun, Simin Wang, Fujia Tian, Haoqi Zhu, Liang Dai. Organizations of melittin peptides after spontaneous penetration into cell membranes. Biophysical journal. 2022 11; 121(22):4368-4381. doi: 10.1016/j.bpj.2022.10.002. [PMID: 36199252]
  • Tianyi Dou, Clara Zens, Katrin Schröder, Yuan Jiang, Alexey A Makarov, Stephan Kupfer, Dmitry Kurouski. Solid-to-Liposome Conformational Transition of Phosphatidylcholine and Phosphatidylserine Probed by Atomic Force Microscopy, Infrared Spectroscopy, and Density Functional Theory Calculations. Analytical chemistry. 2022 09; 94(38):13243-13249. doi: 10.1021/acs.analchem.2c03061. [PMID: 36107722]
  • Yusuke Miyazaki, Wataru Shinoda. Cooperative antimicrobial action of melittin on lipid membranes: A coarse-grained molecular dynamics study. Biochimica et biophysica acta. Biomembranes. 2022 09; 1864(9):183955. doi: 10.1016/j.bbamem.2022.183955. [PMID: 35526599]
  • Nathan A Delvaux, Kevin G Rice. The reduced-charge melittin analogue MelP5 improves the transfection of non-viral DNA nanoparticles. Journal of peptide science : an official publication of the European Peptide Society. 2022 Aug; 28(8):e3404. doi: 10.1002/psc.3404. [PMID: 35001445]
  • Haoyu Wang, Hao Qin, Győző Garab, Edward S Gasanoff. Short-Chained Alcohols Make Membrane Surfaces Conducive for Melittin Action: Implication for the Physiological Role of Alcohols in Cells. Cells. 2022 06; 11(12):. doi: 10.3390/cells11121928. [PMID: 35741057]
  • C Blake Wilson, Robert Tycko. Millisecond Time-Resolved Solid-State NMR Initiated by Rapid Inverse Temperature Jumps. Journal of the American Chemical Society. 2022 06; 144(22):9920-9925. doi: 10.1021/jacs.2c02704. [PMID: 35617672]
  • Shamish Ganpule, Akshay Kumar Vijaya, Aleksandra Sukova, Giulio Preta. Membrane Cholesterol Content and Lipid Organization Influence Melittin and Pneumolysin Pore-Forming Activity. Toxins. 2022 05; 14(5):. doi: 10.3390/toxins14050346. [PMID: 35622592]
  • Pin-Chiuan Chiou, Wen-Wei Hsu, Yung Chang, Yi-Fan Chen. Molecular packing of lipid membranes and action mechanisms of membrane-active peptides. Colloids and surfaces. B, Biointerfaces. 2022 May; 213(?):112384. doi: 10.1016/j.colsurfb.2022.112384. [PMID: 35151994]
  • Xuan Li, Sen Zhu, Zheng Li, Yu-Qi Meng, Su-Jie Huang, Qi-Yao Yu, Bin Li. Melittin induces ferroptosis and ER stress-CHOP-mediated apoptosis in A549 cells. Free radical research. 2022 May; 56(5-6):398-410. doi: 10.1080/10715762.2022.2131551. [PMID: 36194238]
  • Tyler A Jepson, Sarah C Hall, Jean K Chung. Single-molecule phospholipase A2 becomes processive on melittin-induced membrane deformations. Biophysical journal. 2022 04; 121(8):1417-1423. doi: 10.1016/j.bpj.2022.03.019. [PMID: 35314142]
  • Hyemin Gu, Hyun-Jin An, Mi-Gyeong Gwon, Seongjae Bae, Jaechan Leem, Sun-Jae Lee, Sang-Mi Han, Christos C Zouboulis, Kwan-Kyu Park. Bee Venom and Its Major Component Melittin Attenuated Cutibacterium acnes- and IGF-1-Induced Acne Vulgaris via Inactivation of Akt/mTOR/SREBP Signaling Pathway. International journal of molecular sciences. 2022 Mar; 23(6):. doi: 10.3390/ijms23063152. [PMID: 35328573]
  • Mohammed Ghalib Enayathullah, Yash Parekh, Sarena Banu, Sushma Ram, Ramakrishnan Nagaraj, Bokara Kiran Kumar, Mohammed M Idris. Gramicidin S and melittin: potential anti-viral therapeutic peptides to treat SARS-CoV-2 infection. Scientific reports. 2022 03; 12(1):3446. doi: 10.1038/s41598-022-07341-x. [PMID: 35236909]
  • Carole Yaacoub, Rim Wehbe, Yahya Salma, Dany El-Obeid, Romeo El Bersaoui, Bruno Coutard, Ziad Fajloun. Apis mellifera syriaca Venom: Evaluation of Its Anticoagulant Effect, Proteolytic Activity, and Cytotoxicity along with Its Two Main Compounds-MEL and PLA2-On HeLa Cancer Cells. Molecules (Basel, Switzerland). 2022 Mar; 27(5):. doi: 10.3390/molecules27051653. [PMID: 35268753]
  • Rasoul Mirzaei, Mohammad Yousef Alikhani, Carla Renata Arciola, Iraj Sedighi, Rasoul Yousefimashouf, Kamran Pooshang Bagheri. Prevention, inhibition, and degradation effects of melittin alone and in combination with vancomycin and rifampin against strong biofilm producer strains of methicillin-resistant Staphylococcus epidermidis. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2022 Mar; 147(?):112670. doi: 10.1016/j.biopha.2022.112670. [PMID: 35123230]
  • Joyce El-Beyrouthy, Michelle M Makhoul-Mansour, Eric C Freeman. Studying the Mechanics of Membrane Permeabilization through Mechanoelectricity. ACS applied materials & interfaces. 2022 Feb; 14(4):6120-6130. doi: 10.1021/acsami.1c19880. [PMID: 35073482]
  • Dalibor Kodrík, Václav Krištůfek, Zdeňka Svobodová. Bee year: Basic physiological strategies to cope with seasonality. Comparative biochemistry and physiology. Part A, Molecular & integrative physiology. 2022 02; 264(?):111115. doi: 10.1016/j.cbpa.2021.111115. [PMID: 34775045]
  • Francesca Troilo, Marco Pedretti, Carlo Travaglini-Allocatelli, Alessandra Astegno, Adele Di Matteo. Rapid kinetics of calcium dissociation from plant calmodulin and calmodulin-like proteins and effect of target peptides. Biochemical and biophysical research communications. 2022 01; 590(?):103-108. doi: 10.1016/j.bbrc.2021.12.077. [PMID: 34974297]
  • Anqi Wang, Yuan Zheng, Wanxin Zhu, Liuxin Yang, Yang Yang, Jinliang Peng. Melittin-Based Nano-Delivery Systems for Cancer Therapy. Biomolecules. 2022 01; 12(1):. doi: 10.3390/biom12010118. [PMID: 35053266]
  • Xiaoliang Xie, Yumei Li, Haixia Zhu, Lin Chen, Deta Chen, Shengming Lin, Tianyou Fan. Melittin Inhibits Growth of Human Osteosarcoma 143B Cells through Induction of Apoptosis via Suppressing the Wnt/β-catenin Signaling Pathway. Anti-cancer agents in medicinal chemistry. 2022; 22(18):3172-3181. doi: 10.2174/1871520622666220509121627. [PMID: 35579132]
  • Izabella Brand, Bishoy Khairalla. Structural changes in the model of the outer cell membrane of Gram-negative bacteria interacting with melittin: an in situ spectroelectrochemical study. Faraday discussions. 2021 12; 232(0):68-85. doi: 10.1039/d0fd00039f. [PMID: 34542116]
  • Ran Ye, Yuan Zheng, Yang Chen, Xiaohui Wei, Sanyuan Shi, Yuetan Chen, Wanxin Zhu, Anqi Wang, Liuxin Yang, Yuhong Xu, Jinliang Peng. Stable Loading and Delivery of Melittin with Lipid-Coated Polymeric Nanoparticles for Effective Tumor Therapy with Negligible Systemic Toxicity. ACS applied materials & interfaces. 2021 Dec; 13(47):55902-55912. doi: 10.1021/acsami.1c17618. [PMID: 34793125]
  • Xiong-Ya Wang, Dong-Zhang Cai, Xin Li, Su-Fen Bai, Feng-Ming Yan. Identification and Physicochemical Properties of the Novel Hemolysin(s) From Oral Secretions of Helicoverpa armigera (Lepidoptera: Noctuidae). Journal of insect science (Online). 2021 Nov; 21(6):. doi: 10.1093/jisesa/ieab082. [PMID: 34750634]
  • Ghada H Mansour, Mohammed A El-Magd, Dalia H Mahfouz, Ismail A Abdelhamid, Magda F Mohamed, Nada S Ibrahim, Abdel Hady A Abdel Wahab, Emad M Elzayat. Bee venom and its active component Melittin synergistically potentiate the anticancer effect of Sorafenib against HepG2 cells. Bioorganic chemistry. 2021 11; 116(?):105329. doi: 10.1016/j.bioorg.2021.105329. [PMID: 34544028]
  • Shantanu Guha, Ryan P Ferrie, Jenisha Ghimire, Cristina R Ventura, Eric Wu, Leisheng Sun, Sarah Y Kim, Gregory R Wiedman, Kalina Hristova, Wimley C Wimley. Applications and evolution of melittin, the quintessential membrane active peptide. Biochemical pharmacology. 2021 11; 193(?):114769. doi: 10.1016/j.bcp.2021.114769. [PMID: 34543656]
  • Edward Gasanoff, Yipeng Liu, Feng Li, Paul Hanlon, Győző Garab. Bee Venom Melittin Disintegrates the Respiration of Mitochondria in Healthy Cells and Lymphoblasts, and Induces the Formation of Non-Bilayer Structures in Model Inner Mitochondrial Membranes. International journal of molecular sciences. 2021 Oct; 22(20):. doi: 10.3390/ijms222011122. [PMID: 34681781]
  • Masoumeh Sadat Mousavi Maleki, Mosayeb Rostamian, Hamid Madanchi. Antimicrobial peptides and other peptide-like therapeutics as promising candidates to combat SARS-CoV-2. Expert review of anti-infective therapy. 2021 10; 19(10):1205-1217. doi: 10.1080/14787210.2021.1912593. [PMID: 33844613]
  • Fei Jia, Peiru Chen, Dali Wang, Yehui Sun, Mengqi Ren, Yuyan Wang, Xueyan Cao, Lei Zhang, Yang Fang, Xuyu Tan, Hao Lu, Jiansong Cai, Xueguang Lu, Ke Zhang. Bottlebrush Polymer-Conjugated Melittin Exhibits Enhanced Antitumor Activity and Better Safety Profile. ACS applied materials & interfaces. 2021 Sep; 13(36):42533-42542. doi: 10.1021/acsami.1c14285. [PMID: 34472829]
  • Guangsheng Du, Penghui He, Jiaxuan Zhao, Chunting He, Min Jiang, Zhihua Zhang, Zhibing Zhang, Xun Sun. Polymeric microneedle-mediated transdermal delivery of melittin for rheumatoid arthritis treatment. Journal of controlled release : official journal of the Controlled Release Society. 2021 08; 336(?):537-548. doi: 10.1016/j.jconrel.2021.07.005. [PMID: 34237400]
  • Sreetama Pal, Hirak Chakraborty, Amitabha Chattopadhyay. Lipid Headgroup Charge Controls Melittin Oligomerization in Membranes: Implications in Membrane Lysis. The journal of physical chemistry. B. 2021 08; 125(30):8450-8459. doi: 10.1021/acs.jpcb.1c02499. [PMID: 34254509]
  • Haixia Zhu, Deta Chen, Xiaoliang Xie, Yumei Li, Tianyou Fan. Melittin inhibits lung metastasis of human osteosarcoma: Evidence of wnt/β-catenin signaling pathway participation. Toxicon : official journal of the International Society on Toxinology. 2021 Jul; 198(?):132-142. doi: 10.1016/j.toxicon.2021.04.024. [PMID: 33930393]
  • Kumaresh Pillur Tamilarasu, Takshak Shankar, Ankita Kabi. Unusual case of recurrent hypoglycaemia in multiple bee sting envenomation. BMJ case reports. 2021 Jul; 14(7):. doi: 10.1136/bcr-2021-242440. [PMID: 34312127]
  • Zabih Mir Hassani, Mohammad Nabiuni, Kazem Parivar, Somayeh Abdirad, Latifeh Karimzadeh. Melittin inhibits the expression of key genes involved in tumor microenvironment formation by suppressing HIF-1α signaling in breast cancer cells. Medical oncology (Northwood, London, England). 2021 Jun; 38(7):77. doi: 10.1007/s12032-021-01526-6. [PMID: 34076777]
  • Hiroyuki Koide, Hikaru Suzuki, Hiroki Ochiai, Hiromichi Egami, Yoshitaka Hamashima, Naoto Oku, Tomohiro Asai. Enhancement of target toxin neutralization effect in vivo by PEGylation of multifunctionalized lipid nanoparticles. Biochemical and biophysical research communications. 2021 05; 555(?):32-39. doi: 10.1016/j.bbrc.2021.03.073. [PMID: 33812056]
  • Alicia S Ombredane, Laise R de Andrade, Raphael S Bonadio, Willie O Pinheiro, Ricardo B de Azevedo, Graziella A Joanitti. Melittin sensitizes skin squamous carcinoma cells to 5-fluorouracil by affecting cell proliferation and survival. Experimental dermatology. 2021 05; 30(5):710-716. doi: 10.1111/exd.14289. [PMID: 33523510]
  • Jhonatha Mota Teixeira-Cruz, Marcelo Abrahão Strauch, Marcos Monteiro-Machado, Matheus Silva Tavares-Henriques, João Alfredo de Moraes, Luís Eduardo Ribeiro da Cunha, Rui Seabra Ferreira, Benedito Barraviera, Luis Eduardo M Quintas, Paulo A Melo. A Novel Apilic Antivenom to Treat Massive, Africanized Honeybee Attacks: A Preclinical Study from the Lethality to Some Biochemical and Pharmacological Activities Neutralization. Toxins. 2021 01; 13(1):. doi: 10.3390/toxins13010030. [PMID: 33466223]
  • Jung-Yeon Kim, Jaechan Leem, Hyo-Lim Hong. Melittin Ameliorates Endotoxin-Induced Acute Kidney Injury by Inhibiting Inflammation, Oxidative Stress, and Cell Death in Mice. Oxidative medicine and cellular longevity. 2021; 2021(?):8843051. doi: 10.1155/2021/8843051. [PMID: 33488946]
  • Teresa Kreinest, Ines Volkmer, Martin S Staege. Melittin Increases Cisplatin Sensitivity and Kills KM-H2 and L-428 Hodgkin Lymphoma Cells. International journal of molecular sciences. 2020 Dec; 22(1):. doi: 10.3390/ijms22010343. [PMID: 33396195]
  • Bogdan Zorilă, George Necula, Mihai Radu, Mihaela Bacalum. Melittin Induces Local Order Changes in Artificial and Biological Membranes as Revealed by Spectral Analysis of Laurdan Fluorescence. Toxins. 2020 11; 12(11):. doi: 10.3390/toxins12110705. [PMID: 33171598]
  • Hyunseong Kim, Jin Young Hong, Wan-Jin Jeon, Seung Ho Baek, In-Hyuk Ha. Bee Venom Melittin Protects against Cisplatin-Induced Acute Kidney Injury in Mice via the Regulation of M2 Macrophage Activation. Toxins. 2020 09; 12(9):. doi: 10.3390/toxins12090574. [PMID: 32899913]
  • Li Li, Sufang Zhang, Lei Wei, Zhongfu Wang, Wei Ma, Fangying Liu, Yanhua Shen, Shanfang Zhang, Xiulian Zhang, Yu Hang, Yechang Qian. Anti-fibrotic effect of melittin on TRIM47 expression in human embryonic lung fibroblast through regulating TRIM47 pathway. Life sciences. 2020 Sep; 256(?):117893. doi: 10.1016/j.lfs.2020.117893. [PMID: 32502539]
  • Cheng Xu, Wendong Ma, Kang Wang, Kejie He, Zhonglan Chen, Jiaojiao Liu, Kai Yang, Bing Yuan. Correlation between Single-Molecule Dynamics and Biological Functions of Antimicrobial Peptide Melittin. The journal of physical chemistry letters. 2020 Jun; 11(12):4834-4841. doi: 10.1021/acs.jpclett.0c01169. [PMID: 32478521]
  • Aliasghar Sepehri, Leo PeBenito, Almudena Pino-Angeles, Themis Lazaridis. What Makes a Good Pore Former: A Study of Synthetic Melittin Derivatives. Biophysical journal. 2020 04; 118(8):1901-1913. doi: 10.1016/j.bpj.2020.02.024. [PMID: 32183940]
  • Zhixiong Deng, Xuemei Lu, Cheng Xu, Bing Yuan, Kai Yang. Lipid-specific interactions determine the organization and dynamics of membrane-active peptide melittin. Soft matter. 2020 Apr; 16(14):3498-3504. doi: 10.1039/d0sm00046a. [PMID: 32215386]
  • Zaizhi Gui, Jinchang Zhu, Song Ye, Juan Ye, Jiao Chen, Yuanyuan Ling, Xueting Cai, Peng Cao, Zhiyu He, Chunping Hu. Prolonged melittin release from polyelectrolyte-based nanocomplexes decreases acute toxicity and improves blood glycemic control in a mouse model of type II diabetes. International journal of pharmaceutics. 2020 Mar; 577(?):119071. doi: 10.1016/j.ijpharm.2020.119071. [PMID: 31991184]
  • Xiang Yu, Yanfeng Dai, Yifan Zhao, Shuhong Qi, Lei Liu, Lisen Lu, Qingming Luo, Zhihong Zhang. Melittin-lipid nanoparticles target to lymph nodes and elicit a systemic anti-tumor immune response. Nature communications. 2020 02; 11(1):1110. doi: 10.1038/s41467-020-14906-9. [PMID: 32111828]
  • Andrea Belluati, Viktoria Mikhalevich, Saziye Yorulmaz Avsar, Davy Daubian, Ioana Craciun, Mohamed Chami, Wolfgang P Meier, Cornelia G Palivan. How Do the Properties of Amphiphilic Polymer Membranes Influence the Functional Insertion of Peptide Pores?. Biomacromolecules. 2020 02; 21(2):701-715. doi: 10.1021/acs.biomac.9b01416. [PMID: 31855422]
  • E F Dudás, A Wacha, A Bóta, A Bodor. Peptide-bicelle interaction: Following variations in size and morphology by a combined NMR-SAXS approach. Biochimica et biophysica acta. Biomembranes. 2020 02; 1862(2):183095. doi: 10.1016/j.bbamem.2019.183095. [PMID: 31672542]
  • Thiru Sabapathy, Evelyne Deplazes, Ricardo L Mancera. Revisiting the Interaction of Melittin with Phospholipid Bilayers: The Effects of Concentration and Ionic Strength. International journal of molecular sciences. 2020 Jan; 21(3):. doi: 10.3390/ijms21030746. [PMID: 31979376]
  • Lei Fu, Mingwei Wan, Shan Zhang, Lianghui Gao, Weihai Fang. Polymyxin B Loosens Lipopolysaccharide Bilayer but Stiffens Phospholipid Bilayer. Biophysical journal. 2020 01; 118(1):138-150. doi: 10.1016/j.bpj.2019.11.008. [PMID: 31812355]
  • Shou-di He, Ning Tan, Chen-Xia Sun, Kang-Han Liao, Hui-Jun Zhu, Xiao-Guang Luo, Jie-Yao Zhang, De-Yu Li, Sheng-Guang Huang. Treatment with Melittin Induces Apoptosis and Autophagy of Fibroblastlike Synoviocytes in Patients with Rheumatoid Arthritis. Current pharmaceutical biotechnology. 2020; 21(8):734-740. doi: 10.2174/1389201021666191210110826. [PMID: 31820689]
  • Karla B Neves, Adam P Harvey, Fiona Moreton, Augusto C Montezano, Francisco J Rios, Rhéure Alves-Lopes, Aurelie Nguyen Dinh Cat, Paul Rocchicciolli, Christian Delles, Anne Joutel, Keith Muir, Rhian M Touyz. ER stress and Rho kinase activation underlie the vasculopathy of CADASIL. JCI insight. 2019 12; 4(23):. doi: 10.1172/jci.insight.131344. [PMID: 31647781]
  • Elnaz Mirtaheri, Ata Dolatmoradi, Bilal El-Zahab. Thermally Assisted Acoustofluidic Separation Based on Membrane Protein Content. Analytical chemistry. 2019 11; 91(21):13953-13961. doi: 10.1021/acs.analchem.9b03485. [PMID: 31590489]
  • Shan Zhang, Lei Fu, Mingwei Wan, Junjie Song, Lianghui Gao, Weihai Fang. Peripheral Antimicrobial Peptide Gomesin Induces Membrane Protrusion, Folding, and Laceration. Langmuir : the ACS journal of surfaces and colloids. 2019 10; 35(40):13233-13242. doi: 10.1021/acs.langmuir.9b02175. [PMID: 31510749]
  • Matteo Trande, Marco Pedretti, Maria Cristina Bonza, Adele Di Matteo, Mariapina D'Onofrio, Paola Dominici, Alessandra Astegno. Cation and peptide binding properties of CML7, a calmodulin-like protein from Arabidopsis thaliana. Journal of inorganic biochemistry. 2019 10; 199(?):110796. doi: 10.1016/j.jinorgbio.2019.110796. [PMID: 31419675]
  • Jaekyun Jeon, Kent R Thurber, Rodolfo Ghirlando, Wai-Ming Yau, Robert Tycko. Application of millisecond time-resolved solid state NMR to the kinetics and mechanism of melittin self-assembly. Proceedings of the National Academy of Sciences of the United States of America. 2019 08; 116(34):16717-16722. doi: 10.1073/pnas.1908006116. [PMID: 31387974]
  • Sara Pandidan, Adam Mechler. Nano-viscosimetry analysis of the membrane disrupting action of the bee venom peptide melittin. Scientific reports. 2019 07; 9(1):10841. doi: 10.1038/s41598-019-47325-y. [PMID: 31346251]
  • Lawrence R Walker, Elaine M Marzluff, Julia A Townsend, William C Resager, Michael T Marty. Native Mass Spectrometry of Antimicrobial Peptides in Lipid Nanodiscs Elucidates Complex Assembly. Analytical chemistry. 2019 07; 91(14):9284-9291. doi: 10.1021/acs.analchem.9b02261. [PMID: 31251560]
  • Yusuke Miyazaki, Susumu Okazaki, Wataru Shinoda. Free energy analysis of membrane pore formation process in the presence of multiple melittin peptides. Biochimica et biophysica acta. Biomembranes. 2019 07; 1861(7):1409-1419. doi: 10.1016/j.bbamem.2019.03.002. [PMID: 30885804]
  • Shubin Li, Xuejing Wang, Wei Mu, Xiaojun Han. Chemical Signal Communication between Two Protoorganelles in a Lipid-Based Artificial Cell. Analytical chemistry. 2019 05; 91(10):6859-6864. doi: 10.1021/acs.analchem.9b01128. [PMID: 31020837]
  • Jiajia Hong, Xuemei Lu, Zhixiong Deng, Shufeng Xiao, Bing Yuan, Kai Yang. How Melittin Inserts into Cell Membrane: Conformational Changes, Inter-Peptide Cooperation, and Disturbance on the Membrane. Molecules (Basel, Switzerland). 2019 May; 24(9):. doi: 10.3390/molecules24091775. [PMID: 31067828]
  • Hannah M Britt, Jackie A Mosely, John M Sanderson. The influence of cholesterol on melittin lipidation in neutral membranes. Physical chemistry chemical physics : PCCP. 2019 Jan; 21(2):631-640. doi: 10.1039/c8cp06661b. [PMID: 30540307]
  • Can Lyu, Fanfu Fang, Bai Li. Anti-Tumor Effects of Melittin and Its Potential Applications in Clinic. Current protein & peptide science. 2019; 20(3):240-250. doi: 10.2174/1389203719666180612084615. [PMID: 29895240]
  • Ying Shu, Yingying Yang, Yuliang Zhao, Liang Ma, Ping Fu, Tiantian Wei, Ling Zhang. Melittin Inducing the Apoptosis of Renal Tubule Epithelial Cells through Upregulation of Bax/Bcl-2 Expression and Activation of TNF-α Signaling Pathway. BioMed research international. 2019; 2019(?):9450368. doi: 10.1155/2019/9450368. [PMID: 31772938]
  • Yuan Lyu, Maya Fitriyanti, Ganesan Narsimhan. Nucleation and growth of pores in 1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC) / cholesterol bilayer by antimicrobial peptides melittin, its mutants and cecropin P1. Colloids and surfaces. B, Biointerfaces. 2019 Jan; 173(?):121-127. doi: 10.1016/j.colsurfb.2018.09.049. [PMID: 30278360]
  • Jiaojiao Liu, Shufeng Xiao, Jingliang Li, Bing Yuan, Kai Yang, Yuqiang Ma. Molecular details on the intermediate states of melittin action on a cell membrane. Biochimica et biophysica acta. Biomembranes. 2018 11; 1860(11):2234-2241. doi: 10.1016/j.bbamem.2018.09.007. [PMID: 30409519]
  • Chun-Jen Su, Ming-Tao Lee, Kuei-Fen Liao, Orion Shih, U-Ser Jeng. Interplay of entropy and enthalpy in peptide binding to zwitterionic phospholipid membranes as revealed from membrane thinning. Physical chemistry chemical physics : PCCP. 2018 Oct; 20(42):26830-26836. doi: 10.1039/c8cp02861c. [PMID: 30137074]
  • Yu Shi, Mingwei Wan, Lei Fu, Shan Zhang, Shiyuan Wang, Lianghui Gao, Weihai Fang. Peptide-Lipid Interaction Sites Affect Vesicles' Responses to Antimicrobial Peptides. Biophysical journal. 2018 10; 115(8):1518-1529. doi: 10.1016/j.bpj.2018.08.040. [PMID: 30268538]
  • Mariana Nogueira Batista, Paulo Ricardo da Silva Sanches, Bruno Moreira Carneiro, Ana Cláudia Silva Braga, Guilherme Rodrigues Fernandes Campos, Eduardo Maffud Cilli, Paula Rahal. GA-Hecate antiviral properties on HCV whole cycle represent a new antiviral class and open the door for the development of broad spectrum antivirals. Scientific reports. 2018 09; 8(1):14329. doi: 10.1038/s41598-018-32176-w. [PMID: 30254334]
  • Stephen J Fox, Rajamani Lakshminarayanan, Roger W Beuerman, Jianguo Li, Chandra S Verma. Conformational Transitions of Melittin between Aqueous and Lipid Phases: Comparison of Simulations with Experiments. The journal of physical chemistry. B. 2018 09; 122(37):8698-8705. doi: 10.1021/acs.jpcb.8b06781. [PMID: 30114909]
  • Arinder K Arora, Kendra N Pesko, Verónica Quintero-Hernández, Lourival D Possani, Thomas A Miller, Ravi V Durvasula. A paratransgenic strategy to block transmission of Xylella fastidiosa from the glassy-winged sharpshooter Homalodisca vitripennis. BMC biotechnology. 2018 08; 18(1):50. doi: 10.1186/s12896-018-0460-z. [PMID: 30134885]
  • Christopher M Crittenden, Lindsay J Morrison, Mignon D Fitzpatrick, Allison P Myers, Elisa T Novelli, Jake Rosenberg, Lucas D Akin, Vishnu Srinivasa, Jason B Shear, Jennifer S Brodbelt. Towards mapping electrostatic interactions between Kdo2-lipid A and cationic antimicrobial peptides via ultraviolet photodissociation mass spectrometry. The Analyst. 2018 Jul; 143(15):3607-3618. doi: 10.1039/c8an00652k. [PMID: 29968868]
  • Anna E Pittman, Brendan P Marsh, Gavin M King. Conformations and Dynamic Transitions of a Melittin Derivative That Forms Macromolecule-Sized Pores in Lipid Bilayers. Langmuir : the ACS journal of surfaces and colloids. 2018 07; 34(28):8393-8399. doi: 10.1021/acs.langmuir.8b00804. [PMID: 29933696]
  • Almudena Pino-Angeles, Themis Lazaridis. Effects of Peptide Charge, Orientation, and Concentration on Melittin Transmembrane Pores. Biophysical journal. 2018 06; 114(12):2865-2874. doi: 10.1016/j.bpj.2018.05.006. [PMID: 29925023]
  • Tânia Silva, Bárbara Claro, Bruno F B Silva, Nuno Vale, Paula Gomes, Maria Salomé Gomes, Sérgio S Funari, José Teixeira, Daniela Uhríková, Margarida Bastos. Unravelling a Mechanism of Action for a Cecropin A-Melittin Hybrid Antimicrobial Peptide: The Induced Formation of Multilamellar Lipid Stacks. Langmuir : the ACS journal of surfaces and colloids. 2018 02; 34(5):2158-2170. doi: 10.1021/acs.langmuir.7b03639. [PMID: 29304549]
  • Fabio A Facchini, Helena Coelho, Stefania E Sestito, Sandra Delgado, Alberto Minotti, David Andreu, Jesús Jiménez-Barbero, Francesco Peri. Co-administration of Antimicrobial Peptides Enhances Toll-like Receptor 4 Antagonist Activity of a Synthetic Glycolipid. ChemMedChem. 2018 02; 13(3):280-287. doi: 10.1002/cmdc.201700694. [PMID: 29265636]
  • Xi Yu, Xingchun Gou, Peng Wu, Liang Han, Daofeng Tian, Fengyi Du, Zeming Chen, Fuyao Liu, Gang Deng, Ann T Chen, Chao Ma, Jun Liu, Sara M Hashmi, Xing Guo, Xiaolong Wang, Haitian Zhao, Xinran Liu, Xudong Zhu, Kevin Sheth, Qianxue Chen, Louzhen Fan, Jiangbing Zhou. Activatable Protein Nanoparticles for Targeted Delivery of Therapeutic Peptides. Advanced materials (Deerfield Beach, Fla.). 2018 Feb; 30(7):. doi: 10.1002/adma.201705383. [PMID: 29315863]
  • Zhilin Yang, Heejun Choi, James C Weisshaar. Melittin-Induced Permeabilization, Re-sealing, and Re-permeabilization of E. coli Membranes. Biophysical journal. 2018 01; 114(2):368-379. doi: 10.1016/j.bpj.2017.10.046. [PMID: 29401434]
  • Marc-Antoine Sani, Frances Separovic. Antimicrobial Peptide Structures: From Model Membranes to Live Cells. Chemistry (Weinheim an der Bergstrasse, Germany). 2018 Jan; 24(2):286-291. doi: 10.1002/chem.201704362. [PMID: 29068097]
  • Marjan Hematyar, Majid Soleimani, Ali Es-Haghi, Ali Rezaei Mokarram. Synergistic co-delivery of doxorubicin and melittin using functionalized magnetic nanoparticles for cancer treatment: loading and in vitro release study by LC-MS/MS. Artificial cells, nanomedicine, and biotechnology. 2018; 46(sup3):S1226-S1235. doi: 10.1080/21691401.2018.1536063. [PMID: 30450981]
  • Zidan Jin, Jie Yao, Nianlin Xie, Libo Cai, Shuai Qi, Zhan Zhang, Bai Li. Melittin Constrains the Expression of Identified Key Genes Associated with Bladder Cancer. Journal of immunology research. 2018; 2018(?):5038172. doi: 10.1155/2018/5038172. [PMID: 29854840]
  • Aziz Fennouri, Simon Finn Mayer, Thomas B H Schroeder, Michael Mayer. Single channel planar lipid bilayer recordings of the melittin variant MelP5. Biochimica et biophysica acta. Biomembranes. 2017 Oct; 1859(10):2051-2057. doi: 10.1016/j.bbamem.2017.07.005. [PMID: 28720433]
  • Sara Ahlgren, Karin Reijmar, Katarina Edwards. Targeting lipodisks enable selective delivery of anticancer peptides to tumor cells. Nanomedicine : nanotechnology, biology, and medicine. 2017 Oct; 13(7):2325-2328. doi: 10.1016/j.nano.2017.06.020. [PMID: 28712916]
  • Su-Fang Zhang, Zhe Chen. Melittin exerts an antitumor effect on non‑small cell lung cancer cells. Molecular medicine reports. 2017 Sep; 16(3):3581-3586. doi: 10.3892/mmr.2017.6970. [PMID: 28713976]
  • Fátima Martín-Sánchez, Juan José Martínez-García, María Muñoz-García, Miriam Martínez-Villanueva, José A Noguera-Velasco, David Andreu, Luís Rivas, Pablo Pelegrín. Lytic cell death induced by melittin bypasses pyroptosis but induces NLRP3 inflammasome activation and IL-1β release. Cell death & disease. 2017 08; 8(8):e2984. doi: 10.1038/cddis.2017.390. [PMID: 28796264]
  • Xinjing Wang, Jing Xie, Xiongxiong Lu, Hongzhe Li, Chenlei Wen, Zhen Huo, Junjie Xie, Minmin Shi, Xiaomei Tang, Hao Chen, Chenghong Peng, Yuan Fang, Xiaxing Deng, Baiyong Shen. Melittin inhibits tumor growth and decreases resistance to gemcitabine by downregulating cholesterol pathway gene CLU in pancreatic ductal adenocarcinoma. Cancer letters. 2017 07; 399(?):1-9. doi: 10.1016/j.canlet.2017.04.012. [PMID: 28428074]