Eriocitrin (BioDeep_00000270211)
Main id: BioDeep_00000000285
natural product PANOMIX_OTCML-2023 Volatile Flavor Compounds
代谢物信息卡片
化学式: C27H32O15 (596.1741122)
中文名称: 圣草次甙, 圣草次苷
谱图信息:
最多检出来源 Viridiplantae(plant) 25%
分子结构信息
SMILES: C1(O[C@H]2[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO[C@H]3[C@H](O)[C@H](O)[C@@H](O)[C@H](C)O3)O2)=CC2OC(C3C=C(O)C(O)=CC=3)CC(=O)C=2C(O)=C1
InChI: InChI=1S/C27H32O15/c1-9-20(32)22(34)24(36)26(39-9)38-8-18-21(33)23(35)25(37)27(42-18)40-11-5-14(30)19-15(31)7-16(41-17(19)6-11)10-2-3-12(28)13(29)4-10/h2-6,9,16,18,20-30,32-37H,7-8H2,1H3/t9-,16-,18+,20-,21+,22+,23-,24+,25+,26+,27+/m0/s1
描述信息
Eriocitrin is a disaccharide derivative that consists of eriodictyol substituted by a 6-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as an antioxidant. It is a disaccharide derivative, a member of 3-hydroxyflavanones, a trihydroxyflavanone, a flavanone glycoside, a member of 4-hydroxyflavanones and a rutinoside. It is functionally related to an eriodictyol.
Eriocitrin is a natural product found in Cyclopia subternata, Citrus latipes, and other organisms with data available.
A disaccharide derivative that consists of eriodictyol substituted by a 6-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage.
Eriocitrin is a flavonoid isolated from lemon, which is a strong antioxidant agent. Eriocitrin could inhibit the proliferation of hepatocellular carcinoma cell lines by arresting cell cycle in S phase through up-regulation of p53, cyclin A, cyclin D3 and CDK6. Eriocitrin triggers apoptosis by activating mitochondria-involved intrinsic signaling pathway[1].
Eriocitrin is a flavonoid isolated from lemon, which is a strong antioxidant agent. Eriocitrin could inhibit the proliferation of hepatocellular carcinoma cell lines by arresting cell cycle in S phase through up-regulation of p53, cyclin A, cyclin D3 and CDK6. Eriocitrin triggers apoptosis by activating mitochondria-involved intrinsic signaling pathway[1].
同义名列表
37 个代谢物同义名
(S)-2-(3,4-dihydroxyphenyl)-5-hydroxy-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)chroman-4-one; (2S)-2-(3,4-dihydroxyphenyl)-5-hydroxy-7-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-({[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-3,4-dihydro-2H-1-benzopyran-4-one; (2S)-2-(3,4-dihydroxyphenyl)-5-hydroxy-7-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-oxan-2-yl]oxymethyl]oxan-2-yl]oxy-chroman-4-one; 4H-1-Benzopyran-4-one, 7-[[6-O-(6-deoxy-.alpha.-L-mannopyranosyl)-.beta.-D-glucopyranosyl]oxy]-2-(3,4-dihydroxyphenyl)-2,3-dihydro-5-hydroxy-, (2S)-; 4H-1-Benzopyran-4-one, 7-((6-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranosyl)oxy)-2-(3,4-dihydroxyphenyl)-2,3-dihydro-5-hydroxy-, (S)-; (S)-7-((6-O-(6-Deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranosyl)oxy)-2-(3,4-dihydroxyphenyl)-2,3-dihydro-5-hydroxy-4H-benzopyran-4-one; 4H-1-Benzopyran-4-one,7-[[6-O-(6-deoxy-a-L-mannopyranosyl)-b-D-glucopyranosyl]oxy]-2-(3,4-dihydroxyphenyl)-2,3-dihydro-5-hydroxy-, (2S)-; (2S)-2-(3,4-dihydroxyphenyl)-5-hydroxy-4-oxo-3,4-dihydro-2H-chromen-7-yl 6-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranoside; Flavanone, 3,4,5,7-tetrahydroxy-, 7-(6-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranoside); (S)-3,4,5,7-Tetrahydroxyflavanone-7-[6-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranoside]; Glucopyranoside, eriodictyol-7 6-O-(6-deoxy-alpha-L-mannopyranosyl)-, beta-D-; Eriocitrin, primary pharmaceutical reference standard; eriodictyol 7-O-beta-rutinoside; Eriocitrin, analytical standard; Eriocitrin, >=98.0\\% (HPLC); OMQADRGFMLGFJF-MNPJBKLOSA-N; Eriodictyol 7-O-rutinoside; Eriodictyol-7-O-rutinoside; eriodictyol 7-rutinoside; Eriodictyol glycoside; ERIOCITRIN [WHO-DD]; Eriodictioside; Eriocitrin; (2S)-2-(3,4-dihydroxyphenyl)-5-hydroxy-7-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-2-tetrahydropyranyl]oxymethyl]-2-tetrahydropyranyl]oxy]-4-chromanone; (2S)-2-(3,4-dihydroxyphenyl)-5-hydroxy-7-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-tetrahydropyran-2-yl]oxymethyl]tetrahydropyran-2-yl]oxy-chroman-4-one; (2S)-2-(3,4-dihydroxyphenyl)-5-hydroxy-7-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxymethyl]oxan-2-yl]oxychroman-4-one; EINECS 236-668-7; NCGC00163549-01; 45714_FLUKA; CHEBI:28709; 52389-55-6; 32737-63-6; 13463-28-0; C09732; CID 13872461; (S) -7- [ [ 6-O- (6-Deoxy-alpha-L-mannopyranosyl) -beta-D-glucopyranosyl ] oxy ] -2alpha- (3,4-dihydroxyphenyl) -2,3-dihydro-5-hydroxy-4H-1-benzopyran-4-one; Eriocitrin
数据库引用编号
47 个数据库交叉引用编号
- ChEBI: CHEBI:28709
- KEGG: C09732
- PubChem: 53486247
- PubChem: 83489
- PubChem: 13872461
- ChEMBL: CHEMBL2165586
- Wikipedia: Eriocitrin
- LipidMAPS: LMPK12140366
- MeSH: eriocitrin
- ChemIDplus: 0013463280
- KNApSAcK: C00008295
- chemspider: 2801953
- CAS: 13463-28-0
- CAS: 610283-69-7
- MoNA: VF-NPL-QTOF007628
- MoNA: VF-NPL-QTOF007627
- MoNA: VF-NPL-QTOF007626
- MoNA: VF-NPL-QTOF007625
- MoNA: VF-NPL-QTOF007624
- MoNA: VF-NPL-QTOF007623
- MoNA: VF-NPL-QTOF007622
- MoNA: VF-NPL-QTOF007621
- MoNA: VF-NPL-LTQ003188
- MoNA: VF-NPL-LTQ003187
- MoNA: VF-NPL-QEHF012081
- MoNA: VF-NPL-QEHF012080
- MoNA: VF-NPL-QEHF012079
- MoNA: VF-NPL-QEHF012078
- MoNA: VF-NPL-QEHF012077
- MoNA: VF-NPL-QEHF012076
- MoNA: VF-NPL-QEHF012075
- MoNA: VF-NPL-QEHF012074
- MoNA: VF-NPL-QEHF012073
- MoNA: VF-NPL-QEHF012072
- MoNA: VF-NPL-QEHF012071
- MoNA: VF-NPL-QEHF012070
- MoNA: PM007416
- MoNA: PM009104
- MoNA: PM000317
- medchemexpress: HY-N0636
- Flavonoid: FL2FACGS0008
- MetaboLights: MTBLC28709
- PubChem: 11920
- 3DMET: B03231
- NIKKAJI: J317.894C
- LOTUS: LTS0210425
- KNApSAcK: 28709
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
0 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
86 个相关的物种来源信息
- 136840 - Basiliolidae: LTS0210425
- 7568 - Brachiopoda: LTS0210425
- 2706 - Citrus: 10.1080/00021369.1979.10863651
- 2706 - Citrus: LTS0210425
- 159033 - Citrus aurantiifolia: 10.1016/0031-9422(93)85237-L
- 159033 - Citrus aurantiifolia: 10.1021/JF00037A011
- 43166 - Citrus aurantium: 10.1016/0031-9422(93)85237-L
- 43166 - Citrus aurantium: 10.1021/JF00037A011
- 43166 - Citrus aurantium: 10.1021/JF0400967
- 558547 - Citrus deliciosa:
- 170989 - Citrus hystrix: 10.1016/0305-1978(95)00109-3
- 170989 - Citrus hystrix: LTS0210425
- 64884 - Citrus jambhiri: 10.1016/0031-9422(93)85237-L
- 64884 - Citrus jambhiri: LTS0210425
- 135197 - Citrus junos: 10.1016/0305-1978(95)00109-3
- 135197 - Citrus junos: 10.1016/J.FOODCHEM.2014.10.010
- 135197 - Citrus junos: LTS0210425
- 170988 - Citrus latipes: 10.1016/0305-1978(95)00109-3
- 170988 - Citrus latipes: LTS0210425
- 2708 - Citrus limon: 10.1016/0021-9673(95)00676-1
- 2708 - Citrus limon: 10.1016/0031-9422(89)80118-9
- 2708 - Citrus limon: 10.1016/0031-9422(93)85237-L
- 2708 - Citrus limon: 10.1016/S0308-8146(02)00102-4
- 2708 - Citrus limon: 10.1021/JF00037A011
- 2708 - Citrus limon: 10.1021/JF0304775
- 171249 - Citrus limonia: LTS0210425
- 481548 - Citrus longispina: 10.1016/0031-9422(93)85237-L
- 481548 - Citrus longispina: LTS0210425
- 307630 - Citrus macrophylla: 10.1016/0305-1978(95)00109-3
- 307630 - Citrus macrophylla: LTS0210425
- 37334 - Citrus maxima: 10.1016/0031-9422(93)85237-L
- 37334 - Citrus maxima: LTS0210425
- 171251 - Citrus medica:
- 171251 - Citrus medica: 10.1016/0031-9422(93)85237-L
- 171251 - Citrus medica: 10.1021/NP060217S
- 171251 - Citrus medica: LTS0210425
- 85571 - Citrus reticulata:
- 85571 - Citrus reticulata: 10.1016/0021-9673(94)89051-X
- 85571 - Citrus reticulata: 10.1016/0031-9422(93)85237-L
- 85571 - Citrus reticulata: LTS0210425
- 2711 - Citrus sinensis: 10.1016/0031-9422(93)85237-L
- 2711 - Citrus sinensis: 10.1016/S0021-9673(00)00256-9
- 2711 - Citrus sinensis: 10.1021/JF00037A011
- 2711 - Citrus sinensis: 10.1021/JF0400967
- 2711 - Citrus sinensis: LTS0210425
- 2711 - Citrus sinensis Osbeck: -
- 558546 - Citrus sudachi: 10.1021/NP060217S
- 558546 - Citrus sudachi: LTS0210425
- 237573 - Citrus sulcata: 10.1016/0031-9422(93)85237-L
- 237573 - Citrus sulcata: LTS0210425
- 55188 - Citrus unshiu: 10.1016/0021-9673(94)89051-X
- 55188 - Citrus unshiu: LTS0210425
- 475932 - Citrus wilsonii: 10.1016/J.FOODCHEM.2014.10.010
- 475932 - Citrus wilsonii: LTS0210425
- 37656 - Citrus × paradisi: 10.1016/0031-9422(93)85237-L
- 37656 - Citrus × paradisi: 10.1021/JF00037A011
- 37656 - Citrus × paradisi: 10.1021/JF0400967
- 70072 - Cyclopia: LTS0210425
- 337839 - Cyclopia falcata: 10.1021/JF040097Z
- 337839 - Cyclopia falcata: LTS0210425
- 155109 - Cyclopia subternata: 10.1021/JF040097Z
- 155109 - Cyclopia subternata: LTS0210425
- 2759 - Eukaryota: LTS0210425
- 3803 - Fabaceae: LTS0210425
- 4136 - Lamiaceae: LTS0210425
- 260602 - Lycopus: LTS0210425
- 260603 - Lycopus europaeus: 10.1055/S-2006-958151
- 260603 - Lycopus europaeus: LTS0210425
- 3398 - Magnoliopsida: LTS0210425
- 21819 - Mentha: LTS0210425
- 34256 - Mentha × piperita: 10.1021/JF00039A015
- 34256 - Mentha × piperita: 10.1248/BPB.25.256
- 33208 - Metazoa: LTS0210425
- 33090 - Plants: -
- 115371 - Rhynchonellata: LTS0210425
- 23513 - Rutaceae: LTS0210425
- 21880 - Salvia: 10.1021/JF040078P
- 49986 - Satureja: LTS0210425
- 49988 - Satureja montana: 10.1021/NP50037A025
- 49988 - Satureja montana: LTS0210425
- 35493 - Streptophyta: LTS0210425
- 58023 - Tracheophyta: LTS0210425
- 33090 - Viridiplantae: LTS0210425
- 33090 - 枳实: -
- 33090 - 薄荷: -
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Mahesha Gangadhariah, Triveni Pardhi, Jahnavi Ravilla, Subhash Chandra, Sridevi Annapurna Singh. Citrus nutraceutical eriocitrin and its metabolites are partial agonists of peroxisome proliferator-activated receptor gamma (PPARγ): a molecular docking and molecular dynamics study.
Journal of biomolecular structure & dynamics.
2022 Dec; ?(?):1-21. doi:
10.1080/07391102.2022.2162127
. [PMID: 36576222] - Takahito Takase, Satoshi Ikeuchi, Takashi Inoue, Rie Mukai. Eriocitrin Contained in Lemon Peel Ameliorates Disuse Muscle Atrophy by Suppressing the Expression of Atrogin-1 and MuRF-1 in Denervated Mice.
Journal of natural products.
2021 07; 84(7):2048-2052. doi:
10.1021/acs.jnatprod.1c00271
. [PMID: 34189920] - Paula S Ferreira, John A Manthey, Marina S Nery, Thais B Cesar. Pharmacokinetics and Biodistribution of Eriocitrin in Rats.
Journal of agricultural and food chemistry.
2021 Feb; 69(6):1796-1805. doi:
10.1021/acs.jafc.0c04553
. [PMID: 33533607] - Eun-Young Kwon, Myung-Sook Choi. Eriocitrin Improves Adiposity and Related Metabolic Disorders in High-Fat Diet-Induced Obese Mice.
Journal of medicinal food.
2020 Mar; 23(3):233-241. doi:
10.1089/jmf.2019.4638
. [PMID: 32191577] - P S Ferreira, J A Manthey, M S Nery, L C Spolidorio, T B Cesar. Low doses of eriocitrin attenuate metabolic impairment of glucose and lipids in ongoing obesogenic diet in mice.
Journal of nutritional science.
2020; 9(?):e59. doi:
10.1017/jns.2020.52
. [PMID: 33489104] - Jia Wan, Yaoyu Feng, Lingjuan Du, Vishnu Priya Veeraraghavan, Surapaneni Krishna Mohan, Shikui Guo. Antiatherosclerotic Activity of Eriocitrin in High-Fat-Diet-Induced Atherosclerosis Model Rats.
Journal of environmental pathology, toxicology and oncology : official organ of the International Society for Environmental Toxicology and Cancer.
2020; 39(1):61-75. doi:
10.1615/jenvironpatholtoxicoloncol.2020031478
. [PMID: 32479013] - Qing Wang, Liqiong Zhang, Meifang Huang, Yuanyuan Zheng, Kai Zheng. Immunomodulatory Effect of Eriocitrin in Experimental Animals with Benzo(a)Pyrene-induced Lung Carcinogenesis.
Journal of environmental pathology, toxicology and oncology : official organ of the International Society for Environmental Toxicology and Cancer.
2020; 39(2):137-147. doi:
10.1615/jenvironpatholtoxicoloncol.2020031953
. [PMID: 32749123] - Gang Guo, Wen Shi, Feiyu Shi, Wenqing Gong, Fanni Li, Guangju Zhou, Junjun She. Anti-inflammatory effects of eriocitrin against the dextran sulfate sodium-induced experimental colitis in murine model.
Journal of biochemical and molecular toxicology.
2019 Nov; 33(11):e22400. doi:
10.1002/jbt.22400
. [PMID: 31593355] - Xiangyu Cao, Zhijun Yang, Yonglin He, Ying Xia, Yin He, Jianli Liu. Multispectroscopic exploration and molecular docking analysis on interaction of eriocitrin with bovine serum albumin.
Journal of molecular recognition : JMR.
2019 07; 32(7):e2779. doi:
10.1002/jmr.2779
. [PMID: 30701606] - Carolina B Ribeiro, Fernanda M Ramos, John A Manthey, Thais B Cesar. Effectiveness of Eriomin® in managing hyperglycemia and reversal of prediabetes condition: A double-blind, randomized, controlled study.
Phytotherapy research : PTR.
2019 Jul; 33(7):1921-1933. doi:
10.1002/ptr.6386
. [PMID: 31183921] - Antonella Smeriglio, Laura Cornara, Marcella Denaro, Davide Barreca, Bruno Burlando, Jianbo Xiao, Domenico Trombetta. Antioxidant and cytoprotective activities of an ancient Mediterranean citrus (Citrus lumia Risso) albedo extract: Microscopic observations and polyphenol characterization.
Food chemistry.
2019 May; 279(?):347-355. doi:
10.1016/j.foodchem.2018.11.138
. [PMID: 30611500] - Elina Karhu, Janne Isojärvi, Pia Vuorela, Leena Hanski, Adyary Fallarero. Identification of Privileged Antichlamydial Natural Products by a Ligand-Based Strategy.
Journal of natural products.
2017 10; 80(10):2602-2608. doi:
10.1021/acs.jnatprod.6b01052
. [PMID: 29043803] - Paula S Ferreira, Luis C Spolidorio, John A Manthey, Thais B Cesar. Citrus flavanones prevent systemic inflammation and ameliorate oxidative stress in C57BL/6J mice fed high-fat diet.
Food & function.
2016 Jun; 7(6):2675-81. doi:
10.1039/c5fo01541c
. [PMID: 27182608] - Masanori Hiramitsu, Yasuhito Shimada, Junya Kuroyanagi, Takashi Inoue, Takao Katagiri, Liqing Zang, Yuhei Nishimura, Norihiro Nishimura, Toshio Tanaka. Eriocitrin ameliorates diet-induced hepatic steatosis with activation of mitochondrial biogenesis.
Scientific reports.
2014 Jan; 4(?):3708. doi:
10.1038/srep03708
. [PMID: 24424211] - Ken-ichiro Minato, Yoshiaki Miyake. Hexanoyl-lysine as an oxidative-injured marker - application of development of functional food.
Sub-cellular biochemistry.
2014; 77(?):163-74. doi:
10.1007/978-94-007-7920-4_14
. [PMID: 24374927] - M T Monforte, F Lanuzza, S Pergolizzi, F Mondello, O Tzakou, E M Galati. Protective effect of Calamintha officinalis Moench leaves against alcohol-induced gastric mucosa injury in rats. Macroscopic, histologic and phytochemical analysis.
Phytotherapy research : PTR.
2012 Jun; 26(6):839-44. doi:
10.1002/ptr.3647
. [PMID: 22076933] - Roman Huber, Florian Conrad Stintzing, Daniel Briemle, Christiane Beckmann, Ulrich Meyer, Carsten Gründemann. In vitro antiallergic effects of aqueous fermented preparations from Citrus and Cydonia fruits.
Planta medica.
2012 Mar; 78(4):334-40. doi:
10.1055/s-0031-1280455
. [PMID: 22193979] - Leon I C Tang, Anna P K Ling, Rhun Y Koh, Soi M Chye, Kenny G L Voon. Screening of anti-dengue activity in methanolic extracts of medicinal plants.
BMC complementary and alternative medicine.
2012 Jan; 12(?):3. doi:
10.1186/1472-6882-12-3
. [PMID: 22244370] - Xiaozhong Shan, Junlai Zhou, Tao Ma, Qiongxia Chai. Lycium barbarum polysaccharides reduce exercise-induced oxidative stress.
International journal of molecular sciences.
2011 Feb; 12(2):1081-8. doi:
10.3390/ijms12021081
. [PMID: 21541044] - Yuliya Dolzhenko, Cinzia M Bertea, Andrea Occhipinti, Simone Bossi, Massimo E Maffei. UV-B modulates the interplay between terpenoids and flavonoids in peppermint (Mentha x piperita L.).
Journal of photochemistry and photobiology. B, Biology.
2010 Aug; 100(2):67-75. doi:
10.1016/j.jphotobiol.2010.05.003
. [PMID: 20627615] - Elizabeth Joubert, Marena Manley, Christina Maicu, Dalene de Beer. Effect of pre-drying treatments and storage on color and phenolic composition of green honeybush (Cyclopia subternata) herbal tea.
Journal of agricultural and food chemistry.
2010 Jan; 58(1):338-44. doi:
10.1021/jf902754b
. [PMID: 19916502] - Adam Kokotkiewicz, Malgorzata Wnuk, Adam Bucinski, Maria Luczkiewicz. In vitro cultures of Cyclopia plants (honeybush) as a source of bioactive xanthones and flavanones.
Zeitschrift fur Naturforschung. C, Journal of biosciences.
2009 Jul; 64(7-8):533-40. doi:
10.1515/znc-2009-7-812
. [PMID: 19791506] - Elizabeth Joubert, Wentzel C A Gelderblom, Dalene De Beer. Phenolic contribution of South African herbal teas to a healthy diet.
Natural product communications.
2009 May; 4(5):701-18. doi:
. [PMID: 19445319]
- H J Damien Dorman, Müberra Koşar, K Hüsnü C Başer, Raimo Hiltunen. Phenolic profile and antioxidant evaluation of Mentha x piperita L. (peppermint) extracts.
Natural product communications.
2009 Apr; 4(4):535-42. doi:
. [PMID: 19476001]
- Yoshiko Fukuchi, Masanori Hiramitsu, Miki Okada, Sanae Hayashi, Yuka Nabeno, Toshihiko Osawa, Michitaka Naito. Lemon Polyphenols Suppress Diet-induced Obesity by Up-Regulation of mRNA Levels of the Enzymes Involved in beta-Oxidation in Mouse White Adipose Tissue.
Journal of clinical biochemistry and nutrition.
2008 Nov; 43(3):201-9. doi:
10.3164/jcbn.2008066
. [PMID: 19015756] - Izabela Fecka, Sebastian Turek. Determination of water-soluble polyphenolic compounds in commercial herbal teas from Lamiaceae: peppermint, melissa, and sage.
Journal of agricultural and food chemistry.
2007 Dec; 55(26):10908-17. doi:
10.1021/jf072284d
. [PMID: 18052102] - Mohammed Touhami, Amine Laroubi, Khadija Elhabazi, Farouk Loubna, Ibtissam Zrara, Younes Eljahiri, Abdelkhalek Oussama, Félix Grases, Abderrahman Chait. Lemon juice has protective activity in a rat urolithiasis model.
BMC urology.
2007 Oct; 7(?):18. doi:
10.1186/1471-2490-7-18
. [PMID: 17919315] - Tea Kulisić, Anita Krisko, Verica Dragović-Uzelac, Mladen Milos, Greta Pifat. The effects of essential oils and aqueous tea infusions of oregano (Origanum vulgare L. spp. hirtum), thyme (Thymus vulgaris L.) and wild thyme (Thymus serpyllum L.) on the copper-induced oxidation of human low-density lipoproteins.
International journal of food sciences and nutrition.
2007 Mar; 58(2):87-93. doi:
10.1080/09637480601108307
. [PMID: 17469764] - Mitja Krizman, Dea Baricevic, Mirko Prosek. Determination of phenolic compounds in fennel by HPLC and HPLC-MS using a monolithic reversed-phase column.
Journal of pharmaceutical and biomedical analysis.
2007 Jan; 43(2):481-5. doi:
10.1016/j.jpba.2006.07.029
. [PMID: 16930913] - Diane L McKay, Jeffrey B Blumberg. A review of the bioactivity and potential health benefits of peppermint tea (Mentha piperita L.).
Phytotherapy research : PTR.
2006 Aug; 20(8):619-33. doi:
10.1002/ptr.1936
. [PMID: 16767798] - Yoshiaki Miyake, Chika Sakurai, Mika Usuda, Syuichi Fukumoto, Masanori Hiramitsu, Kazuhiro Sakaida, Toshihiko Osawa, Kazuo Kondo. Difference in plasma metabolite concentration after ingestion of lemon flavonoids and their aglycones in humans.
Journal of nutritional science and vitaminology.
2006 Feb; 52(1):54-60. doi:
10.3177/jnsv.52.54
. [PMID: 16637230] - Zbigniew Sroka, Izabela Fecka, Wojciech Cisowski. Antiradical and anti-H2O2 properties of polyphenolic compounds from an aqueous peppermint extract.
Zeitschrift fur Naturforschung. C, Journal of biosciences.
2005 Nov; 60(11-12):826-32. doi:
10.1515/znc-2005-11-1203
. [PMID: 16402541] - B Irene Kamara, D Jacobus Brand, E Vincent Brandt, Elizabeth Joubert. Phenolic metabolites from honeybush tea (Cyclopia subternata).
Journal of agricultural and food chemistry.
2004 Aug; 52(17):5391-5. doi:
10.1021/jf040097z
. [PMID: 15315375] - María José del Baño, Juan Lorente, Julián Castillo, Obdulio Benavente-García, María Piedad Marín, José Antonio Del Río, Ana Ortuño, Isidro Ibarra. Flavonoid distribution during the development of leaves, flowers, stems, and roots of Rosmarinus officinalis. postulation of a biosynthetic pathway.
Journal of agricultural and food chemistry.
2004 Aug; 52(16):4987-92. doi:
10.1021/jf040078p
. [PMID: 15291464] - Angel Gil-Izquierdo, María T Riquelme, Ignacio Porras, Federico Ferreres. Effect of the rootstock and interstock grafted in lemon tree (Citrus limon (L.) Burm.) on the flavonoid content of lemon juice.
Journal of agricultural and food chemistry.
2004 Jan; 52(2):324-31. doi:
10.1021/jf0304775
. [PMID: 14733516] - Ken-ichiro Minato, Yoshiaki Miyake, Syuichi Fukumoto, Kanefumi Yamamoto, Yoji Kato, Yoshiharu Shimomura, Toshihiko Osawa. Lemon flavonoid, eriocitrin, suppresses exercise-induced oxidative damage in rat liver.
Life sciences.
2003 Feb; 72(14):1609-16. doi:
10.1016/s0024-3205(02)02443-8
. [PMID: 12551749] - Y Kato, Y Miyake, K Yamamoto, Y Shimomura, H Ochi, Y Mori, T Osawa. Preparation of a monoclonal antibody to N(epsilon)-(Hexanonyl)lysine: application to the evaluation of protective effects of flavonoid supplementation against exercise-induced oxidative stress in rat skeletal muscle.
Biochemical and biophysical research communications.
2000 Aug; 274(2):389-93. doi:
10.1006/bbrc.2000.3150
. [PMID: 10913348] - Y Miyake, K Shimoi, S Kumazawa, K Yamamoto, N Kinae, T Osawa. Identification and antioxidant activity of flavonoid metabolites in plasma and urine of eriocitrin-treated rats.
Journal of agricultural and food chemistry.
2000 Aug; 48(8):3217-24. doi:
10.1021/jf990994g
. [PMID: 10956094] - Y Miyake, K Yamamoto, N Tsujihara, T Osawa. Protective effects of lemon flavonoids on oxidative stress in diabetic rats.
Lipids.
1998 Jul; 33(7):689-95. doi:
10.1007/s11745-998-0258-y
. [PMID: 9688172]