Nafenopin (BioDeep_00000008630)

 

Secondary id: BioDeep_00000858754

human metabolite blood metabolite


代谢物信息卡片


2-methyl-2-[4-(1,2,3,4-tetrahydronaphthalen-1-yl)phenoxy]propanoic acid

化学式: C20H22O3 (310.1569)
中文名称: 萘酚平
谱图信息: 最多检出来源 Homo sapiens(blood) 87.29%

分子结构信息

SMILES: CC(C)(C(=O)O)OC1=CC=C(C=C1)C2CCCC3=CC=CC=C23
InChI: InChI=1S/C20H22O3/c1-20(2,19(21)22)23-16-12-10-15(11-13-16)18-9-5-7-14-6-3-4-8-17(14)18/h3-4,6,8,10-13,18H,5,7,9H2,1-2H3,(H,21,22)

描述信息

C78276 - Agent Affecting Digestive System or Metabolism > C29711 - Anti-diabetic Agent > C154291 - Peroxisome Proliferator-Activated Receptor Agonist
C78276 - Agent Affecting Digestive System or Metabolism > C29703 - Antilipidemic Agent > C98150 - Fibrate Antilipidemic Agent
D009676 - Noxae > D002273 - Carcinogens > D020025 - Peroxisome Proliferators
D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents
D009676 - Noxae > D000963 - Antimetabolites
Same as: D05102

同义名列表

8 个代谢物同义名

2-methyl-2-[4-(1,2,3,4-tetrahydronaphthalen-1-yl)phenoxy]propanoic acid; 2-Methyl-2-[4-(1,2,3,4-tetrahydronaphthalen-1-yl)phenoxy]propanoate; SU-13437nafenopin; Acid, nafenoic; Nafenoic acid; Nafenopin; Melipan; Nafenopin



数据库引用编号

13 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 6 ALB, CAT, CDK4, HPGDS, MYC, RXRA
Peripheral membrane protein 1 CRAT
Endoplasmic reticulum membrane 1 HSP90B1
Nucleus 8 ADK, ALB, CDK4, HSP90B1, JUN, MYC, PPARA, RXRA
cytosol 9 ADK, ALB, CAT, CDK4, CRAT, HPGDS, HSP90B1, PRKCQ, RXRA
centrosome 1 ALB
nucleoplasm 7 ADK, CDK4, HPGDS, JUN, MYC, PPARA, RXRA
RNA polymerase II transcription regulator complex 2 JUN, RXRA
Cell membrane 2 TNF, TNFRSF1A
Golgi apparatus membrane 1 TNFRSF1A
cell surface 2 TNF, TNFRSF1A
Golgi apparatus 1 ALB
Golgi membrane 2 INS, TNFRSF1A
lysosomal membrane 1 EGF
mitochondrial inner membrane 2 ATP5ME, CRAT
neuronal cell body 1 TNF
smooth endoplasmic reticulum 1 HSP90B1
plasma membrane 6 ADK, EGF, GCG, PRKCQ, TNF, TNFRSF1A
Membrane 6 CAT, EGF, HGF, HSP90B1, MYC, TNFRSF1A
extracellular exosome 4 ALB, CAT, EGF, HSP90B1
endoplasmic reticulum 3 ALB, CRAT, HSP90B1
extracellular space 7 ALB, EGF, GCG, HGF, INS, TNF, TNFRSF1A
perinuclear region of cytoplasm 1 HSP90B1
bicellular tight junction 1 CDK4
mitochondrion 4 ATP5ME, CAT, CRAT, RXRA
protein-containing complex 4 ALB, CAT, HSP90B1, MYC
intracellular membrane-bounded organelle 2 CAT, HPGDS
Single-pass type I membrane protein 1 TNFRSF1A
Secreted 4 ALB, GCG, INS, TNFRSF1A
extracellular region 9 ALB, CAT, EGF, GCG, HGF, HSP90B1, INS, TNF, TNFRSF1A
mitochondrial matrix 1 CAT
anchoring junction 1 ALB
transcription regulator complex 3 CDK4, JUN, RXRA
centriolar satellite 1 PRKCQ
Nucleus membrane 1 CDK4
nuclear membrane 1 CDK4
external side of plasma membrane 1 TNF
nucleolus 2 CDK4, MYC
midbody 1 HSP90B1
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
Mitochondrion inner membrane 1 CRAT
Matrix side 1 CRAT
Membrane raft 2 TNF, TNFRSF1A
focal adhesion 2 CAT, HSP90B1
Peroxisome 2 CAT, CRAT
Peroxisome matrix 1 CAT
peroxisomal matrix 2 CAT, CRAT
peroxisomal membrane 1 CAT
collagen-containing extracellular matrix 1 HSP90B1
receptor complex 2 RXRA, TNFRSF1A
ciliary basal body 1 ALB
chromatin 5 CDK4, JUN, MYC, PPARA, RXRA
phagocytic cup 1 TNF
centriole 1 ALB
[Isoform 1]: Mitochondrion 1 CRAT
Nucleus, nucleolus 1 MYC
spindle pole 1 ALB
nuclear chromosome 1 JUN
blood microparticle 1 ALB
nuclear envelope 1 MYC
endosome lumen 1 INS
Nucleus, nucleoplasm 1 MYC
Melanosome 1 HSP90B1
euchromatin 1 JUN
sperm plasma membrane 1 HSP90B1
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 3 CAT, GCG, INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 4 ALB, GCG, HSP90B1, INS
platelet alpha granule lumen 3 ALB, EGF, HGF
transport vesicle 1 INS
RNA polymerase II transcription repressor complex 1 MYC
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
immunological synapse 1 PRKCQ
aggresome 1 PRKCQ
[Isoform 2]: Cytoplasm 1 ADK
clathrin-coated endocytic vesicle membrane 1 EGF
Sarcoplasmic reticulum lumen 1 HSP90B1
[Isoform 1]: Nucleus 1 ADK
Rough endoplasmic reticulum 1 MYC
proton-transporting ATP synthase complex 1 ATP5ME
cyclin-dependent protein kinase holoenzyme complex 1 CDK4
endocytic vesicle lumen 1 HSP90B1
proton-transporting ATP synthase complex, coupling factor F(o) 1 ATP5ME
transcription factor AP-1 complex 1 JUN
Myc-Max complex 1 MYC
[Glucagon-like peptide 1]: Secreted 1 GCG
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
catalase complex 1 CAT
endoplasmic reticulum chaperone complex 1 HSP90B1
cyclin D1-CDK4 complex 1 CDK4
cyclin D2-CDK4 complex 1 CDK4
cyclin D3-CDK4 complex 1 CDK4
tumor necrosis factor receptor superfamily complex 1 TNFRSF1A
[Isoform 2]: Peroxisome 1 CRAT
ciliary transition fiber 1 ALB
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF
nucleoplasmic reticulum 1 MYC


文献列表

  • Tobie D Lee, Olivia W Lee, Kyle R Brimacombe, Lu Chen, Rajarshi Guha, Sabrina Lusvarghi, Bethilehem G Tebase, Carleen Klumpp-Thomas, Robert W Robey, Suresh V Ambudkar, Min Shen, Michael M Gottesman, Matthew D Hall. A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein. Molecular pharmacology. 2019 11; 96(5):629-640. doi: 10.1124/mol.119.115964. [PMID: 31515284]
  • David A Rudnick, Nicholas O Davidson. Functional Relationships between Lipid Metabolism and Liver Regeneration. International journal of hepatology. 2012; 2012(?):549241. doi: 10.1155/2012/549241. [PMID: 22319652]
  • Tsuyoshi Kurokawa, Yoshiharu Shimomura, Gustavo Bajotto, Katsuhiro Kotake, Takashi Arikawa, Nobuhiro Ito, Akira Yasuda, Hiroshi Nagata, Toshiaki Nonami, Kazuo Masuko. Peroxisome proliferator-activated receptor α (PPARα) mRNA expression in human hepatocellular carcinoma tissue and non-cancerous liver tissue. World journal of surgical oncology. 2011 Dec; 9(?):167. doi: 10.1186/1477-7819-9-167. [PMID: 22168458]
  • Lena Burri, Bodil Bjørndal, Hege Wergedahl, Kjetil Berge, Pavol Bohov, Asbjørn Svardal, Rolf K Berge. Tetradecylthioacetic acid increases hepatic mitochondrial β-oxidation and alters fatty acid composition in a mouse model of chronic inflammation. Lipids. 2011 Aug; 46(8):679-89. doi: 10.1007/s11745-011-3536-2. [PMID: 21479675]
  • Ivan V Shirinsky, Valery S Shirinsky. Targeting Nuclear Hormone Receptors: PPARα Agonists as Potential Disease-Modifying Drugs for Rheumatoid Arthritis. International journal of rheumatology. 2011; 2011(?):937843. doi: 10.1155/2011/937843. [PMID: 21760804]
  • Sean R Pyper, Navin Viswakarma, Songtao Yu, Janardan K Reddy. PPARalpha: energy combustion, hypolipidemia, inflammation and cancer. Nuclear receptor signaling. 2010 Apr; 8(?):e002. doi: 10.1621/nrs.08002. [PMID: 20414453]
  • Sean R Pyper, Navin Viswakarma, Yuzhi Jia, Yi-Jun Zhu, Joseph D Fondell, Janardan K Reddy. PRIC295, a Nuclear Receptor Coactivator, Identified from PPARα-Interacting Cofactor Complex. PPAR research. 2010; 2010(?):. doi: 10.1155/2010/173907. [PMID: 20885938]
  • Lena Burri, G Hege Thoresen, Rolf K Berge. The Role of PPARα Activation in Liver and Muscle. PPAR research. 2010; 2010(?):. doi: 10.1155/2010/542359. [PMID: 20847941]
  • Hanna Amelina, Susana Cristobal. Proteomic study on gender differences in aging kidney of mice. Proteome science. 2009 Apr; 7(?):16. doi: 10.1186/1477-5956-7-16. [PMID: 19358702]
  • Keisuke Tachibana, Daisuke Yamasaki, Kenji Ishimoto, Takefumi Doi. The Role of PPARs in Cancer. PPAR research. 2008; 2008(?):102737. doi: 10.1155/2008/102737. [PMID: 18584037]
  • Sebastian Luci, Beatrice Giemsa, Gerd Hause, Holger Kluge, Klaus Eder. Clofibrate treatment in pigs: effects on parameters critical with respect to peroxisome proliferator-induced hepatocarcinogenesis in rodents. BMC pharmacology. 2007 Apr; 7(?):6. doi: 10.1186/1471-2210-7-6. [PMID: 17437637]
  • Jonathan M Shipley, Christopher H Hurst, Sue S Tanaka, Fred L DeRoos, John L Butenhoff, Andrew M Seacat, David J Waxman. trans-activation of PPARalpha and induction of PPARalpha target genes by perfluorooctane-based chemicals. Toxicological sciences : an official journal of the Society of Toxicology. 2004 Jul; 80(1):151-60. doi: 10.1093/toxsci/kfh130. [PMID: 15071170]
  • Chow H Lee, Anthony M Edwards. Differential expression of c-fos and c-myc protooncogenes by estrogens, xenobiotics and other growth-stimulatory agents in primary rat hepatocytes. Archives of toxicology. 2003 Mar; 77(3):150-9. doi: 10.1007/s00204-002-0422-y. [PMID: 12632255]
  • B Kalderon, V Sheena, S Shachrur, R Hertz, J Bar-Tana. Modulation by nutrients and drugs of liver acyl-CoAs analyzed by mass spectrometry. Journal of lipid research. 2002 Jul; 43(7):1125-32. doi: 10.1194/jlr.m200060-jlr200. [PMID: 12091497]
  • W Parzefall, W Berger, E Kainzbauer, O Teufelhofer, R Schulte-Hermann, R G Thurman. Peroxisome proliferators do not increase DNA synthesis in purified rat hepatocytes. Carcinogenesis. 2001 Mar; 22(3):519-23. doi: 10.1093/carcin/22.3.519. [PMID: 11238195]
  • B C Sallustio, S Nunthasomboon, C J Drogemuller, K M Knights. In vitro covalent binding of nafenopin-CoA to human liver proteins. Toxicology and applied pharmacology. 2000 Mar; 163(2):176-82. doi: 10.1006/taap.1999.8868. [PMID: 10698675]
  • D W Singleton, X D Lei, S J Webb, R A Prough, T E Geoghegan. Cytochrome P-450 mRNAs are modulated by dehydroepiandrosterone, nafenopin, and triiodothyronine. Drug metabolism and disposition: the biological fate of chemicals. 1999 Feb; 27(2):193-200. doi: . [PMID: 9929502]
  • S C Hasmall, N H James, A R Soames, R A Roberts. The peroxisome proliferator nafenopin does not suppress hepatocyte apoptosis in guinea-pig liver in vivo nor in human hepatocytes in vitro. Archives of toxicology. 1998 Dec; 72(12):777-83. doi: 10.1007/s002040050573. [PMID: 9950074]
  • C N Palmer, E Axen, V Hughes, C R Wolf. The repressor protein, Bm3R1, mediates an adaptive response to toxic fatty acids in Bacillus megaterium. The Journal of biological chemistry. 1998 Jul; 273(29):18109-16. doi: 10.1074/jbc.273.29.18109. [PMID: 9660768]
  • W W Huber, B Grasl-Kraupp, H Stekel, C Gschwentner, H Lang, R Schulte-Hermann. Inhibition instead of enhancement of lipid peroxidation by pretreatment with the carcinogenic peroxisome proliferator nafenopin in rat liver exposed to a high single dose of corn oil. Archives of toxicology. 1997; 71(9):575-81. doi: 10.1007/s002040050429. [PMID: 9285040]
  • H K Bojes, R G Thurman. Potent peroxisome proliferators inhibit beta-oxidation in the isolated perfused rat liver. Toxicology and applied pharmacology. 1996 Oct; 140(2):322-7. doi: 10.1006/taap.1996.0227. [PMID: 8887448]
  • S J Webb, G H Xiao, T E Geoghegan, R A Prough. Regulation of CYP4A expression in rat by dehydroepiandrosterone and thyroid hormone. Molecular pharmacology. 1996 Feb; 49(2):276-87. doi: . [PMID: 8632760]
  • P Garberg, M Thullberg. Decreased glutathione peroxidase activity in mice in response to nafenopin is caused by changes in selenium metabolism. Chemico-biological interactions. 1996 Jan; 99(1-3):165-77. doi: 10.1016/0009-2797(95)03667-9. [PMID: 8620565]
  • H K Bojes, R G Thurman. Peroxisome proliferators activate Kupffer cells in vivo. Cancer research. 1996 Jan; 56(1):1-4. doi: NULL. [PMID: 8548746]
  • Y Cai, E L Appelkvist, J W DePierre. Hepatic oxidative stress and related defenses during treatment of mice with acetylsalicylic acid and other peroxisome proliferators. Journal of biochemical toxicology. 1995 Apr; 10(2):87-94. doi: 10.1002/jbt.2570100205. [PMID: 7562957]
  • G Jedlitschky, I Leier, M Böhme, U Buchholz, J Bar-Tana, D Keppler. Hepatobiliary elimination of the peroxisome proliferator nafenopin by conjugation and subsequent ATP-dependent transport across the canalicular membrane. Biochemical pharmacology. 1994 Sep; 48(6):1113-20. doi: 10.1016/0006-2952(94)90147-3. [PMID: 7945404]
  • K E Tomaszewski, R L Melnick. In vitro evidence for involvement of CoA thioesters in peroxisome proliferation and hypolipidaemia. Biochimica et biophysica acta. 1994 Jan; 1220(2):118-24. doi: 10.1016/0167-4889(94)90126-0. [PMID: 7906145]
  • A C Bayly, N J French, C Dive, R A Roberts. Non-genotoxic hepatocarcinogenesis in vitro: the FaO hepatoma line responds to peroxisome proliferators and retains the ability to undergo apoptosis. Journal of cell science. 1993 Feb; 104 ( Pt 2)(?):307-15. doi: 10.1242/jcs.104.2.307. [PMID: 8389374]
  • E Persohn, H Thomas, F Waechter. Immunoelectron microscopic localization of cytochrome P-450 isoenzyme CYP4A1 in liver, ileum and kidney of nafenopin treated male rats. Cell biology international. 1993 Jan; 17(1):99-103. doi: 10.1006/cbir.1993.1010. [PMID: 8495232]
  • G M Ledda-Columbano, P Coni, M Curto, L Giacomini, G Faa, S Oliverio, M Piacentini, A Columbano. Induction of two different modes of cell death, apoptosis and necrosis, in rat liver after a single dose of thioacetamide. The American journal of pathology. 1991 Nov; 139(5):1099-109. doi: NULL. [PMID: 1683163]
  • M S Rao, J K Reddy. An overview of peroxisome proliferator-induced hepatocarcinogenesis. Environmental health perspectives. 1991 Jun; 93(?):205-9. doi: 10.1289/ehp.9193205. [PMID: 1685443]
  • W Huber, B Kraupp-Grasl, H Esterbauer, R Schulte-Hermann. Role of oxidative stress in age dependent hepatocarcinogenesis by the peroxisome proliferator nafenopin in the rat. Cancer research. 1991 Apr; 51(7):1789-92. doi: . [PMID: 2004363]
  • F Assimacopoulos-Jeannet, M Moinat, P Muzzin, C Colomb, B Jeanrenaud, L Girardier, J P Giacobino, J Seydoux. Effects of a peroxisome proliferator on beta-oxidation and overall energy balance in obese (fa/fa) rats. The American journal of physiology. 1991 Feb; 260(2 Pt 2):R278-83. doi: 10.1152/ajpregu.1991.260.2.r278. [PMID: 1996714]
  • K E Tomaszewski, S W Heindel, W L Jenkins, R L Melnick. Induction of peroxisomal acyl CoA oxidase activity and lipid peroxidation in primary rat hepatocyte cultures. Toxicology. 1990 Dec; 65(1-2):49-60. doi: 10.1016/0300-483x(90)90078-u. [PMID: 2274969]
  • A G Smith, J E Francis, D G Walters, B G Lake. Protection against iron-induced uroporphyria in C57BL/10ScSn mice by the peroxisome proliferator nafenopin. Biochemical pharmacology. 1990 Dec; 40(11):2564-8. doi: 10.1016/0006-2952(90)90102-q. [PMID: 2268375]
  • A M Stoddart, W G Levine. Azoreduction of dimethylaminoazobenzene (DAB) in primary cultures of rat hepatocytes. Effect of hypolipidemic agents. Drug metabolism and disposition: the biological fate of chemicals. 1990 Jan; 18(1):36-41. doi: . [PMID: 1970775]
  • B G Lake, T J Gray, S A Körösi, D G Walters. Nafenopin, a peroxisome proliferator, depletes hepatic vitamin E content and elevates plasma oxidised glutathione levels in rats. Toxicology letters. 1989 Feb; 45(2-3):221-9. doi: 10.1016/0378-4274(89)90013-1. [PMID: 2919403]
  • M Germer, P Bentley, W Stäubli, F Wächter. [Immunohistochemical localization of epoxide hydrolases in various organs of untreated and with nafenopin treated DBA/2 mice]. Acta histochemica. Supplementband. 1989; 37(?):199-201. doi: NULL. [PMID: 2505313]
  • F Waechter, P Bentley, F Bieri, S Muakkassah-Kelly, W Stäubli, M Villermain. Organ distribution of epoxide hydrolases in cytosolic and microsomal fractions of normal and nafenopin-treated male DBA/2 mice. Biochemical pharmacology. 1988 Oct; 37(20):3897-903. doi: 10.1016/0006-2952(88)90071-8. [PMID: 3190736]
  • E G Butler, P J England, G M Williams. Effect of peroxisome proliferating hypolipidemic agents on serum activity levels of arylesterase and cholinesterase in rats and mice. Research communications in chemical pathology and pharmacology. 1988 Apr; 60(1):125-8. doi: NULL. [PMID: 3381006]
  • C A Kaiser, J Seydoux, J P Giacobino, L Girardier, A G Burger. Increased plasma clearance rate of thyroxine despite decreased 5'-monodeiodination: study with a peroxisome proliferator in the rat. Endocrinology. 1988 Mar; 122(3):1087-93. doi: 10.1210/endo-122-3-1087. [PMID: 3342745]
  • M N Milton, C R Elcombe, G E Kass, G G Gibson. Lack of evidence for a hepatic peroxisome proliferator receptor and an explanation for the binding of hypolipidaemic drugs to liver homogenates. Biochemical pharmacology. 1988 Mar; 37(5):793-8. doi: 10.1016/0006-2952(88)90163-3. [PMID: 3345197]
  • J Seifert, H Mostecká. Effect of nafenopin and clofibrate on uptake and utilization of labeled thymidine for DNA synthesis in rat liver and kidney. Carcinogenesis. 1988 Jan; 9(1):3-8. doi: 10.1093/carcin/9.1.3. [PMID: 2446797]
  • F Bieri, W Stäubli, S Kelly, F Waechter, P Bentley. Assessment of peroxisome proliferation and liver growth-stimulating potential by nondirectly genotoxic compounds in cultured hepatocytes. Molecular toxicology. 1987 198; 1(4):439-44. doi: NULL. [PMID: 3151502]
  • W Bursch, B Düsterberg, R Schulte-Hermann. Growth, regression and cell death in rat liver as related to tissue levels of the hepatomitogen cyproterone acetate. Archives of toxicology. 1986 Dec; 59(4):221-7. doi: 10.1007/bf00290542. [PMID: 2435263]
  • K E Tomaszewski, D K Agarwal, R L Melnick. In vitro steady-state levels of hydrogen peroxide after exposure of male F344 rats and female B6C3F1 mice to hepatic peroxisome proliferators. Carcinogenesis. 1986 Nov; 7(11):1871-6. doi: 10.1093/carcin/7.11.1871. [PMID: 3769136]
  • C Robba, G Mazzocchi, G Gottardo, G G Nussdorfer. Effects of the hypolipidemic drug nafenopin on the zona glomerulosa of the rat adrenal cortex: morphological counterparts of functional alterations. Anatomischer Anzeiger. 1986; 161(1):35-41. doi: . [PMID: 3010777]
  • O D Wiestler, I Schmerold, B Fringes, B Volk, P Kleihues. Nafenopin-induced rat liver peroxisome proliferation reduces DNA methylation by N-nitrosodimethylamine in vivo. Carcinogenesis. 1985 Sep; 6(9):1309-13. doi: 10.1093/carcin/6.9.1309. [PMID: 4028330]
  • N D Lalwani, W E Fahl, J K Reddy. Detection of a nafenopin-binding protein in rat liver cytosol associated with the induction of peroxisome proliferation by hypolipidemic compounds. Biochemical and biophysical research communications. 1983 Oct; 116(2):388-93. doi: 10.1016/0006-291x(83)90534-x. [PMID: 6651818]
  • S O Farrell, L L Bieber. Carnitine octanoyltransferase of mouse liver peroxisomes: properties and effect of hypolipidemic drugs. Archives of biochemistry and biophysics. 1983 Apr; 222(1):123-32. doi: 10.1016/0003-9861(83)90509-x. [PMID: 6838215]
  • G Mazzocchi, C Robba, P Rebuffat, A S Belloni, G G Nussdorfer. Effects of the hypolipidemic drug nafenopin on the zona fasciculata of the rat adrenal cortex: a correlated biochemical and stereological study. The Anatomical record. 1982 Nov; 204(3):245-54. doi: 10.1002/ar.1092040309. [PMID: 7158828]
  • D Charpentier, B Tuchweber. Increased hepatotoxicity of carbon tetrachloride by the hypolipidemic drug nafenopin in rats. Research communications in chemical pathology and pharmacology. 1982 Jun; 36(3):449-61. doi: . [PMID: 6289397]
  • A B Novikoff, P M Novikoff. Microperoxisomes and peroxisomes in relation to lipid metabolism. Annals of the New York Academy of Sciences. 1982; 386(?):138-52. doi: 10.1111/j.1749-6632.1982.tb21412.x. [PMID: 6953844]
  • J R Arch, A Green, M A Cawthorne. Effects of nafenopin, diphenylhydantoin, phenobarbitone and some acetylenes on body composition: is there a relationship between decreased carcass lipid and increased liver size and induction of drug metabolizing enzymes?. International journal of obesity. 1980; 4(1):1-10. doi: ". [PMID: 7390696]
  • W N Scott, I M Reich, D B Goodman. Inhibition of fatty acid synthesis prevents the incorporation of aldosterone-induced proteins into membranes. The Journal of biological chemistry. 1979 Jun; 254(12):4957-9. doi: 10.1016/s0021-9258(18)50544-5. [PMID: 109429]
  • J Jorritsma, J H Meerman, R J Vonk, G J Mulder. Biliary and urinary excretion of drug conjugates: effect of diuresis and choleresis on excretion of harmol sulphate and harmol glucuronide in the rat. Xenobiotica; the fate of foreign compounds in biological systems. 1979 Apr; 9(4):247-52. doi: 10.3109/00498257909038727. [PMID: 483860]
  • K Bjondahl. A study on cerium-induced liver injury in rats after pretreatment with spironolactone, phenobarbital, pregnenolone-16 alpha-carbonitrile and nafenopin. Arzneimittel-Forschung. 1978; 28(5):817-9. doi: . [PMID: 581962]
  • P G Canonico, W Rill, E Ayala. Effects of inflammation on peroxisomal enzyme activities, catalase synthesis, and lipid metabolism. Laboratory investigation; a journal of technical methods and pathology. 1977 Nov; 37(5):479-86. doi: ". [PMID: 21326]
  • M Psenicnik, N Pipan. Nafenopin-induced proliferation of peroxisomes in the small intestine of mice. Virchows Archiv. B, Cell pathology. 1977 Oct; 25(2):161-9. doi: 10.1007/bf02889430. [PMID: 412313]
  • D K Meijer, R J Vonk, K Keulemans, J G Weitering. Hepatic uptake and biliary excretion of dibromosulphthalein. Albumin dependence, influence of phenobarbital and nafenopin pretreatment and the role of y and z protein. The Journal of pharmacology and experimental therapeutics. 1977 Jul; 202(1):8-21. doi: . [PMID: 874820]
  • K Bjondahl. Differences in liver weight, mortality in cerium-treated mice and 144Ce levels in blood, liver, urine and faeces at various intervals after treatment with nafenopin and pregnenolone 16-alpha-carbonitrile (PCN). Medical biology. 1976 Dec; 54(6):454-60. doi: . [PMID: 1004028]
  • B Tuchweber, P Kourounakis, J G Latour. Drug metabolism and morphologic changes in the liver of nafenopin-treated rats. Archives internationales de pharmacodynamie et de therapie. 1976 Aug; 222(2):309-21. doi: . [PMID: 984981]
  • W G Levine, J Bognacki. Biliary excretion of 3,4-benzpyrene in nafenopin-treated rats. The Journal of pharmacology and experimental therapeutics. 1976 Feb; 196(2):486-92. doi: NULL. [PMID: 1255492]
  • W G Robison, T Kuwabara. Microperoxisomes in retinal pigment epithelium. Investigative ophthalmology. 1975 Nov; 14(11):866-72. doi: NULL. [PMID: 810456]
  • F Andreani, R Andrisano, A Andreani. New alpha-substituted arylthioacetic derivatives forming analogues of clofibrate. Il Farmaco; edizione scientifica. 1975 Oct; 30(10):847-58. doi: ". [PMID: 1236653]
  • E L Lien, D B Goodman, H Rasmussen. Effects of an acetyl-coenzyme A carboxylase inhibitor and a sodium-sparing diuretic on aldosterone-stimulated sodium transport, lipid synthesis, and phospholipid fatty acid composition in the toad urinary bladder. Biochemistry. 1975 Jun; 14(12):2749-54. doi: 10.1021/bi00683a030. [PMID: 238574]
  • D K Meijer, J Bognacki, W G Levine. Effect of nafenopin (SU-13,437) on liver functions. Hepatic uptake and biliary excretion of ouabain in the rat. Drug metabolism and disposition: the biological fate of chemicals. 1975 May; 3(3):220-5. doi: . [PMID: 238821]
  • D K Meijer, J Bognacki, W G Levine. Effect of nafenopin (SU-13,437) on liver function: influence on the hepatic transport of organic anions. Naunyn-Schmiedeberg's archives of pharmacology. 1975; 290(2-3):235-50. doi: 10.1007/bf00510553. [PMID: 810733]
  • R Maier, K Muller. Effects of various hypolipidemic drugs on fatty acid composition of liver and serum lipids. Advances in experimental medicine and biology. 1975; 63(?):349-57. doi: 10.1007/978-1-4684-3258-9_25. [PMID: 1199873]
  • W G Levine, H R Braunstein, D K Mejier. Effect of nafenopin (SU-13,437) on liver function: mechanism of choleretic effect. Naunyn-Schmiedeberg's archives of pharmacology. 1975; 290(2-3):221-34. doi: 10.1007/bf00510552. [PMID: 1186921]
  • V Beaumont, J C Buxtorf, B Jacotot, J L Beaumont. Comparative study of several hypolipidemic agents related to clofibrate. Atherosclerosis. 1974 Sep; 20(2):141-53. doi: 10.1016/0021-9150(74)90001-x. [PMID: 4369878]
  • J K Reddy, D L Azarnoff, D J Svoboda, J D Prasad. Nafenopin-induced hepatic microbody (peroxisome) proliferation and catalase synthesis in rats and mice. Absence of sex difference in response. The Journal of cell biology. 1974 May; 61(2):344-58. doi: 10.1083/jcb.61.2.344. [PMID: 4208071]
  • C Dalton, W C Hope, H R Hope, H Sheppard. Relationship of serum triglyceride lowering to changes in hepatic composition induced by different classes of drugs. Biochemical pharmacology. 1974 Feb; 23(3):685-96. doi: 10.1016/0006-2952(74)90633-9. [PMID: 4150813]
  • C Sirtori, R Fumagalli, R Paoletti. Hypolipidemic drugs. Advances in experimental medicine and biology. 1973; 38(?):171-98. doi: ". [PMID: 4594063]
  • R J Cenedella. Clofibrate and nafenopin (SU-13437): effects on plasma clearance and tissue distribution of chylomicron triglyceride in the dog. Lipids. 1972 Oct; 7(10):644-52. doi: 10.1007/bf02533070. [PMID: 4635558]
  • E A Nikkila. Effect of drugs on plasma triglyceride metabolism. Advances in experimental medicine and biology. 1972; 26(0):113-33. doi: NULL. [PMID: 4606489]
  • J Boberg, L A Carlson, S O Fröberg, L Orö. Effect of a hypolipidaemic drug (CH 13,437) on plasma and tissue lipids, and on the intravenous fat tolerance in man. Atherosclerosis. 1970 Mar; 11(2):353-60. doi: 10.1016/0021-9150(70)90074-2. [PMID: 4353910]